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1. Introduction

Stiff stochastic differential equations (SDEs) are relevant in the mathematical modeling of a wide range of physical
systems, where multiscale stochastic processes, involving a large range of time-scales, enter in the formulation of the
system governing equations. Our work is motivated by the challenges in time integration of stiff stochastic chemical
systems. These systems can in principle be modeled in the discrete stochastic context by simulating pathways of the
chemical master equation (CME) using stochastic methods [1], including the stochastic simulation algorithm (SSA)
and its variants [2-5]. The SSA has been used extensively in this regard, with various developments for dealing with

stiffness [6-11]. These methods employ a range of strategies often involving identification of fast and slow reaction
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subsets [11-16] with targeted approximations for handling each subset, including the identification of state-vector
subsets dominated by fast/slow processes [15, 17]. These approaches rely on the observation that the relaxation time
for fast processes is small relative to the slow time scales that dominate the time rate of change of the state, thereby
invoking a stochastic quasi-steady state approximation (QSSA) [17-19], or allowing some other approximate means of
approximation of the fast processes [12, 14, 16, 20]. Often, approximate modeling of fast reaction processes [12, 13]
is done by taking the CME to the continuous stochastic limit, namely the chemical Langevin equation (CLE) [21-24],
an SDE.

Our focus here is specifically in this continuous stochastic context. The CLE typically retains a significant de-
gree of stiffness, resulting in associated computational challenges which have been the subject of ongoing research.
Sotiropoulos ef al. [25] outline a semianalytical method that relies on transformation of the SDE into two subsystems
describing the evolution of distinct slow and fast varying variables, following [26]. This is followed by a decoupling
step, relying on the fast-slow structure of the dynamics, which allows separate approximation of the distributions of
the fast and slow variables. This enables the construction of a system of slow CLEs that can be integrated with large
time steps, before reconstructing the full solution. Similarly, Thomas er al. [27] present a method that relies on the
identification of fast and slow reactions, using forward and inverse Fourier transforms to apply approximations of the
fast processes, and employ separation of the state vector into slow and fast variables. In our own earlier work with
the CLE [28], we outlined an automated procedure that does not presume an a priori distinction between fast/slow
reactions or variables, relying rather on dynamical analysis using computational singular perturbation (CSP) [29-51]
to decouple fast/slow processes and provide stable large time-step time integration of the full state vector as driven
by the drift terms. This is possible when appropriate statistics can be employed to judge the exhaustion of the fast
dynamics of the mean-state towards an underlying slow manifold. This method, however, does not deal with the
stiffness of the diffusion source terms, and their associated slow/fast structure. That is the focus of the present work.

While we have motivated the work based on stochastic stiff chemical models, highlighting associated challenges
and progress, we are concerned here with stiff SDEs in general, and particularly with effective modeling, through
local linearization, of fast diffusion processes, allowing efficient explicit time integration of SDEs with stiff diffusion.
The paper is organized as follows. First, in Section 2, we provide a brief background on general numerical schemes
for stiff SDEs and formulate the specific objectives of this work. Then, in Section 3, we propose a linearized model
for handling the fast diffusion processes in stiff SDEs, and develop numerical algorithms for stiff SDEs based on
this construction. In Section 4, we present a convergence analysis for one of the schemes proposed in Section 3.

Ilustrative, numerical experiments are then presented in Section 5, and closing remarks are given in Section 6.

2. Background and objective

There is a broad landscape of theoretical and numerical work with SDEs, covering their mathematical properties
and both analytical and numerical solution methods (see, e.g., [52-55]). Numerous numerical methods are available
for time integration of SDEs, and their accuracy naturally improves with decreasing time step size, with the rate of

convergence of the error depending on the choice of error metric as well as the integration scheme. One of the most
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widely used methods is the explicit Euler-Maruyama (EM) scheme, due to its ease of implementation. The classical
explicit EM scheme has a strong convergence rate , i.e. the rate of convergence of the mean square error in the solution
at some time instant 7', of O(Ar'/?) (see, e.g., [56-58]) and a weak convergence rate, i.e., the rate of convergence of
the error in moments, such as mean or variance/covariance, of the solution at time 7', of O(At). The EM formulation
is briefly outlined below.

Consider a d-dimensional SDE with an m-dimensional Brownian motion

dX() = f(X(t))dr + Z g(X@®)dWi(r), 0<t<T, X(0)=xp, 2.1)
k=1
where X(¢) = (X'(¢),...,X9(1))" € R? for every t > 0, W,(#) is a scalar Brownian motion for each k = 1,--- ,m, and

the functions f : R¢ — R?, g : R — R satisfy standard assumptions for the existence and uniqueness of solutions
to the system (2.1) (see, e.g., [52, 53]). Given a stepsize At, set N = T/At and ¢, = nAt. Then forn = 0,--- , N the

solution to (2.1) on [#,, #,+1) given X(t,) = x,, is
X(1) = x, + f FX()ds+ > f ZUX(AWi(5), 1 € [t tra). (2.2)
I k=1 Yn

The simplest one-step EM scheme applied to (2.2) gives an approximation for x,.; = X(#,4+1) as

Xnt+l = Xp + Atf(xn) + Z gk(xn)AWk,m A"Vk,n = Wilths) = Wi(ty), n=1,---,N. (2.3)
k=1

The focus of this work is computing solutions of the SDE (2.1) with stiffness in the diffusion coefficients. In
particular, we are concerned with SDEs of the form (2.1) where the diffusion coefficients gx(x,),k = 1,..., m exhibit
a large range magnitudes with k. Moreover, presuming an ordering where |g| > |g»| > -+ > |g./, the ideal context
for the present construction is one where there exists M € [1,m] such that the magnitudes of the first M diffusion
coefficients, gi,..., gy (referred to as the fast diffusion processes), are significantly larger than those of the other
diffusion coefficients g1, ..., g (referred to as the slow diffusion processes). The EM scheme is still feasible, but
requires At to be chosen sufficiently small to accommodate the fast variations of the states due to gy, ..., gy, because
of its slow rate of convergence. Higher order explicit schemes allowing larger stepsizes can be derived iteratively
using It6-Taylor approximations for SDEs (see, e.g., [54]), but most of the time are difficult to implement due to the
presence of multiple stochastic integrals. Extensive work has been done towards improving the accuracy or stability
of numerical schemes for SDEs with stiffness (see, e.g. [59—70]), among which numerical schemes for stiff SDEs
based on the EM scheme were developed in [59-61].

One major drawback of EM, even when it is stable, is the large error in approximating diffusion at larger stepsizes
when the magnitude of diffusion term is large. This is due to lower order of discretization error of the diffusion terms
8i(x,)AWy . The aim of this work is to develop numerical schemes for the stiff SDE (2.1) that employ linearized
modeling of fast diffusion processes, thereby giving more accurate approximations for the diffusion terms of larger

magnitudes at larger time steps, without having to use higher order explicit schemes. More precisely, we will develop
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schemes by modifying the EM time integration (2.3) to

m

Xn+l = X, + Atf(xn) + Z gk(xn)AWk,n L/ e AWk,n = Wk(tn+1) - Wk(tn), (24)

k=M+1
in which n,,, is an R?-valued random variable that approximates Z,ﬁ] fr el 2x(X(s))dW,(s) more accurately than
Z,’:’il gix(x,)AWy, as in the EM scheme at larger step size At.

Given an R%-valued stochastic process X(t), forn = 0, - -+ , N define the diffusion process ZX () by

M t
ZHOEDY f GUX(AWi(), 1€ [ty byi1).
k=1 Y

In particular, when X(7) satisfies the equation (2.2), ZX(¢) represents the fast diffusion processes in (2.2). Then the
random variable 7, ; in (2.4) that we seek, is an approximation of @,{‘ (tn+1)- The idea here is to approximate @,f‘ 6)
by @,{( (1), in which the R-valued process X satisfies the diffusion only SDE

M

dX() = )" @uXE)AWD),  R(ty) = X, 1€ [tn, 1), (2.5)

k=1
More precisely, we first derive approximations of the solution X() to the SDE (2.5) by employing local linear approx-
imations of g¢. Then we apply the approximations of X(r) to develop various models for 1,1, which are eventually
employed in the construction of numerical schemes for the original SDE (2.1).

Note that if {gx(X(1)},-, .. 5, are decoupled from {gi(X()};_ys,,.... ,, and f(X(#)), then approximating PX(t) by
_@,{( (1) in (2.2) does not introduce an extra error. On the other side, when {gi(X()};_; ... ,, and {g(X(};Zpri1...m
and/or f(X(¢)) are coupled, such an approximation is associated with an error term Ig,f( 1) — @,{‘ (1)|, which needs to be
taken into account when constructing error estimates for any numerical scheme arising from (2.5). In the context of
chemical reaction systems, the magnitude of gy is proportional to the magnitude of the propensity function of the kth
reaction. Therefore, the magnitudes of {g(X(#))};_, ... ), being much larger than those of {gx(X()};_y,1.... ,, implies
that at the time instant #, the reactions 1, - - - , M are much faster and thus more likely to occur/“fire” than the reactions
M+1,--- ,mduring the next infinitesimal time period. In the well known formulation of chemical Langevin equations
via the tau-leaping method [71], this can be interpreted as the reactions 1, - - - , M fires much more frequently than the
reactions M +1,--- ,m during any fixed period of time that fulfills the assumptions for tau-leaping [71]. Therefore, in
this time period, reactions M + 1,--- ,m can be regarded as “nearly frozen”, thus not contributing significantly to the
SDE diffusion term, while the reactions 1, - - - , M are active. Accordingly, the evolution of X() is only weakly coupled
with the evolution of X (7). This assumed decoupling among fast and slow processes on appropriate time-scales is used
in various other constructions already cited above, e.g. [27]. In the present construction, in the convergence analysis
conducted in Section 4, we show that the contribution of the error term |9,{‘ - _@f (1)| is relatively small compared
to the error of the EM scheme applied to {gx(X()};-, ... ,,» When the magnitudes of {gx(X(1))};_s, ..., are much
smaller than the magnitudes of { gk(X(t))}kzl’m e

In the next section , we will solve the diffusion only SDE (2.5) when each of the fast diffusion processes {gx}x=1..- m
is approximated by a linear function of the state. The solutions are then used to model 5, ; in the modified EM scheme

2.4).
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3. Linear models for fast diffusion processes

In this section we first construct approximated solutions to the SDE (2.5) using a local linear approximation of
gk fork = 1,---, M on each interval [t,,t,+1). Then we develop various models for 7, ,, which we refer to as fast
processes models (FPMs) based on the approximated solutions of (2.5). In particular, we develop three models for
vector-valued SDEs in Subsection 3.1, and we discuss two of them in the context of scalar-valued SDEs in Subec-
tion 3.2. Numerical schemes resulting from each of the models, for integrating the original SDE (2.1), are presented

at the end of each subsection.

3.1. Vector-valued diffusion only SDE

Fort € [t,,t,41), set Y, (¢) = X(t) — X,, Where X'(t) is the solution to the SDE (2.5). Note that Y,(¢,,+1) = .@f(tnﬂ),

and that it will be used to approximate ZX(#,,,) and model the random variable 1, .

3.1.1. Linear approximation at pathwise initial state

Given X (t,) = x,, approximate gk(f( (1)) at x,, by

(X)) = biy + (X)) = X,), 1€ [ty tar1),

where Ji , is the Jacobian of g; evaluated at x,, and by, = gx(x,). Then Y, () satisfies the linear SDE

M
dYn(t) = Z(lk,nYn(t) + bk,n)de(t) fort e [tn,tn+1)’ Yn(tn) =0. (31)
k=1

The solution to (3.1) reads (see, e.g., [52] )

i3 M t M
[0 Y dabrads + [ 016 Y badits|. (32)
l k=1 In k=1

n

Y,(t) = ©,(1)

where @,(t) € R™ is the fundamental matrix of the corresponding homogeneous equation, i.e., the solution of the

homogeneous SDE

M
dq)n(t) = Z Jk,nq)n(t)de(t)» te [tm tn+1)’ q)n(tn) = ]d~ (33)
k=1

For this special SDE (3.3) with no drift and J;, being autonomous on the interval [#,, f,11), the fundamental matrix

can be given explicitly as

1 M M
(1) = exp {—5 DR =)+ Y Tea(Walt) - ka))} : (3.4)
k=1 k=1

However, since equation (3.4) involves an exponential of stochastic matrices, computing ®,(#) directly is of high
complexity and cost. A simplified formulation for @, can be obtained from a one-step EM applied to the homogeneous

SDE (3.3), resulting in

M
O,(1) = Ly + ) Tin(WiD) = Welt). (3.5)
k=1
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Now applying (3.5) in (3.2), setting CI),‘Z'(s) = d);l(t,l) for s € [t,, t) and evaluating the integrals from 7, to t,. gives

M M
AR [ld > Jk,nAWk,n] (=Jenbindt + biaAWiy) (3.6)
k=1 k=1

where AW, , is defined as in (2.4). The algorithm using 5,,,; = Y,,(#,+1) in (3.6), which we refer to as FPM-LP (Linear
approximation at Pathwise state), is summarized in Subsection 3.1.4. An upper bound of the error from approximating

Y,(?) in (3.2) at £, by (3.6) will be provided in Section 4.

3.1.2. Linear approximation at the mean initial state

Note that Ji, is the Jacobian of g; evaluated at the “pathwise” initial state x, = x,(w), and thus is also path
dependent, i.e. Ji, = Ji,(w) needs to be computed for every sample path w € Q. The associated computational cost
can be reduced by anchoring the linear approximation of g(X(r)) at the path independent mean state &, := E[x,(w)],

instead of the path dependent state x,,. More precisely, approximate g(X(r)) at %, by
(X)) ~ by + Jin(X(0) = %) with £, = E[x,(@)], 1 € [t tas),

where fk,,, is the Jacobian of g, evaluated at X, and l;k,n = gi(x,). If we still define Y,,(¢) = X(t) —x, fort € [t,, t,41),

then f((t) -x,=Y,(t)+x,—x,fort € [t,1,41), and Y,(¢) satisfies the SDE

M
AY,(1) = " (Jea¥ul0) + cin)dWe(®), 1 € [y, ts1), (3.7)
k=1

where ¢;, = Ek,,, + fk,,l(x,, — X,,). The solution to (3.7) is given by

f M t M
[ 516 ) duewds + | d);‘<s>2ck,ndwk<s>], (3.8)
In k=1 In k=1

where &, (1) = exp {3 L%, J2,,(t = ta) + L%, Jen(Welt) = Wilta))}
Similar to (3.5)~(3.6), approximating @, (1) by ®,(t) = I, + Y%, Ji.(Wi(t) — Wi(t,)) in (3.8), setting @;'(s) =

Y, ()= d)n([)

@;' (t,) for s € [t,, 1), and evaluating the integrals from 7, to t,. gives

M M
Yn(tn+1) = (Id + Z fk,nAWk,n) Z (_jk,nck,nAt + ck,nAWk,n) 5 (39)
k=1 k=1

where fk,,, is the Jacobian of g, evaluated at X, ¢k, = gx(%,) + fk,n(xn — X,) and AW, , is defined as in (2.4). Note
that since J, depends on the mean state at 7, it needs to be computed only once for all samples at #, and thus reduces
the computational cost. The algorithm using 17,,.; = Y,,(¢,+1) in (3.9), referred to as FPM-LM (Linear approximation

at Mean state), is summarized in subsection 3.1.4.

3.1.3. Moment approximations
Both (3.6) and (3.9) provide pathwise approximations to Y,(f,4+1), i.e., for each w € Q and x,(w) € R?, Y,,(t,41) =
Y, (t,+1, w) is approximated based on the pathwise solution of the SDE (3.1) or (3.7). An alternative is to model 7, ;

in distribution by computing the moments for Y, (#,+1). To this end, we revisit the SDE (3.1) and consider the first and
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second moments of its solution. More precisely, let g, (t) = E[Y,(¢)] be the mean and P,(t) = E[Y, ()Y (1)] be the
second moment of the solution Y, (¥) to (3.1), respectively. These moments satisfy the system of ordinary differential

equations on ¢ € [f,, t,;41)

du,, (1)

D, 3.10

ar (3.10)
M

dP,(t

% = (JenPuOIL, + Tentt (DBL, + beaty (DIL, + biaby,). (3.11)
k=1

Note that since Y(#,) = 0, pu,(t,) = 0 and P,(#,) = 0. Thus the solution to equation (3.10) is u,(#) = 0 on [#,, ,+1),
and the resulting covariance matrix of Y,,(f) on [t,, t,+1) is Co(f) = E[Y,(OYI(t)] — 0 = P,(¢). Plugging into (3.11)

results in the following linear matrix-valued non-homogeneous ODE for the covariance matrix

A, & z
= D TaCa O+ ) beable 1€ L), (3.12)
k=1 k=1

The solution of (3.12) can only be derived explicitly for special cases. Here a one-step Euler approximation with

initial value C,(t,) = 0, is applied to give C, () = (t — t,,) Z,’(Vi I bk’"blZ:n for t € [t,, t,+1), and in particular

M
Caltasr) ~ At )" biybl,,  with by = gi(x,).
k=1

The random variable 7, , is then modeled to have the mean 0 and covariance C,(,+1). In particular, set 5, ; to follow

the d-variate normal distribution

M
Mot ~ N(O, A bk,,lb,zn). (3.13)
k=1

The algorithm using 17, , modeled by (3.13), which we refer to as FPM-MM (MoMent approximation), is summarized

in subsection 3.1.4.

3.1.4. Numerical algorithms
In this subsection, we present three variations of the numerical scheme (2.3) based on the FPM-LP resulted from

the model (3.6), FPM-LM resulted from (3.9), and FPM-MM resulted from (3.13), respectively, in Table 1.

Forn=0,---,N:
Xpsl = Xn + ALF(xX0) + X0 101 8(X)AW, + 17, With

[FPM-LP] 7,y = (I + 2%, JendWin) T2y (~Tenbiandht + biu AWy ,)
[FPM-LM] 1,0y = (Lo + S, TeadAWin) Sy (—Teninlt + ciaAWis)

[FPM-MM] 77, ~ N (0, At 2L, by, )
X, = E’[xn]’ bk,n = gk(xn)7 Cikn = gk(xn) + jk,n(xn - xn)’
where T = ( g g Jin = (% .. V&

‘”‘I’”.’m)xzx,,’ x> ""Xd)x:ic,,'

Table 1. Numerical algorithms for vector-valued SDE (2.1) based on FPMs
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3.2. Scalar-valued diffusion only SDE
In this section we focus on the case where d = 1, for which the solution to the linear SDEs (3.1) and (3.7), as well

as the solution to the linear ODE system (3.10)—(3.11) can be derived explicitly. For x, € R, set Y,,(¢) = X@) - x,

where X(t) is the solution to the scalar SDE

M
N OEIACGIIAGNED (A S A (3.14)
k=1

As in the vector case, approximations of Y,(t,+1) will be developed and used to model the random variable 7,, ,

denoted as 1,1 ford = 1, in (2.4).

3.2.1. Linear approximation at the pathwise initial state

Forn=1,---,N, given X)) = xp, approximate gk(f((t)) on [t,, ty+1) by

N . dgi(X
gk(X(l)) x bk,n + ak,n(X(t) - xn) with Akn = gk(f\ ) s bk,n = gk(xn)’ k= ]7 ety M.
dX R=x,
Then Y,(r) = X(r) — x, satisfies the scalar linear SDE
M
AYo(0) = D" (bp + A YuO)AWL(D),  Yolta) = 0, 1€ [t ts1), (3.15)
k=1
which has a unique solution
M t t
Yat) = () | (bk,n( — i f ¢, (s)ds + f ¢;1<s>dwk<s))), 1 € [tns tus), (3.16)
k=1 In Iy
where
1 M M
$u(t) = exp {—5 Dlad (=) + Y an(Wilt) - Wkan))} s 1€ [t tas). (3.17)
k=1 k=1

Note that, here, ¢,(7) is the exact solution of the homogeneous SDE corresponding to (3.15), i.e., the scalar
version of (3.4), but will now be computed directly instead of using the approximation (3.5). Although the integrals
ft f q&,;l(s)ds and f[ l ¢;1(s)de(s) are still not analytically tractable, since the integrands are state independent we can
approximate the integrals by their Riemann sums. To that end, divide [¢,, f,+1) into [ subintervals #, = t,9 < ... <
tai-1 = typ1 With t,401 — t,; = 4 := h. Then t,,; = t, + ih and the integrals ftt” ¢, (s)ds and ftt” ¢, (s)dWi(s) can

be approximated by, respectively,

In,i1 1 M M )
o' (s~ @' (tn)h = exp {Eih PAEDY ak,nAWi’fn} h
In,i k=1 k=1
Tni+1 1 M M .
G, (MWis) = 6 ()N (0.) = exps Sih Diat, = a AW AW,
Tni k=1 k=1

where AWZ’n = Wi(t, +ih) — Wi(t,) fori =0,--- ,1 — 1. As a direct consequence,

! 1 M M fie1 &t 1 M M
; 2 _ ih _ 1; 2 ih
¢;l1(s)ds =h Z ei’h k=1 Gy izt U AW, , f ¢n I(S)de(S) = AWIiln Z ez’h k=1 Gy~ izt Uan AW, . (3.18)
i=0 In i=0

i1

n
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Using (3.17) and (3.18) in (3.16) gives

M
Yoltni1)  $ultnit) O (binZ i, = axah + AWE,)), (3.19)
k=1
where
1 M M =l 1 M 2 M ih
nltns1) ~ exp g =5 Z ag A+ Z anAWenps I, = Z 2 Zicr ™ i n Wi,
k=1 k=1 i=0

In particular, when [ = 1 and h = At, the formula (3.19) becomes

1 M 2 M M
Y (t,y1) = e 2 D=1 G A X0z Gen AW Z (bk,n (—ak,nAt + AWkn)) . (3.20)

k=1

The algorithm using 7,41 = Y, (#,+1) in (3.20) is summarized in subsection 3.2.3.

3.2.2. Moment approximations

As in the vector case, we can also model 77,1 by a scalar-valued random variable. Unlike the vector case, now the
ordinary differential equations satisfied by the first and second moments for Y, () can be solved explicitly. We denote
by u, () = E[Y,(t)] and v,,(¢) = E[Yg(t)] the first and second moments of Y,(?) in (3.16), respectively. These moments

satisfy the following system of ODEs on [#,, #,,+1)

du (1)
- = 0, n(ln) = 07
ar Hn(tn)
dv, (1) M M M
# = Z a]%,nyn(t) + Zlun(t) Z ak,nbk,n + Z bi,n’ Va(ty) = 0,
k=1 k=1 k=1
which can be solved analytically to give
i b,
pa(0) = 0, vyt = St (E et )
k=1 “%,n
In particular at ¢ = #,,;; we have
2]1{\11 bl%n M2 A
E[Yn(thrl)] = O’ Var[Yn(thrl)] = Z:M—z’ (EZk:l GenBAl 1) . (321)
k=1 ak,n

Consequently, we can model 77,1 by a random variable with mean and variance given by (3.21), and in particular, we
set 17,41 to be the normal random variable:

M
Zk:l bl%,n

Mn+1 ~ N 07 ZM )
k=1 ak,n

(Xt — 1) | (3.22)

The algorithm using 7,,; modeled by (3.22) is summarized in subsection 3.2.3.

3.2.3. Numerical algorithms
In this subsection, we present two variations of the numerical scheme (2.3) for its scalar case, based on the FPM-

LP scheme resulting from the model (3.20), and the FPM-MM scheme resulting from (3.22), respectively, in Table 2.



10 Xiaoying Han and Habib N. Najm/Journal of Computational Physics (2020)

Forn=0,---,N:
Xn+l = Xp + Atf(xn) + ZT:M+1 gk(xn)AWk,n + Mn+1 with
[FPM-LP] M+l = e_% Sil a2 A I arn AWy lecvil (bk,n (_ak,nAt + AWk,n))
M 2
[FPM-MM] 751 ~ N (0, S (240 e — 1)
ko1 G,

_ da _
where i, = fT‘X*x s bin = 8i(xn)
—n

Table 2. Numerical algorithms for scalar-valued SDE (2.1) FPMs

4. Convergence Analysis

In this section we conduct convergence analysis for the FPM-LP scheme. In particular, we will show that the
FPM-LP scheme converges with a strong order of 1/2, and a weak order of 1. For simplicity of exposition, we present
the analysis for scalar-valued SDEs. The same convergence order can be obtained for vector-valued SDEs following
the same procedure with more complicated expressions [54]. For the reader’s convenience we restate the one-step
scheme on [1,, t,+1) summarized in Table 2

m

Tat = X0+ ALFC) + D gLCi)AWiy + s, (4.1)
k=M+1

where 7,41 is an approximation of the unique solution (3.16) to the diffusion only linear SDE (3.15) which is obtained
from the linear expansion of g; at each state x, in the diffusion only SDE (2.5). The goal is to estimate & :=
max,=1.. v E[|X(t,) — x,]| for the strong convergence, and € := max,=; ... y [E[Y(X(2,))] — E[¥(x,)]| for an appropriate

class of test functions ¢ for the weak convergence, respectively.

4.1. Strong convergence

We estimate here the error & := max,= .. y E[|X(#,) — x,]|, in which x, is computed using FPM-LP, as in Table 2.

To that end, consider the the piecewise interpolation process of (4.1) using FPM-LP:

m

X(1) = X+ (= ) F) + Y @O (Wilt) = Welta)) + 10, 1 € [, s), (4.2)
k=M+1
where "
N(t) = $u(0) D (bin (~aunlt = 1) + (Wil) = Wit) ), 1 € [, ). 4.3)
k=1

Note that 7(¢) is an approximation for Y, (t) on ¢ € [t,,t,+1), Where Y,,(¢) is the solution to the linear SDE (3.15), as

expressed in (3.16). We first consider the piecewise interpolation process of (4.1) using (3.16)

m

(&) = X+ (t = 1,) f(x0) + Z 8k(X)(Wi(t) = Wi(ty)) + Yu(0), 1 € [tn, tns1)s
k=M+1

and estimate E [supogg 1X() - y(t)lz].

For convenience of the analysis in the sequel, it is natural to write the above equation in its integral form

y(0) = xo + fo JE(s))ds + Z fo gr(X(s)dWi(s) + fo dY(s), (4.4)

k=M+1
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where Y(¢) = Y,(¢) for ¢ € [t,,1,1) and X(¥) = x, for ¢t € [t,,1,+1). Note that X(¢) is the piecewise constant process
of the FPM-LP discrete solution, x(¢) is the piecewise linear interpolation process of the FPM-LP discrete solution,
and y(¢) is the piecewise solution of the SDE (2.1) in which the drift and slow diffusion are computed using the EM
scheme, and the fast diffusion is replaced by the solution to the linear SDE (3.15). They all coincide with the discrete
numerical solution x,, at each grid point, i.e., x(t,) = X(¢,) = y(¢,) = x, forn=1,--- | N.

Set Ey(1) := |X(¢¥) — y(?)|, then the strong discretization error & satisfies

E= ninl,??fNE [X@) —x,]1 < ninlf?fN]E [1X(@,) — y@)I] + ninl,??fNE [yt — x4l]

IA

1/2
(E[ sup 83(0]) + ngngE[ly(tn) = Xul] . 4.5)

0<t<T
The first step is to estimate E[supy.,r 8(2)(t)]. Recalling that X() is the piecewise solution to the scalar-valued
diffusion-only SDE (2.5), using Y,(¢) = X(@) = x, for t € [ty,ty41), and inserting the equation (3.15) in (4.4), we

obtain the following expression for y(#) equivalent to (4.4) but more convenient for the analysis in the sequel,

NOEE fo fEsNds+

k=M+1

t M t
fo S EAWi(s) + fo (84(E() + GEEOIR(s) - K(sD)AWi(s).  (4.6)
k=1

Then it follows from (4.6), the scalar version of (2.2), and Cauchy-Schwarz that

E [ sup 8(2)(t)}

0<t<T

E{ sup

0<t<T

fo (f(X(s) = f(x(s)))ds + Z fo (8(X(5) — gu(X(s)))dWi(s)
k=M+1

M

' R 2
+ Z f (gk(X(S)) - gu(F(s)) — g (X(s))(X(s) = J?(S)))de(S)‘
k=10

< 3(E[sup EDO|+E|sup E@)|+E| sup 8§(I)D, 4.7
0<t<T 0<t<T 0<t<T
where
s 2 m ; 2
&) = ‘ fo (FX(s) = FEsNs| » ED =] fo (8(X(5) = g((s))dWi(s)]
. t k=M+1 )
gn = > fo (86X (5)) = u(E(9)) — gL (R(sN(K(5) — F(5)))dWi(s)| -
k=1

Throughout this section it is assumed that

(A1) the functions f : R - Rand gy : R — R for k = 1,--- ,m are continuously differentiable and there exist

positive constants Ly, L such that
f() = fO) < Lelx =yl g —geO) < Llx—yl, k=1,---,m, Yx,yeR.
(A2) there exists Ay > 0 such that

VE| sup X®)IP|VE

0<t<T

IE[ sup |x(2)|P

0<t<T

sup |)2(t)|f’] <Ar, Vp>1.

0<t<T

(A3) There exists y > 1 and a positive constant 4 such that |g;(x)| < A(1 + [x]").
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It follows immediately from the Assumption (A1) that
£+ L37), g <2(g0)+Lix"), k=1--,m YxeR (4.8)

Given any s € [0, T), let n, be the integer for which s € [t,,1,.+1). Then by using (4.6) and the scalar version of

(2.5) we obtain

()=, f Fle,)dr+ Z f 2k(x, >de<T>+Z (i) o)X -2 )AWAD) V5 € [0,T). (49)
k= ng

M+1 V1 Ing

We next estimate the error E[sup,.,.y SS(I)] in four steps. First, in Lemma 1 below we provide an estimate of
E [|X (s)— xnl\_l‘" ], which is crucial for subsequent analysis. Then in Lemmas 2—4 below we provide upper bounds for
E [supogg 8%(t)], E [supogg Sg(t)], and E [supogg Sg(t)], respectively. Detailed proof of each Lemma is presented

in the Appendix.

Lemma 1. Let Assumptions (A1) and (A2) hold. Then for every even number p > 2 there exists C, 1 > 0 independent
of At such that
E[|R(s) - x,|"] < Cpr(an??, Vs €[0,71.

Proof. See Appendix A.l. 0

Lemma 2. Let Assumptions (A1) — (A3) hold. Then there exists Cy > 0 independent of At such that

[ sup 82(z)] < A4TI2 f E[ sup E}(n)]ds + Cr(An(Ar + 1).

0<t<T 0<t<s

Proof. See Appendix A.2. O

Lemma 3. Let Assumptions (A1) — (A3) hold. Then there exists Ct > 0 independent of At such that

[ sup &2 >(0)

0<t<T

< 4(m — M) Z L f E[ sup E(1)|ds + Cran(Aar+1).

k=M+1 Osrss

Proof. See Appendix A.3. O
Lemma 4. Let Assumptions (A1) - (A3) hold, and in addition assume that

(A4) g is twice continuously differentiable for k = 1,--- , M, and there exists Dy > 0 such that
|g:(x) — 8xI < Delx =yl forall x,y € R.
Then the error term 8§(t) satisfies

T
]E[ sup 8§(t)} < CAt f [sup 76
0<t<T 0 0<t<s

Proof. See Appendix A.4. O

ds + SMTCrAt Z (L} + DiAr).
k=1
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With the preparation above, we can obtain an upper bound for E [sup05t5T 8%(0], stated in the following Lemma.

Lemma 5. Let Assumptions (A1) — (A4) hold. Then there exists Cy independent of At such that

E [ sup E5(t)| < CrAt.

0<t<T

Proof. Collecting estimates of [E [supogg 8%(t)] ,E [supogg 8%0)], and E [supoggT 8§(t)] obtained in Lemmas 24,

respectively, and inserting them into (4.7) gives

m T
IE[ sup 8§(t)} < 4(TL§. +(m—-M) Z L+ cm) f E[ sup &(1)|ds + R(AD), (4.10)
: 1 .

0<1<T Pyt 0<r<s

where C is defined in (A.13), and R(Af) = R, - At + R, - (Ar)? with

m m M
R = 2m+ DT [TLf, +4(m — M) Z Lﬁ] Z (g2(0) + L2A7) + 8MTCy Z 12,
k=M+1 k=1 k=1
m M
R, = 2m+ DT [TL? +4(m— M) Z Li] (fZ(O) + Lf,AT + CT) +8MTCr Z D?,
k=M+1 k=1

where cy is the constant in (A.4) and Cy is the constant in Lemma 1. Applying Gronwall’s Lemma to (4.10) results in
E [ sup 83(0] < AL(R) + RoAr) ¥ T(TE+m=M) Xy, Li+dM B 1)
0<t<T

The proof is complete. O

Remark 1. In the proof of Lemma 4, the mean-square difference between X(t) and X(1) is given by (A.12), which
represents the error due to the approximation of ZX(t) by 95( (t). Its contribution to the total error is given by the CAt
term in (4.10). Recall that the error of approximating 9X(t) by an EM scheme in its corresponding formula (4.10)
is M Z,’Z ] L]%. Then, after a closer look at the constant C, the error due to approximating 2X(t) by @,{‘ (t) is of order
At(AtL? + Z,f’i M L,%)e("”l)zgl LA i (4.10), which is small compared to that of the EM scheme, when the magnitude
ofAtLJ%+Z,1(ViM+1 L2 is smaller than Y,;"| L2. With the same order of magnitude of the initial values f(0) and g(0), this

means that the magnitudes of the fast diffusion processes are much larger than those of the slow diffusion processes.

Remark 2. The analysis in Lemmas 1 -5 above can all be generalized to vector-valued SDEs, and results in the same
order of convergence rate but larger coefficients. More precisely, the coefficients also depend on the dimension of the

State vector.

We are now ready to construct the strong order of convergence for the FPM-LP scheme. In fact, by (4.5) it remains

to estimate max,,-; .. y E [|[y(¢,) — x,|], which is presented in the following Lemma.

Lemma 6. Let Assumptions (A1) — (A3) hold. Then there exists Ct > 0 such that

(max Elly(t,) = x[1 < sup Elln(x) = YOIl < Cr(An'”2,

0<t<T

Proof. See Appendix A.S. O
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Remark 3. The order 1/2 error term max,=.. y E[|y(t,) — x,|] in Lemma 6 results from the mean-square error
2
E [( flt(qb,jl(s) - l)de(s)) ] in (A.19). It can be improved to an order 1 or higher by setting | > 2 in the approx-

imation (3.18).

Finally, applying Lemma 6 to (4.5), and using Lemma 5, immediately gives the convergence rate to the FPM-LP

scheme, stated below.

Theorem 1. Ler Assumptions (A1) — (A4) hold. Then the FPM-LP scheme has a strong convergence order of 1/2,

i.e., there exists Ct independent of At such that
E= max E[IX(t,) — x,|] < CrAt'?,
n:l’... N
where x, is computed according to FPM-LP.

Per Remark 2, the result in Theorem 1 still holds for vector-valued SDEs but with a larger value of Cy that also
depends on d. On the other side, note that unlike the scalar-valued FPM-LP in which ¢,(#) is directly computed, for
the vector-valued FPM-LP scheme ®,(?) is a stochastic matrix which is approximated to reduce the computational
cost on matrix exponentials. Consequently, there is one extra error term in max,-;... y E [[y(#,) — x,|] which results
from approximating ®,(¢) in (3.4) by (3.5). More precisely, instead of (A.14), the piecewise extension of 7, now
becomes

M M : 1
(o =1+ Wi - Wk(rn»] 3 (bk,n( ~a [ a5+ | dwk<s))), (€ Lt
k=1 k=1 n A

and the error of the FPM-LP due to approximation of Y,,(¢) is now

E[lZ(®) = YaI] < E[I£(2) = n@]] + Elln(@) - Ya(0Il. (4.11)

By Holder inequality, sequential representation of ¢,(¢), Itd isometry and boundedness of E[ain] and E[bin]we have

(kl e aknfds+fdwk(s>)”

(E[Z(0) - nnl)* < 2E

E||1+ Z Qi (Wit) = Wi(t)) = Z (-3 Z a,(t = tn) + Z ain(Wilt) = Wit | ]
k=1 =0
M M
< 2M ) (BB}, I(Ela} (A + AD)) - I(% >lat, A+ O(At))2 < (A1, (4.12)
k=1 k=1

which, along with (4.11) imply that using the approximation (3.5) of ®,(¢) in FPM-LP does not change the strong

order of convergence presented in Theorem 1.

Remark 4. The error term E[|{(¢) — n(?)|] is introduced by the approximation of matrix exponentials. Although it is
of order O(AP?), its magnitude can be comparable to At'/> when the magnitudes of bk o e, g 2(x,), are larger than
At2. Therefore at At much larger than the reciprocal of |gx(x,)| this part of the error may become dominant, and may

cause the FPM-LP scheme to be less accurate than the EM scheme.
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4.2. Weak convergence

In this subsection we present an estimate of the error at the final time T

€ := [E[y(xn)] - Elp(X(T))]],
for the FPM-LP scheme in the following Theorem.

Theorem 2. Let Assumptions (A1) — (A4) hold. Then the FPM-LP scheme has a weak convergence order of 1, i.e.,

there exists Ct independent of At such that € < CrAt.
Proof. The proof is based on the Feynman-Kac formula. See Appendix A.6. O

Remark 5. The FPM-MM scheme uses a Gaussian process with the same moments to approximate Y,(t) and thus
does not have pathwise convergence. On the other hand, by construction we have E[x(T)] = E[y(T)] and E[x*(T)] =
E[y*(T)]. Therefore for special class of test functions such as quadratic functions, or globally Liptchtiz continuous

functions, €, := |E[zﬁ(x(T))] - IE[t//(y(T))]| = 0, and the FPM-MM scheme also has a weak convergence order of 1.

5. Numerical Illustrations

We illustrate empirical observations of the convergence of each scheme using select model problems. We begin

with a discussion of a scalar SDE, followed by vector SDEs.

5.1. Scalar-valued linear SDE

We highlight one observation regarding the advantage of the proposed integration FPM-LP scheme, relative to

EM, for a scalar drift-free stiff SDE involving two Brownian motions. Given the scalar state X(¢), we let
SX@®)=0; g1(X(®) = 4X(1), g(X(0) =0.04X(r) (5.1)

and integrate the system with an initial condition X(0) = 1. The two BMs are chosen to differ in magnitude by 100X,
accordingly the rate of diffusive spread due to g; is two orders of magnitude faster than that due to g,. We integrate
this system using both EM and the above FPM-LP integrator. In this scalar case, the exponential in the ¢, expression
is easily computed (there is no approximation of the exponential term as was proposed for the vector case by the
one-step ODE integral) resulting in the formulation shown in Eq. (3.20). Resulting sample paths are illustrated in
Figure 1. The exact solution of this system can be easily formulated, and is used as a reference for computing the
strong convergence of each integrator, EM and FPM-LP, also shown in Fig. 1, using 4.8M samples. As can be seen,
both integrators exhibit, in the limit of small time step, the expected (A7)!/? slope. This convergence is naturally lost
in the high Ar range. However, what’s interesting to note is that the large-Ar error for EM is an order of magnitude
higher than that for FPM-LP. This observation, albeit in a linear SDE, highlights the motivation behind the present
development, namely that linearized modeling of the unresolved fast processes provides improved accuracy versus
the alternative of integrating them directly using large time steps. Note that, when this system is computed with

210 = g20) = 0.04X(r), this large difference between the errors from both schemes disappears, with the error in both
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Sample paths, EM (blue), FPM-LP (red) Strong convergence vs. exact solution
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Fig. 1. Illustrated sample paths for X (left), and convergence (right), linear scalar stiff SDE with EM (blue) & FPM-LP (red) integrators.
The right frame also includes the observed convergence of the error for the FPM-LP solution employing the approximate one time-step
ODE computation of ¢, (grey), labeled “LPa”.

integrators at the largest At being O(107*), and the error reduction due to FPM-LP being ~ 1%. Further, it is useful
to add that, if the one time-step approxmiation of the ODE (3.3) solution via (3.5), introduced in the vector case, is
employed here, the associated approximate-FPM-LP error, shown in Fig. 1 as “LPa” are higher than FPM-LP, and
slightly higher than EM at small At, but they retain a significant error advantage over EM in the large At region, up
to and including the next to largest time step size. On the other hand, as can be seen in the figure, the approximate-
FPM-LP error grows appreciably to O(10%) for the largest time step size. This is indeed a manifestation of the coarse
approximation of the ODE (3.3) solution for large time steps, and an indication of the necessity to estimate and control
the error in this approximation, employing a better approximation in the large Az context as necessary, e.g. employing

multiple internal time steps for the ODE solution.

5.2. Vector-valued model SDEs

Consider the SDE (Eq. 2.1) in RY where d = 2, with m = 3 Brownian motions, and with p-order polynomial drift

and diffusion terms specified as follows
JX(@®) = (AX(®)°"; g(X(0) = (B X)), k=1,---.m (5.2)

where A and By, are d X d real matrices, and the operation ()°” denotes the Hadamard power, where the quantity inside
the paranthesis is raised element-wise to the power p [72]. Thus, for Y = (Yy,---,Y,), we have Y°? := xr, ..., Yh.
We will consider cases with p € {1,2}. We use the following A, B matrices
1 2 -1 2 3 =2 1 4
A_a[S _4}, 15’1—,31[3 —6}’ Bz—ﬂz[_3 8}’ Bs—ﬁ3[6 _9} (5.3)
with the scaling coefficients & = 0.1, while 8 = (81,82, 83) is chosen differently for different equation systems”. We

further note that these (A, By) matrices are chosen to be commuting (AB;, = BiA, k = 1,2,3) in order to facilitate

2We make the following choices: 8 = (0.05,0.05,5 x 1077) for the linear (p = 1) case, and (0.04, 0.04, 5 x 10™*) for the quadratic (p = 2) case.
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the derivation of an analytical solution for the linear case, for purposes of convergence testing. Thus, for p = 1, the
solution to the autonomous linear SDE (2.1) with drift and diffusion terms defined by (5.2) can be given explicitly

when the matrices A, By, - - , B,, commute, as

1 m m
X(1) = xoexp {(A -5 B,%J (t—10) + ) Be (Wi(t) - Wk(to))}. (5.4)
k=1 k=1

The amplitudes of the diffusion source terms g() determine the strength of the diffusion processes in the system, and
the associated speed of the diffusive spread of the random paths of the system. The chosen values of matrices (A, By)
control the strengths of the drift and diffusion terms for any given state. By design, these choices provide, for the two
cases p = (1,2), diffusion source terms gx(X(¢)) with (g1, g») having component amplitudes always larger than the
corresponding amplitudes in g3, thus providing a system with two “fast” diffusion terms and one slower term. In this
relative context, we define M as the number of fast diffusion source terms. Of course, M can vary during a simulation,
and has to be determined for any given state, but our illustration example cases are constructed to have M = 2 for the
full state trajectory given the initial conditions xy = (=100, 100) in the linear case, and xo = (1, 1) in the quadratic
case, and the chosen integration time 7" = 0.5.

In order to examine the temporal convergence of the solution, we integrate the above model system using different
time integrators, employing a set of fixed At = T/N time steps, with N values related by factors of 2, specifically
N =38,---,512. Sample paths computed with FPM-LP are illustrated, for the finest At, for the quadratic case (p = 2),
in Figure 2. Clearly, the dynamics of X; are dominated by drift, while X, is dominated by diffusion processes.
Inspection of the contributions of fast-diffusion, vs drift+slow-diffusion to the RHS of X and X, illustrate the larger
magnitude of contributions of fast diffusion and lower magnitude of drift+slow-diffusion, to the RHS of X;, vs. the
corresponding contributions to the RHS of X, which is consistent with the observed behavior in Fig. 2. We note
that this is not necessary for the present construction, which, rather, relies on distinguishing fast/slow diffusion source
terms and does not require the dominance of fast diffusion in specific components of the state. For the same time
step choice, sample paths with the EM, FPM-LP, and FPM-LM integrators, relying on the same random seed and thus
the same Brownian motions (BMs), are essentially indistinguishable on this scale (not shown). On the other hand,
FPM-MM exhibits random paths that are not derived from the same BM paths, as the BM random variables used
in the fast modes are substituted by the random vector i in Eq. (3.13), and are not comparable path-wise (also not
shown). Thus, there is no expectation of strong convergence from FPM-MM, only weak convergence.

We will rely on estimation of various error norms among the different solutions and examination of the error norm
convergences. We estimate error norm statistics employing 24M samples for each case. In order to arrive at empirical
estimates of temporal convergence of an SDE time integrator, the BMs employed with different choices of Af need to
use subintegrals of the same BM. A straightforward way to do this is to compute a discretized BM at the finest time
step, and let the coarser time step BMs be derived based on discretized integrals over subintervals of this BM. Thus,
with h, = (At),, let hy = ho/29 withg =0, 1,--- , Q, where hy = T /N is the coarsest time step, and N, = N2 is the

number of time steps for a given resolution g, we compute the finest time step BM path Py = {&1,--- ,&n,}, where
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Fig. 2. Illustrated sample paths computed with FPM-LP for X, (left) and X, (right), quadratic SDE.
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Fig. 3. Convergence of EM vs the exact solution for the linear SDE system. The left frame exhibits the strong convergence, showing the
decay of the expectation of the absolute value of the solution error at time 7, for X; (blue) and X, (red). The middle and right frames
exhibit the weak convergence. The middle frame shows the decay of the error in the expectation of the solution for X; (blue) and X, (red),
while the right frame shows the decay of the error in the covariance matrix components, all at time 7. The covariance matrix components
are denoted with blue (1,1), red (1,2), and green (2,2). The black lines illustrate the expected slopes in each case.

&~ N(0,hp). And, for any time step &, = 2Q’qhQ, we have, at time t, = nh,

(n+1)22-¢

ty+hy
AW, =Wy =Wy = [ AW Y 6 55
t'l

s=n-20-4

Considering first EM, we illustrate the observed convergence to the exact solution (5.4) for the linear SDE system.
We show the O(At'/?) strong convergence, namely the convergence of the estimate of the expectation of the absolute
solution error, with respect to the exact solution, at final time 7', in Fig. 3, as would be expected. We also observe
the expected O(Ar) weak convergence, at T, of the estimated error in the solution mean vector ur = EX(T) and
covariance matrix Crr = E[X(T) — ur)(X(T) - 17)7], relative to the exact solution, also shown in Fig. 3.

The FPM-LP and LM integrators show similar results, as shown e.g. in Fig. 4, including similar slopes and levels
of error as for EM, as would be expected for this linear case, where the linearization and mean-based Taylor series
approximations are exact. The figure also shows that FPM-MM has similar weak convergence results in terms of slope
and error magnitude, albeit with more noise, but it exhibits no strong convergence vs the exact solution, as ought to

be expected given the algorithm construction.
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Fig. 4. Convergence of FPM-LP (top row), FPM-LM (middle row), and FPM-MM (bottom row) vs the exact solution for the linear SDE
system. The format-structure of the plots follows that in Fig. 3. Results show the expected first order weak convergence in all cases, the
absence of strong convergence for MM, and the 1/2-order strong convergence in the other two cases.
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Fig. 5. Self convergence of FPM-LP (top row), FPM-LM (middle row), and FPM-MM (bottom row) for the quadratic SDE system. The
format-structure of the plots follows that in Fig. 3.

Let us consider next the convergence of the quadratic SDE. We examine first self-convergence, where the error is
defined as the difference in the solution (strong) or its moments (weak) between two successive time-step refinements,
with (g, hgs1). Results are shown in Fig. 5 for FPM-LP, FPM-LM, and FPM-MM. We see that LP and LM both
exhibit the expected strong/weak convergence rates. On the other hand, again, as would be expected, MM has no
strong self-convergence, and, while weak convergence is discernible in terms involving X;, which had relatively
minor fast-diffusion role, there is no robust observation of weak convergence for terms dominated by X,, where
the system dynamics highlight the role of strong/fast diffusion. The fact that the random vector 57 samples are wholly
unrelated between different time step cases explains this challenge in observing weak convergence in terms dominated
by strong diffusion. Whereas X; terms, dominated by drift and slow diffusion, and hence being handled using EM,
with the above BM connection between time step cases, show clear convergence. We note that we also examined
the weak self-convergence in terms of the components of the covariance matrix between times (7'/2, T') with similar
conclusions.

We also examine the convergence with respect to the EM solution at the finest time step /1, which we refer to as
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Fig. 6. Convergence of FPM-LP (top row), FPM-LM (middle row), and FPM-MM (bottom row) vs EMf (EM computed at the finest A7)
for the quadratic SDE system. The format-structure of the plots follows that in Fig. 3.
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EMf. Results are shown in Fig. 6 for FPM-LP, FPM-LM, and FPM-MM. Considering first strong convergence, we
see convergence at the Ar'/? slope for FPM-LP and LM, both curves flattening out at some point at small Az. Since
the EMT solution is not the true solution, this is expected, and we have observed that the floor can be lowered by
taking smaller Ao values. Note that X, convergence rate decays earlier and its ultimate error versus EMf is higher
than X;. This is consistent with X, being more impacted with faster diffusion, and thus with our associated approx-
imation with linearization, thus deviating from EMf by a larger amount than X;. Of course, MM exhibits no strong
convergence, again as expected. As to weak convergence, we see that all components of p; and Crr exhibit good
O(Ar) convergence rate of FPM-LP to EMf. On the other hand, for FPM-LM, the mean-based approximation has a
discernible impact, resulting in higher error-floor in the (1, 2) term of the covariance matrix, and, more notably, losing
convergence entirely in the (2,2) diagonal term. Similar observations are evident in the C(7'/2, T) components, not
shown. Note that neither decreasing /¢ nor increasing the number of samples could result in a discernible conver-
gence in this last quantity. We attribute this lack of convergence to the Taylor series mean-based approximation, given
the large spread in X, due to diffusion. The resulting errors are not Ar dependent, and result in clear bias in the results
in this case. A robust implementation would include some error-detection scheme that estimates the expected Taylor
series error impact on quantities of interest, and employs the LM approximation only when desireable thresholds are
met. Finally, for FPM-MM, we see the expected weak convergence in the X; mean, as well as the (1, 1) and (1,2)
covariance matrix terms, however, the convergence of moments of X, are noisy, and not reliable for observation of an

empirical convergence rate.

6. Closing remarks

We have outlined the utility of a linearized approximation of fast diffusion processes in stiff SDEs, that arrived
at the explicit FPM-LP scheme, and associated further approximations resulting in FPM-LM and MM. The FPM-LP
scheme has the same orders of strong and weak convergence as Euler Maruyama. However, they differ in accuracy due
to three approximations in FPM-LP in the time integration of the fast processes. These are: (i) local linearization of
the fast diffusion source terms, (ii) decoupling fast and slow processes, and (iii) approximation of a matrix exponential
by its linear components. Our analysis shows that errors due to (i) are higher order than the EM error in integrating
the fast processes. The magnitude of (ii) is also small with respect to this EM error when there is a clear separation of
scales. Finally, (iii) is also smaller than this EM error, except for cases where Af is much larger than the reciprocals
of the magnitudes of the fast source terms |gi(x,)| for k = 1,--- , M (Remark 4). Thus FPM-LP outperforms the
EM scheme for stiff systems with clear separation of magnitudes of fast and slow processes, as long as At is not
oversized. This latter condition can be controlled, allowing the elimination of this last approximation as necessary
when using very large time steps, with attendant costs. Our numerical experiments highlight the convergence of the
error in each of the three variants of the proposed scheme, for both linear and nonlinear model systems. We illustrated
the expected strong and weak self-convergence of FPM-LP and LM. We also showed weak self-convergence of terms
not-dominated by fast diffusion for MM. We also illustrated strong and weak convergence of FPM-LP relative to EM.

We observed similarly strong convergence for FPM-LM, but weak convergence was found only in the mean, and in
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covariance terms not dominated by fast diffusion. For MM convergence with respect to EM, we only observed weak
convergence, and that only in terms not dominated by fast diffusion. We can conclude, regarding LM specifically,
that, while it is certainly less expensive than LP, its use ought to be based on some estimation of the error resulting
from the mean-based Taylor series approximation outlined above, particularly for terms dominated by fast diffusion.
As for MM, while also efficient, it does not exhibit strong convergence, and it only exhibits weak convergence in

terms not-dominated by fast diffusion.
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Appendix A. Details of proofs in convergence analysis

Throughout the analysis in this section, the notations of ¢y and Cr are used for generic constants dependent on T

but not At, that may change from line to line.

Appendix A.1. Proof of Lemma 1

We first consider the case with p = 2. Note that due to the equation (3.14) and It6 isometry we have
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Then by (4.8) we have
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and thus due to Assumption (A2) we have
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It then follows from Gronwall’s inequality that

M
E [|X(s) - x,,ﬂ < 4MZ (82(0) + LEAT) Ae?M ZE A < epr, 520, (A.1)
k=1

where c7 is a constant depends on M, Ay, T, L and g(0) for k = 1,--- , M, but independent of At.
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For p > 2, using again equation (3.14), It6 isometry, Holder’s inequality, and Cauchy-Schwarz, we have
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where here and below ¢,y is a generic constant depending on p and M that may change from line to line. On the

other hand by by (4.8) we have
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Similar to (A.1), applying Gronwall’s Lemma to the above inequality results in

M
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k=1
which implies the desired assertion for all every number p > 2 with C, 7 = ¢ m Z,ﬂi, (gf )+ Lf AT) eZ L and the
assumption without loss of generality that Ar < 1. The proof is complete.

Appendix A.2. Proof of Lemma 2

First, by Holder’s inequality and the Lipschitz condition on f,

sup ()< T sup f lFx(s) - f(x(s))| ds < TI2 sup f l |X(s) —fc(s)|2ds.
0

0<t<T

Taking the expectation of the above inequality and using Doob’s maximal inequality gives
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Using (4.9) to obtain the term y(s) — %(s), and squaring it, gives
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Then taking the expectation of the above inequality, and using (4.8) and It6 isometry, we deduce
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Using Holder’s inequality, Lemma 1, Assumption (A2) and (A3), the last term of (A.3) satisfies
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where ¢y depends on T, A, y, Ay, Ly and g;(0) for k = 1,--- , m, but independent of At.

Now inserting (A.4) into (A.3), using Assumption (A2), and integrating from O to 7' gives
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Consequently, (A.2) can be further estimated to satisfy

T
<4rL? f E[ sup &(0)|ds +20n + DTL3 ((ArY’cy + Atcy),
0

0<t<s

[ sup 82(t)

0<t<T

with ¢; = f2(0) +LJ%AT +crand ey = Y, (g2(0)+LIAr). Setting Cr = 2(m+ 1)T2LJ2( max{c;, c;} implies the desired

assertion. The proof is complete.

Appendix A.3. Proof of Lemma 3

First by Cauchy-Schwarz, Doob’s martingale maximal inequality, It6’s isometry, and Assumption (A1) we have

E[OilthTS%(t)} < (m_M)ELil,lfrk ) f (8x(X(s5) — gu(X(s)))dWi(s) 2]
< 4(m- ME k%“l f (g(X(s) — g(X(s))dWi(s) 2}
= 4(m_M)EL;, f (8(X(s) — g(X(s))) ds]
< 4m-M) LZE[ f IX(5) - 5(s)| ds]

k=M+1

Similar to (A.2) in Lemma 2,

[ f |X(s) — %(s)| ds] f sup E(1)]ds + E
0<t<s

T 2
fo y(s) — %(s)| ds]
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and then it follows from the estimate (A.5) that

T m
IE[ fo |X(s) —)?(s)|2ds} < fo E| sup E(0)|ds +2m+ DT > L3 ((An’cy + Ates),

Osr<s k=M+1

where ¢; and ¢; are the same as in Lemma 2. Setting Cy = 4(m — M)2m + DT 1L, Li max{cy, cp} implies the

desired assertion. The proof is complete.

Appendix A.4. Proof of Lemma 4

First, it follows from Cauchy-Schwarz, Doob’s martingale maximal inequality, and Itd’s isometry that
M T oy
E [ sup 8%0)] <amy’ f E [(&(X(s)) — gu(X(s)) — gL (F(sNX () - X())) ]ds. (A.6)
0<t<T = Jo

Note that due to Rolle’s theorem, and then by Assumption (Ad4), for every s € R there exists y,; between X(s) and x,,,
such that

|2e(X(s)) = g(x,) = gLEENR(s) = x2,)| = (€' G) = g Cen)X(9) = %) < DeR(9) = x2,)>. (A7)
Writing g, (X(s)) — gx(X(s)) in (A.6) as gx(X(s)) — 2k (X () + gr(X(s)) — 8k(xy,), it then follows from (A.7), Lemma 1,

and Assumption (A1) that

T
E[sup 82@)] < SMZ( fo |(8(X(s)) - gu(K(s)*|ds + Dy fo [(ff(s)—xnx)“]ds)

0<t<T
< SMZ(LZ f [(x(s) - X(s))]ds+DzTC4T(At)2) (A.8)

where C4 r is the constant in Lemma 1 which is independent of Ar.
It remains to estimate E UX(S) - X(s)|2]. In fact, by equations (2.1) and (2.5), Cauchy inequality and Holder

inequality we have

A

]E[|X(s)—f((s)|2] < (m+l)IE[ f f(X(‘r))d‘r‘

+(m+1) [\ f gk<X(r>>de<r>‘]

R 2
+(m+1)Z [1 f (gk(xm)—gk<X<r>>)de<T>\]

Ing

(m+1)(Atf E[f2(X(T))]dT+ Z fsE[gf(X(‘r))]dT]

Ing k=M+1

IA

+m+ 1)2 E[(g(X (7)) - gx(X(1)))*|dr. (A9)

Ing

By Assumption (A1), f2(X(1)) < 2f%(x,,) + 2L |X(T) — X, I? and g2(X(7)) < 2g2(x,,) + 2L2|X(7) — x,,* and thus

f ' E[fA(X(1)]dr < 2Ar (2 f30) +2L3Ar + LIE [ sup & (I)D (A.10)

Ing 0<t<s

f ' E[gi(X()]dr < 2Ar (ng(O) +2L2Ar + LIE [ sup &, (z)D (A.11)
tng 0<t<s
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Inserting (A.10)—(A.11) into (A.9) and using Assumption (A1) again we obtain

sup EX(1)

0<t<s

M s
tetm+1) ) L2 f E[|X(7) - X(0)P]dr,

A 2
E|1X() - X | < e =

where due to Assumption (A2)

c1 = 2(m + DAt (AtL?f + Z L,i), ¢ = 2(m + DAt (At +2A6(f%(0) + L7A7) +2 Z(gZ(O) + L,EAT)) .

M+1 M+1

It then follows from Gronwall’s inequality that

M s
+c+(m+1) Z sz (cl[ sup 8(2)([)] + cz) MO I LD g7
1,

=1 ns 0<t<t

E[|X(s)—f((s)|2] < Cl[sup 10

0<t<s

< (61 [sup H0) +crAt, (A.12)

0<t<s

M
+ cz) D Tk L o cAt[sup &0

0<t<s

where ¢ = 2(m + 1)(AtL§, +3M Li)e(m+'>22”:1 Li and ¢y is a generic constant dependent on Az, m, £2(0), 81(0), L7,

L,% but independent of At. Finally, inserting (A.12) into (A.8) results in the desired assertion by setting

M M
C = 16M(m + 1)[AtL§ + Z L,i]eW”)ZKI L Z L. (A.13)
k=M+1 k=1

The proof is complete.

Appendix A.5. Proof of Lemma 6

Notice that y(f,+1) — Xp+1 = Yu(tnr1) — n(t,41), in which () is defined in (4.3). Hence to estimate the second term

on the right hand side of (4.5), we also consider integral representation of the piecewise continuous process 7(t)

M t 1
n(r)=¢n(r>2(bk,n(—ak,n [as+ [ de(s))), € Lty tas1) (A.14)
k=1 In In

where ¢,() is defined in (3.17). Then

b = [ @)= Dis + [ @010~ DI, 1€ Tt

M
In(t) = Ya(0l = ¢u(0) )
k=1

and it follows from Cauchy-Bunyakovsky-Schwarz inequality and Holder’s inequality that

M t t
(Eme) - Y.0)) < 2E W@]Elz b - f (¢ (s) = Dds + f (¢;1(s>—1>dwk<s>)\2]
k=1 In I
M ' t
< 2ME[¢3(;)]ZE[b,§n (a,%,nAt f (¢ (s) = Dds + ( f ((bnl(s)—l)de(s))Z)}. (A.15)
k=1 In Iy

Noting that at each ¢, ¢,,(f) follows a log-normal distribution, i.e.,

M M
(1) ~ N (—% Dat,-1), > - tn)] : (A.16)

k=1 k=1
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then by using Assumptions (A3) and (A2), the first term on the right hand side of (A.15) satisfies

M
1+ > E[(gh(xa))?] At + O(AR)

E[42(n)] = eZin it <
k=1
M 1/2
< 1+22 Z (EL(1L + 1x,)*]) A+ O(AP) < c. (A.17)
k=1

Then using equation (A.16) again, the two integrals on the right hand side of (A.15) satisfy respectively,

EU (7' (s) — 1)2ds] 2f E[¢,2(s) + 1] ds < 2(c + DA, (A.18)

E[( [ (¢;1<s>—1>dwk<s>)2] E[ [ @0 17as

Inserting (A.17) — (A.19) into (A.15), and using again the boundedness of E[bi ] and E[ain] implied by Assumptions
(A1) — (A3) we obtain

IA

< 2(c + DAL (A.19)

A

(Elln) - vao) < 2Mc(AﬂE[bi,n]E[a,in]E [ f (¢,'(s) = 1)’ds +E[b,i,,]1E[( f (¢;'<s)—1>dwk<s))2])

2Mc((At)2+At>, t€[tytysr), n=0,---,N,

IA

in which c is a generic constant independent of At and may be different from line to line. Therefore

~max Elly(t,) = xll < sup Elli(n) - Y()l] < C(An'",

0<t<T

in which c is a constant depending on M, T, Ay, Ly, Dy, but is independent of Az. The proof is complete.

Appendix A.6. Proof of Theorem 2

Note that since x(t,) = x, forn =0,1,--- , N, the weak discretization error above satisfies

€ := [E[((T)] - EWX(T)]| < [EOGT)] - EXTN| + [El((TH] - Elp((T)]].

where x(f) and y(¢) satisfy (4.2) and (4.6), respectively. Similar to the proof of strong convergence, we will first
estimate €; = |E[1//(y(T))] - ]E[:,lr(X(T))]| . To that end, let u(t, y) be a solution of the following Feynman-Kac partial
differential equation
1 S :
u(t,3) + FOIy(03) + Suy(t.y) Y gi0) =0 fort €[0.T), y € R, with u(T.3) = y().
k=1

Applying Itd’s formula to u(z, y(¢)) with y(¢) satisfying (4.6) and using the above equation yields

du(t, y(1) = (it y(0)) + uy(t, () f(E(1)) ) dt

1 4 u .
oy, y(r»( D g0 + ) ((50) + gENHR() - fc(r)))z] dr
k=M+1 k=1

m

M
i, y(r))( D g FEOAWD) + ) (8(F0) + gL ER (D) — m»)dwkm]
k=1

k=M+1
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du(t,y(0) = [uv(r YO) (D) = fG0) + una y(r))( > (g,%(m))—gi<y<t>)])dz

k=M+1

M
#3030 Y (8650 + g GONED) ~ 50)) - 00 )i
k=1

uy(, y(t))[ > g G @AW + Z gu(F0) + gLED)R (D) - x(r)))dwk(o]

k=M+1
Note that due to the Feynman-Kac formula, we have u(0, xo) = E[/(X(T"))]. Then, integrating the above equation

from O to T using u(7T, xy) = ¥(xy) and taking the expectation of the resulting equation gives

m

T
Ely(xp)] - E[yO(T)] = E[ fo [u\(t y0) (f(x@®) = fy(0)) + uy)(t y(®) Z gk(x(t)) gk(y(t)))Jdt]

k=M+1
1 r M .
+5E { fo iy (630) D (860 + LGN - 50) - G000 dr} ,
k=1

which implies that

T T T
€ < fo [Efe) (7, y(@))]] dr + fo [Elea(z, y(1))]] dt + fo [Efe3(z, y(0))]] dt (A.20)
where

aty®) = uy(t YD) (FED) = fH@),
aY0) = uy6y0) Y (GE0) - &0)

k=M+1

M N 2
e(1,y(1) = uyy(r,ya))Z((gk(fc(r))+g;(fc(t>)<X<r)—)z<t>)) —g,%(yo))).

k=1

Note that e (¢, ¥(t,,)) = ex(t,, y(t,)) = e3(t,, ¥(¢,)) = 0. We next estimate each of e, ¢; and e3.

First apply the Itd6 formula to e (¢, x(¢)) to obtain

Oey 0 1 9%
dey (1, (1)) = {—1 + ﬁf( 0 +3% =X Z g (x(0) + Z(gk(xa)) + GENR@) - 1)) ] r+— ngdwkm
k=M+1 k=
(A.21)

where )
G ={ (X)) + gUEOX®) - K1), fork=1,---, M,
8r(X(D)), fork=M+1,---,m

Integrating (A.21) from ¢, to t € [f,, t,,+1) using e;(#,, y(t,)) = O then taking expectation of the resulting equation gives

2
a k=M+1

Elei(,y(®0)] = f ( [—(s y(s))]+1E[—<s YN fC)] + IE[‘9 = g,%(xn)])ds

6
+5 f o Z (2k(x) + gL (x)(R(5) = )" ds.

Then by Cauchy inequality, It6 isometry, and equation (2.5) we have

Ele, (1, y(0)] < f ( |2t von] + B[ St s v | + B (ng<xn>+2<g [ ngo«r))dr)]
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For simplicity, assume that the functions f and g, satisfy conditions such that all expectations appearing in the above
inequality are bounded. Then there exists C; > 0 such that

[Ele; (2, x(H]| < CiAt. (A.22)
Following similar analysis we can obtain that there exist C, > 0 and C3 > 0 such that

[Elex(t, x(1)]] < C2At,  |E[es(t, x(1)]] < C3At. (A.23)

In the end, inserting (A.22)—(A.23) into (A.20) we have that there exists C7 > 0 such that €; < CrAt.
Note that in the FPM-LP scheme, x(¢) is essentially an EM approximation of y(f), along with an exponential
approximation of a strong convergence order 3/2 implied by (4.12). It then follows immediately that there exists

Cr > 0 such that the error

€, := [E[((T)] - E((T)]| < Cra,

which implies that the FPM-LP scheme has a weak order of convergence 1. The proof is complete.



