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A B S T R A C T

Numerical algorithms for stiff stochastic differential equations are developed
using linear approximations of the fast diffusion processes, under the assump-
tion of decoupling between fast and slow processes. Three numerical schemes
are proposed, all of which are based on the linearized formulation albeit with
different degrees of approximation. The schemes are of comparable complex-
ity to the classical explicit Euler-Maruyama scheme, but can achieve better ac-
curacy at larger time steps in stiff systems. Convergence analysis is conducted
for one of the schemes, that shows it to have a strong convergence order of 1/2
and a weak convergence order of 1. Approximations arriving at the other two
schemes are discussed. Numerical experiments are carried out to examine the
convergence of the schemes proposed on model problems.
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1. Introduction

Stiff stochastic differential equations (SDEs) are relevant in the mathematical modeling of a wide range of physical

systems, where multiscale stochastic processes, involving a large range of time-scales, enter in the formulation of the

system governing equations. Our work is motivated by the challenges in time integration of stiff stochastic chemical

systems. These systems can in principle be modeled in the discrete stochastic context by simulating pathways of the

chemical master equation (CME) using stochastic methods [1], including the stochastic simulation algorithm (SSA)

and its variants [2–5]. The SSA has been used extensively in this regard, with various developments for dealing with

stiffness [6–11]. These methods employ a range of strategies often involving identification of fast and slow reaction
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subsets [11–16] with targeted approximations for handling each subset, including the identification of state-vector

subsets dominated by fast/slow processes [15, 17]. These approaches rely on the observation that the relaxation time

for fast processes is small relative to the slow time scales that dominate the time rate of change of the state, thereby

invoking a stochastic quasi-steady state approximation (QSSA) [17–19], or allowing some other approximate means of

approximation of the fast processes [12, 14, 16, 20]. Often, approximate modeling of fast reaction processes [12, 13]

is done by taking the CME to the continuous stochastic limit, namely the chemical Langevin equation (CLE) [21–24],

an SDE.

Our focus here is specifically in this continuous stochastic context. The CLE typically retains a significant de-

gree of stiffness, resulting in associated computational challenges which have been the subject of ongoing research.

Sotiropoulos et al. [25] outline a semianalytical method that relies on transformation of the SDE into two subsystems

describing the evolution of distinct slow and fast varying variables, following [26]. This is followed by a decoupling

step, relying on the fast-slow structure of the dynamics, which allows separate approximation of the distributions of

the fast and slow variables. This enables the construction of a system of slow CLEs that can be integrated with large

time steps, before reconstructing the full solution. Similarly, Thomas et al. [27] present a method that relies on the

identification of fast and slow reactions, using forward and inverse Fourier transforms to apply approximations of the

fast processes, and employ separation of the state vector into slow and fast variables. In our own earlier work with

the CLE [28], we outlined an automated procedure that does not presume an a priori distinction between fast/slow

reactions or variables, relying rather on dynamical analysis using computational singular perturbation (CSP) [29–51]

to decouple fast/slow processes and provide stable large time-step time integration of the full state vector as driven

by the drift terms. This is possible when appropriate statistics can be employed to judge the exhaustion of the fast

dynamics of the mean-state towards an underlying slow manifold. This method, however, does not deal with the

stiffness of the diffusion source terms, and their associated slow/fast structure. That is the focus of the present work.

While we have motivated the work based on stochastic stiff chemical models, highlighting associated challenges

and progress, we are concerned here with stiff SDEs in general, and particularly with effective modeling, through

local linearization, of fast diffusion processes, allowing efficient explicit time integration of SDEs with stiff diffusion.

The paper is organized as follows. First, in Section 2, we provide a brief background on general numerical schemes

for stiff SDEs and formulate the specific objectives of this work. Then, in Section 3, we propose a linearized model

for handling the fast diffusion processes in stiff SDEs, and develop numerical algorithms for stiff SDEs based on

this construction. In Section 4, we present a convergence analysis for one of the schemes proposed in Section 3.

Illustrative, numerical experiments are then presented in Section 5, and closing remarks are given in Section 6.

2. Background and objective

There is a broad landscape of theoretical and numerical work with SDEs, covering their mathematical properties

and both analytical and numerical solution methods (see, e.g., [52–55]). Numerous numerical methods are available

for time integration of SDEs, and their accuracy naturally improves with decreasing time step size, with the rate of

convergence of the error depending on the choice of error metric as well as the integration scheme. One of the most
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widely used methods is the explicit Euler-Maruyama (EM) scheme, due to its ease of implementation. The classical

explicit EM scheme has a strong convergence rate , i.e. the rate of convergence of the mean square error in the solution

at some time instant T , of O(∆t1/2) (see, e.g., [56–58]) and a weak convergence rate, i.e., the rate of convergence of

the error in moments, such as mean or variance/covariance, of the solution at time T , of O(∆t). The EM formulation

is briefly outlined below.

Consider a d-dimensional SDE with an m-dimensional Brownian motion

dX(t) = f (X(t))dt +

m∑
k=1

gk(X(t))dWk(t), 0 ≤ t ≤ T, X(0) = x0, (2.1)

where X(t) = (X1(t), . . . , Xd(t))T ∈ Rd for every t ≥ 0, Wk(t) is a scalar Brownian motion for each k = 1, · · · ,m, and

the functions f : Rd → Rd, g : Rd → Rd satisfy standard assumptions for the existence and uniqueness of solutions

to the system (2.1) (see, e.g., [52, 53]). Given a stepsize ∆t, set N = T/∆t and tn = n∆t. Then for n = 0, · · · ,N the

solution to (2.1) on [tn, tn+1) given X(tn) = xn is

X(t) = xn +

∫ t

tn
f (X(s))ds +

m∑
k=1

∫ t

tn
gk(X(s))dWk(s), t ∈ [tn, tn+1). (2.2)

The simplest one-step EM scheme applied to (2.2) gives an approximation for xn+1 ≈ X(tn+1) as

xn+1 = xn + ∆t f (xn) +

m∑
k=1

gk(xn)∆Wk,n, ∆Wk,n = Wk(tn+1) −Wk(tn), n = 1, · · · ,N. (2.3)

The focus of this work is computing solutions of the SDE (2.1) with stiffness in the diffusion coefficients. In

particular, we are concerned with SDEs of the form (2.1) where the diffusion coefficients gk(xn), k = 1, . . . ,m exhibit

a large range magnitudes with k. Moreover, presuming an ordering where |g1| > |g2| > · · · > |gm|, the ideal context

for the present construction is one where there exists M ∈ [1,m] such that the magnitudes of the first M diffusion

coefficients, g1, . . . , gM (referred to as the fast diffusion processes), are significantly larger than those of the other

diffusion coefficients gM+1, . . . , gm (referred to as the slow diffusion processes). The EM scheme is still feasible, but

requires ∆t to be chosen sufficiently small to accommodate the fast variations of the states due to g1, . . . , gM , because

of its slow rate of convergence. Higher order explicit schemes allowing larger stepsizes can be derived iteratively

using Itô-Taylor approximations for SDEs (see, e.g., [54]), but most of the time are difficult to implement due to the

presence of multiple stochastic integrals. Extensive work has been done towards improving the accuracy or stability

of numerical schemes for SDEs with stiffness (see, e.g. [59–70]), among which numerical schemes for stiff SDEs

based on the EM scheme were developed in [59–61].

One major drawback of EM, even when it is stable, is the large error in approximating diffusion at larger stepsizes

when the magnitude of diffusion term is large. This is due to lower order of discretization error of the diffusion terms

gk(xn)∆Wk,n. The aim of this work is to develop numerical schemes for the stiff SDE (2.1) that employ linearized

modeling of fast diffusion processes, thereby giving more accurate approximations for the diffusion terms of larger

magnitudes at larger time steps, without having to use higher order explicit schemes. More precisely, we will develop
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schemes by modifying the EM time integration (2.3) to

xn+1 = xn + ∆t f (xn) +

m∑
k=M+1

gk(xn)∆Wk,n + ηn+1, ∆Wk,n := Wk(tn+1) −Wk(tn), (2.4)

in which ηn+1 is an Rd-valued random variable that approximates
∑M

k=1

∫ tn+1

tn
gk(X(s))dWk(s) more accurately than∑M

k=1 gk(xn)∆Wk,n as in the EM scheme at larger step size ∆t.

Given an Rd-valued stochastic process X(t), for n = 0, · · · ,N define the diffusion process D X
n (t) by

D X
n (t) =

M∑
k=1

∫ t

tn
gk(X(s))dWk(s), t ∈ [tn, tn+1).

In particular, when X(t) satisfies the equation (2.2), D X
n (t) represents the fast diffusion processes in (2.2). Then the

random variable ηn+1 in (2.4) that we seek, is an approximation of D X
n (tn+1). The idea here is to approximate D X

n (t)

by D X̂
n (t), in which the Rd-valued process X̂ satisfies the diffusion only SDE

dX̂(t) =

M∑
k=1

gk(X̂(t))dWk(t), X̂(tn) = xn, t ∈ [tn, tn+1). (2.5)

More precisely, we first derive approximations of the solution X̂(t) to the SDE (2.5) by employing local linear approx-

imations of gk. Then we apply the approximations of X̂(t) to develop various models for ηn+1, which are eventually

employed in the construction of numerical schemes for the original SDE (2.1).

Note that if
{
gk(X(t))

}
k=1,··· ,M are decoupled from

{
gk(X(t))

}
k=M+1,··· ,m and f (X(t)), then approximating D X

n (t) by

D X̂
n (t) in (2.2) does not introduce an extra error. On the other side, when

{
gk(X(t))

}
k=1,··· ,m and

{
gk(X(t))

}
k=M+1,··· ,m

and/or f (X(t)) are coupled, such an approximation is associated with an error term |D X
n (t)−D X̂

n (t)|, which needs to be

taken into account when constructing error estimates for any numerical scheme arising from (2.5). In the context of

chemical reaction systems, the magnitude of gk is proportional to the magnitude of the propensity function of the kth

reaction. Therefore, the magnitudes of
{
gk(X(t))

}
k=1,··· ,M being much larger than those of

{
gk(X(t))

}
k=M+1,··· ,m implies

that at the time instant t, the reactions 1, · · · ,M are much faster and thus more likely to occur/“fire” than the reactions

M+1, · · · ,m during the next infinitesimal time period. In the well known formulation of chemical Langevin equations

via the tau-leaping method [71], this can be interpreted as the reactions 1, · · · ,M fires much more frequently than the

reactions M + 1, · · · ,m during any fixed period of time that fulfills the assumptions for tau-leaping [71]. Therefore, in

this time period, reactions M + 1, · · · ,m can be regarded as “nearly frozen”, thus not contributing significantly to the

SDE diffusion term, while the reactions 1, · · · ,M are active. Accordingly, the evolution of X̂(t) is only weakly coupled

with the evolution of X(t). This assumed decoupling among fast and slow processes on appropriate time-scales is used

in various other constructions already cited above, e.g. [27]. In the present construction, in the convergence analysis

conducted in Section 4, we show that the contribution of the error term |D X
n (t) − D X̂

n (t)| is relatively small compared

to the error of the EM scheme applied to
{
gk(X(t))

}
k=M+1,··· ,m, when the magnitudes of

{
gk(X(t))

}
k=M+1,··· ,m are much

smaller than the magnitudes of
{
gk(X(t))

}
k=1,··· ,M .

In the next section , we will solve the diffusion only SDE (2.5) when each of the fast diffusion processes {gk}k=1,··· ,M

is approximated by a linear function of the state. The solutions are then used to model ηn+1 in the modified EM scheme

(2.4).
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3. Linear models for fast diffusion processes

In this section we first construct approximated solutions to the SDE (2.5) using a local linear approximation of

gk for k = 1, · · · ,M on each interval [tn, tn+1). Then we develop various models for ηn+1, which we refer to as fast

processes models (FPMs) based on the approximated solutions of (2.5). In particular, we develop three models for

vector-valued SDEs in Subsection 3.1, and we discuss two of them in the context of scalar-valued SDEs in Subec-

tion 3.2. Numerical schemes resulting from each of the models, for integrating the original SDE (2.1), are presented

at the end of each subsection.

3.1. Vector-valued diffusion only SDE

For t ∈ [tn, tn+1), set Yn(t) = X̂(t) − xn, where X̂(t) is the solution to the SDE (2.5). Note that Yn(tn+1) = D X̂
n (tn+1),

and that it will be used to approximate D X
n (tn+1) and model the random variable ηn+1.

3.1.1. Linear approximation at pathwise initial state

Given X̂(tn) = xn, approximate gk(X̂(t)) at xn by

gk(X̂(t)) ≈ bk,n + Jk,n(X̂(t) − xn), t ∈ [tn, tn+1),

where Jk,n is the Jacobian of gk evaluated at xn and bk,n = gk(xn). Then Yn(t) satisfies the linear SDE

dYn(t) =

M∑
k=1

(Jk,nYn(t) + bk,n)dWk(t) for t ∈ [tn, tn+1), Yn(tn) = 0. (3.1)

The solution to (3.1) reads (see, e.g., [52] )

Yn(t) = Φn(t)

   −∫ t

tn
Φ−1

n (s)
M∑

k=1

Jk,nbk,nds +

∫ t

tn
Φ−1

n (s)
M∑

k=1

bk,ndWk(s)

   , (3.2)

where Φn(t) ∈ Rd×d is the fundamental matrix of the corresponding homogeneous equation, i.e., the solution of the

homogeneous SDE

dΦn(t) =

M∑
k=1

Jk,nΦn(t)dWk(t), t ∈ [tn, tn+1), Φn(tn) = Id. (3.3)

For this special SDE (3.3) with no drift and Jk,n being autonomous on the interval [tn, tn+1), the fundamental matrix

can be given explicitly as

Φn(t) = exp

    −1
2

M∑
k=1

J2
k,n(t − tn) +

M∑
k=1

Jk,n(Wk(t) −Wk(tn))

   . (3.4)

However, since equation (3.4) involves an exponential of stochastic matrices, computing Φn(t) directly is of high

complexity and cost. A simplified formulation for Φn can be obtained from a one-step EM applied to the homogeneous

SDE (3.3), resulting in

Φn(t) ≈ Id +

M∑
k=1

Jk,n(Wk(t) −Wk(tn)). (3.5)
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Now applying (3.5) in (3.2), setting Φ−1
n (s) ≡ Φ−1

n (tn) for s ∈ [tn, t) and evaluating the integrals from tn to tn+1 gives

Yn(tn+1) ≈

Id +

M∑
k=1

Jk,n∆Wk,n

 M∑
k=1

(
−Jk,nbk,n∆t + bk,n∆Wk,n

)
, (3.6)

where ∆Wk,n is defined as in (2.4). The algorithm using ηn+1 = Yn(tn+1) in (3.6), which we refer to as FPM-LP (Linear

approximation at Pathwise state), is summarized in Subsection 3.1.4. An upper bound of the error from approximating

Yn(t) in (3.2) at tn+1 by (3.6) will be provided in Section 4.

3.1.2. Linear approximation at the mean initial state

Note that Jk,n is the Jacobian of gk evaluated at the “pathwise” initial state xn = xn(ω), and thus is also path

dependent, i.e. Jk,n = Jk,n(ω) needs to be computed for every sample path ω ∈ Ω. The associated computational cost

can be reduced by anchoring the linear approximation of gk(X̂(t)) at the path independent mean state x̄n := E[xn(ω)],

instead of the path dependent state xn. More precisely, approximate gk(X̂(t)) at x̄n by

gk(X̂(t)) ≈ b̃k,n + J̃k,n(X̂(t) − x̄n) with x̄n := E[xn(ω)], t ∈ [tn, tn+1),

where J̃k,n is the Jacobian of gk evaluated at x̄n and b̃k,n = gk(x̄n). If we still define Yn(t) = X̂(t) − xn for t ∈ [tn, tn+1),

then X̂(t) − x̄n = Yn(t) + xn − x̄n for t ∈ [tn, tn+1), and Yn(t) satisfies the SDE

dYn(t) =

M∑
k=1

(
J̃k,nYn(t) + ck,n

)
dWk(t), t ∈ [tn, tn+1), (3.7)

where ck,n = b̃k,n + J̃k,n(xn − x̄n). The solution to (3.7) is given by

Yn(t) = Φ̃n(t)

−∫ t

tn
Φ̃−1

n (s)
M∑

k=1

J̃k,nck,nds +

∫ t

tn
Φ̃−1

n (s)
M∑

k=1

ck,ndWk(s)

 , (3.8)

where Φ̃n(t) = exp
{
− 1

2
∑M

k=1 J̃2
k,n(t − tn) +

∑M
k=1 J̃k,n(Wk(t) −Wk(tn))

}
.

Similar to (3.5)–(3.6), approximating Φ̃n(t) by Φ̃n(t) ≈ Id +
∑M

k=1 J̃k,n(Wk(t) − Wk(tn)) in (3.8), setting Φ̃−1
n (s) ≡

Φ̃−1
n (tn) for s ∈ [tn, t), and evaluating the integrals from tn to tn+1 gives

Yn(tn+1) ≈

Id +

M∑
k=1

J̃k,n∆Wk,n

 M∑
k=1

(
−J̃k,nck,n∆t + ck,n∆Wk,n

)
, (3.9)

where J̃k,n is the Jacobian of gk evaluated at x̄n, ck,n = gk(x̄n) + J̃k,n(xn − x̄n) and ∆Wk,n is defined as in (2.4). Note

that since J̃k,n depends on the mean state at tn, it needs to be computed only once for all samples at tn and thus reduces

the computational cost. The algorithm using ηn+1 = Yn(tn+1) in (3.9), referred to as FPM-LM (Linear approximation

at Mean state), is summarized in subsection 3.1.4.

3.1.3. Moment approximations

Both (3.6) and (3.9) provide pathwise approximations to Yn(tn+1), i.e., for each ω ∈ Ω and xn(ω) ∈ Rd, Yn(tn+1) =

Yn(tn+1, ω) is approximated based on the pathwise solution of the SDE (3.1) or (3.7). An alternative is to model ηn+1

in distribution by computing the moments for Yn(tn+1). To this end, we revisit the SDE (3.1) and consider the first and
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second moments of its solution. More precisely, let µn(t) = E[Yn(t)] be the mean and Pn(t) = E[Yn(t)YT
n (t)] be the

second moment of the solution Yn(t) to (3.1), respectively. These moments satisfy the system of ordinary differential

equations on t ∈ [tn, tn+1)

dµn(t)
dt

= 0, (3.10)

dPn(t)
dt

=

M∑
k=1

(
Jk,nPn(t)JT

k,n + Jk,nµn(t)bT
k,n + bk,nµ

T
n (t)JT

k,n + bk,nbT
k,n

)
. (3.11)

Note that since Y(tn) = 0, µn(tn) = 0 and Pn(tn) = 0. Thus the solution to equation (3.10) is µn(t) ≡ 0 on [tn, tn+1),

and the resulting covariance matrix of Yn(t) on [tn, tn+1) is Cn(t) = E[Yn(t)YT
n (t)] − 0 = Pn(t). Plugging into (3.11)

results in the following linear matrix-valued non-homogeneous ODE for the covariance matrix

dCn(t)
dt

=

M∑
k=1

Jk,nCn(t)JT
k,n +

M∑
k=1

bk,nbT
k,n, t ∈ [tn, tn+1). (3.12)

The solution of (3.12) can only be derived explicitly for special cases. Here a one-step Euler approximation with

initial value Cn(tn) = 0n is applied to give Cn(t) = (t − tn)
∑M

k=1 bk,nbT
k,n for t ∈ [tn, tn+1), and in particular

Cn(tn+1) ≈ ∆t
M∑

k=1

bk,nbT
k,n, with bk,n = gk(xn).

The random variable ηn+1 is then modeled to have the mean 0 and covariance Cn(tn+1). In particular, set ηn+1 to follow

the d-variate normal distribution

ηn+1 ∼ N

0,∆t
M∑

k=1

bk,nbT
k,n

 . (3.13)

The algorithm using ηn+1 modeled by (3.13), which we refer to as FPM-MM (MoMent approximation), is summarized

in subsection 3.1.4.

3.1.4. Numerical algorithms

In this subsection, we present three variations of the numerical scheme (2.3) based on the FPM-LP resulted from

the model (3.6), FPM-LM resulted from (3.9), and FPM-MM resulted from (3.13), respectively, in Table 1.

For n = 0, · · · ,N:
xn+1 = xn + ∆t f (xn) +

∑m
k=M+1 gk(xn)∆Wk,n + ηn+1 with

[FPM-LP] ηn+1 =
(
Id +

∑M
k=1 Jk,n∆Wk,n

)∑M
k=1

(
−Jk,nbk,n∆t + bk,n∆Wk,n

)
[FPM-LM] ηn+1 =

(
Id +

∑M
k=1 J̃k,n∆Wk,n

)∑M
k=1

(
−J̃k,nck,n∆t + ck,n∆Wk,n

)
[FPM-MM] ηn+1 ∼ N

(
0,∆t

∑M
k=1 bk,nbT

k,n

)
where

x̄n = E[xn], bk,n = gk(xn), ck,n = gk(x̄n) + J̃k,n(xn − x̄n),
Jk,n =

(
∂gk
∂X1
, · · · , ∂gk

∂Xd

)∣∣∣∣
X=xn

, J̃k,n =
(
∂gk
∂X1
, · · · , ∂gk

∂Xd

)∣∣∣∣
X=x̄n

.

Table 1. Numerical algorithms for vector-valued SDE (2.1) based on FPMs
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3.2. Scalar-valued diffusion only SDE

In this section we focus on the case where d = 1, for which the solution to the linear SDEs (3.1) and (3.7), as well

as the solution to the linear ODE system (3.10)–(3.11) can be derived explicitly. For xn ∈ R, set Yn(t) = X̂(t) − xn

where X̂(t) is the solution to the scalar SDE

dX̂(t) =

M∑
k=1

gk(X̂(t))dWk(t), X̂(tn) = xn, t ∈ [tn, tn+1). (3.14)

As in the vector case, approximations of Yn(tn+1) will be developed and used to model the random variable ηn+1,

denoted as ηn+1 for d = 1, in (2.4).

3.2.1. Linear approximation at the pathwise initial state

For n = 1, · · · ,N, given X̂(tn) = xn, approximate gk(X̂(t)) on [tn, tn+1) by

gk(X̂(t)) ≈ bk,n + ak,n(X̂(t) − xn) with ak,n =
dgk(X̂)

dX̂

∣∣∣∣∣∣
X̂=xn

, bk,n = gk(xn), k = 1, · · · ,M.

Then Yn(t) = X̂(t) − xn satisfies the scalar linear SDE

dYn(t) =

M∑
k=1

(
bk,n + ak,nYn(t)

)
dWk(t), Yn(tn) = 0, t ∈ [tn, tn+1), (3.15)

which has a unique solution

Yn(t) = φn(t)
M∑

k=1

(
bk,n

(
− ak,n

∫ t

tn
φ−1

n (s)ds +

∫ t

tn
φ−1

n (s)dWk(s)
))
, t ∈ [tn, tn+1), (3.16)

where

φn(t) = exp

−1
2

M∑
k=1

a2
k,n(t − tn) +

M∑
k=1

ak,n(Wk(t) −Wk(tn))

 , t ∈ [tn, tn+1). (3.17)

Note that, here, φn(t) is the exact solution of the homogeneous SDE corresponding to (3.15), i.e., the scalar

version of (3.4), but will now be computed directly instead of using the approximation (3.5). Although the integrals∫ t
tn
φ−1

n (s)ds and
∫ t

tn
φ−1

n (s)dWk(s) are still not analytically tractable, since the integrands are state independent we can

approximate the integrals by their Riemann sums. To that end, divide [tn, tn+1) into l subintervals tn = tn,0 < . . . <

tn,l−1 = tn+1 with tn,i+1 − tn,i = ∆t
l := h. Then tn,i = tn + ih and the integrals

∫ tn,i+1

tn,i
φ−1

n (s)ds and
∫ tn,i+1

tn,i
φ−1

n (s)dWk(s) can

be approximated by, respectively,∫ tn,i+1

tn,i
φ−1

n (s)ds ≈ φ−1
n (tn,i)h = exp

1
2

ih
M∑

k=1

a2
k,n −

M∑
k=1

ak,n∆W ih
k,n

 h,

∫ tn,i+1

tn,i
φ−1

n (s)dWk(s) ≈ φ−1
n (tn,i)Nk (0, h) = exp

1
2

ih
M∑

k=1

a2
k,n −

M∑
k=1

ak,n∆W ih
k,n

 ∆Wh
k,n,

where ∆W ih
k,n = Wk(tn + ih) −Wk(tn) for i = 0, · · · , l − 1. As a direct consequence,∫ tn+1

tn
φ−1

n (s)ds = h
l−1∑
i=0

e
1
2 ih

∑M
k=1 a2

k,n−
∑M

k=1 ak,n∆W ih
k,n ,

∫ tn+1

tn
φ−1

n (s)dWk(s) = ∆Wh
k,n

l−1∑
i=0

e
1
2 ih

∑M
k=1 a2

k,n−
∑M

k=1 ak,n∆W ih
k,n . (3.18)
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Using (3.17) and (3.18) in (3.16) gives

Yn(tn+1) ≈ φn(tn+1)
M∑

k=1

(
bk,nI

l
k,n

(
− ak,nh + ∆Wh

k,n

))
, (3.19)

where

φn(tn+1) ≈ exp

−1
2

M∑
k=1

a2
k,n∆t +

M∑
k=1

ak,n∆Wk,n

 , Il
k,n =

l−1∑
i=0

e
1
2 ih

∑M
k=1 a2

k,n−
∑M

k=1 ak,n∆W ih
k,n .

In particular, when l = 1 and h = ∆t, the formula (3.19) becomes

Yn(tn+1) ≈ e−
1
2
∑M

k=1 a2
k,n∆t+

∑M
k=1 ak,n∆Wk,n

M∑
k=1

(
bk,n

(
−ak,n∆t + ∆Wk,n

))
. (3.20)

The algorithm using ηn+1 ≈ Yn(tn+1) in (3.20) is summarized in subsection 3.2.3.

3.2.2. Moment approximations

As in the vector case, we can also model ηn+1 by a scalar-valued random variable. Unlike the vector case, now the

ordinary differential equations satisfied by the first and second moments for Yn(t) can be solved explicitly. We denote

by µn(t) = E[Yn(t)] and νn(t) = E[Y2
n (t)] the first and second moments of Yn(t) in (3.16), respectively. These moments

satisfy the following system of ODEs on [tn, tn+1)

dµn(t)
dt

= 0, µn(tn) = 0,

dνn(t)
dt

=

M∑
k=1

a2
k,nνn(t) + 2µn(t)

M∑
k=1

ak,nbk,n +

M∑
k=1

b2
k,n, νn(tn) = 0,

which can be solved analytically to give

µn(t) = 0, νn(t) =

∑M
k=1 b2

k,n∑M
k=1 a2

k,n

(
e
∑M

k=1 a2
k,n(t−tn)

− 1
)
.

In particular at t = tn+1 we have

E[Yn(tn+1)] = 0, Var[Yn(tn+1)] =

∑M
k=1 b2

k,n∑M
k=1 a2

k,n

(
e
∑M

k=1 a2
k,n∆t
− 1

)
. (3.21)

Consequently, we can model ηn+1 by a random variable with mean and variance given by (3.21), and in particular, we

set ηn+1 to be the normal random variable:

ηn+1 ∼ N

0, ∑M
k=1 b2

k,n∑M
k=1 a2

k,n

(
e
∑M

k=1 a2
k,n∆t
− 1

) . (3.22)

The algorithm using ηn+1 modeled by (3.22) is summarized in subsection 3.2.3.

3.2.3. Numerical algorithms

In this subsection, we present two variations of the numerical scheme (2.3) for its scalar case, based on the FPM-

LP scheme resulting from the model (3.20), and the FPM-MM scheme resulting from (3.22), respectively, in Table 2.
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For n = 0, · · · ,N:
xn+1 = xn + ∆t f (xn) +

∑m
k=M+1 gk(xn)∆Wk,n + ηn+1 with

[FPM-LP] ηn+1 = e−
1
2
∑M

k=1 a2
k,n∆t+

∑M
k=1 ak,n∆Wk,n

∑M
k=1

(
bk,n

(
−ak,n∆t + ∆Wk,n

))
[FPM-MM] ηn+1 ∼ N

(
0,

∑M
k=1 b2

k,n∑M
k=1 a2

k,n

(
e
∑M

k=1 a2
k,n∆t
− 1

))
where ak,n =

dgk(X)
dX

∣∣∣∣
X=xn

, bk,n = gk(xn)

Table 2. Numerical algorithms for scalar-valued SDE (2.1) FPMs

4. Convergence Analysis

In this section we conduct convergence analysis for the FPM-LP scheme. In particular, we will show that the

FPM-LP scheme converges with a strong order of 1/2, and a weak order of 1. For simplicity of exposition, we present

the analysis for scalar-valued SDEs. The same convergence order can be obtained for vector-valued SDEs following

the same procedure with more complicated expressions [54]. For the reader’s convenience we restate the one-step

scheme on [tn, tn+1) summarized in Table 2

xn+1 = xn + ∆t f (xn) +

m∑
k=M+1

gk(xn)∆Wk,n + ηn+1, (4.1)

where ηn+1 is an approximation of the unique solution (3.16) to the diffusion only linear SDE (3.15) which is obtained

from the linear expansion of gk at each state xn in the diffusion only SDE (2.5). The goal is to estimate E :=

maxn=1,··· ,N E[|X(tn)− xn]| for the strong convergence, and E := maxn=1,··· ,N |E[ψ(X(tn))]−E[ψ(xn)]| for an appropriate

class of test functions ψ for the weak convergence, respectively.

4.1. Strong convergence

We estimate here the error E := maxn=1,··· ,N E[|X(tn) − xn]|, in which xn is computed using FPM-LP, as in Table 2.

To that end, consider the the piecewise interpolation process of (4.1) using FPM-LP:

x(t) = xn + (t − tn) f (xn) +

m∑
k=M+1

gk(xn)(Wk(t) −Wk(tn)) + η(t), t ∈ [tn, tn+1), (4.2)

where

η(t) = φn(t)
M∑

k=1

(
bk,n

(
−ak,n(t − tn) + (Wk(t) −Wk(tn))

) )
, t ∈ [tn, tn+1). (4.3)

Note that η(t) is an approximation for Yn(t) on t ∈ [tn, tn+1), where Yn(t) is the solution to the linear SDE (3.15), as

expressed in (3.16). We first consider the piecewise interpolation process of (4.1) using (3.16)

y(t) = xn + (t − tn) f (xn) +

m∑
k=M+1

gk(xn)(Wk(t) −Wk(tn)) + Yn(t), t ∈ [tn, tn+1),

and estimate E
[
sup0≤t≤T |X(t) − y(t)|2

]
.

For convenience of the analysis in the sequel, it is natural to write the above equation in its integral form

y(t) = x0 +

∫ t

0
f (x̃(s))ds +

m∑
k=M+1

∫ t

0
gk(x̃(s))dWk(s) +

∫ t

0
dY(s), (4.4)
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where Y(t) = Yn(t) for t ∈ [tn, tn+1) and x̃(t) ≡ xn for t ∈ [tn, tn+1). Note that x̃(t) is the piecewise constant process

of the FPM-LP discrete solution, x(t) is the piecewise linear interpolation process of the FPM-LP discrete solution,

and y(t) is the piecewise solution of the SDE (2.1) in which the drift and slow diffusion are computed using the EM

scheme, and the fast diffusion is replaced by the solution to the linear SDE (3.15). They all coincide with the discrete

numerical solution xn at each grid point, i.e., x(tn) = x̃(tn) = y(tn) = xn for n = 1, · · · ,N.

Set E0(t) := |X(t) − y(t)|, then the strong discretization error E satisfies

E = max
n=1,··· ,N

E [|X(tn) − xn|] ≤ max
n=1,··· ,N

E
[
|X(tn) − y(tn)|

]
+ max

n=1,··· ,N
E

[
|y(tn) − xn|

]
≤

(
E
[

sup
0≤t≤T

E2
0(t)

])1/2

+ max
n=1,··· ,N

E
[
|y(tn) − xn|

]
. (4.5)

The first step is to estimate E[sup0≤t≤T E
2
0(t)]. Recalling that X̂(t) is the piecewise solution to the scalar-valued

diffusion-only SDE (2.5), using Yn(t) = X̂(t) − xn for t ∈ [tn, tn+1), and inserting the equation (3.15) in (4.4), we

obtain the following expression for y(t) equivalent to (4.4) but more convenient for the analysis in the sequel,

y(t) = x0 +

∫ t

0
f (x̃(s))ds +

m∑
k=M+1

∫ t

0
gk(x̃(s))dWk(s) +

M∑
k=1

∫ t

0

(
gk(x̃(s)) + g′k(x̃(s))(X̂(s) − x̃(s))

)
dWk(s). (4.6)

Then it follows from (4.6), the scalar version of (2.2), and Cauchy-Schwarz that

E
[

sup
0≤t≤T

E2
0(t)

]
= E

   sup
0≤t≤T

∣∣∣∣ ∫ t

0

(
f (X(s)) − f (x̃(s))

)
ds +

m∑
k=M+1

∫ t

0

(
gk(X(s) − gk(x̃(s))

)
dWk(s)

+

M∑
k=1

∫ t

0

(
gk(X(s)) − gk(x̃(s)) − g′k(x̃(s))(X̂(s) − x̃(s))

)
dWk(s)

∣∣∣∣2   
≤ 3

(
E

[
sup

0≤t≤T
E2

1(t)
]

+ E
[

sup
0≤t≤T

E2
2(t)

]
+ E

[
sup

0≤t≤T
E2

3(t)
])
, (4.7)

where

E2
1(t) =

∣∣∣∣∣∣
∫ t

0

(
f (X(s)) − f (x̃(s))

)
ds

∣∣∣∣∣∣2 , E2
2(t) =

∣∣∣∣∣∣∣
m∑

k=M+1

∫ t

0

(
gk(X(s) − gk(x̃(s))

)
dWk(s)

∣∣∣∣∣∣∣
2

,

E2
3(t) =

∣∣∣∣∣∣∣
M∑

k=1

∫ t

0

(
gk(X(s)) − gk(x̃(s)) − g′k(x̃(s))(X̂(s) − x̃(s))

)
dWk(s)

∣∣∣∣∣∣∣
2

.

Throughout this section it is assumed that

(A1) the functions f : R → R and gk : R → R for k = 1, · · · ,m are continuously differentiable and there exist

positive constants L f , Lk such that

| f (x) − f (y)| ≤ L f |x − y|, |gk(x) − gk(y)| ≤ Lk |x − y|, k = 1, · · · ,m, ∀ x, y ∈ R.

(A2) there exists ΛT > 0 such that

E
[

sup
0≤t≤T

|x(t)|p
]
∨ E

[
sup

0≤t≤T
|X(t)|p

]
∨ E

[
sup

0≤t≤T
|X̂(t)|p

]
≤ ΛT , ∀ p ≥ 1.

(A3) There exists γ ≥ 1 and a positive constant λ such that |g′k(x)| ≤ λ(1 + |x|γ).
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It follows immediately from the Assumption (A1) that

f 2(x) ≤ 2
(

f 2(0) + L2
f x2

)
, g2

k(x) ≤ 2
(
g2

k(0) + L2
k x2

)
, k = 1, · · · ,m ∀ x ∈ R. (4.8)

Given any s ∈ [0,T ), let ns be the integer for which s ∈ [tns , tns+1). Then by using (4.6) and the scalar version of

(2.5) we obtain

y(s)−xns =

∫ s

tns

f (xns )dτ+

m∑
k=M+1

∫ s

tns

gk(xns )dWk(τ)+
M∑

k=1

∫ s

tns

(
gk(xns )+g′k(xns )(X̂(τ)−xns )

)
dWk(τ) ∀ s ∈ [0,T ). (4.9)

We next estimate the error E[sup0≤t≤T E
2
0(t)] in four steps. First, in Lemma 1 below we provide an estimate of

E
[∣∣∣X̂(s) − xns

∣∣∣p], which is crucial for subsequent analysis. Then in Lemmas 2–4 below we provide upper bounds for

E
[
sup0≤t≤T E

2
1(t)

]
, E

[
sup0≤t≤T E

2
2(t)

]
, and E

[
sup0≤t≤T E

2
3(t)

]
, respectively. Detailed proof of each Lemma is presented

in the Appendix.

Lemma 1. Let Assumptions (A1) and (A2) hold. Then for every even number p ≥ 2 there exists Cp,T > 0 independent

of ∆t such that

E
[∣∣∣X̂(s) − xns

∣∣∣p] ≤ Cp,T (∆t)p/2, ∀ s ∈ [0,T ].

Proof. See Appendix A.1.

Lemma 2. Let Assumptions (A1) – (A3) hold. Then there exists CT > 0 independent of ∆t such that

E
[

sup
0≤t≤T

E2
1(t)

]
≤ 4T L2

f

∫ T

0
E
[

sup
0≤t≤s
E2

0(t)
]
ds + CT (∆t)(∆t + 1).

Proof. See Appendix A.2.

Lemma 3. Let Assumptions (A1) – (A3) hold. Then there exists CT > 0 independent of ∆t such that

E
[

sup
0≤t≤T

E2
2(t)

]
≤ 4(m − M)

m∑
k=M+1

L2
k

∫ T

0
E
[

sup
0≤t≤s
E2

0(t)
]
ds + CT ∆t(∆t + 1).

Proof. See Appendix A.3.

Lemma 4. Let Assumptions (A1) - (A3) hold, and in addition assume that

(A4) gk is twice continuously differentiable for k = 1, · · · ,M, and there exists Dk > 0 such that

|g′k(x) − g′k(y)| ≤ Dk |x − y| for all x, y ∈ R.

Then the error term E2
3(t) satisfies

E
[

sup
0≤t≤T

E2
3(t)

]
≤ C∆t

∫ T

0
E

[
sup

0≤t≤s
E2

0(t)
]

ds + 8MTCT ∆t
M∑

k=1

(
L2

k + D2
k∆t

)
.

Proof. See Appendix A.4.
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With the preparation above, we can obtain an upper bound for E
[
sup0≤t≤T E

2
0(t)

]
, stated in the following Lemma.

Lemma 5. Let Assumptions (A1) – (A4) hold. Then there exists CT independent of ∆t such that

E
[

sup
0≤t≤T

E2
0(t)

]
≤ CT ∆t.

Proof. Collecting estimates of E
[
sup0≤t≤T E

2
1(t)

]
, E

[
sup0≤t≤T E

2
2(t)

]
, and E

[
sup0≤t≤T E

2
3(t)

]
obtained in Lemmas 2–4,

respectively, and inserting them into (4.7) gives

E
[

sup
0≤t≤T

E2
0(t)

]
≤ 4

T L2
f + (m − M)

m∑
k=M+1

L2
k + C∆t

 ∫ T

0
E
[

sup
0≤t≤s
E2

0(t)
]
ds + R(∆t), (4.10)

where C is defined in (A.13), and R(∆t) = R1 · ∆t + R2 · (∆t)2 with

R1 = 2(m + 1)T

T L2
f + 4(m − M)

m∑
k=M+1

L2
k

 m∑
k=1

(
g2

k(0) + L2
kΛT

)
+ 8MTCT

M∑
k=1

L2
k ,

R2 = 2(m + 1)T

T L2
f + 4(m − M)

m∑
k=M+1

L2
k

 ( f 2(0) + L2
f ΛT + cT

)
+ 8MTCT

M∑
k=1

D2
k ,

where cT is the constant in (A.4) and CT is the constant in Lemma 1. Applying Gronwall’s Lemma to (4.10) results in

E
[

sup
0≤t≤T

E2
0(t)

]
≤ ∆t (R1 + R2∆t) e4T

(
T L2

f +(m−M)
∑m

k=M+1 L2
k +4M

∑M
k=1 L2

k

)
.

The proof is complete.

Remark 1. In the proof of Lemma 4, the mean-square difference between X(t) and X̂(t) is given by (A.12), which

represents the error due to the approximation of DX
n (t) by D X̂

n (t). Its contribution to the total error is given by the C∆t

term in (4.10). Recall that the error of approximating DX
n (t) by an EM scheme in its corresponding formula (4.10)

is M
∑M

k=1 L2
k . Then, after a closer look at the constant C, the error due to approximating DX

n (t) by D X̂
n (t) is of order

∆t(∆tL2
f +

∑M
k=M+1 L2

k)e(m+1)
∑M

k=1 L2
k ∆t in (4.10), which is small compared to that of the EM scheme, when the magnitude

of ∆tL2
f +

∑M
k=M+1 L2

k is smaller than
∑M

k=1 L2
k . With the same order of magnitude of the initial values f (0) and gk(0), this

means that the magnitudes of the fast diffusion processes are much larger than those of the slow diffusion processes.

Remark 2. The analysis in Lemmas 1 –5 above can all be generalized to vector-valued SDEs, and results in the same

order of convergence rate but larger coefficients. More precisely, the coefficients also depend on the dimension of the

state vector.

We are now ready to construct the strong order of convergence for the FPM-LP scheme. In fact, by (4.5) it remains

to estimate maxn=1,··· ,N E
[
|y(tn) − xn|

]
, which is presented in the following Lemma.

Lemma 6. Let Assumptions (A1) – (A3) hold. Then there exists CT > 0 such that

max
n=1,··· ,N

E[|y(tn) − xn|] ≤ sup
0≤t≤T

E[|η(t) − Y(t)|] ≤ CT (∆t)1/2.

Proof. See Appendix A.5.
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Remark 3. The order 1/2 error term maxn=1,··· ,N E[|y(tn) − xn|] in Lemma 6 results from the mean-square error

E
[( ∫ t

tn
(φ−1

n (s) − 1)dWk(s)
)2
]

in (A.19). It can be improved to an order 1 or higher by setting l ≥ 2 in the approx-

imation (3.18).

Finally, applying Lemma 6 to (4.5), and using Lemma 5, immediately gives the convergence rate to the FPM-LP

scheme, stated below.

Theorem 1. Let Assumptions (A1) – (A4) hold. Then the FPM-LP scheme has a strong convergence order of 1/2,

i.e., there exists CT independent of ∆t such that

E = max
n=1,··· ,N

E [|X(tn) − xn|] ≤ CT ∆t1/2,

where xn is computed according to FPM-LP.

Per Remark 2, the result in Theorem 1 still holds for vector-valued SDEs but with a larger value of CT that also

depends on d. On the other side, note that unlike the scalar-valued FPM-LP in which φn(t) is directly computed, for

the vector-valued FPM-LP scheme Φn(t) is a stochastic matrix which is approximated to reduce the computational

cost on matrix exponentials. Consequently, there is one extra error term in maxn=1,··· ,N E
[
|y(tn) − xn|

]
which results

from approximating Φn(t) in (3.4) by (3.5). More precisely, instead of (A.14), the piecewise extension of ηn+1 now

becomes

ζ(t) =

1 +

M∑
k=1

ak,n(Wk(t) −Wk(tn))

 M∑
k=1

(
bk,n

(
− ak,n

∫ t

tn
ds +

∫ t

tn
dWk(s)

))
, t ∈ [tn, tn+1),

and the error of the FPM-LP due to approximation of Yn(t) is now

E[|ζ(t) − Yn(t)|] ≤ E[|ζ(t) − η(t)|] + E[|η(t) − Yn(t)|]. (4.11)

By Hölder inequality, sequential representation of φn(t), Itô isometry and boundedness of E[a2
k,n] and E[b2

k,n]we have

(
E[|ζ(t) − η(t)|]

)2
≤ 2E


 M∑

k=1

(
bk,n

(
− ak,n

∫ t

tn
ds +

∫ t

tn
dWk(s)

))2
·E

∣∣∣∣1 +

M∑
k=1

ak,n(Wk(t) −Wk(tn)) −
∞∑
j=0

1
j!
(
−

1
2

M∑
k=1

a2
k,n(t − tn) +

M∑
k=1

ak,n(Wk(t) −Wk(tn))
) j
∣∣∣∣2

≤ 2M
M∑

k=1

(
E[b2

k,n]
(
E[a2

k,n](∆t)2 + ∆t
))
· E

(1
2

M∑
k=1

a2
k,n∆t + O(∆t)

)2
 ≤ c(∆t)3, (4.12)

which, along with (4.11) imply that using the approximation (3.5) of Φn(t) in FPM-LP does not change the strong

order of convergence presented in Theorem 1.

Remark 4. The error term E[|ζ(t) − η(t)|] is introduced by the approximation of matrix exponentials. Although it is

of order O(∆t3/2), its magnitude can be comparable to ∆t1/2 when the magnitudes of b2
k,n, i.e., g2

k(xn), are larger than

∆t−2. Therefore at ∆t much larger than the reciprocal of |gk(xn)| this part of the error may become dominant, and may

cause the FPM-LP scheme to be less accurate than the EM scheme.
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4.2. Weak convergence

In this subsection we present an estimate of the error at the final time T

E :=
∣∣∣E[ψ(xN)] − E[ψ(X(T ))]

∣∣∣,
for the FPM-LP scheme in the following Theorem.

Theorem 2. Let Assumptions (A1) – (A4) hold. Then the FPM-LP scheme has a weak convergence order of 1, i.e.,

there exists CT independent of ∆t such that E ≤ CT ∆t.

Proof. The proof is based on the Feynman-Kac formula. See Appendix A.6.

Remark 5. The FPM-MM scheme uses a Gaussian process with the same moments to approximate Yn(t) and thus

does not have pathwise convergence. On the other hand, by construction we have E[x(T )] = E[y(T )] and E[x2(T )] =

E[y2(T )]. Therefore for special class of test functions such as quadratic functions, or globally Liptchtiz continuous

functions, E2 :=
∣∣∣E[ψ(x(T ))] − E[ψ(y(T ))]

∣∣∣ = 0, and the FPM-MM scheme also has a weak convergence order of 1.

5. Numerical Illustrations

We illustrate empirical observations of the convergence of each scheme using select model problems. We begin

with a discussion of a scalar SDE, followed by vector SDEs.

5.1. Scalar-valued linear SDE

We highlight one observation regarding the advantage of the proposed integration FPM-LP scheme, relative to

EM, for a scalar drift-free stiff SDE involving two Brownian motions. Given the scalar state X(t), we let

f (X(t)) ≡ 0; g1(X(t)) = 4X(t), g2(X(t)) = 0.04X(t) (5.1)

and integrate the system with an initial condition X(0) = 1. The two BMs are chosen to differ in magnitude by 100×,

accordingly the rate of diffusive spread due to g1 is two orders of magnitude faster than that due to g2. We integrate

this system using both EM and the above FPM-LP integrator. In this scalar case, the exponential in the φn expression

is easily computed (there is no approximation of the exponential term as was proposed for the vector case by the

one-step ODE integral) resulting in the formulation shown in Eq. (3.20). Resulting sample paths are illustrated in

Figure 1. The exact solution of this system can be easily formulated, and is used as a reference for computing the

strong convergence of each integrator, EM and FPM-LP, also shown in Fig. 1, using 4.8M samples. As can be seen,

both integrators exhibit, in the limit of small time step, the expected (∆t)1/2 slope. This convergence is naturally lost

in the high ∆t range. However, what’s interesting to note is that the large-∆t error for EM is an order of magnitude

higher than that for FPM-LP. This observation, albeit in a linear SDE, highlights the motivation behind the present

development, namely that linearized modeling of the unresolved fast processes provides improved accuracy versus

the alternative of integrating them directly using large time steps. Note that, when this system is computed with

g1() = g2() = 0.04X(t), this large difference between the errors from both schemes disappears, with the error in both
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Fig. 1. Illustrated sample paths for X (left), and convergence (right), linear scalar stiff SDE with EM (blue) & FPM-LP (red) integrators.
The right frame also includes the observed convergence of the error for the FPM-LP solution employing the approximate one time-step
ODE computation of φn (grey), labeled “LPa”.

integrators at the largest ∆t being O(10−4), and the error reduction due to FPM-LP being ∼ 1%. Further, it is useful

to add that, if the one time-step approxmiation of the ODE (3.3) solution via (3.5), introduced in the vector case, is

employed here, the associated approximate-FPM-LP error, shown in Fig. 1 as “LPa” are higher than FPM-LP, and

slightly higher than EM at small ∆t, but they retain a significant error advantage over EM in the large ∆t region, up

to and including the next to largest time step size. On the other hand, as can be seen in the figure, the approximate-

FPM-LP error grows appreciably to O(102) for the largest time step size. This is indeed a manifestation of the coarse

approximation of the ODE (3.3) solution for large time steps, and an indication of the necessity to estimate and control

the error in this approximation, employing a better approximation in the large ∆t context as necessary, e.g. employing

multiple internal time steps for the ODE solution.

5.2. Vector-valued model SDEs

Consider the SDE (Eq. 2.1) in Rd where d = 2, with m = 3 Brownian motions, and with p-order polynomial drift

and diffusion terms specified as follows

f (X(t)) = (AX(t))◦p ; gk(X(t)) = (Bk X(t))◦p , k = 1, · · · ,m (5.2)

where A and Bk are d× d real matrices, and the operation ()◦p denotes the Hadamard power, where the quantity inside

the paranthesis is raised element-wise to the power p [72]. Thus, for Y = (Y1, · · · ,Yn), we have Y◦p := (Y p
1 , · · · ,Y

p
n ).

We will consider cases with p ∈ {1, 2}. We use the following A, Bk matrices

A = α

[
1 2
3 −4

]
, B1 = β1

[
−1 2
3 −6

]
, B2 = β2

[
3 −2
−3 8

]
, B3 = β3

[
1 4
6 −9

]
(5.3)

with the scaling coefficients α = 0.1, while β = (β1, β2, β3) is chosen differently for different equation systems2. We

further note that these (A, Bk) matrices are chosen to be commuting (ABk = BkA, k = 1, 2, 3) in order to facilitate

2We make the following choices: β = (0.05, 0.05, 5 × 10−7) for the linear (p = 1) case, and (0.04, 0.04, 5 × 10−4) for the quadratic (p = 2) case.
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the derivation of an analytical solution for the linear case, for purposes of convergence testing. Thus, for p = 1, the

solution to the autonomous linear SDE (2.1) with drift and diffusion terms defined by (5.2) can be given explicitly

when the matrices A, B1, · · · , Bm commute, as

X(t) = x0 exp


A −

1
2

m∑
k=1

B2
k

 (t − t0) +

m∑
k=1

Bk (Wk(t) −Wk(t0))

 . (5.4)

The amplitudes of the diffusion source terms gk() determine the strength of the diffusion processes in the system, and

the associated speed of the diffusive spread of the random paths of the system. The chosen values of matrices (A, Bk)

control the strengths of the drift and diffusion terms for any given state. By design, these choices provide, for the two

cases p = (1, 2), diffusion source terms gk(X(t)) with (g1, g2) having component amplitudes always larger than the

corresponding amplitudes in g3, thus providing a system with two “fast” diffusion terms and one slower term. In this

relative context, we define M as the number of fast diffusion source terms. Of course, M can vary during a simulation,

and has to be determined for any given state, but our illustration example cases are constructed to have M = 2 for the

full state trajectory given the initial conditions x0 = (−100, 100) in the linear case, and x0 = (1, 1) in the quadratic

case, and the chosen integration time T = 0.5.

In order to examine the temporal convergence of the solution, we integrate the above model system using different

time integrators, employing a set of fixed ∆t = T/N time steps, with N values related by factors of 2, specifically

N = 8, · · · , 512. Sample paths computed with FPM-LP are illustrated, for the finest ∆t, for the quadratic case (p = 2),

in Figure 2. Clearly, the dynamics of X1 are dominated by drift, while X2 is dominated by diffusion processes.

Inspection of the contributions of fast-diffusion, vs drift+slow-diffusion to the RHS of X1 and X2 illustrate the larger

magnitude of contributions of fast diffusion and lower magnitude of drift+slow-diffusion, to the RHS of X2, vs. the

corresponding contributions to the RHS of X1, which is consistent with the observed behavior in Fig. 2. We note

that this is not necessary for the present construction, which, rather, relies on distinguishing fast/slow diffusion source

terms and does not require the dominance of fast diffusion in specific components of the state. For the same time

step choice, sample paths with the EM, FPM-LP, and FPM-LM integrators, relying on the same random seed and thus

the same Brownian motions (BMs), are essentially indistinguishable on this scale (not shown). On the other hand,

FPM-MM exhibits random paths that are not derived from the same BM paths, as the BM random variables used

in the fast modes are substituted by the random vector η in Eq. (3.13), and are not comparable path-wise (also not

shown). Thus, there is no expectation of strong convergence from FPM-MM, only weak convergence.

We will rely on estimation of various error norms among the different solutions and examination of the error norm

convergences. We estimate error norm statistics employing 24M samples for each case. In order to arrive at empirical

estimates of temporal convergence of an SDE time integrator, the BMs employed with different choices of ∆t need to

use subintegrals of the same BM. A straightforward way to do this is to compute a discretized BM at the finest time

step, and let the coarser time step BMs be derived based on discretized integrals over subintervals of this BM. Thus,

with hq ≡ (∆t)q, let hq = h0/2q with q = 0, 1, · · · ,Q, where h0 = T/N0 is the coarsest time step, and Nq = N02q is the

number of time steps for a given resolution q, we compute the finest time step BM path PQ = {ξ1, · · · , ξNQ }, where
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Fig. 2. Illustrated sample paths computed with FPM-LP for X1 (left) and X2 (right), quadratic SDE.

10 3 10 2

time step

10 1

100

E|
X

X e
x|

Strong convergence vs. exact solution

10 3 10 2

time step

10 4

10 3

10 2

10 1

|E
X(

T)
EX

ex
(T

)|

Weak convergence vs exact solution

10 3 10 2

time step

10 1

100

101

102

|C
T,

T
C T

,T
,e

x|

Weak convergence vs. exact solution

Fig. 3. Convergence of EM vs the exact solution for the linear SDE system. The left frame exhibits the strong convergence, showing the
decay of the expectation of the absolute value of the solution error at time T , for X1 (blue) and X2 (red). The middle and right frames
exhibit the weak convergence. The middle frame shows the decay of the error in the expectation of the solution for X1 (blue) and X2 (red),
while the right frame shows the decay of the error in the covariance matrix components, all at time T . The covariance matrix components
are denoted with blue (1,1), red (1,2), and green (2,2). The black lines illustrate the expected slopes in each case.

ξ ∼ N(0, hQ). And, for any time step hq = 2Q−qhQ, we have, at time tn = nhq,

∆Wn = Wn+1 −Wn =

∫ tn+hq

tn
dW(t) ≈

(n+1)2Q−q∑
s=n·2Q−q

ξs. (5.5)

Considering first EM, we illustrate the observed convergence to the exact solution (5.4) for the linear SDE system.

We show the O(∆t1/2) strong convergence, namely the convergence of the estimate of the expectation of the absolute

solution error, with respect to the exact solution, at final time T , in Fig. 3, as would be expected. We also observe

the expected O(∆t) weak convergence, at T , of the estimated error in the solution mean vector µT = EX(T ) and

covariance matrix CT,T = E[X(T ) − µT )(X(T ) − µT )T ], relative to the exact solution, also shown in Fig. 3.

The FPM-LP and LM integrators show similar results, as shown e.g. in Fig. 4, including similar slopes and levels

of error as for EM, as would be expected for this linear case, where the linearization and mean-based Taylor series

approximations are exact. The figure also shows that FPM-MM has similar weak convergence results in terms of slope

and error magnitude, albeit with more noise, but it exhibits no strong convergence vs the exact solution, as ought to

be expected given the algorithm construction.
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Fig. 4. Convergence of FPM-LP (top row), FPM-LM (middle row), and FPM-MM (bottom row) vs the exact solution for the linear SDE
system. The format-structure of the plots follows that in Fig. 3. Results show the expected first order weak convergence in all cases, the
absence of strong convergence for MM, and the 1/2-order strong convergence in the other two cases.
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Fig. 5. Self convergence of FPM-LP (top row), FPM-LM (middle row), and FPM-MM (bottom row) for the quadratic SDE system. The
format-structure of the plots follows that in Fig. 3.

Let us consider next the convergence of the quadratic SDE. We examine first self-convergence, where the error is

defined as the difference in the solution (strong) or its moments (weak) between two successive time-step refinements,

with (hq, hq+1). Results are shown in Fig. 5 for FPM-LP, FPM-LM, and FPM-MM. We see that LP and LM both

exhibit the expected strong/weak convergence rates. On the other hand, again, as would be expected, MM has no

strong self-convergence, and, while weak convergence is discernible in terms involving X1, which had relatively

minor fast-diffusion role, there is no robust observation of weak convergence for terms dominated by X2, where

the system dynamics highlight the role of strong/fast diffusion. The fact that the random vector η samples are wholly

unrelated between different time step cases explains this challenge in observing weak convergence in terms dominated

by strong diffusion. Whereas X1 terms, dominated by drift and slow diffusion, and hence being handled using EM,

with the above BM connection between time step cases, show clear convergence. We note that we also examined

the weak self-convergence in terms of the components of the covariance matrix between times (T/2,T ) with similar

conclusions.

We also examine the convergence with respect to the EM solution at the finest time step hQ, which we refer to as



Xiaoying Han and Habib N. Najm / Journal of Computational Physics (2020) 21

10 3 10 2

time step

10 5

10 4

10 3

E|
X

X E
M

f|

Strong convergence vs EMf

10 3 10 2

time step

10 9

10 8

10 7

10 6

10 5

10 4

10 3
|E

X(
T)

EX
EM

f(T
)|

Weak convergence vs EMf

10 3 10 2

time step

10 10

10 9

10 8

10 7

10 6

10 5

|C
T,

T
C T

,T
,E

M
f|

Weak convergence vs. EMf

10 3 10 2

time step

10 5

10 4

10 3

E|
X

X E
M

f|

Strong convergence vs EMf

10 3 10 2

time step

10 7

10 6

10 5

10 4

10 3

|E
X(

T)
EX

EM
f(T

)|

Weak convergence vs EMf

10 3 10 2

time step

10 7

10 6

|C
T,

T
C T

,T
,E

M
f|

Weak convergence vs EMf

10 3 10 2

time step

10 3

10 2

E|
X

X E
M

f|

Strong convergence vs EMf

10 3 10 2

time step

10 6

10 5

10 4

|E
X(

T)
EX

EM
f(T

)|

Weak convergence vs EMf

10 3 10 2

time step

10 8

10 7

10 6

|C
T,

T
C T

,T
,E

M
f|

Weak convergence vs EMf

Fig. 6. Convergence of FPM-LP (top row), FPM-LM (middle row), and FPM-MM (bottom row) vs EMf (EM computed at the finest ∆t)
for the quadratic SDE system. The format-structure of the plots follows that in Fig. 3.
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EMf. Results are shown in Fig. 6 for FPM-LP, FPM-LM, and FPM-MM. Considering first strong convergence, we

see convergence at the ∆t1/2 slope for FPM-LP and LM, both curves flattening out at some point at small ∆t. Since

the EMf solution is not the true solution, this is expected, and we have observed that the floor can be lowered by

taking smaller hQ values. Note that X2 convergence rate decays earlier and its ultimate error versus EMf is higher

than X1. This is consistent with X2 being more impacted with faster diffusion, and thus with our associated approx-

imation with linearization, thus deviating from EMf by a larger amount than X1. Of course, MM exhibits no strong

convergence, again as expected. As to weak convergence, we see that all components of µT and CT,T exhibit good

O(∆t) convergence rate of FPM-LP to EMf. On the other hand, for FPM-LM, the mean-based approximation has a

discernible impact, resulting in higher error-floor in the (1, 2) term of the covariance matrix, and, more notably, losing

convergence entirely in the (2, 2) diagonal term. Similar observations are evident in the C(T/2,T ) components, not

shown. Note that neither decreasing hQ nor increasing the number of samples could result in a discernible conver-

gence in this last quantity. We attribute this lack of convergence to the Taylor series mean-based approximation, given

the large spread in X2 due to diffusion. The resulting errors are not ∆t dependent, and result in clear bias in the results

in this case. A robust implementation would include some error-detection scheme that estimates the expected Taylor

series error impact on quantities of interest, and employs the LM approximation only when desireable thresholds are

met. Finally, for FPM-MM, we see the expected weak convergence in the X1 mean, as well as the (1, 1) and (1, 2)

covariance matrix terms, however, the convergence of moments of X2 are noisy, and not reliable for observation of an

empirical convergence rate.

6. Closing remarks

We have outlined the utility of a linearized approximation of fast diffusion processes in stiff SDEs, that arrived

at the explicit FPM-LP scheme, and associated further approximations resulting in FPM-LM and MM. The FPM-LP

scheme has the same orders of strong and weak convergence as Euler Maruyama. However, they differ in accuracy due

to three approximations in FPM-LP in the time integration of the fast processes. These are: (i) local linearization of

the fast diffusion source terms, (ii) decoupling fast and slow processes, and (iii) approximation of a matrix exponential

by its linear components. Our analysis shows that errors due to (i) are higher order than the EM error in integrating

the fast processes. The magnitude of (ii) is also small with respect to this EM error when there is a clear separation of

scales. Finally, (iii) is also smaller than this EM error, except for cases where ∆t is much larger than the reciprocals

of the magnitudes of the fast source terms |gk(xn)| for k = 1, · · · ,M (Remark 4). Thus FPM-LP outperforms the

EM scheme for stiff systems with clear separation of magnitudes of fast and slow processes, as long as ∆t is not

oversized. This latter condition can be controlled, allowing the elimination of this last approximation as necessary

when using very large time steps, with attendant costs. Our numerical experiments highlight the convergence of the

error in each of the three variants of the proposed scheme, for both linear and nonlinear model systems. We illustrated

the expected strong and weak self-convergence of FPM-LP and LM. We also showed weak self-convergence of terms

not-dominated by fast diffusion for MM. We also illustrated strong and weak convergence of FPM-LP relative to EM.

We observed similarly strong convergence for FPM-LM, but weak convergence was found only in the mean, and in
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covariance terms not dominated by fast diffusion. For MM convergence with respect to EM, we only observed weak

convergence, and that only in terms not dominated by fast diffusion. We can conclude, regarding LM specifically,

that, while it is certainly less expensive than LP, its use ought to be based on some estimation of the error resulting

from the mean-based Taylor series approximation outlined above, particularly for terms dominated by fast diffusion.

As for MM, while also efficient, it does not exhibit strong convergence, and it only exhibits weak convergence in

terms not-dominated by fast diffusion.
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Appendix A. Details of proofs in convergence analysis

Throughout the analysis in this section, the notations of cT and CT are used for generic constants dependent on T

but not ∆t, that may change from line to line.

Appendix A.1. Proof of Lemma 1

We first consider the case with p = 2. Note that due to the equation (3.14) and Itô isometry we have

E
[∣∣∣X̂(s) − xns

∣∣∣2] ≤ ME
 M∑

k=1

( ∫ s

tns

gk(X̂(τ))dWk(τ)
)2
 ≤ M

M∑
k=1

E
[∫ s

tns

g2
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]
, s ≥ 0.

Then by (4.8) we have

g2
k(X̂(τ)) ≤ 2

(
L2

k

∣∣∣X̂(τ) − xns
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k x2
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)
, τ ∈ [ts, s),

and thus due to Assumption (A2) we have
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It then follows from Gronwall’s inequality that
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k ∆t ≤ cT ∆t, s ≥ 0, (A.1)

where cT is a constant depends on M, ΛT , T , Lk and gk(0) for k = 1, · · · ,M, but independent of ∆t.
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For p > 2, using again equation (3.14), Itô isometry, Hölder’s inequality, and Cauchy-Schwarz, we have
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where here and below cp,M is a generic constant depending on p and M that may change from line to line. On the

other hand by by (4.8) we have
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Similar to (A.1), applying Gronwall’s Lemma to the above inequality results in

E
[∣∣∣X̂(s) − xns

∣∣∣p] ≤ cp,M(∆t)p/2
M∑

k=1

(
gp

k (0) + Lp
k ΛT

)
e(∆t)p/2 ∑M

k=1 Lp
k .

which implies the desired assertion for all every number p ≥ 2 with Cp,T = cp,M
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e
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assumption without loss of generality that ∆t ≤ 1. The proof is complete.

Appendix A.2. Proof of Lemma 2

First, by Hölder’s inequality and the Lipschitz condition on f ,
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Taking the expectation of the above inequality and using Doob’s maximal inequality gives
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Using (4.9) to obtain the term y(s) − x̃(s), and squaring it, gives
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Then taking the expectation of the above inequality, and using (4.8) and Itô isometry, we deduce
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Using Hölder’s inequality, Lemma 1, Assumption (A2) and (A3), the last term of (A.3) satisfies
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where cT depends on T , λ, γ, ΛT , Lk and gk(0) for k = 1, · · · ,m, but independent of ∆t.

Now inserting (A.4) into (A.3), using Assumption (A2), and integrating from 0 to T gives∫ T
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Consequently, (A.2) can be further estimated to satisfy
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assertion. The proof is complete.

Appendix A.3. Proof of Lemma 3

First by Cauchy-Schwarz, Doob’s martingale maximal inequality, Itô’s isometry, and Assumption (A1) we have
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[∫ T

0

∣∣∣X(s) − x̃(s)
∣∣∣2ds

]
.

Similar to (A.2) in Lemma 2,

E
[∫ T

0

∣∣∣X(s) − x̃(s)
∣∣∣2ds

]
≤

∫ T

0
E
[

sup
0≤t≤s
E2

0(t)
]
ds + E

[∫ T

0

∣∣∣y(s) − x̃(s)
∣∣∣2ds

]
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and then it follows from the estimate (A.5) that

E
[∫ T

0

∣∣∣X(s) − x̃(s)
∣∣∣2ds

]
≤

∫ T

0
E
[

sup
0≤t≤s
E2

0(t)
]
ds + 2(m + 1)T

m∑
k=M+1

L2
k

(
(∆t)2c1 + ∆tc2

)
,

where c1 and c2 are the same as in Lemma 2. Setting CT = 4(m − M)(2m + 1)T
∑m

k=M+1 L2
k max{c1, c2} implies the

desired assertion. The proof is complete.

Appendix A.4. Proof of Lemma 4

First, it follows from Cauchy-Schwarz, Doob’s martingale maximal inequality, and Itô’s isometry that

E
[

sup
0≤t≤T

E2
3(t)

]
≤ 4M

M∑
k=1

∫ T

0
E

[(
gk(X(s)) − gk(x̃(s)) − g′k(x̃(s))(X̂(s) − x̃(s))

)2
]

ds. (A.6)

Note that due to Rolle’s theorem, and then by Assumption (A4), for every s ∈ R there exists ys between X̂(s) and xns

such that

∣∣∣gk(X̂(s)) − gk(xns ) − g′k(x̃(s))(X̂(s) − xns )
∣∣∣ =

∣∣∣(g′(ys) − g′k(xns )
)
(X̂(s) − xns )

∣∣∣ ≤ Dk(X̂(s) − xns )
2. (A.7)

Writing gk(X(s)) − gk(x̃(s)) in (A.6) as gk(X(s)) − gk(X̂(s)) + gk(X̂(s)) − gk(xns ), it then follows from (A.7), Lemma 1,

and Assumption (A1) that

E
[

sup
0≤t≤T

E2
3(t)

]
≤ 8M

M∑
k=1

(∫ T

0
E
[(

gk(X(s)) − gk(X̂(s))
)2
]
ds + D2

k

∫ T

0
E
[
(X̂(s) − xns )

4
]
ds

)

≤ 8M
M∑

k=1

(
L2

k

∫ T

0
E

[(
X(s) − X̂(s)

)2
]

ds + D2
kTC4,T (∆t)2

)
, (A.8)

where C4,T is the constant in Lemma 1 which is independent of ∆t.

It remains to estimate E
[∣∣∣X(s) − X̂(s)

∣∣∣2]. In fact, by equations (2.1) and (2.5), Cauchy inequality and Hölder

inequality we have

E
[
|X(s) − X̂(s)

∣∣∣2] ≤ (m + 1)E
[∣∣∣∣ ∫ s

tns

f (X(τ))dτ
∣∣∣∣2] + (m + 1)

m∑
k=M+1

E
[∣∣∣∣ ∫ s

tns

gk(X(τ))dWk(τ)
∣∣∣∣2]

+(m + 1)
M∑

k=1

E
[∣∣∣∣ ∫ s

tns

(
gk(X(τ)) − gk(X̂(τ))

)
dWk(τ)

∣∣∣∣2]

≤ (m + 1)

∆t
∫ s

tns

E
[
f 2(X(τ))

]
dτ +

m∑
k=M+1

∫ s

tns

E
[
g2

k(X(τ))
]
dτ


+(m + 1)

M∑
k=1

∫ s

tns

E
[
(gk(X(τ)) − gk(X̂(τ)))2]dτ. (A.9)

By Assumption (A1), f 2(X(τ)) ≤ 2 f 2(xns ) + 2L2
f |X(τ) − xns |

2 and g2
k(X(τ)) ≤ 2g2

k(xns ) + 2L2
k |X(τ) − xns |

2 and thus∫ s

tns

E
[
f 2(X(τ))

]
dτ ≤ 2∆t

(
2 f 2(0) + 2L2

f ΛT + L2
fE

[
sup

0≤t≤s
E2

0(t)
])
, (A.10)∫ s

tns

E
[
g2

k(X(τ))
]
dτ ≤ 2∆t

(
2g2

k(0) + 2L2
kΛT + L2

kE
[

sup
0≤t≤s
E2

0(t)
])
. (A.11)
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Inserting (A.10)–(A.11) into (A.9) and using Assumption (A1) again we obtain

E
[
|X(s) − X̂(s)

∣∣∣2] ≤ c1

[
sup

0≤t≤s
E2

0(t)
]

+ c2 + (m + 1)
M∑

k=1

L2
k

∫ s

tns

E
[
|X(τ) − X̂(τ)|2

]
dτ,

where due to Assumption (A2)

c1 = 2(m + 1)∆t

∆tL2
f +

m∑
M+1

L2
k

 , c2 = 2(m + 1)∆t

∆t + 2∆t( f 2(0) + L2
f ΛT ) + 2

m∑
M+1

(g2
k(0) + L2

kΛT )

 .
It then follows from Gronwall’s inequality that

E
[
|X(s) − X̂(s)

∣∣∣2] ≤ c1

[
sup

0≤t≤s
E2

0(t)
]

+ c2 + (m + 1)
M∑

k=1

L2
k

∫ s

tns

(
c1

[
sup

0≤t≤τ
E2

0(t)
]

+ c2

)
e(m+1)

∑M
k=1 L2

k (s−τ)dτ

≤

(
c1

[
sup

0≤t≤s
E2

0(t)
]

+ c2

)
e(m+1)

∑M
k=1 L2

k ∆t ≤ c∆t
[

sup
0≤t≤s
E2

0(t)
]

+ cT ∆t, (A.12)

where c = 2(m + 1)(∆tL2
f +

∑M
k=M+1 L2

k)e(m+1)
∑M

k=1 L2
k and cT is a generic constant dependent on ΛT , m, f 2(0), g2

k(0), L2
f ,

L2
k but independent of ∆t. Finally, inserting (A.12) into (A.8) results in the desired assertion by setting

C = 16M(m + 1)

∆tL2
f +

M∑
k=M+1

L2
k

 e(m+1)
∑M

k=1 L2
k

M∑
k=1

L2
k . (A.13)

The proof is complete.

Appendix A.5. Proof of Lemma 6

Notice that y(tn+1) − xn+1 = Yn(tn+1) − η(tn+1), in which η(t) is defined in (4.3). Hence to estimate the second term

on the right hand side of (4.5), we also consider integral representation of the piecewise continuous process η(t)

η(t) = φn(t)
M∑

k=1

(
bk,n

(
− ak,n

∫ t

tn
ds +

∫ t

tn
dWk(s)

))
, t ∈ [tn, tn+1), (A.14)

where φn(t) is defined in (3.17). Then

|η(t) − Yn(t)| = φn(t)
M∑

k=1

∣∣∣∣∣∣bk,n

(
− ak,n

∫ t

tn
(φ−1

n (s) − 1)ds +

∫ t

tn
(φ−1

n (s) − 1)dWk(s)
)∣∣∣∣∣∣ , t ∈ [tn, tn+1),

and it follows from Cauchy-Bunyakovsky-Schwarz inequality and Hölder’s inequality that

(
E|η(t) − Yn(t)|

)2
≤ 2E

[
φ2

n(t)
]
E

 M∑
k=1

∣∣∣∣bk,n

(
− ak,n

∫ t

tn
(φ−1

n (s) − 1)ds +

∫ t

tn
(φ−1

n (s) − 1)dWk(s)
)∣∣∣∣2

≤ 2ME
[
φ2

n(t)
] M∑

k=1

E
[
b2

k,n

(
a2

k,n∆t
∫ t

tn
(φ−1

n (s) − 1)2ds +
( ∫ t

tn
(φ−1

n (s) − 1)dWk(s)
)2
)]
. (A.15)

Noting that at each t, φn(t) follows a log-normal distribution, i.e.,

ln φn(t) ∼ N

−1
2

M∑
k=1

a2
k,n(t − tn),

M∑
k=1

a2
k,n(t − tn)

 , (A.16)
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then by using Assumptions (A3) and (A2), the first term on the right hand side of (A.15) satisfies

E
[
φ2

n(t)
]

= e
∑M

k=1 a2
k,n(t−tn)

≤ 1 +

M∑
k=1

E
[
(g′k(xn))2

]
∆t + O(∆t2)

≤ 1 + λ2
M∑

k=1

(
E[(1 + |xn|

γ)4]
)1/2

∆t + O(∆t2) ≤ c. (A.17)

Then using equation (A.16) again, the two integrals on the right hand side of (A.15) satisfy respectively,

E
[∫ t

tn
(φ−1

n (s) − 1)2ds
]
≤ 2

∫ t

tn
E

[
φ−2

n (s) + 1
]

ds ≤ 2(c + 1)∆t, (A.18)

E
[( ∫ t

tn
(φ−1

n (s) − 1)dWk(s)
)2
]

= E
[∫ t

tn
(φ−1

n (s) − 1)2ds
]
≤ 2(c + 1)∆t. (A.19)

Inserting (A.17) – (A.19) into (A.15), and using again the boundedness of E[b2
k,n] and E[a2

k,n] implied by Assumptions

(A1) – (A3) we obtain(
E[|η(t) − Yn(t)|]

)2
≤ 2Mc

(
∆tE[b2

k,n]E[a2
k,n]E

[∫ t

tn
(φ−1

n (s) − 1)2ds
]

+ E[b2
k,n]E

[( ∫ t

tn
(φ−1

n (s) − 1)dWk(s)
)2
])

≤ 2Mc
(
(∆t)2 + ∆t

)
, t ∈ [tn, tn+1), n = 0, · · · ,N,

in which c is a generic constant independent of ∆t and may be different from line to line. Therefore

max
n=1,··· ,N

E[|y(tn) − xn|] ≤ sup
0≤t≤T

E[|η(t) − Y(t)|] ≤ C(∆t)1/2,

in which c is a constant depending on M, T , ΛT , Lk, Dk, but is independent of ∆t. The proof is complete.

Appendix A.6. Proof of Theorem 2

Note that since x(tn) = xn for n = 0, 1, · · · ,N, the weak discretization error above satisfies

E :=
∣∣∣E[ψ(x(T ))] − E[ψ(X(T ))]

∣∣∣ ≤ ∣∣∣E[ψ(y(T ))] − E[ψ(X(T ))]
∣∣∣ +

∣∣∣E[ψ(x(T ))] − E[ψ(y(T ))]
∣∣∣,

where x(t) and y(t) satisfy (4.2) and (4.6), respectively. Similar to the proof of strong convergence, we will first

estimate E1 =
∣∣∣E[ψ(y(T ))] − E[ψ(X(T ))]

∣∣∣ . To that end, let u(t, y) be a solution of the following Feynman-Kac partial

differential equation

ut(t, y) + f (y)uy(t, y) +
1
2

uyy(t, y)
m∑

k=1

g2
k(y) = 0 for t ∈ [0,T ], y ∈ R, with u(T, y) = ψ(y).

Applying Itô’s formula to u(t, y(t)) with y(t) satisfying (4.6) and using the above equation yields

du(t, y(t)) =
(
ut(t, y(t)) + uy(t, y(t)) f (x̃(t))

)
dt

+
1
2

uyy(t, y(t))

 m∑
k=M+1

g2
k(x̃(t)) +

M∑
k=1

(
gk(x̃(t)) + g′k(x̃(t))(X̂(t) − x̃(t))

)2
 dt

+uy(t, y(t))

 m∑
k=M+1

gk(x̃(t))dWk(t) +

M∑
k=1

(
gk(x̃(t)) + g′k(x̃(t))(X̂(t) − x̃(t))

)
dWk(t)


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du(t, y(t)) =

uy(t, y(t)) ( f (x̃(t)) − f (y(t)) +
1
2

uyy(t, y(t))

 m∑
k=M+1

(
g2

k(x̃(t)) − g2
k(y(t)

) dt

+
1
2

uyy(t, y(t))
M∑

k=1

((
gk(x̃(t)) + g′k(x̃(t))(X̂(t) − x̃(t))

)2
− g2

k(y(t))
)

dt

+uy(t, y(t))

 m∑
k=M+1

gk(x̃(t))dWk(t) +

M∑
k=1

(
gk(x̃(t)) + g′k(x̃(t))(X̂(t) − x̃(t))

)
dWk(t)

 .
Note that due to the Feynman-Kac formula, we have u(0, x0) = E[ψ(X(T ))]. Then, integrating the above equation

from 0 to T using u(T, xN) = ψ(xN) and taking the expectation of the resulting equation gives

E[ψ(xN)] − E[ψ(y(T ))] = E
∫ T

0

uy(t, y(t)) ( f (x̃(t)) − f (y(t))) +
1
2

uyy(t, y(t))
m∑

k=M+1

(
g2

k(x̃(t)) − g2
k(y(t))

) dt


+

1
2
E

∫ T

0
uyy(t, y(t))

M∑
k=1

((
gk(x̃(t)) + g′k(x̃(t))(X̂(t) − x̃(t))

)2
− g2

k(y(t))
)

dt

 ,
which implies that

E1 ≤

∫ T

0
|E[e1(t, y(t))]| dt +

∫ T

0
|E[e2(t, y(t))]| dt +

∫ T

0
|E[e3(t, y(t))]| dt (A.20)

where

e1(t, y(t)) = uy(t, y(t)) ( f (x̃(t)) − f (y(t))) ,

e2(t, y(t)) = uyy(t, y(t))
m∑

k=M+1

(
g2

k(x̃(t)) − g2
k(y(t))

)
e3(t, y(t)) = uyy(t, y(t))

M∑
k=1

((
gk(x̃(t)) + g′k(x̃(t))(X̂(t) − x̃(t))

)2
− g2

k(y(t))
)
.

Note that e1(tn, y(tn)) = e2(tn, y(tn)) = e3(tn, y(tn)) = 0. We next estimate each of e1, e2 and e3.

First apply the Itô formula to e1(t, x(t)) to obtain

de1(t, y(t)) =

∂e1∂t
+
∂e1
∂y

f (x̃(t)) +
1
2
∂2e1

∂y2

( m∑
k=M+1

g2
k(x̃(t)) +

M∑
k=1

(
gk(x̃(t)) + g′k(x̃(t))(X̂(t) − x̃(t))

)2
) dt+

∂e1
∂y

m∑
k=1

GkdWk(t),

(A.21)

where

Gk =

{
gk(x̃(t)) + g′k(x̃(t))(X̂(t) − x̃(t)), for k = 1, · · · ,M,
gk(x̃(t)), for k = M + 1, · · · ,m.

Integrating (A.21) from tn to t ∈ [tn, tn+1) using e1(tn, y(tn)) = 0 then taking expectation of the resulting equation gives

E[e1(t, y(t)] =

∫ t

tn

E[∂e1
∂t

(s, y(s))
]

+ E
[∂e1
∂y

(s, y(s)) f (xn)
]

+
1
2
E
[∂2e1

∂y2

m∑
k=M+1

g2
k(xn)

] ds

+
1
2

∫ t

tn
E
[∂2e1

∂y2

M∑
k=1

(
gk(xn) + g′k(xn)(X̂(s) − xn)

)2
]
ds.

Then by Cauchy inequality, Itô isometry, and equation (2.5) we have

E[e1(t, y(t)] ≤
∫ t

tn

E[∂e1
∂t

(s, y(s))
]

+ E
[∂e1
∂x

(s, y(s)) f (xn)
]

+ E
[∂2e1

∂x2

( m∑
k=1

g2
k(xn) +

M∑
k=1

(g′(xn))2
∫ s

tn

M∑
k=1

g2
k(X̂(τ))dτ

)] ds.
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For simplicity, assume that the functions f and gk satisfy conditions such that all expectations appearing in the above

inequality are bounded. Then there exists C1 > 0 such that

|E[e1(t, x(t)]| ≤ C1∆t. (A.22)

Following similar analysis we can obtain that there exist C2 > 0 and C3 > 0 such that

|E[e2(t, x(t)]| ≤ C2∆t, |E[e3(t, x(t)]| ≤ C3∆t. (A.23)

In the end, inserting (A.22)–(A.23) into (A.20) we have that there exists CT > 0 such that E1 ≤ CT ∆t.

Note that in the FPM-LP scheme, x(t) is essentially an EM approximation of y(t), along with an exponential

approximation of a strong convergence order 3/2 implied by (4.12). It then follows immediately that there exists

CT > 0 such that the error

E2 :=
∣∣∣E[ψ(x(T ))] − E[ψ(y(T ))]

∣∣∣ ≤ CT ∆t,

which implies that the FPM-LP scheme has a weak order of convergence 1. The proof is complete.


