
OR I G I N A L A RT I C L E

Do Programmers Prefer Predictable Expressions in
Code?

Casey Casalnuovo1 | Kevin Lee1 | Hulin Wang1 |
Prem Devanbu1 | Emily Morgan2

1Department of Computer Science,
University of California, Davis
2Department of Linguistics, University of
California, Davis

Correspondence
Casey Casalnuovo
Email: ccasal@ucdavis.edu

Funding information
NSF grant 1414172

Source code is a form of human communication, albeit one
where the information shared between the programmers
reading and writing the code is constrained by the require-
ment that the code executes correctly. Programming lan-
guages are more syntactically constrained than natural lan-
guages, but are also very expressive, allowing a great many
different ways to express even very simple computations.
Still, code written by developers is highly predictable, and
many programming tools have taken advantage of this phe-
nomenon, relying on language model surprisal as a guiding
mechanism. While surprisal has been validated as a mea-
sure of cognitive load in natural language, its relation to hu-
man cognitive processes in code is still poorly understood.
In this paper, we explore the relationship between surprisal
and programmer preference at a small granularity - do pro-
grammers prefer more predictable expressions in code? Us-
ing meaning-preserving transformations, we produce equiv-
alent alternatives to developer-written code expressions,
and run a corpus study on Java and Python projects. In gen-
eral, languagemodels rate the code expressions developers
choose to write asmore predictable than these transformed
alternatives. Then, we perform two human subject studies
asking participants to choose between two equivalent snip-
pets of Java code with different surprisal scores (one origi-
nal and transformed). We find that programmers do prefer

1

SAND2020-11603J

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

2 Casey Casalnuovo et al.

more predictable variants, and that stronger language mod-
els like the transformer align more often and more consis-
tently with these preferences.

K E YWORD S

Surprisal, Language Models, Dual Channel Constraints, Source
Code Expressions, Meaning-Preserving Transformations, Human
Preference

1 | INTRODUCTION

When we describe programming, we often use terms like ‘reading’ and ‘writing’ to explain how a person interacts with
code, as if it was another form of natural language. Moreover, programming is becoming universal; diverse groups of
people make use of code in their lives, and the skills it provides are recognized by society, e.g., 9 out of 10 parents in
the United States want their children to learn programming (Google and Gallup, 2016). As coding proficiency moves
from a specialized to a general or even expected set of skills, comparisons to natural language have led to calls to
frame coding skills in terms of literacy (Vee, 2017). However, despite these comparisons, it is not clear in what ways
humans process programming languages similarly to or differently from natural languages.

Though code is often conceived as a form of communication with the computer, acknowledgment and emphasis
on the importance of code as a human to human communication medium has long existed in the computer science
community. For a classical example, Knuth’s “Literate Programming” makes a call for just such an emphasis: “Instead
of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to human
beings what we want a computer to do.” (Knuth, 1984). Maintaining code is the most costly component of application
development, with reading and understanding code taking up themajority of a programmer’s time (Banker et al., 1993;
Tiarks, 2011). As such, how code is writtenmatters beyond justwhat it computes. Certainly, team-developed software
must be readable by all the team participants; but evenwhen code is authored andmaintained by a single programmer,
they themselves are still an audience, needing to read, understand, and maintain the code.

If code is another form of human communication, albeit one subject to different constraints, how do these con-
straints affect how code is written and understood? How is cognitive effort expended in this environment, and how
does that compare to how it is expended in natural language? In natural language, one common lens for relating
cognitive effort to text is predictability; more predictable text conveys less information to the reader and is easier to
process. For example, consider filling in the blank for “The journey of a thousand miles begins with a single ”
versus “You wouldn’t believe that I saw a yesterday”. As a well-known proverb, the first is highly likely to be
completed with “step", whereas the second could be any number of options. Likewise, in code, the common idiom for
iterating through values “for(int i = 0; i < n;)” would likely be filled with the common iterator increment-
ing expression “i++” whereas completing a conditional that operates on the value a function returns (which could be
many) “if(returnCode ==)” could be challenging.

It is possible to get a sense of predictability in each of these examples, but despite the similarities between code
and natural language, (correct) code is a far more constrained form of communication. Code must be executed, and
errors prevent a program from running correctly or even running at all; in contrast, humans can use ‘noisy channel’
models to correct sentences to likely correct interpretations (Ferreira and Patson, 2007; Levy, 2008b; Levy et al.,
2009).

Casey Casalnuovo et al. 3

In natural language, it has long been established that more predictable words are easier and faster to process
than less predictable words (e.g., Ehrlich and Rayner, 1981; Kutas and Hillyard, 1984). But the same has not been
established in code. In the constrained environment of code, to what degree do humans have a sense of code’s
predictability, and does it drive how code is written? Most essentially, do programmers prefer predictable code? We
aim to establish a similar understanding of predictability in code as exists in natural language.

1.1 | Predictability in Code and in Natural Language

Surprisal is often used to measure and operationalize predictability, and can be applied to natural language or code.
Specifically, the surprisal of a word (or a token of code) is its negative log-probability in context, where the context
may include the previous or surrounding tokens, or potentially be even more general. Surprisal uses a probability
distribution to measure how likely words and sentences (or tokens and statements) are in a given language. This
probability distribution can be created in a fewways, from being built by human estimates or (more scalably) estimated
from a statistical language model learning it from a corpus.

In natural language, it has been established that reading times are proportional to the surprisal of a word in
context across many orders of magnitude of probability (Hale, 2001; Levy, 2008a; Demberg and Keller, 2008; Smith
and Levy, 2013), establishing a link between cognitive effort and predictability. How does predictability, measured via
surprisal, operate in the more constrained environment of source code? Most superficially, are code statements with
low surprisal preferred over and easier to process than very surprising ones? Addressed with greater nuance, it would
also be useful to understand whether small degrees of surprisal matter in code, whether there are contexts where
surprisal is not associated with human preferences and comprehension, and what factors determine these contexts.

As a secondary consideration, answering these questions is important from an applications perspective as sur-
prisal has been used within practical tools that model code, but has not thus far been validated as a cognitive measure
of code preferences or comprehension. A key result by Hindle et al. (2012) found that language models trained on
source code were far more predictable and repetitive than those trained on natural language. Using classical n-gram
models of code, they found that the entropy of code written in Java is around 3 to 4 bits lower than that of English,
suggesting that Java is 8 to 16 times more predictable than English (Hindle et al., 2012). This demonstration of the pre-
dictability of code has inspired hundreds of papers applying such models to code for the purposes of code completion,
defect finding and repair, automatic documentation and summarization, and many more (see the survey by Allamanis
et al., 2018).

This finding raises questions about why Java (and potentially code in general) is more predictable than natural
language. Does it relate to syntactic or grammatical constraints, or is it the result of humans choosing to write code
more predictably? Casalnuovo et al. (2019) studied this question across a wide variety of programming and natu-
ral languages, persistently finding code more predictable. In experiments removing syntactic closed category words
(prepositions, determiners, conjunctions, pronouns, etc) and looking at parse ambiguity, they found these differences
could not entirely account for why code was more predictable (in fact, the content words of code are relatively even
more predictable than in English). Likewise, they examined a wide variety of specialized English corpora (technical, le-
gal, recipes, foreign language learners) where a desire for higher precision or increased difficulty might cause humans
to write more predictably. Compared to generalized—or even domain (a collection of books in the science fiction
genre) or author (a collection of the works of Shakespeare) limited—English, these texts exhibited greater repetition
and predictability, albeit not as much as code itself. Between the studies comparing code-like corpora and syntac-
tic manipulations, the paper concluded that at least some of the predictability of code must be contingent on human
factors/choices, and not simply arising from inherent grammatical constraints.

4 Casey Casalnuovo et al.

Therefore, our goal is to test if humans have a sense of predictability in code, and whether preference for pre-
dictable forms (driven by ease of production and/or ease of comprehension) drives some of code’s highly predictable
nature. The previous study by Casalnuovo et al. (2019) has two major limitations. First, the study lacks a direct com-
parison of surprisal to human judgments of code. Do humans actually prefer less surprising code or does it not matter?
Second, the study operates at the level of entire corpora. There are many different types of statements in code with
many different meanings; an approach comparing code segments with equivalentmeaning could further highlight the
relationship between surprisal and human preferences. Here, the formal nature of code enables the creation of ex-
pressions that have exactly the same computational meaning, while having different surface forms. Next, we describe
a framework that shows how these equivalent constructions can be formed as a result of how code meaning must be
communicated to two audiences: human and machine.

1.2 | Dual Channel Constraints and Equivalent Meaning in Code

The theory of dual channel constraints (Casalnuovo et al., 2020a) describes how programmers express meaning in
code to each audience. In this formulation, code is comprised of two channels—an algorithmic (AL) channel and a
natural language (NL) channel. The AL channel is the computed meaning of the code; it is the only part of the code
communicated between the developer and the machine, which lacks the ability to utilize any of the NL signals of
code. The NL channel consists of the natural language elements of code latent in comments, variable names, and
coding styles. The machine audience is only aware of only the AL channel, but humans are aware of both channels,
creating an asymmetrical relationship in the information passed to the two audiences. Thus, the theory states that
programmers are aware of and coding for each of these two audiences simultaneously when writing, which imposes
constraints on each channel. Programmers must both correctly and precisely implement the computable meaning
while also expressing that meaning in a way that is easy to read and write. These constraints and the asymmetrical
nature of the channels is a useful framing from an applications perspective (e.g., using them to improve typing systems
in programs; Dash et al., 2018).

However, this constrained environment also offers opportunities for experiments that are difficult in natural lan-
guage. In particular, the formal semantics of the AL channel provides the affordance to manipulate NL forms, while
preservingmeaning, in away that purely natural language does not. Programmers themselves have exploited this prop-
erty in creative ways. For example, people have used code for artistic expression via esoteric or “weird” languages,
such as the language Shakespeare that makes all programs written in it resemble parodies of stage plays, or by ma-
nipulating existing popular languages, e.g., the International Obfuscated C Code Contest (Broukhis, Leo and Cooper,
Simon and Curt Noll, Landon, 2019), in which programmers try to express simple programs such as the famous “Hello
World” in the most difficult to understand ways possible (Mateas and Montfort, 2005).

Dual channel constraints enable the controlled study of predictability in code. In particular, we focus our our
study on code expressions, basic units of code that can be evaluated to obtain a value (e.g. a + b where a and b are
variables). Expressions can have equivalent meaning in the AL channel of code, but be written in different ways—the
AL channel constrains how the NL channel is written. Code is highly expressive; alternative forms abound even in
very simple tasks. A wealth of equivalent alternatives exist even for a common iteration trope: for (i = 0; i < n;

i++) { . . . }. One could pick a name other than i or n, flip the conditional (n > i), use a different incrementing form
(i = i + 1), or even potentially start and end the loop differently, all without changing the meaning. Indeed, a literal
infinity of equivalent forms is possible! Still, programmers dutifully repeat such tropes. Why?

One possible answer is that more predictable code may be preferred by developers if it is easier to produce and
easier to understand. In that case, we would expect to see that between two equivalent expression forms, developers

Casey Casalnuovo et al. 5

will tend to prefer the less surprising, more predictable form.

We wish to stress that it is not our goal in this paper to strongly disambiguate between two potential sources
for preferring predictability: Programmers may produce predictable code because it is easier for themselves to write,
and/or because it makes it easier to for other programmers to read—i.e. an argument from an audience design per-
spective (Clark and Murphy, 1982; Bock, 1987; Ferreira and Dell, 2000). In practice, it has been extremely difficult
to disambiguate these pressures in a natural language context (Snedeker and Trueswell, 2003; Zhan and Levy, 2018).
Our main goal in this work is simply to establish that programmers have a sense of predictability in code by demonstrat-
ing this exists even at the level of code expressions. Specifically, we wish to see how predictability, operationalized
as surprisal, is captured in the preferences for expressions by programmers—both in the existence of mature code
corpora and in the initial preferences of programmers.

1.3 | Overall Experimental Summary

We aim to test the hypothesis that human preferences for more predictable code are one of the drivers for the ob-
served predictability of code corpora, andmore generally testwhether humans prefer predictable code, focusing in this
paper mainly on code expression predictability. By accounting for the algorithmic channel’s effects through meaning-
preserving transformations, we can focus on the natural language channel, where we theorize predictability/surprisal
should behave similarly to natural language. Therefore, we hypothesize that surprisal (generated from a language
model) should be lower (i.e. more predictable) in actual developer-written code expressions found in online corpora,
when comparing these “real” code expressions to semantically equivalent alternatives created via meaning-preserving
transformations. Likewise, when humans are presentedwith semantically equivalent expressions, we hypothesize that
they will prefer the more predictable fragment.

To explore the relationship between programmer preference and surprisal, we adopt a triangulation approach,
combining a corpus experiment with two subsequent human subject studies. A large code corpus embodies numer-
ous choices made by programmers and thus is a representative sample of these choices. Within this corpus, we can
examine the occurrence frequency of different implementation choices of the same computation, and determine if par-
ticular choices dominate. To preview our findings, we find that language models generally score expressions originally
written by developers as more predictable (lower surprisal) than expressions produced from meaning-equivalent trans-
formations, though the effect varies across transformation types. Then, to better understand how surprisal in code
relates to human preferences, we perform two forced-choice surveys with programmers recruited online. In these
studies, we seek to answer if surprisal captures programmer preferences. Are the more predictable variants of code
expressions (according to the language model) also the variants that humans prefer? We find that programmers do
exhibit preferences for equivalent, but less surprising code expressions, and that more powerful language models like
the transformer more frequently and consistently model these preferences. At a high level, we would wish for this pa-
per to help serve as an early step in providing a more grounded psycholinguistic perspective of code as language, such
as those called for by Fedorenko et al. (2019), which we expand upon with a roadmap in our discussion. All our data, R
notebooks, and results for each of these experiments can be found at https://doi.org/10.5281/zenodo.2573389.

The rest of the paper is structured as followed. First, Section 2 provides some background of existing research in
program understanding. Then, Section 3 describes our corpus study, Section 4 describes our experiment looking at
extreme differences in surprisal, and Section 5 describes our experiment looking at gradient differences in surprisal.
Finally, Section 6 discusses our results, placing them in the context of existing knowledge, and suggesting how this
work can be built upon in future work.

https://doi.org/10.5281/zenodo.2573389

6 Casey Casalnuovo et al.

2 | BACKGROUND

Program comprehension research is decades old, and earlier models are being reexamined in light of newer brain and
eye-tracking techniques. Questions on what measures of comprehension to use and how to validate them are of
great interest (Siegmund (2016) provides a helpful survey of the field). Surprisal has not seen as much focus as it has
in natural language, so we highlight some existing research and relate it to surprisal when possible.

Early studies of program understanding used methods such as “think-aloud” paradigms, in which programmers
narrate their thoughts while doing tasks like debugging, to begin probing the cognitive processes that play a role in cod-
ing. A major contribution of these paradigms is to demonstrate the extensive use of top-down (Brooks, 1978, 1983;
VonMayrhauser and Vans, 1993) as well as bottom-up (Pennington, 1987; Shneiderman andMayer, 1979) knowledge
in programming. Rather than simply constructing their understanding of a program from bottom-up reading and anal-
ysis, developers make hypotheses about a program’s functionality that they iteratively reevaluate as they read and
understand the code (Siegmund, 2016). For example, a function named “binarySearch” could provide an obvious cue
to a programmer that the function implements the classic search algorithm that quickly finds an element in a sorted
list. Early theories focused on these so-called beacons, cues to meaning that often arise from the natural language
elements of code. VonMayrhauser and Vans (1993) highlight developers’ ability to switch between considering differ-
ent hierarchical levels of code (e.g., considering the many interacting components of code, versus considering specific
lines or sections). Shaft and Vessey (1995) demonstrate that developers can rely more on top-down hypothesizing
when working on programs from a familiar (compared to an unfamiliar) domain.

There is some literature suggesting that code that conforms to expectations is easier to understand. Cognitively,
studies have found that “regular code”—code patterns that are repeated in succession — are less cognitively diffi-
cult than versions without those repetitions (Jbara and Feitelson, 2014, 2017). Siegmund et al. (2017) found that
comprehension is more efficient (requiring less neural activation) when semantic cues that facilitate top-down com-
prehension are available, compared to when they are obfuscated (e.g., comparing meaningful function identifiers like
“binarySearch" to random letter strings).

Indeed, obfuscation has long been a technique used to change code to foil reverse-engineering, making it so that
the intended meaning is difficult to recover, either automatically or by human effort. Program obfuscation involves
transformations that largely preserve the meaning of the algorithmic (AL) channel, but confuse the natural language
(NL) channel. It can be used for protecting intellectual property or to maliciously disguise harmful code to evade
detection. The transformations are approximate, because obfuscation can allow the program to produce different
error behavior and run much slower (Collberg et al., 1997, 1998). Predictability has also recently been used to both
aid and reverse obfuscation techniques. It has been used to determine what combinations of obfuscating transforms
should be applied, though this was driven more by a desire to make obfuscations difficult for machine learners to
reverse than human readers (Liu et al., 2017). In the opposite direction, language models have been used to recover
obfuscated variable names in Javascript, treating the task as a translation problem to recover the real variables from
minified ones such as ‘a’, ‘b’, ‘c’, etc (Vasilescu et al., 2017). As such, we have good reason to suspect that predictability
should relate to human preferences for and understanding of source code.

Moreover, in programming languages as in natural languages, people demonstrate preferences for specific tem-
plated patterns of production, such as formulaic language or idioms, which can quickly and efficiently convey meaning
for those familiar with them, e.g. for(int i = 0; i < len; i++) (Schmitt and Carter, 2004). Allamanis and Sut-
ton (2014) were able to find and extract idioms from code, demonstrating that they appeared for a wide variety of
contexts and tended to be presented as learning examples on StackOverflow, a question and answer resource site
for programmers. Another common source of templated patterns in code is Application Programming Interface (API)

Casey Casalnuovo et al. 7

usage. APIs are groups of related functions that give application developers access to common, shared services; the
Android API (Google, 2020) is a popular one. APIs are used in idiomatic patterns, (e.g., opening and closing files or
accessing data from a service), which, if captured, can teach developers how to use the API, or can be checked for
incorrect, energy inefficient, or even malicious usage (Zhong et al., 2009; Sami et al., 2010; Linares-Vásquez et al.,
2014). On a larger scale, developers employ design patterns, which are solutions to common problems in software
design, and can be used to quickly signal the structure of the code to others familiar with said patterns (Gamma,
1995). Likewise, projects often make use of style guidelines to format code, and research has shown that contribu-
tions that are more predictable in the local context of a specific project are more likely to accepted by that project’s
community (Hellendoorn et al., 2015).

More recently, methods such as eye-tracking and neuroimaging have been applied to the question of program
understanding (Siegmund, 2016). Functional Magnetic Resonance Imaging (fMRI) has been used to compare brain
regions used in comprehending code to those used in natural language processing, with mixed results: Some studies
(Siegmund et al., 2014; Duraes et al., 2016; Floyd et al., 2017; Siegmund et al., 2017; Castelhano et al., 2019) report
overlap in these brain regions, while Ivanova et al. (2020) report minimal overlap. Eye-tracking studies (see the survey
by Obaidellah et al., 2018) also reveal differences between how humans understand code versus natural language.
For instance, studies show that while natural language reading largely follows a linear reading pattern (left to right in
English), code readers jump around quite a bit (e.g., from a variable or function use to its declaration; Busjahn et al.,
2015; Jbara and Feitelson, 2017). Moreover, expert code readers tend to show more non-linear eye traces than
novices (Jbara and Feitelson, 2017).

In summary, the previous literature on program understanding reveals some high-level similarities to natural lan-
guage comprehension in the use of predictability, particularly with respect to idioms and top-down expectations
about program structure. However, it also reveals differences in terms of eye movement patterns and potentially
neural regions. The previous literature has not focused on the relationship between predictability and programmer
preferences/ease of processing at the level of individual tokens or lines of code. Since the influence of predictability on
the processing of individual words (or other highly local structures) in natural language is among themost foundational
results in psycholinguistics, we see establishing a comparable result in program understanding as key to establishing
the cognitive similarities and differences between programming and natural language processing.

3 | CORPUS STUDY

The first part of our work is a corpus study examining how programmer preferences relate to predictability in naturally-
occurring code. Our logic is as follows: To the algorithmic (AL) channel, it doesn’t matter whether the programmer
writes i + 1 or 1 + i. But i + 1 is more predictable (whether measured by human intuitions or a language model).
Thus, if we consistently see more instances of i + 1 (across different programmers, different projects, etc.), it is evi-
dence that programmers prefer towrite themore predictable form (in their mature, edited code). While this preference
may seem obvious in this simple example, it is much less obvious that programmers would have a consistent prefer-
ence (again, across different people, different projects, etc.) aboutmore complex expressions such as byte eventZone

= message[2 + 2 * i]; vs byte eventZone = message[i * 2 + 2]; (93.5% preferred the second way) or about
the use of parentheses in expressions such as Integer minute = val - (hour * 60); vs Integer minute = val

- hour * 60; (90% preferred the first way).

Since these complex expressions may occur only once, we cannot simply count instances of byte eventZone

= message[2 + 2 * i]; vs byte eventZone = message[i * 2 + 2]; to determine which one programmers are

8 Casey Casalnuovo et al.

more likely to write. Instead, we take existing lines of code and construct alternatives that use meaning-equivalent
expressions. We then measure the predictability of both the original code expression and the meaning-equivalent
alternative using language models. If programmers indeed preferentially write more predictable code (even in these
potentially complex and novel expressions), then these code expressions as originally written should be less surprising
to language models than the constructed meaning-equivalent alternatives.

As our primary programming language of study, we choose Java, as it is widely used and a common baseline for
studies of language models in code (Hindle et al., 2012; Tu et al., 2014; Hellendoorn and Devanbu, 2017; Casalnuovo
et al., 2019). In order to provide some more nuance and robustness to our results, we wish to validate our results
across different kinds of language models, different levels of abstractness to the models, and also performed a smaller
validation study in another programming language. Therefore for our corpus study, we break down this more general
question of predictability in code expressions into 4 research questions. First, however, we provide a slightly more
in-depth description of surprisal in the context of language models, and give a brief summary of the kinds of meaning-
preserving transformations we perform.

Languagemodels typically assign probabilities contextually, e.g., probability of an utteranceU occurring in context
C : p (U |C) . The more likelyU is in context C , the higher the probability. These models (e.g., n-gram models, recurrent
neural networks, transformers, etc) are trained on a large corpus of text, and then are evaluated by scoring against a
separate, held-out test corpus of code that was not used in training that model. Performance is measured from the
average surprisal on the test corpus. A good model, presented with typical text, will find it highly probable, and thus
score a low surprisal for most utterances (tokens) in the text, and have overall low entropy. Modern language models,
well-trained over a large, diverse corpus, can reliably1 capture the frequency of occurrence of textual elements in
that corpus, thus capturing the preferences of programmers who created it. If these preferences are skewed enough
toward specific implementations, then even in the context of new unseen projectswewould expect the code expressions
developers choose to write will be more predictable than alternative equivalent implementations. More details of the
specific language models used can be found in Section 3.2.

Meaning-preserving transformations can capture a range of possible implementations for a given meaning. While
many are possible, we look at small expression-level rewrites. These rewrites include equivalent reordering of the
operands in an expression, adding and removing nonessential parentheses, and variable name shuffling (for details
see Section 3.3). These transformations are performed on code fragments from a corpus “unseen” by the language
model, which is then used to score the surprisal of the original and the transformed versions. Then, given these
transformations, our first research question is:
RQ1.Given a trained languagemodel, whenwe performmeaning-preserving transformations on previously unseen test Java
code expressions, to what degree does the language model find the transformed code more improbable (higher surprisal)
relative to the original?

Next, to ensure that this is not simply an effect of the choice of programming language, we also choose a secondary
language that is different from Java, Python. Python is quite different to Java, so if we see similar effects it provides
some evidence that they may be more general than Java. So we ask:
RQ2. Is language model preference for the original code expressions also observable in Python?

We would also like to explore how local variances in style (locality) affects the consistency of choice. By locality,
we mean that source code files tend to establish their own local vocabulary and style specific to that file. Source code
has strong locality, much more so than natural language (Tu et al., 2014; Hellendoorn and Devanbu, 2017); Cache-
based language models capture this local context by storing recently seen patterns in the text in a refillable cache. For
example, while i = 1 + i; is an unusual way to write an expression, if a developer consistently writes that way in a

1The low cross-entropy that modern models provide over unseen corpora is evidence of their power.

Casey Casalnuovo et al. 9

file, a cache model will find it less surprising as it processes more of the file. Likewise, a developer making the unusual
choice to use ‘iteratorVariable’ instead of the common ‘i’ would also become less surprising in the local context of the
file.

Additionally, we would like to consider if these preference patterns are retained in the underlying structure
of the code expression - i.e. when identifiers (names of code variables like i or n) and literals (numbers like 0,1,2.5
and strings like "Hello World" are all examples of literals) are abstracted. So, for instance, while i = i + 1; is a
preferred pattern over its alternative form i = 1 + i, by abstracting the expression, the model could learn if de-
velopers tend to write integer_variable = integer_variable + integer_literal; over integer_variable =

integer_literal + integer_variable;. If the transformations still have higher surprisal after this abstraction, it
provides evidence for preferences over the underlying patterns, rather than being tied to specific variable names.

Thus, to investigate what occurs when varying the model to account for locality and abstractness, we ask:
RQ3. Do cache-based models that incorporate local style discriminate between the original and transformed expressions
more strongly? Is the preference for the original retained even when abstracting identifiers and literals?

Weexpect that some transformations will disrupt the expression less or potentially evenmake it more probable to
our models. In particular, we would like to see how the original surprisal of the expression relates to the effect of the
transformation. We would expect highly improbable expressions to have greater potential to become more “typical”
after transformation. Such code expressions might be associated with fewer restrictions on developer choice. Thus,
we ask:
RQ4. How does the surprisal of the original code expression relate to the effect of the transformation? Do high-surprisal and
low-surprisal code behave differently?

With these questions in mind, wewill now describe our data selection and filtering process, languagemodel setup
and parameters, and our choice and validation of meaning-preserving transformations.

3.1 | Data

Our experimental dataset is chosen to help control for potential confounds, while also affording enough opportunities
for transformations. Since our main focus is Java, (see RQ 1) we use a larger Java corpus and replicate with a smaller
corpus in Python (RQ 2).

We cloned the top 1000 most starred projects on GitHub (GitHub, Inc., 2020) for Java and Python. Github is
the most popular host of open source code projects on the web. Stars are a measure of the popularity of the project,
which ensures that we are drawing code from prominent projects. We use a subsample of these projects due to
computational constraints by selecting the 30 projects from Java and Python with the most locations for possible
transformations Specifically, we put all the projects through the first step in our process which identifies possible
transformations via the Abstract Syntax Tree (AST) and counted locations where a meaning-preserving transformation
could be made. Manual review of these projects in Java and Python showed all nearly all of them were actively
maintained (all but one had updated in the past few months), and represented a diverse set of application domains.
These projects are then randomly divided by project into a 70-30 training/test split.

Duplication (often called “code cloning") can be a potentially confounding effect in training and testing code with
languagemodels (Allamanis, 2019). Since our focus is on programmer preferences for certain coding forms, it would be
inappropriate to remove all clones, i.e. code that developers reuse by copying and pasting it elsewhere (possibly with
some modification). Though some consider cloning to be bad practice, there are valid reasons for developers to use
code clones, such as language limitations or because they provide a template of code developers wish to reuse (Kim
et al., 2004). These are exactly the kinds of patterns that developers use that we hope our language models will

10 Casey Casalnuovo et al.

capture, so removing them does not make sense. Still, duplication at the level of entire files may be the result of
standard project files that are automatically generated by tools, or even just a developer copying a useful module
between projects. In those cases, it is unlikely developers examine the code as closely as when they are copying
a template that might need to be altered to fit a new context, and so we believe that our language models should
exclude them too. Therefore, we do a lightweight removal of fully duplicated files. This lightweight process compares
the name of every file and its parent directory (e.g., main/ExampleFile.java), keeping the first one seen of an equivalent
set, and removes the others from our training/test data.

TABLE 1 Summary of Java and Python dataset sizes, in terms of total files, files after applying our filters to
remove potentially copy-pasted code, and input tokens during language model training.

Language Files Unique Files Training Tokens
Java 204489 184093 ∼118.5 M

Python 27315 23105 ∼18.2 M

Table 1 shows the file-counts and approximate token-counts in the training set for each corpus. Duplication
filtering removes 6.1% and 10.7% of files in Java and Python respectively. Despite sampling the same number of
projects, the Java corpus is much larger, but Java is our main focus. Since we use Python to check if the results
replicate to another language, the smaller Python dataset is not a major concern.

Our test data was chosen to be distinct from the training data. In addition to the file level filtering used in both the
training and test sets, when testing we filter out lines commonly associated with generated code, coming from equals
and hashCode functions. We dropped lines with the strings ‘hashCode’ or ‘other’ which we observed manually to be
contributing to this repetitiveness. In the case of our identifier shuffling transformations that operate at the method
rather than expression-level (see section 3.3) we instead removed all equals and hashCode methods. These lines are
generated by Integrated Development Environments (IDEs)2, and arguably do not accurately represent human written
choices (or at least, style choices so codified that they have been automated). We also remove from the test data
identical lines of code appearing more than 100 times (a threshold of 10 gave similar results, suggesting robustness),
as these may also be at risk of extensive copy-pasting. As mentioned previously, we believe that it would not be
correct to simply filter out all duplicated expressions, as it is perfectly valid for developers to rewrite the same code.

Since our study operates at the primarily expression-level, it’s difficult to precisely find and account for copy-
pasting; we argue our approach gives a reasonable middle-ground between removing the extreme cases while still
retaining most of the natural repetition of code. Finally, we note that we did not remove repeated or generated code
fragments from the training data to properly reflect the code that programmers would read (and learn preferences
from). Our test set pruning was to avoid overly weighting repeated and generated code, and emphasize more the
individual, independent choices made when writing code.

3.2 | Language Models

We estimate a language model LM over a large corpus, and then use the PLM (C) from the language model as an
indication of predictability. Specifically, we use the surprisal of the language model with respect to a fragment C ,
which is precisely − log(PLM (C)) . Lower surprisal indicates code is more predictable based on the patterns learned
from the training data.

2An IDE is software that assists developers in programming and building applications, usually including a code editor, a debugger, and other tools. Popular
examples of IDEs and programming languages they are commonly used with include Eclipse - usually used with Java, and Visual Studio - often used with C#.

Casey Casalnuovo et al. 11

TABLE 2 A representation of a line of code, its Pygments representation, and the abstracted version. ‘Names’ are
abstracted (which Pygments uses to represent identifiers and more complex types) along with some literals. So here
we see the primitive type ‘int’ and the simple literal ‘1’ are left concrete but the identifiers are not.

Original Code int start = index + 1 ;
Pygments
Internal
Representation

Keyword.
Type

Name Operator Name Operator
Literal.
Number.
Integer

Operator

Abstracted Code int Token_Name = Token_Name + 1 ;

We use four n-gram language model variants to capture various aspects of possible developer preference. First,
we use a basic 6-gram model with Jelinek-Mercer smoothing as recommended previously (Hellendoorn and Devanbu,
2017), denoted as the global model. To answer the two parts of RQ 3, we first use Tu et al. (2014)’s n-gram-cache
(henceforth abbreviated as the cachemodel) to capture local patterns. Then, we build an alternate training and testing
corpus where we use the Pygments (Brandl, Georg and Chajdas, Matthäus, 2020) syntax highlighter to replace all
identifiers and types with generic token types, and literals with a simplified type. For numerical literals we keep
integers like 1,2,3 and replace larger integers and floating point numbers with labels like <int> and <float>, and for
strings we keep the empty string, single-character strings, and replace everything else with <str>. Table 2 shows an
example along with the Pygments’ internal types on a simple line of code. These models are implemented in the
SLP-Core framework by Hellendoorn and Devanbu (2017); Hellendoorn (2017). To assess preference, we compare
the average surprisal of tokens that appear only in both the original and the transformed version of the expression. The
tokens not involved in the changed expression are not considered.

Finally, we validate the robustness of our n-gram results with two neural models. First, we considered a small
1 Layer LSTM implemented in TensorFlow, trained with 10 epochs and 0.5 dropout. Second, we use a transformer
model (Vaswani et al., 2017) combined with modified byte pair encoding (BPE) (Gage, 1994; Sennrich et al., 2016).
BPE has been shown to be effective in managing the problem of code’s large vocabulary (Karampatsis et al., 2020) by
dividing the tokens into subtokens with similar frequency, and transformer models are considered to be much more
powerful than n-gram models. We trained/tested on the same projects as the n-gram models after applying BPE for
10 epochs, using a 2 layer transformer, with 8 heads, attentional and hidden dimensions of 512, a learning rate of 0.2,
a dropout rate of 0.1, batch size of 15000, and 200 sub tokens per sequence. The transformer was masked so that it
used only previous tokens as context, making this context comparable to those used by the ngram and LSTM models.
While transformers have not seen as much exploration in a source code context as they have in natural language, they
have been applied in variable misuse tasks (Hellendoorn et al., 2020) and have been used recently in industrial code
completion (Svyatkovskiy et al., 2020). While the specific configuration details are not essential to our experiments,
we include them to aid in replication.

Both of these neural models are evaluated on the subset of transformations that we use in both the corpus and
the human subject study (the Java swapping and parentheses transformations, see Section 4.1 for more details), which
excludes the variable renaming transformations. The renaming transformationsweremore computationally expensive,
and intended more for validation (see Section 3.3). For the small-scope localized transforms we use, we believe the
n-gram models are all adequate to measure meaningful properties of the corpus, as such models have been used in
prior work of this nature (Casalnuovo et al., 2019).

12 Casey Casalnuovo et al.

3.3 | Meaning-Preserving Transformations

We choose not to use existing code transformation tools, as they are either not meaning-preserving (e.g., mutation
testing tools (Madeyski and Radyk, 2010; Just, 2014)3 or operate at the wrong scale of code object, such as compiler
optimizations. Compiler optimizations are designed to retain program behavior, but most don’t operate at the source
code level, and often restructure code quite dramatically, resulting in unfamiliar constructions. While it seems highly
likely that these broad restructurings would affect programmers’ preferences and comprehension, a more stringent
test of preferences is to predict transformations to expressions within a single line of code, such as swapping the order
of operands.

Thus, to provide the strongest test of our hypotheses, we use source-level transformations that both are meaning-
preserving and local in scope. Our focus is primarily on transforming source code expressions, done by manipulating
Java and Python Abstract Syntax Trees (ASTs). ASTs are representations of program syntax, in tree form, used by com-
pilers and IDEs to analyze and edit program syntax. They resemble constituency trees in natural language, though in
code, they are called abstract as they omit some details of syntax; e.g., punctuations, like the “;” that end Java state-
ments, are elided. We use the AST Parser from the Eclipse Java development tools (JDT) (Eclipse Foundation, 2020a)
and the ast module from Python 3.7 (Python Software Foundation, 2020).

TABLE 3 Pseudocode examples for the transformations.

Swapping Operands
Arithmetic

* a * b b * a
+ a + b b + a

Relational
==, != a != b b != a

<, <=, >, >= a <= b b >= a

Parentheses Manipulation
Adding a + b * c a + (b * c)
Removing a + (b * c) a + b * c

Shuffling Variable Names
Within Variable Types

int a int b
int b int a

Between Variable Types
int a int b
float b float a

We implement 12 different transformations (see Table 3) grouped roughly into 3 categories: 1) swapping trans-
formations, 2) parentheses transformations, and 3) renaming transformations. The second column of Table 4 gives
a break down of the combinations of language models and transformations used in the corpus study. There are 6
nonoverlapping sub-groups: arithmetic and relational swaps, parentheses adding and removing, and shuffling iden-
tifiers within and between types. We implement all of these transformations in Java. However, in Python, as types
are not enforced and the language tools are more limited, we replicate only one type of transformation, swaps over
relational operators. These limitations also required us to normalize the original Python files with astor (Peksag and
Maupin, 2019), which can slightly change parentheses. As we do not perform parentheses transformations for Python,
this should only minimally impact results.
Swapping transformations: We have 8 kinds of transformations involving swapping and inverting operators, divided
into 2 subcategories. The first subcategory swaps arithmetic operands around the commutative operators of + and *.
We swapped very conservatively. We limit the types of the variables and literals in the expression to doubles, floats,

3Mutation testing is a technique seeks to create semantically different programs to expose deficits in test suites (Papadakis et al., 2019), and though recent
work has tried using surprisal to generate these transformations (Jimenez et al., 2018), they do not fit our equivalence requirements.

Casey Casalnuovo et al. 13

TABLE 4 Summary of which language models were applied to which transformations in each study.

Language Model Corpus Study Human Subject Study

Global Ngram
Swaps (Java/Python),

Parentheses, Variable Shuffling
Swaps (Java),
Parentheses

Cache Ngram
Swaps (Java/Python),

Parentheses, Variable Shuffling
–

Global Abstract Ngram
Swaps (Java/Python),

Parentheses
–

Cache Abstract Ngram
Swaps (Java/Python),

Parentheses
–

LSTM
Swaps (Java),
Parentheses

–

Transformer
Swaps (Java),
Parentheses

Swaps (Java),
Parentheses

ints, and longs. Infix expressions with more than two operands are only transformed if the data type of the operands
is int or long to avoid accuracy errors due to floating-point precision limitations. We also exclude expressions that
contain function calls, since these could have side effects that alter the other variables evaluated in the expression.

The second subcategory of operator swapping involves the 6 relational operators, ==, !=, <, <=, >, >=. We flip
the subexpressions that make up the operands for each of these, either retaining the operator if it’s symmetric !=, ==,
or inverting it if it’s asymmetric (e.g., > becomes <). While we do not limit the types in these expressions as they are
commutative and do not risk changing floating-point behavior, expressions with function calls are excluded to avoid
side effects.
Parentheses transformations: The next category involves the manipulation of extraneous parentheses in source code.
Programming languages have well-defined operator precedence, but programmers can still (and often do) include
extraneous parentheses, possibly to aid in readability or simply out of habit. For instance, in cases where less common
operators are used (such as bit shifts), the parentheses may make comprehension easier, leading to a preferred style.

Therefore, we can transform expressions by adding or removing extraneous parentheses. The parentheses adding
transformation relies on the tree structure of the AST to insert parentheses while preserving correctness in the order
of operations. Parentheses are not added to expressions whose parent is a parenthesized expression to avoid creating
double parentheses. For example, we would not change (a * b) + c to ((a * b)) + c. Parentheses are also never
added around the entire expression.

For parentheses removal, we select each parenthesized expression. Then, each of these is passed to the Necessary-
ParenthesesChecker from the Eclipse JDT Language Server (Eclipse Foundation, 2020b) to check if removing them
would violate the order of operations. Any subexpressions that pass this check are then considered candidates for
removal. This method is used by the same algorithm supporting the “Clean Up” feature within the Eclipse IDE4.
Variable shuffling transformations: Finally, we consider transformations that shuffle the names of identifiers. To avoid
changing meaning, we swap only within a method, using the key bindings of the AST to maintain scoping rules, which
define how variables with identical names but different scopes are resolved. Scopes define the regions in code in
which a variable can be referred to. For example, if a variable defined inside an if statement has the same name as
one outside it, references using this name refer to the one inside the if statement. It has a more ‘local scope’ and thus

4See https://bugs.eclipse.org/bugs/show_bug.cgi?id=405096

https://bugs.eclipse.org/bugs/show_bug.cgi?id=405096

14 Casey Casalnuovo et al.

has priority. If a variable name is used for a declaration more than once in a function (e.g., multiple loops using i as a
variable for iteration), it is excluded to avoid assigning two variables the same name within the same scope. Methods
containing lambda expressions are also ignored because their variable bindings are not available in the AST.

We separately consider renaming both within types and between types. As an example, consider a function with
two int and two String variables. In the within types case, we only consider replacing one integer’s name with the
other, and the same for the strings. In the between types case, all four variable names can be assigned to any of the
integers or strings other than their original variable. We expect that names given to the same types will be used more
similarly than names given to different types. Thus, we would expect transformations between types would result in
code relatively more improbable than those produced by transformations within types.

We note that unlike the prior two transformation groups, our variable renaming transformations act as more of
a check on the validity of our experiment. It has been long known that having poorly named or misleading variables
makes code more difficult to read, and this is a commonly exploited basic technique to obfuscate the meaning of
code (Collberg et al., 1997). Therefore, altering developer chosen variable names should create confusing code, and
the language models should strongly prefer the originals.

In contrast, rules around the ordering of operands and usage of parentheses are not as clear cut, and comparing
the surprisal of the transformations can inform us of how relatively strong convention is among them. To confirm
this, we searched the projects in our training and test sets for references to style guides. If common style guides
prescribe operand ordering and parentheses behavior, this could influence our results. We found several style guides
for both the Python and Java projects. Some projects even had explicit automated style checks, while others had
much looser guidelines (for instance, Apache Tomcat). Virtually all the guidelines were largely unrelated to our pri-
mary transformations of swapping operands and the use of clarifying parentheses, and more focused on naming and
whitespace conventions. We did find a few, limited references in Java to using parentheses as needed for clarity; and
just one project specified that null values should come second (e.g. x == null instead of null == x, though we did
find developer-written examples of the opposite order), but otherwise nothing that would affect our transforms.

Finally, we acknowledge that patterns of variable names use in particular might be learned more strongly than
the swapping or parentheses transformations, particularly if one domain of application was severely overrepresented.
Though we manually examined all the projects in both training and test sets and found a wide variety of projects, we
note that in Java several of the projects tended towards database applications and in Python toward machine learning.
While we believe the existing diversity or projects combined with our duplicate filtering helps minimize this factor, we
acknowledge this as a possible influence in the strength of patterns learned.

3.3.1 | Selecting Transformation Samples

As expressions grow in size, the number of possible transformations grows exponentially. Generating all these trans-
formations is neither feasible nor desirable, so we select a random subsample. For the operand swapping and paren-
theses modification cases, we randomly sample up to n transformations, where n is the number of possible locations
to transform in the expression. For variable renaming we consider only functions with up to 10 local variables that
can be shuffled.

Though our transformations are sound by design (i.e. they preserve meaning on the AL channel), we also hand-
checked a large sample of the results to ensure correctness and diminish the possibility of error. We did not find any
examples of meaning being changed. There were rare examples of cases with double parentheses, which would be
highly unlikely for humans to produce. Also, as the transformations are randomly created, some of them might be
very unusual to humans, such as converting (a == null) || (b == null) to a == null || (b == null). In the

Casey Casalnuovo et al. 15

human subject study, we handle these and similar cases carefully (see Section 4.1 for details).

3.4 | Modeling

To compare surprisal before and after the transformation, we use paired non-parametric Wilcox tests (Hollander et al.,
2013) and associated 95% confidence intervals, which measure the expected difference in medians between the
original and transformed code expressions. We also widen the intervals using the conservative family-wise Bonfer-
roni (Weisstein, 2004) adjustment, to account for the tests on each model and transformation.

To answer RQ 4, we turn to regression modeling. Recall that we theorize that expressions that are more improba-
ble to the language models should be more amenable to becoming more probable after transformation, whereas low
surprisal would be associated with stronger preferences and thus transformations are more likely to be harmful. We
measure this effect with ordinary linear regression, predicting change in surprisal (from the transformation) as a func-
tion of original surprisal. We additionally include controls for the length of the line, the type of AST node that is the
parent of the expression, and a summary of the operators involved in the expression. In the case of multiple operators,
we selected the most common one from the training projects to represent the expression. Our regressions are limited
to single transformations for ease of interpretation, and we filtered out rare parent and child types (< 100)5. We
identified influential outliers using Cook’s method (Cook andWeisberg, 1982) and removed those with values greater
than 4/n . We examined residual diagnostic plots for violations of model assumptions, and made sure multicollinearity
was not an issue by checking that variance inflation (VIF) scores were < 5 (Cohen et al., 2003).

3.5 | Corpus Study Results

TABLE 5 Two-sided paired Wilcox signed-rank tests and 95% confidence intervals of surprisal difference original
source minus transformed source. A 1-bit negative difference indicates the original code is twice as probable as the
transformed one. Intervals are Bonferroni corrected. ◦ indicates p > .05, otherwise p � .001

Global Cache Global Type Cache Type
Arithmetic Swap −0.7972,−0.7045 −2.9691,−2.8241 −0.5578,−0.5053 −1.4687,−1.3897
Relational Swap (Java) −1.2171,−1.168 −1.964,−1.905 −1.7204,−1.7009 −1.954,−1.936
Relational Swap (Python) −1.7643,−1.6837 −1.4616,−1.3778 −2.4814,−2.4061 −1.5448,−1.474
Add Parentheses −0.3344,−0.3201 −0.5771,−0.5432 −0.2351,−0.2237 −0.3783,−0.364
Remove Parentheses −0.0106, 0.0346◦ −0.4393,−0.3605 −0.2007,−0.1494 −0.4233,−0.3626
Variable Shuffle (Within Types) −0.807,−0.6767 −0.9744,−0.8402 – –
Variable Shuffle (Between Types) −1.7318,−1.6114 −2.3273,−2.2308 – –

5Limitations in the Python transforms prevent an accurate count of the number of transformations, and so the first filter was not applied. We examined the
comparable Java models without this filter as well but found little difference in the coefficients.

16 Casey Casalnuovo et al.

TABLE 6 Two-sided paired Wilcox signed-rank tests and 95% confidence intervals of surprisal difference original
source minus transformed source. A 1-bit negative difference indicates the original code is twice as probable as the
transformed one. Note that the LSTM values show the difference between averaged shared surprisal at the token
level, whereas for the transformer they are at the subtoken level, since we used BPE. Intervals are Bonferroni
corrected. ◦ indicates p > .05, otherwise p � .001.

LSTM Transformer
Arithmetic Swap −0.7517,−0.6264 −1.098,−1.0066
Relational Swap (Java) −1.0063,−0.9516 −0.479,−0.4621
Add Parentheses −0.5433,−0.4919 −0.2021,−0.1698
Remove Parentheses −0.5559,−0.4247 −0.0591, 0.01◦

3.5.1 | Swapping Expressions

We have 20,829 instances of transformable arithmetic swaps in our Java data, and 133,845 and 32,219 instances
for relational swaps in Java and Python respectively. Fig. 1 shows the difference in n-gram surprisal (transformed -
original) for all of the swap transformations, with Fig. 1a showing the Java arithmetic swaps, Fig. 1b, showing the Java
relational swaps, and Fig. 1c showing the corresponding Python relational swaps. Rows 1,2, and 3 in Table 5 show the
associated Wilcox tests and confidence intervals around the median for each of these model variants.

The data for the swaps supports our theory that the language model would rate the original (unaltered) form
more probable to varying degrees (even though the both forms mean the same thing). To focus on one transformation
and model, in the Java arithmetic swaps, the global language model finds the original expression 1.68 times more
probable (0.75 bits of surprisal less) than the transformed version, and the cache model finds the original 8 times
more probable (3 bits less) than the transformed version (the increase can be measured as 2d i f f e.g., 20.75 = 1.68). The
cache language model does discriminate better across all the Java transformations, both with concrete and abstracted
identifiers; but not, however, in Python, perhaps due to a global cross-project python community specific culture that
might be stronger than in Java. For the models of the identifier abstracted code expressions, the original expression is
once again more probable, although the cache effects mirror their behavior in Java (where the transformed expression
is even more surprising) and Python (where it is less surprising). Importantly, the fact that the original code expression
is rated more probable by the language model suggests that there are structural frequencies learned from the training
data on top of the more clear cues for names.

Rows 1 and 2 of Table 6 show the LSTM and transformer models we ran to validate the robustness of the n-gram
models on Java swaps6. They both also rate the original code more probable. The LSTM suggests a stronger effect
with relational swaps whereas the Transformer shows this for the arithmetic swaps. Therefore, we cannot clearly say
in which the effect might be stronger.

Now, to answer RQ 4, we will describe one regression model in-depth: the one for the global arithmetic swaps.
We present only one of these models in detail as the results were consistent across transformations and language
models; the only exception occurred in Python and is described after this example.

We model Surprisal Change ~ Original Surprisal + log(NumTokens) + ParentOperator + Operator, where the change in
surprisal is predicted by the original surprisal, controlled by both the log size of the expression in tokens, and the parent
and operator types of the expression. For every bit increase—meaning the expression is twice as difficult for themodel
to predict — in the original expression, the change decreases by 0.279 bits. This effect is quite strong, explaining nearly
36% of the variance in the difference. We can conclude that when the original variant is less predictable, the effect

6Surprisal difference plots for the LSTM and transformer models can be found in the supplementary R Notebooks.

Casey Casalnuovo et al. 17

(a) Swapping Arithmetic Expressions (b) Swapping Relational Expressions (Java)

(c) Swapping Relational Expressions (Python)

F IGURE 1 Average surprisal change after arithmetic and logical swap transformations. Positive values indicate an increase
in surprisal.

of a transformation will either lead to a smaller increase or even decrease the surprisal of the original expression. This
could be explained either by these higher-surprisal original expressions being cases where model ratings are overall
less clear, or possible cases where the original developer inadvertently wrote a less preferred form. This negative
correlation between original surprisal and the change also holds in the regressions for all the other language models
on this transformation. Among the controls, longer expressions are alsomore likely to be amenable to transformations,
and while most parent nodes in the AST are similar to the ‘==’ baseline, return statements and array accesses tend to
have less strict style. Finally, swaps that occur on a ‘+’ instead of a ‘*’ are less probable to the language model with
an increase of 0.64 bits in the surprisal difference. This may be the result of addition being much more common than
multiplication; patterns that are used more frequently may becomemore fixed into a particular style (for a comparable
result from natural language, see Morgan and Levy (2015)).

This effect of higher original surprisal leading to greater opportunity tomake codemore predictable persists across

18 Casey Casalnuovo et al.

all the regressions for the Java relational swaps, and the Python swaps on the concrete expressions. However, in the
abstracted Python expressions, this effect is reversed, withmore surprising patterns in the original expressions leading
to evenmore surprising transformations. Nevertheless, this coefficient explains only a small amount of the variance of
the change (<2.5%), suggesting it is quite a small effect. This effect is surprising, and a more in-depth study—possibly
across more languages or with human subjects—would be necessary to understand this counterintuitive behavior in
the abstracted code. Perhaps it may be a result of these patterns simply being very unusual and hard to predict.

So for Java swapping transformations, RQs 1, 3, and 4 are answered affirmatively, albeit to various degrees. All
models rate original formsmore likely; cachemodels more strongly discriminate between the original and transformed
code, and less probable expressions are associated with smaller increases, or even sometimes reductions in surprisal.
Our results for RQ 2 provide additional support for the overall theory but suggest complications in the details. The
ability of the locality to discriminate may be language-specific, and the relationship between the original expression
surprisal and the change in surprisal in the abstracted models (as its direction was different from all other results) may
suggest Python programmers exhibit preferences more closely tied to identifiers than structural patterns. Finally, the
abstracted models show us that structural patterns differ in how elements are ordered in code expressions.

3.5.2 | Parentheses Transformations

TABLE 7 Sample meaning-preserving transformations with the largest expression-level surprisal changes
(decreases and increases) for parentheses removal with the global model.

Direction of
Change

Original Transformed

Decrease double seconds = time / (1000.0); double seconds = time / 1000.0;
Decrease return ((dividend + divisor) - 1) / divisor; return (dividend + divisor - 1) / divisor;
Increase int elementHash = (int)(element ^(element >>>32)); int elementHash = (int)(element ^element >>>32);
Increase c1 |= (c2 >>4) & 0x0f; c1 |= c2 >>4 & 0x0f;

For parentheses, we have 63,625 additions and 9,717 removals, with the results shown in rows 4 and 5 in Table 5
and plots of the surprisal differences shown for adding parentheses in Fig. 2a and for removing parentheses in Fig. 2b.
The results for surprisal change, the effect of the cache, and the regression models relating the original surprisal to
the size of the change are similar to those in with the swaps, with one major exception. The difference between the
original and transformed expressions in the global model when removing parentheses is not significant!

We delve into this unexpected result more closely using examples in Table 7 using a few case studies of the more
extreme differences to see if they make sense. These are fairly intuitive; the largest improvement in predictability
comes from removing parentheses unnecessary to clarify the order of operations from around a literal denominator.
In contrast, a large increase in the difficulty of prediction occurs with rarely used bit shift operators—suggesting that
developers may prefer parentheses around rare operations to clarify the order of operations. Like for the Java swaps,
the regression models relating original surprisal to the size of the change all exhibit significant negative relationships
for the global, cache, and abstracted models; more surprising expressions are more susceptible to transformations
that make them more predictable.

The second two rows of Table 6 show the neural results for the LSTM and transformermodels on the parentheses
models. The LSTM models align with our theory, although the change is smaller relative to the swaps. However, the
transformer models reinforce what was seen in the global n-gram models - suggesting that the effect for extraneous

Casey Casalnuovo et al. 19

(a) Adding Parentheses (b) Removing Parentheses

(c) Variable Shuffling

F IGURE 2 Surprisal change after adding/removing extraneous parentheses and shuffling variable names. For the variable
shuffle the left 2 are only within types, right 2 are unconstrained. Positive values indicate an increase in surprisal.

parentheses is weak.

Thus we answer RQs 1, 3, and 4 affirmatively, except for models of parentheses removal. We speculate that this
may be the result of less consistent style around the usage of parentheses, similar to what Gopstein et al. (2017, 2018)
found with bracket usage. We further discuss the influence of confusing code and style guidelines in Section 6.

3.5.3 | Variable Renaming Transformations

Finally, we consider variable renaming transformations, measuring mean surprisal change across all affected expres-
sions within the same method. There are 17,930 methods where we were able to shuffle names within types and
48,160 methods where we were able to shuffle them between types (unconstrained shuffles are possible in more
methods), with results in rows 6 and 7 of Table 5 and plotted in Fig. 2c (the abstracted models do not apply as the

20 Casey Casalnuovo et al.

shuffles operate on the concrete identifier names). As expected, shuffling variable names within a method increases
surprisal. Variable names matter for program comprehension, and obscuring these names is one of the most com-
mon and simple forms of program obfuscation (Collberg et al., 1997). Moreover, we confirm that swapping variable
names across types is more disruptive to predictability; the difference is about twice as large. Cache effects are still
present, but diluted, possibly because the shuffle pulls its vocabulary from very similar contexts. As with all other Java
transformations, the regression models show that more surprising variable names have less of a surprisal increase af-
ter renaming. So in conclusion, the renaming shuffle transformations all answer RQs 1, 3, and 4 as expected, with
stronger results when shuffling between rather than within types.

3.5.4 | Discussion

Across all the transformations we can see the general trend that we expected. Transformed expressions tend to be
scored less likely by the language model, regardless of programming language, with locality-capturing cache models
showing a stronger effect in this direction. Our results in our renaming transformations help validate the other re-
sults, which show some interesting differences in language model preference strength. While it is not clear which
preferences are stronger between arithmetic and relational operator swaps, the preferences there clearly seem to
be stronger than around parentheses. Moreover, the transformation for removing unnecessary parentheses is net
neutral to global n-gram and transformer models, suggesting inconsistent behavior across different projects. When
should you include parentheses to help clarify an operation? Our corpus results suggest developers can’t seem to
agree! Next, we discuss our human subject studies, which see if a relationship between surprisal and direct human
judgments of preference exists and if similar variations in preference strength across transformation type persist.

4 | HUMAN STUDY 1: EXTREME N -GRAM SURPRISAL

In our corpus study, we saw that language models find transformed (but meaning-equivalent) code expressions less
probable (higher surprisal) than the original human-written versions. However, it is not clear to what extent the judg-
ments of languagemodels actually align with the preferences of real programmers. This assumption that programmers
would prefer source code with lower surprisal underlines much of the work applying language models to code, but
it has never actually been demonstrated via controlled experiments. Our setting of comparing meaning-equivalent
code expressions removes the possible influence of the algorithmic channel and allows us to design and execute two
human subject experiments to discover if this assumption is accurate.

In each study, participants were asked to answer a series of forced-choice questions. We present them with two
lines of source code, one which was the original developer-written code, and the other being a meaning-equivalent
transformation of the expressions in that line of code. For example, one question asked:

Please select which of the two following code segments you prefer:

outPacket = new byte[10 + length];

outPacket = new byte[length + 10];

Each question had identical phrasing, and we defined preference in our survey instructions as:

By “prefer”, we mean which snippet better reflects the way you’d prefer to code that expression, or reflects
the form you’d find easier to read and understand.

Casey Casalnuovo et al. 21

In using this definition, we acknowledge the difficultly of disentangling the potential causes of production ease
and audience design on the outcome of predictability.

Under this framework, we begin with the n-gram language models that were the primary focus of our corpus
study. We wish to see if there is any relationship between surprisal and human preference at all, so we focus on
examples where either the transformed or the original line is much more surprising to the model than the alternative.
Then, we treat this decision as a binary without regard to the specific difference in surprisal - one of the two items in
the pair is more surprising and one is less surprising. Thus, the research question underlying this study is:
RQ5. Do human preferences align with n-gram model judgements between meaning-equivalent lines of code with very dif-
ferent surprisal scores? How do these preferences vary over different types of transformations to code expressions?

4.1 | Materials

In both of our human subject studies, we limit the types of transformations and programming languages used from
those that appeared in the corpus study when selecting our samples. First, we focus only on Java, which had both
more data and awider variety of transformations. Second, we select samples only from the relational/arithmetic swaps,
and parentheses adding/removing transformations. Variable name swapping is both much more difficult to test as it
requires displaying entire functions to participants, and also the detrimental effects of altering variable names are
already well established. Recall that we included them in the corpus study more as a validity check on the language
models, as misnamed variables are known to be more surprising (to language models). In contrast, the other four trans-
formations are not commonly established explicitly in style guides as previously mentioned in Section 3.3. Column 3
in Table 4 summarizes the transformations and language models used in this (and the following) human subject study.

Moreover, all examples used are samples from real code. They are not manufactured; each example consists
of a line of original source code paired with a transformed version. However, not all expressions are suitable for
presentation out of context to general programmers, so we applied filters when collecting suitable samples. We
filtered out expressions containing hash computations as these were so repetitive that they reduced the diversity of
samples (i.e. they all become related to hashes), or required more specialized knowledge (such as bit shift operations).
We also removed lines that were too long (over 80 characters). In addition, the surprisal value we use is slightly
different from the corpus study. When viewing the code, our participants will see the whole line (instead of just the
changed expression), and see the line without any of the surrounding context. Therefore, we measure surprisal 1)
using the entire line instead of just the tokens affected by the transformation and 2) without using the previous lines
as context.

Our first study uses the global n-gram model from our corpus study and compares lines of code using average
surprisal over shared tokens in the whole line instead of just the expression 7. In this study, the goal was to evaluate
if any agreement existed between language model judgement and human preference. Therefore, we sampled the
transformations from the language model with the most extreme differences in surprisal - the top 20 single line trans-
formations for each transformation type that most increased and decreased the surprisal compared to the original line.
In this way, we look at the more common transformations that increased surprisal and the rarer ones that decreased
it equally. After this initial selection (and the filtering previously described), we manually examined the samples and
replaced a pair if it was too similar to another pair, when the pair had code that did not contain a complete expression
(e.g., only part of a multiline expression), and cases where the transformation obviously disrupted the symmetry of

7For arithmetic and relational swaps, all tokens in the line are shared between the original and transformed code. For adding and removing parentheses, all
tokens are shared except the set of parentheses in question. When designing the second human subject study, we made some adjustments to this metric;
see Section 5.1 for details.

22 Casey Casalnuovo et al.

the parentheses grouping in the line - for example, we would exclude transforming (a == b) || (b == c) into a

== b || (b == c) or (a == b) || b == c. We would only keep cases where parentheses were added or removed
around all the obvious groups. We avoided these cases as we believed that they are a particularly striking case of
transformations that humans would overwhelmingly reject. By excluding them, we are looking at more challenging
cases were preference might be harder to establish.

We choose the replacement samples from the top 40 most extreme cases, each time taking the largest difference
that did not break with our described requirements. This gives a total of 160 transformation pairs evenly split across
transformation types and on whether the transformation was considered harmful or helpful by the language model.
From these 160 pairs, we presented 80 to each user randomizing not only the order in which participants saw each
item pair, but also the order of the pair in the multiple-choice selection — so sometimes the original version was the
first option and sometimes the transformed version was.

4.2 | Method

4.2.1 | Procedure

WeuseAmazon’sMechanical Turk (AMT) (AmazonMechincal Turk, Inc., 2018) to select participants for our experiment.
AMT has been used before to recruit subjects for programming studies (Prana et al., 2019; Chen et al., 2019; Alqaimi
et al., 2019). Since anyone can sign up with AMT, we selectively filter out a sample that can reasonably represent Java
programmers. First, we follow recommended guidelines (Miele, 2018) for avoiding bots and poorly qualified workers;
we require a 99% HIT acceptance rate, 1000 or more completed HITs, and restrict workers to those in the US and
Canada. We also used Unique Turker (Ott, 2019) along with AMT’s own internal reporting to remove any repeat users.
Next, we deploy a short qualification test that asks subjects to read some Java code and answer 3 comprehension
questions; all 3 must be correctly answered to proceed to the main task. We tuned our comprehension questions with
3 pilot surveys. MTurkers were paid at a minimum wage rate ($12/hour) for tasks they completed; the qualification
test was estimated to take 5 minutes, and the main survey 20 minutes. Finally, at the end of the survey, we asked
some demographics and open-ended questions about their strategies when selecting which segment they preferred.

In addition to the 80 questions we asked between pairs of source code lines, to measure subject attention, we
included an unidentified attention check, which was a question like the others, except more obvious and incontro-
vertible. In the first survey, we asked if “for(int i = 0; i < length; i++) {” was preferable to “for(int i =

0; length > i; i++) {”. We do not exclude those failing the attention check (it was only one question of many),
instead using it as a measure for how attentive the subjects were overall. As long as failing the check is not common,
we can be confident of reasonably attentive subjects.

4.2.2 | Participants

Our survey had a total of 181 attempts across 3 batches, with 60 non-duplicate full completions of the survey. Of
the 60, 50 passed the attention check, though there is little difference in overall agreement with the language model
between those that passed and those that didn’t. Demographically, the mean age of our participants is 33.5 with s.d
9.4. Our group had a mean of 6.1 and s.d. of 5.2 years of Java experience and mean 12.2 with s.d. 9.5 years of general
programming experience, and were primarily developers, students, and hobbyists who coded at least a few times a
week. For gender and native speaker status, 50 of our participants self-identified as male, 8 as female, and 2 choose
to not answer, while 54 said they were native speakers of English and 4 said they were non-native. All but one had

Casey Casalnuovo et al. 23

some college education, and most used AMT for extra income.

4.2.3 | Modeling

To measure the relationship between human preference and language model preference, we first examined simple
and majority vote agreement for each of the item pairs and Cohen’s kappa (Cohen, 1960) for inter-rater agreement
(using human majority vote as one rater and the language model as the other) 8. Then, we captured these effects in a
more controlled fashion using a mixed-effects logistic regression. As the complexity of the random effects structure
of our model caused the frequentist estimate to not converge, we estimate the model via Bayesian regression through
the R package brms (Bürkner, 2017). Our presented model used the default priors of the package, but we validated
convergence and alternative priors using the guidelines included in theWAMBS checklist (Depaoli and Van de Schoot,
2017) and followed general model validation advice for Bayesian statistics (McElreath, 2018). For each experiment,
we first fit the full model design as justified by the experimental design, but we then checked for fit and compared
against simpler models using the WAIC measure (Watanabe, 2010). When a simpler model is preferred by WAIC, we
present results from the simpler model for ease of presentation and understanding. Our modeling and validation code
is available via our replication package: https://doi.org/10.5281/zenodo.2573389.

4.2.4 | Results

Overall, 61.9% (65.6% with majority vote, and 62.8 and 66.9% respectively for those passing the attention check)
of the time our subjects agreed with the global n-gram model. The kappa value across all the items was 0.312 or
fair. Fig. 3a groups the results by each item pair, broken down by transformation type. Humans overall agree with
the language model for the swaps much more frequently than the parentheses transformations. Relational swaps
demonstrate have the highest agreement (indicated by values above 0.5). All of the disagreements are cases where
the raters agreed with the original code (but the language model disagreed), suggesting a limitation in the language
model rather than disagreement among coders. For parentheses, we also see a pattern: our group tends to prefer
variants with more parentheses (indicated by the reversed red/blue patterns in AddParen and RemoveParen Fig. 3a),
regardless of the language model preference. Moreover, the language model poorly predicts human majority vote
preference for adding parentheses - agreeing only half the time.

Turning to the regressionmodel, the formula is: Outcome ~ Surprisal * TransType + (1 + Surprisal * TransType | Subject)
+ (1 | Item). The response variableOutcome is 1 if the human subject selected the original code, 0 for the transformation.
The fixed effects are a binary predictor (Surprisal), which is 1 if the language model preferred the original line of code,
and 0 otherwise, along with the type of transformation and their interaction term. We use themaximal random effects
structure justified by the design (Barr et al., 2013) - a random intercept by item pair, a random intercept and slopes
for surprisal, transformation type, and their intercept by subjects. For priors, we use the defaults provided by brms.
The transformation types are deviation coded, meaning the intercept value is the grand mean over all transformations.
Thus, for the coefficients for the parentheses removal transformation, we subtract the 3 other type coefficients and
provide it in the table for convenience. Finally, Bayesian estimates do not have p-values and confidence intervals in
the same way as frequentist approaches. Instead, we report the equivalent 95% credible interval, the bounds of a
probability distribution that has a 95% probability containing the regression coefficient. If this range is entirely above
0, it indicates a positive effect and vice versa for a range entirely below 0. To check robustness, we compared this
model against a simpler model without the interaction effect, but our full model had a better WAIC score.

8An alternative such as Fleiss’s Kappa (Fleiss, 1971) for multiple raters doesn’t work in our context as not every person saw every question.

https://doi.org/10.5281/zenodo.2573389

24 Casey Casalnuovo et al.

Add !"#$%&'!()'*'* +',-. !"#$%&'!()'*'*

A& (),'(/#01%2 +'3%(-!%3#01%2

4 54 64 74 84 4 54 64 74 84

4

496:

49:

49;:

5

4

496:

49:

49;:

5

+%!<

=
>

,
%

!
#%

"
&'

'
,

'
!

(#
1

 (
)

#3
%

!
"

>
%

"
'

#,
-

d
'

3

?%!"9#,-d'3
2&'@'&*#-& "9

AA?0B

C+DB

(a) Per Item Pair Majority Agreement Sorted by Rank (b) Human Agreement vs N -gram Model Predictions

F IGURE 3 Results of Experiment 1. a) The fraction of agreement for each item pair by transformation, ordered
from questions with the least agreement with the model to the most (40 per transformation). If more participants
disagreed with the language model, the bar points down; if more participants agreed with the language model, the
bar points up. Blue indicates the language model preferred the original way the code was written, whereas red
indicates the transformed code had lower surprisal. The majority vote agreements using the n-gram surprisal by
transformation (i.e. how many bars point up) are: ArithmeticSwap (65%), RelationalSwap (80%), AddParen (50%),
RemoveParen (67.5%). b) A comparison of the model predictions with the human data by transformation type and
whether the model prefers original vs. transformed code. The x-axis shows when the language model preferred the
transformed or the original version (the 0 and 1 codes for our binary predictor in the regression model). The y-axis
shows the degree of human preference, with 0 being a tendency to prefer the transformed version, and 1 a
tendency to prefer the original. The error bars are the model’s prediction of this tendency, whereas each data point
is the fraction of human preference for the transformed or original version for each item pair. This is equivalent to the
majority agreement when the language model prefers the original and 1-majority agreement when the language
model prefers the transformation.

The coefficients of our Bayesian mixed-effects logistic regression in Table 8, and Fig. 3b compares the model
predictions against the actual data. As this is a logistic regression, the coefficients are log odds ratios. The odds
ratio of the intercept by itself, exp (−.60) = .55, shows that when the language model prefers the transformation, our
subjects are 1/.55 = 1.8 times more likely to also prefer the transformed line of code. By contrast, when the language
model prefers the original code, our subjects are exp (−.60 + 1.9) = 3.7 times more likely to also prefer the original
code. Importantly, the crucial predictor of surprisal has a positive effect with 0 well outside its credible interval. Thus,
on average, not only do humans agree with the language model more often than not, they agree with the language
model almost twice as strongly in its judgments on the original code.

The transformation coefficients and interaction term in combination the graphical depiction in Fig. 3b show very
different behaviors among the different transformation types. As with the majority vote cases, the adding and re-
moving parentheses show much weaker agreement that the two swapping transformations. If n-gram surprisal was
perfectly aligned with human judgments, we would see values above 0.5 for the original and below 0.5 for the trans-
formation on the logistic function. Instead, our subjects preferred more parentheses on everything, even when the
code was not written that way. However, overall, human preferences align with language model assignments more
often that not, giving some support for RQ 5.

Casey Casalnuovo et al. 25

TABLE 8 Fixed effects for Bayesian mixed-effects logistic regression using a binary difference in surprisal as a
predictor and an n-gram language model. *Parentheses removal (RMParen) does not get an independent coefficient
estimate in deviation coding, so we calculate the implied coefficient.

Estimate Error l-95% CI u-95% CI
Intercept -0.60 0.16 -0.91 -0.28
Surprisal 1.90 0.25 1.41 2.37
AddParen -2.03 0.59 -3.20 -0.91
Arithmetic 0.50 0.26 -0.01 1.00
Relational 0.16 0.26 -0.36 0.66
RMParen* 1.37 – – –
Surprisal:AddParen -0.79 0.41 -1.63 0.01
Surprisal:Arithmetic -1.02 0.37 -1.76 -0.29
Surprisal:Relational 1.64 0.44 0.81 2.53
Surprisal:RMParen* 0.17 – – –

4.2.5 | Discussion

More probable code, operationalized by surprisal from n-gram models, does demonstrate some alignment with pro-
grammer preferences, but this alignment is not strong and is not consistent across different transformations. For
example, programmer preferences for less surprising parentheses variants are much less pronounced than they are
among operand swaps. This effect could result from two possibilities. First, it could signal that human preferences for
parenthesis are less pronounced — that they do not believe it impacts their understanding of these expressions. Al-
ternatively, it could signal that the n-gram model assumptions of relevant context do not align well with what humans
use for parentheses.

Therefore, acknowledging this potential confound, and having established that some effect exists at all using
more extreme differences, we would like to see the impact of using a stronger language model to demonstrate if a
more nuanced relationship between surprisal and human preferences exists. Next, we will examine if surprisal from
the transformer model, generally regarded as a superior to n-grams, both better aligns with human preference and
better captures these preferences across different types of transformations. In the following experiment, we will see
if preference aligns with a gradient of surprisal values instead of treating it just as a binary feature of lower and higher
surprisal9.

5 | HUMAN STUDY 2: GRADIENT TRANSFORMER SURPRISAL

5.1 | Materials

We make three changes relative to the prior study. First, we use the transformer model with BPE that we used for
validation in the corpus study as an example of a more powerful neural network language model. Second, we made
a minor change to the surprisal metric. Based on the psycholinguistic literature demonstrating that reading times are
proportional to surprisal (Smith and Levy, 2013), our surprisal predictor will now be the total sum surprisal of the line,
rather than the surprisal of shared tokens (as in Human Study 1). This change only affects the parentheses transfor-

9We also performed an analysis using the transformer model surprisal scores on the samples used in this experiment. We omit these results from the text,
but they are qualitatively similar and are available in our supplementary R Notebooks.

26 Casey Casalnuovo et al.

mations, as those are the only transformations in which we add and remove tokens. We compared this measure with
the shared surprisal used in our prior experiment. The results were qualitatively similar10, but are omitted from the
full discussion; see the supplementary R Notebooks for details.

Finally, instead of drawing from the pairs with extreme differences in surprisal, we wished to see if the effect
of preference was detectable along a gradient of surprisal values. We again selected positive and negative examples
evenly from each of the transformation types, dividing these examples into buckets that span the range of surprisal
values. We first selected a cutoff for the most extreme buckets for both increases and decreases in surprisal, such that
these buckets would have 20 examples to draw from. Then, we divided the range between this cutoff and 0 uniformly,
creating 8 buckets that evenly divide the range of positive and negative surprisal changes. We initially randomly sample
2 from each bucket and replace symmetry breaking or overly similar examples with other randomly pulled examples
from the same bucket. This gives 32 item pairs for each of the 4 transformations (128 total pairs), with surprisal values
relatively uniformly distributed across all the range of possible surprisal values for a given transformation. The buckets
are not used for analysis; they were only used to construct a balanced sample. As in the prior study, each participant
saw a randomly selected half (64) of the items.

So, in summary, in this study we wished to answer the following research question:
RQ6. Do language models recognized as more robust, such as the Transformer (Vaswani et al., 2017), show stronger agree-
ment with human preferences? Moreover, if we consider a range of surprisal differences on a spectrum, will human subjects
demonstrate greater agreement when the difference in surprisal is larger?

5.2 | Method

5.2.1 | Procedure

The procedure for the second studywas identical to the first with one exception. As we observed lower than expected
agreement with our original attention check, we replaced it by instead asking if “x = a + b + c;” was preferable to
“x = (a) + (b) + (c);”. We believe this transformation is at least as unusual as our prior attention check, and thus
participants should strongly prefer the first form.

5.2.2 | Participants

The second preference survey included 211 attempts, with 59 successful non-duplicate completions of the qualifi-
cation task. All 59 participants passed the attention check. The mean age of our participants in the second study
was 32 with s.d. 10.1 years. For gender, 45 of our participants self-identified as male, 12 as female, 1 as non-
binary/genderqueer/gender non-conforming, and 1 choose to not answer. For native speaker status, 55 said they
were native English speakers of English and 4 said they were not. They had a mean of 5 and s.d of 4.9 years of Java
experience and mean of 9.6 and s.d of 8.4 years of general programming experience, once again being mostly devel-
opers with the rest being students and hobbyists. The frequency of programming was similar to the previous study,
with most coding at least a few times a week. Almost all of them coded at least a few times a week, with the remaining
coding a few times a month. They mostly had at least a Bachelor’s degree, and use Mechanical Turk to supplement
their income.

10The shared and total metrics had an approximately similar agreement with humans, though the sharedmetric was better at predicting agreement on removing
parentheses, and the total was better at predicting agreement on adding parentheses.

Casey Casalnuovo et al. 27

5.2.3 | Modeling

We reuse the samemodeling and validation procedures in this experiment as we did with the extreme n-gram surprisal
experiment, which is described in Section 4.2.3.

5.2.4 | Results

(a) Per Item Pair Majority Agreement Sorted by Rank (b) Human Agreement vs Gradient Model Predictions

F IGURE 4 Results of Experiment 2. a) The fraction of agreement for each item pair by transformation, ordered
from questions with the least agreement with the model to the most. If more participants disagreed with the
language model, the bar points down; if more participants agreed with the language model, the bar points up. Blue
indicates the language model preferred the original way the code was written, whereas red indicates the
transformed code had lower surprisal. The majority vote agreements using the transformer surprisal by
transformation (i.e. how many bars point up) are: ArithmeticSwap (75%), RelationalSwap (81.3%), AddParen (78.1%),
RemoveParen (65.6%). b) A comparison of the model predictions with the human data by transformation type. The
x-axis shows the range of differences in surprisal. The y-axis shows the degree of human preference, with 0 being a
tendency to prefer the transformed version, and 1 a tendency to prefer the original. The lines and error are the
model’s prediction of this tendency, whereas each data point is the fraction of human preference for the
transformed or original version for each item pair. This is equivalent to the majority agreement when the language
model prefers the original and 1-agreement when the language model prefers the transformation.

First, we consider the transformer model from the perspective of binary agreement, as with the prior experiment.
On one hand, if the transformer is a better model of language than n-grams, as is widely believed, then it should better
reflect human preferences. On the other hand, since we are sampling from throughout the distribution of changes in
surprisal (rather than just the extremes), we would also expect greater uncertainty around the examples with smaller
differences. Overall, with the total surprisal metric, MTurkers agreed with the transformer language model 66.60% of
the time and 75% of the time with majority vote agreement, with a kappa value of 0.5 or moderate.

These majority vote agreements are broken down by transformation in Fig. 4a. The transformer is better than
the n-gram model for all transformations other than the removing parentheses case. However, when comparing the
two plots in Fig. 3a and Fig. 4a, we see that people tended to agree with the n-gram language models just when
they preferred more parentheses. In comparison, the transformer judgments the subjects agreed with are far more
balanced in preferences for the original and the transformed versions. Therefore, it would seem that the transformer
is a substantially better model than the n-gram model in terms of binary agreement, even when it is being penalized

28 Casey Casalnuovo et al.

by drawing from all across the distribution of surprisal changes instead of just from the most extreme cases.

TABLE 9 Fixed effects for Bayesian mixed-effects logistic regression using incremental differences in surprisal as
a predictor and a transformer language model. *Parentheses removal (RMParen) does not get an independent
coefficient estimate in deviation coding, so we calculate the implied coefficient.

Estimate Error l-95% CI u-95% CI
Intercept 0.44 0.12 0.20 0.67
LineDiff 0.10 0.01 0.08 0.13
AddParen -0.44 0.33 -1.11 0.20
Arithmetic -0.45 0.33 -1.10 0.21
Relational 0.13 0.20 -0.27 0.52
RMParen* 0.76 – – –
LineDiff:AddParen -0.02 0.02 -0.05 0.02
LineDiff:Arithmetic -0.01 0.02 -0.04 0.03
LineDiff:Relational -0.01 0.01 -0.04 0.02
LineDiff:RMParen* .04 – – –

Next, we present our regression model to measure the effect of over a gradient of surprisal differences, shown in
Table 9 and a fit versus data is shown in Fig. 4b 11. This is another mixed-effects logistic Bayesian regression with a
very similar formula to our prior experiment: Outcome ~ LineDiff * TransType + (1 + LM_Out * TransType | ResponseId) +
(1 | Item). The response variable is the same as before, 1 if the subject preferred the original line of code, 0 otherwise.
In the fixed effects, we have replaced our binary representation of surprisal with LineDiff, the difference in total line
surprisal between the transformed code and the original code. We retain the transformation type as the other fixed
effect as well as the same random effect structure as before.

The main effect, LineDiff has a positive effect with 0 outside its credible interval. This means that for an ad-
ditional bit of surprisal, our MTurkers were 1.11 times more likely to prefer the original, confirming that for better
language models like the transformer, incremental changes in surprisal can map to human preference. Though WAIC
values indicate that including the interaction effect is better than excluding it, the differences and interactions of the
transformation type all contain 0 in their credible intervals, indicating that the language model more consistently cap-
tured human preference across different transformations. Looking at Fig. 4b, we can see that though the parentheses
transformations tend to change surprisal less than the swaps (the range of points on the x-axis is smaller), the model
generally approximates the patterns of human agreement versus the incremental surprisal differences well.

5.2.5 | Discussion

We can confirm a positive answer for RQ 6; surprisal as captured by a transformer model and human preferences
demonstrate incremental degrees of agreement. The human preferences change as the surprisal changes; larger drops
and increases in surprisal align with stronger human preferences. This helps resolve some of the questions raised by
the prior experiment — whether the disagreement was a result of a lack of preference for predictable parentheses or
due to misalignment between human preferences and n-gram model assumptions. With the transformer, we can see
humans demonstrating consistent preferences for less surprising variants. There is still some variance in preferences

11Wealso tried a regressionmodel identical to that used in the n-gram experiment, where the transformer surprisal difference is treated as a binary lower/higher
value. See the supplementary R notebooks for details.

Casey Casalnuovo et al. 29

between the transformations (though not significantly so according to ourmixed-effectsmodels); determining the true
strength of preferences for predictable code expressions in different contexts will be an interesting future task (we
expand upon this in Section 6.1). So, while n-gram surprisal has some correlation with human preference, transformer
surprisal is a much better and more consistent metric of what code humans will find surprising. Carefully controlling
for meaning, we see that surprisal does have validity as a measure of human preference for source code expressions.

6 | GENERAL DISCUSSION

Our corpus and human subject studies show that programmers have preferences for more predictable code expres-
sions, similar to preferences in predictability for natural language. When controlling for meaning along the algorithmic
(AL) channel, our corpus study shows that language model surprisal captures preferences for certain forms in the
natural language (NL) channel. However, these preferences vary as some conventions are not as strong as others -
particularly on when it’s acceptable to remove nonessential parentheses. In our human subject studies, we see that
on average the language model preferences align with explicit human preference judgments. However, that align-
ment is not strong in the weaker global n-gram, but the transformer is better able to consistently capture preferences
across our range of transformations. Moreover, surprisal from the transformer can model the nuances of incremental
surprisal difference and the degree of preference: the bigger the difference in surprisal, the more humans preferred
the less surprising variant. This demonstrates not only that programmer preference corresponds to language model
predictability, but a nuanced one where small differences in surprisal can matter. Our finding that developers prefer
more predictable code forms supports the idea that the repetitiveness of code arises in part from human choices, and
demonstrates similarity in the processing of code and natural language.

6.1 | Cognitive Origins of Preferences

What about the question of code’s more predictable nature in comparison to natural language? The less repetitive
nature of natural language may result from natural language very rarely being entirely meaning equivalent—since
natural language has connotative as well as propositional meaning. For instance, while “bread and butter” is prima
facie synonymous with “butter and bread”, one might infer from a description of eating “butter and bread” that butter
was unusually dominant in this situation. These subtle differences in meaning may drive speakers to choose different
forms in different situations. However, i = 1 + i and i = i + 1 are semantically equivalent on the AL channel.
Perhaps because developers are trained to understand the true operational semantics code, different connotations
for the above two seem unlikely to evolve. It is difficult to imagine how i = 1 + i might carry a subtly different and
useful connotation, even on the NL channel, and thus it is difficult to find a situation (analogous to “butter and bread”)
where a developer might consciously feel the need to use that construction.

Another possibility is that repetitiveness is particularly beneficial in situations with increased cognitive load. In-
deed, it has been proposed that children resort to regularization in language learning more so than adults specifically
because they have reduced cognitive capacity (Hudson Kam and Newport, 2005; Schwab et al., 2018). Because code
comprehension is challenging, repetitiveness may be extra beneficial for code compared to natural language, such
as the reduced cognitive efforts seen in repeated coding patterns. The first instance of these patterns have a spike
of cognitive effort, and subsequent ones are much easier to process (Jbara and Feitelson, 2014, 2017). Cache lan-
guage models also exploit this effect of local repetition; subsequent examples of patterns in the same file are easier
to predict Tu et al. (2014); Hellendoorn and Devanbu (2017).

30 Casey Casalnuovo et al.

Where do these preferences originate from, and how do developers learn them? Research in natural language
has demonstrated that preferences in natural language (e.g., “bread and butter” > “butter and bread”) arise both from
abstract/generative knowledge, which provides generalizable knowledge like “order a main dish before a condiment”,
and from direct experience with specific items or exemplars (Bybee, 2003; Goldberg, 2003; Hay and Bresnan, 2006;
Benor and Levy, 2006;Morgan and Levy, 2016). These generative preferencesmay themselves be learned/generalized
from exposure, or may arise from innate constraints on processing (e.g., a preference to put the more frequent word
first may be motivated by availability in production; Bock, 1987; Ferreira and Dell, 2000). Future work could explore
to what extent programmers’ preferences for certain forms of code are likewise driven by a combination of their
innate processing preferences, learned generalized preferences, and direct experience with specific tropes (e.g., i =

i + 1). Additionally, preferences may carry over from natural language. For example, a programmer might write
a + b over b + a due to alphabetic ordering. Explicit instruction or style guides may also influence programmers’
preferences, although (as described in Section 3.3), the specific transformations investigated in this paper are rarely if
ever mentioned in explicit style guides.

Finally, while predictable code may be preferred by programmers overall, there may also be contexts in which
predictability and preferences/comprehension genuinely don’t align. Our results suggest that ordering preferences
may be stronger than those for parentheses use. Programmers could choose to use more unpredictable code as a
way to draw attention to a line or a segment, highlighting something important. For example, they could use a more
descriptive but unusual iterator variable instead of ‘i’ in an important loop. As language models improve and better
capture what code is predictable, discovering these nuances for when predictable code is or isn’t beneficial and why
will help structure cognitive models of programming.

6.2 | Threats and Generalizability

Establishing programmers’ sense of and preference for predictability in code is challenging, and potentially can be
conflated with various confounding factors. We address some potential threats and some factors of our design aimed
to mitigate these threats.

Our combination of results from the corpora and human subject studies provides evidence of consistency in pro-
grammers’ notions of predictability for code expressions. Our corpus study establishes that this notion of predictability
is consistent between different projects: the probability distributions captured in one context carry over to another.
These are largely consistent across different transformations, language models, and programming languages. Second,
the combination of the corpus and the human subject study provides another layer of consistency between mature
code that is written (corpus study) and that of the initial comprehension preferences of programmers outside these
projects (human study). That we see consistency in preferences for more predictable code in these differing contexts
suggests that this not just an artifact of languagemodels, but a real observable pattern in human cognitive preferences.

Though we can’t distinguish between predictable code expressions resulting from ease of production for the
writer and code that is deliberately designed to be predictable for the reader’s benefit, there is reason to seriously
consider the audience-design-based account for code. Unlike natural language production, which is often studied
in a spoken rather than written environment, code is both written and usually heavily edited and revised to work
in a collaborative environment. Many projects adopt style guidelines to make submitted code easier to read, and
open-source code often undergoes the process of code review, where team members may critique submissions for
correctness or style (Bacchelli and Bird, 2013). Programmers are thus directly encouraged to write code with an
audience in mind. Specific to language model surprisal, Hellendoorn et al. (2015) showed that when training language
models on specific projects, new submissions that were more predictable relative to patterns learned on the project

Casey Casalnuovo et al. 31

were more likely to be accepted by team members. This provides some evidence that language model surprisal can
capture predictability as a measure of audience reception.

Moreover, as we mentioned, many of our transformations are not covered under explicit style guides and some-
times style guides can be conflicting. We were inspired to try the parentheses transforms based on the work of Gop-
stein et al. (2017, 2018) investigating code patterns that developers find confusing. They found that style guides
advocating for minimal curly brace use — for example, when writing if statements with only 1 statement in the body,
developers can choose to wrap the body in curly braces or not — sometimes conflicted with what developers found
easiest to understand. This is consistent with our finding that parentheses are preferentially included to indicate eval-
uation order (even when not needed) to serve a similar role in segmenting expressions as curly braces do in control
flow. Although the predictability of source code measured through surprisal and human understanding are different
metrics, our results on parentheses removal suggest a similar phenomenon - that developers use them sometimes to
benefit from easier readability.

Beyond the impacts of coding style, how generalizable are our results? We have chosen a reasonably diverse
sample of projects in two widely-used languages with a variety of language models, and our results largely hold up.
However, we acknowledge that the comparison between Python and Java is limited to only one class of transformation
— swaps around relational operators. We choose them because of their differences, though this limited how many
transformations we would replicate. Replicating all the transformations in a language similar to Java or running a
human study on Python may provide additional valuable insights.

While we believe it’s likely that our results will generalize to languages similar to Java and Python, it’s possible
that other languages (e.g., Haskell) with tightly-knit, highly-skilled user bases may behave differently. Haskell is a
purely functional language designed such that developers can write mathematically elegant and aesthetically pleas-
ing programs, and real-world Haskell code is known to be less repetitive and predictable than other programming
languages (Casalnuovo et al., 2019). This could lead to a community that places a greater focus on the expressiv-
ity of the language and implementing solutions artistically, similar to how programmers may experiment in ‘weird’
languages (Mateas and Montfort, 2005). Their motivations might be less focused on reducing cognitive load for them-
selves and for other readers, and as such might open the possibility of more expressive alternative implementations.
Therefore, as different programming languages are used in different contexts, the weights humans place on different
factors while coding may influence the predictability of these language corpora.

We have also only focused on small-scale transformations to expressions. It’s possible that that larger transforms
may have different effects, and may require different modeling techniques. However, since we’ve demonstrated pref-
erences even on these small expressions that are typically not described in explicit style guides, we expect larger
transformations may demonstrate even larger effects. Nevertheless, our work gives a good grounding to future stud-
ies with larger transformations as it shows that even small changes to code can have an impact on surprisal and
preference.

6.3 | Actionability and Future Work

While our work thus far is more science than engineering, it does have practical implications. Though sound, meaning-
preserving transforms aren’t realistic for natural language, they are for code! We confirm that the surprisal of code
is associated with human preference, thus providing theoretical support for tools that aim to rewrite code into an
equivalent form that might be preferred by programmers. Below, we highlight some applications in which surprisal
can be leveraged and describe a roadmap for developing cognitive models of predictability in code.

32 Casey Casalnuovo et al.

6.3.1 | Readability and Complexity Metrics

One area of much interest in which surprisal might be applied is that of readability. For natural language, obtaining
readability metrics to classify the reading levels of texts has seen focus for over a century DuBay (2004). For program-
ming language, measures of software complexity have drawn on control flow, program length, vocabulary, and their
combinations as a way to assess software McCabe (1976); Halstead et al. (1977). More recently, work on readabil-
ity, as determined by human subjects beliefs about how difficult it is to understand code, has seen some attention
Buse and Weimer (2008, 2009); Posnett et al. (2011); Dorn (2012); Scalabrino et al. (2016). These models tend to be
selected from hand-selected features; surprisal, as determined from good language models, may be able to act as a
more accurate and scalable measure of readability.

However, determining how effective thesemodels andmetrics are for source code understanding can be challeng-
ing. Scalabrino et al. (2017) made a distinction between readability (the perceived ability of developers to understand
code) and understandability (the actual ability to understand code), and found the two may not be as strongly aligned
as hoped, though others have critiqued their modeling methods and found that combining existing metrics appropri-
ately shows stronger correlations (Trockman et al., 2018). (Kasto and Whalley, 2013) compared these metrics against
student’s understanding of code, finding that they correlated with student’s ability to correctly execute code, but not
so with their ability to explain the meaning of the code. Therefore, care must be taken in validating and applying
surprisal in such contexts. This work provides both a first step in this direction, but further work is needed to validate
surprisal as a form of readability, both with different outcomes and contexts. For the former, we have recently pub-
lished a study relating our meaning-equivalent expressions to comprehension accuracy and time, and found that less
surprising expressions take humans less time to compute (Casalnuovo et al., 2020b).

6.3.2 | Building Tools and Validating Models

If surprisal can operate as a measure of readability, transformations that maintain meaning could create better code.
In the long term, we envision surprisal as a metric to be used in automated style checkers, helping improve code on
check in, or even used to generate code on a large scale. Likewise, this controlled environment provides another task
in which language models can be compared against each other. Language models that aim to capture the structure of
code, such as graph message networks (Allamanis et al., 2017), or more complex models that combine transformers
with these graph models (Hellendoorn et al., 2020) may demonstrate further alignment with human judgment than
the transformer by itself. Changing how context is processed or what context is used in language models and seeing
how surprisal estimates align with human preferences and comprehension could help inform what combinations are
most useful. Moreover, it would be useful to see how these judgments align with performance on various downstream
software tasks.

6.3.3 | Developing Cognitive Models of Predictability

In the long term, our goal is to explore how the programmer’s cognitive model of predictability is structured, and
what implications this has for how programmers both read and write code. We analogize this goal to that of un-
derstanding natural language processing, in which the basic effect of predictability on comprehension has long been
established, but where there remain many questions regarding how comprehenders determine what is predictable
(i.e. the structure of the predictability model) and what pressures lead speakers to produce predictable utterances
(e.g. speaker-centric pressures like availability versus listener-centric pressures like audience design).

Casey Casalnuovo et al. 33

Similarly, we envision an extensive future research endeavor to understand comparable pressures in program
comprehension and production. For example, in comprehension, one might explore different comprehension metrics
such as explicit judgments (which we used here), comprehension speed and accuracy measures (Casalnuovo et al.,
2020b), eye tracking scanpaths, and neural measures. Stimuli might include naturalistic code fragments taken from
corpus data for ecological validity, as we used here, or might include constructed examples designed to test specific
hypothesized preferences (e.g. a preference for variables before literals, or preferences for parentheses in more vs.
less complex expressions). Stimuli might explore local preferences within a single line of code (as we did here), or
preferences for larger structure at the level of whole functions or whole files (for example code databases like Rosetta
Code (Mol, Michael, 2020) could provide examples different algorithmic implementations to compare).

In production, one could similarly explore different types of stimuli as described above. One could also ask ques-
tions about whether these production preferences are due to speaker-internal pressures to produce what is easiest, or
due to audience-design pressures to produce code thatwill be easy to read in the future. Noting thatmost uses of code
are more like edited writing than like extemporaneous speech, one could also ask to what extent these production
tendencies are produced during initial writing of code versus during later editing and code review.

In both comprehension and production, we can ask how these preferences develop as people learn to code, e.g.
which preferences emerge immediately (suggesting that they result from pre-existing cognitive pressures, such as
analogy to existing preferences in natural language, or innate pressures) and which only develop later as programmers
become more experienced. For example, if preferences in code arise in part from frequency experience with specific
forms (as in natural language), we would expect novice programmers to be less sensitive to these preferences. We
note that the benefits of this kind of repeated exposure to specific forms are not exclusive to natural language, having
been seen in other environments (such as chess; Chase and Simon, 1973). Regardless, we hope these results will be
useful in designing better materials to teach programming, possibly through more explicitly showing what normative
coding looks like.

We also believe these results will provide an interesting comparison case with natural language. As described
in Section 1.2, code and natural language are subject to many of the same communicative pressures, but there are
also important differences, including the existence of the algorithmic channel to constrain the meaning of code, the
fact that code is more or less exclusively written (rather than spoken), and, relatedly, the fact that there are no native
speakers of programming languages. A careful comparison of how preferences manifest in both code and natural
language may elucidate which aspects of each system are driven by what they have in common versus the ways in
which they differ.

Acknowledgements

This research is supported by NSF grant 1414172: “SHF: Large: Collaborative Research: Exploiting the Naturalness of
Software". We also wish to thank the graduate and undergraduate students in the lab who helped test and provided
feedback on early versions of our human subject studies.

References
Allamanis, M. (2019) The Adverse Effects of Code Duplication in Machine Learning Models of Code. In Proceedings of the

2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,
143–153. New York, NY, USA: Association for Computing Machinery. URL: https://doi.org/10.1145/3359591.3359735.

Allamanis, M., Barr, E. T., Devanbu, P. and Sutton, C. (2018) A Survey of Machine Learning for Big Code and Naturalness. ACM

https://doi.org/10.1145/3359591.3359735

34 Casey Casalnuovo et al.

Comput. Surv., 51. URL: https://doi.org/10.1145/3212695.

Allamanis, M., Brockschmidt, M. and Khademi, M. (2017) Learning to represent programs with graphs. arXiv preprint
arXiv:1711.00740.

Allamanis, M. and Sutton, C. (2014) Mining idioms from source code. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, 472–483. New York, NY, USA: ACM. URL: https://doi.acm.
org/10.1145/2635868.2635901.

Alqaimi, A., Thongtanunam, P. and Treude, C. (2019) Automatically generating documentation for lambda expressions in java.
In Proceedings of the 16th International Conference onMining Software Repositories, MSR ’19, 310–320. Piscataway, NJ, USA:
IEEE Press. URL: https://doi.org/10.1109/MSR.2019.00057.

Amazon Mechincal Turk, Inc. (2018) Amazon Mechanical Turk. URL: https://www.mturk.com/.

Bacchelli, A. and Bird, C. (2013) Expectations, Outcomes, and Challenges of Modern Code Review. In 2013 35th International
Conference on Software Engineering (ICSE), 712–721. IEEE. URL: https://doi.org/10.1109/ICSE.2013.6606617.

Banker, R. D., Datar, S. M., Kemerer, C. F. and Zweig, D. (1993) Software complexity and maintenance costs. Communications
of the ACM, 36, 81–95. URL: https://doi.org/10.1145/163359.163375.

Barr, D. J., Levy, R., Scheepers, C. and Tily, H. J. (2013) Random effects structure for confirmatory hypothesis testing: Keep it
maximal. Journal of Memory and Language, 68, 255 – 278. URL: http://www.sciencedirect.com/science/article/pii/
S0749596X12001180.

Benor, S. and Levy, R. (2006) The Chicken or the Egg? A Probabilistic Analysis of English Binomials. Language, 82, 233–278.
URL: https://doi.org/10.1353/lan.2006.0077.

Bock, K. (1987) An effect of the accessibility of word forms on sentence structures. Journal of memory and language, 26,
119–137. URL: http://www.sciencedirect.com/science/article/pii/0749596X87901203.

Brandl, Georg and Chajdas, Matthäus (2020) Pygments Syntax Highlighter. URL: https://pygments.org/.

Brooks, R. (1978) Using a behavioral theory of program comprehension in software engineering. In Proceedings of the 3rd
international conference on Software engineering, 196–201. IEEE Press.

— (1983) Towards a theory of the comprehension of computer programs. International Journal of Man-Machine Studies, 18,
543 – 554. URL: http://www.sciencedirect.com/science/article/pii/S0020737383800315.

Broukhis, Leo and Cooper, Simon and Curt Noll, Landon (2019) The International Obfuscated C Code Contest. URL: https:
//www.ioccc.org/.

Buse, R. P. and Weimer, W. R. (2008) A metric for software readability. In Proceedings of the 2008 international symposium
on Software testing and analysis, 121–130. New York, NY, USA: Association for Computing Machinery. URL: https://doi.
org/10.1145/1390630.1390647.

— (2009) Learning a metric for code readability. IEEE Transactions on Software Engineering, 36, 546–558. URL: https://doi.
org/10.1109/TSE.2009.70.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., Sharif, B. and Tamm, S. (2015) Eye movements
in code reading: Relaxing the linear order. In Program Comprehension (ICPC), 2015 IEEE 23rd International Conference on,
255–265. IEEE. URL: https://doi.org/10.1109/ICPC.2015.36.

Bybee, J. (2003) Phonology and language use, vol. 94. Cambridge University Press. URL: https://doi.org/10.1017/
CBO9780511612886.

Bürkner, P.-C. (2017) brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80, 1–28.

https://doi.org/10.1145/3212695
https://doi.acm.org/10.1145/2635868.2635901
https://doi.acm.org/10.1145/2635868.2635901
https://doi.org/10.1109/MSR.2019.00057
https://www.mturk.com/
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/163359.163375
http://www.sciencedirect.com/science/article/pii/S0749596X12001180
http://www.sciencedirect.com/science/article/pii/S0749596X12001180
https://doi.org/10.1353/lan.2006.0077
http://www.sciencedirect.com/science/article/pii/0749596X87901203
https://pygments.org/
http://www.sciencedirect.com/science/article/pii/S0020737383800315
https://www.ioccc.org/
https://www.ioccc.org/
https://doi.org/10.1145/1390630.1390647
https://doi.org/10.1145/1390630.1390647
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1017/CBO9780511612886
https://doi.org/10.1017/CBO9780511612886

Casey Casalnuovo et al. 35

Casalnuovo, C., Barr, E. T., Dash, S. K., Devanbu, P. and Morgan, E. (2020a) A Theory of Dual Channel Constraints. In 2020
IEEE/ACM42nd Internation Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, New York,
NY, USA: Association for Computing Machinery. URL: https://doi.org/10.1145/3377816.3381720.

Casalnuovo, C., Morgan, E. and Devanbu, P. (2020b) Does surprisal predict code comprehension difficulty? In Proceedings of
the 42nd Annual Meeting of the Cognitive Science Society. Cognitive Science Society.

Casalnuovo, C., Sagae, K. and Devanbu, P. (2019) Studying the Difference Between Natural and Programming Language
Corpora. Empirical Software Engineering, 24, 1823–1868. URL: https://doi.org/10.1007/s10664-018-9669-7.

Castelhano, J., Duarte, I. C., Ferreira, C., Duraes, J., Madeira, H. and Castelo-Branco, M. (2019) The role of the insula in
intuitive expert bug detection in computer code: an fmri study. Brain imaging and behavior, 13, 623–637. URL: https:
//doi.org/10.1007/s11682-018-9885-1.

Chase, W. G. and Simon, H. A. (1973) Perception in Chess. Cognitive Psychology, 4, 55–81.

Chen, D., Stolee, K. T. and Menzies, T. (2019) Replication can improve prior results: A github study of pull request acceptance.
In Proceedings of the 27th International Conference on Program Comprehension, ICPC ’19, 179–190. Piscataway, NJ, USA:
IEEE Press. URL: https://doi.org/10.1109/ICPC.2019.00037.

Clark, H. H. and Murphy, G. L. (1982) Audience Design in Meaning and Reference, vol. 9 of Language and Comprehension. Ams-
terdam ;: North-Holland Pub Co. URL: https://doi.org/10.1016/S0166-4115(09)60059-5.

Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and psychological measurement, 20, 37–46.

Cohen, J., Cohen, P., West, S. G. and Aiken, L. S. (2003) Applied multiple correlation/regression analysis for the behavioral
sciences. UK: Taylor & Francis.

Collberg, C., Thomborson, C. and Low, D. (1997) A taxonomy of obfuscating transformations. Tech. rep., Department of
Computer Science, The University of Auckland, New Zealand.

— (1998) Manufacturing cheap, resilient, and stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 184–196. ACM. URL: https://doi.org/10.1145/268946.268962.

Cook, R. D. and Weisberg, S. (1982) Residuals and influence in regression. New York: Chapman and Hall. URL: https://doi.
org/10.2307/2348833.

Dash, S. K., Allamanis, M. and Barr, E. T. (2018) Refinym: Using names to refine types. In Proceedings of the 26th ACMESEC/FSE,
107–117. ACM. URL: https://doi.org/10.1145/3236024.3236042.

Demberg, V. and Keller, F. (2008) Data from eye-tracking corpora as evidence for theories of syntactic processing complexity.
Cognition, 109, 193 – 210. URL: http://www.sciencedirect.com/science/article/pii/S0010027708001741.

Depaoli, S. and Van de Schoot, R. (2017) Improving transparency and replication in bayesian statistics: The wambs-checklist.
Psychological methods, 22, 240. URL: https://doi.org/10.1037/met0000065.

Dorn, J. (2012) A General Software Readability Model. MCS Thesis available from (http://www. cs. virginia. edu/˜
weimer/students/dorn-mcs-paper. pdf).

DuBay, W. H. (2004) The principles of readability. Online Submission.

Duraes, J., Madeira, H., Castelhano, J., Duarte, C. and Branco, M. C. (2016) Wap: understanding the brain at software
debugging. In 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), 87–92. IEEE. URL:
https://doi.org/10.1109/ISSRE.2016.53.

Eclipse Foundation (2020a) Eclipse Java Development Tools. URL: https://www.eclipse.org/jdt/.

https://doi.org/10.1145/3377816.3381720
https://doi.org/10.1007/s10664-018-9669-7
https://doi.org/10.1007/s11682-018-9885-1
https://doi.org/10.1007/s11682-018-9885-1
https://doi.org/10.1109/ICPC.2019.00037
https://doi.org/10.1016/S0166-4115(09)60059-5
https://doi.org/10.1145/268946.268962
https://doi.org/10.2307/2348833
https://doi.org/10.2307/2348833
https://doi.org/10.1145/3236024.3236042
http://www.sciencedirect.com/science/article/pii/S0010027708001741
https://doi.org/10.1037/met0000065
https://doi.org/10.1109/ISSRE.2016.53
https://www.eclipse.org/jdt/

36 Casey Casalnuovo et al.

— (2020b) Eclipse JDT Language Server. URL: https://projects.eclipse.org/projects/eclipse.jdt.ls.

Ehrlich, S. F. and Rayner, K. (1981) Contextual effects on word perception and eye movements during reading. Journal of
Memory and Language, 20, 641. URL: https://doi.org/10.1016/S0022-5371(81)90220-6.

Fedorenko, E., Ivanova, A., Dhamala, R. and Bers, M. U. (2019) The Language of Programming: A Cognitive Perspective. Trends
in cognitive sciences. URL: https://doi.org/10.1016/j.tics.2019.04.010.

Ferreira, F. and Patson, N. D. (2007) The ‘Good Enough’ Approach to Language Comprehension. Language and Linguistics
Compass, 1, 71–83. URL: https://doi.org/10.1111/j.1749-818X.2007.00007.x.

Ferreira, V. S. and Dell, G. S. (2000) Effect of ambiguity and lexical availability on syntactic and lexical production. Cognitive
psychology, 40, 296–340. URL: https://doi.org/10.1006/cogp.1999.0730.

Fleiss, J. L. (1971) Measuring nominal scale agreement among many raters. Psychological bulletin, 76, 378. URL: https:
//doi.org/10.1037/h0031619.

Floyd, B., Santander, T. and Weimer, W. (2017) Decoding the Representation of Code in the Brain: An fMRI Study of Code
Review and Expertise. In 2017 IEEE/ACM39th International Conference on Software Engineering (ICSE), 175–186. IEEE. URL:
https://doi.org/10.1109/ICSE.2017.24.

Gage, P. (1994) A new algorithm for data compression. C Users J., 12, 23–38. URL: https://doi.org/10.5555/177910.177914.

Gamma, E. (1995) Design patterns: elements of reusable object-oriented software. Pearson Education India.

GitHub, Inc. (2020) GitHub. URL: https://github.com/.

Goldberg, A. E. (2003) Constructions: A new theoretical approach to language. Trends in cognitive sciences, 7, 219–224. URL:
https://doi.org/10.1016/S1364-6613(03)00080-9.

Google (2020) Android API Reference. URL: https://developer.android.com/reference.

Google and Gallup (2016) Trends in the state of computer science in us k–12 schools.

Gopstein, D., Iannacone, J., Yan, Y., DeLong, L., Zhuang, Y., Yeh, M. K.-C. and Cappos, J. (2017) Understanding misunderstand-
ings in source code. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, 129–139. ACM.
URL: https://doi.org/10.1145/3106237.3106264.

Gopstein, D., Zhou, H. H., Frankl, P. and Cappos, J. (2018) Prevalence of confusing code in software projects: Atoms of confu-
sion in the wild. In MSR ’18: 15th International Conference on Mining Software Repositories, May 28–29, 2018, Gothenburg,
Sweden, 11 pages. ACM. URL: https://doi.org/10.1145/3196398.3196432.

Hale, J. (2001) A Probabilistic Earley Parser as a Psycholinguistic Model. In Proceedings of the secondmeeting of the North Amer-
ican Chapter of the Association for Computational Linguistics on Language technologies, 1–8. Association for Computational
Linguistics. URL: https://doi.org/10.3115/1073336.1073357.

Halstead, M. H. et al. (1977) Elements of Software Science, vol. 7. Elsevier New York.

Hay, J. and Bresnan, J. (2006) Spoken syntax: The phonetics of giving a hand in New Zealand English. The Linguistic Review,
23, 321–349. URL: https://doi.org/10.1515/TLR.2006.013.

Hellendoorn, V. (2017) SLP-Core. URL: https://github.com/SLP-team/SLP-Core.

Hellendoorn, V. J. and Devanbu, P. (2017) Are Deep Neural Networks the Best Choice for Modeling Source Code? In Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE, 763–773. URL: https:
//doi.org/10.1145/3106237.3106290.

https://projects.eclipse.org/projects/eclipse.jdt.ls
https://doi.org/10.1016/S0022-5371(81)90220-6
https://doi.org/10.1016/j.tics.2019.04.010
https://doi.org/10.1111/j.1749-818X.2007.00007.x
https://doi.org/10.1006/cogp.1999.0730
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://doi.org/10.1109/ICSE.2017.24
https://doi.org/10.5555/177910.177914
https://github.com/
https://doi.org/10.1016/S1364-6613(03)00080-9
https://developer.android.com/reference
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/3196398.3196432
https://doi.org/10.3115/1073336.1073357
https://doi.org/10.1515/TLR.2006.013
https://github.com/SLP-team/SLP-Core
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290

Casey Casalnuovo et al. 37

Hellendoorn, V. J., Devanbu, P. T. and Bacchelli, A. (2015) Will they like this?: Evaluating code contributions with language
models. In Proceedings of the 12thWorking Conference on Mining Software Repositories, MSR ’15, 157–167. Piscataway, NJ,
USA: IEEE Press. URL: https://doi.org/10.1109/MSR.2015.22.

Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P. and Bieber, D. (2020) Global relational models of source code. In 8th
International Conference on Learning Representations, ICLR 2020.

Hindle, A., Barr, E. T., Su, Z., Gabel, M. and Devanbu, P. (2012) On the Naturalness of Software. In Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12, 837–847. Piscataway, NJ, USA: IEEE Press. URL: https://doi.
org/10.1109/ICSE.2012.6227135.

Hollander, M., Wolfe, D. A. and Chicken, E. (2013) Nonparametric Statistical Methods, vol. 751. John Wiley & Sons.

Hudson Kam, C. L. and Newport, E. L. (2005) Regularizing Unpredictable Variation: The Roles of Adult and Child Learners
in Language Formation and Change. Language learning and development, 1, 151–195. URL: https://doi.org/10.1080/
15475441.2005.9684215.

Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H., Dhamala, R., O’reilly, U.-M., Bers, M. U. and Fedorenko, E. (2020) Compre-
hension of computer code relies primarily on domain-general executive resources. BioRxiv. URL: https://doi.org/10.
1101/2020.04.16.045732.

Jbara, A. and Feitelson, D. G. (2014) On the Effect of Code Regularity on Comprehension. In Proceedings of the 22nd interna-
tional conference on program comprehension, 189–200. URL: https://doi.org/10.1145/2597008.2597140.

— (2017) How programmers read regular code: a controlled experiment using eye tracking. Empirical Software Engineering, 22,
1440–1477. URL: https://doi.org/10.1007/s10664-016-9477-x.

Jimenez, M., Checkam, T. T., Cordy, M., Papadakis, M., Kintis, M., Traon, Y. L. andHarman,M. (2018) Aremutants really natural?
a study on how “naturalness” helps mutant selection. In Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 1–10. ACM. URL: https://doi.org/10.1145/3239235.3240500.

Just, R. (2014) The major mutation framework: Efficient and scalable mutation analysis for java. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014, 433–436. New York, NY, USA: ACM. URL: https:
//doi.acm.org/10.1145/2610384.2628053.

Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C. and Janes, A. (2020) Big Code!= Big Vocabulary: Open-VocabularyModels
for SourceCode. In42nd International Conference on Software Engineering (ICSE ’20). ACM. URL: https://doi.org/10.1145/
3377811.3380342.

Kasto, N. andWhalley, J. (2013) Measuring the difficulty of code comprehension tasks using software metrics. In Proceedings
of the Fifteenth Australasian Computing Education Conference-Volume 136, 59–65.

Kim, M., Bergman, L., Lau, T. and Notkin, D. (2004) An ethnographic study of copy and paste programming practices in
oopl. In Proceedings. 2004 International Symposium on Empirical Software Engineering, 2004. ISESE’04., 83–92. IEEE. URL:
https://doi.org/10.1109/ISESE.2004.1334896.

Knuth, D. E. (1984) Literate Programming. The Computer Journal, 27, 97–111. URL: https://doi.org/10.1093/comjnl/27.2.
97.

Kutas, M. and Hillyard, S. A. (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature,
307, 161. URL: https://doi.org/10.1038/307161a0.

Levy, R. (2008a) Expectation-based syntactic comprehension. Cognition, 106, 1126 – 1177. URL: https://doi.org/10.1016/
j.cognition.2007.05.006.

— (2008b) A noisy-channel model of rational human sentence comprehension under uncertain input. In Proceedings EMNLP,
234–243. Association for Computational Linguistics. URL: https://doi.org/10.3115/1613715.1613749.

https://doi.org/10.1109/MSR.2015.22
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1080/15475441.2005.9684215
https://doi.org/10.1080/15475441.2005.9684215
https://doi.org/10.1101/2020.04.16.045732
https://doi.org/10.1101/2020.04.16.045732
https://doi.org/10.1145/2597008.2597140
https://doi.org/10.1007/s10664-016-9477-x
https://doi.org/10.1145/3239235.3240500
https://doi.acm.org/10.1145/2610384.2628053
https://doi.acm.org/10.1145/2610384.2628053
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1109/ISESE.2004.1334896
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1038/307161a0
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.3115/1613715.1613749

38 Casey Casalnuovo et al.

Levy, R., Bicknell, K., Slattery, T. and Rayner, K. (2009) Eye movement evidence that readers maintain and act on uncertainty
about past linguistic input. Proceedings of the National Academy of Sciences, 106, 21086–21090. URL: https://www.pnas.
org/content/106/50/21086.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Di Penta, M. and Poshyvanyk, D. (2014) Mining Energy-
Greedy Api Usage Patterns in Android Apps: An Empirical Study. In Proceedings of the 11th Working Conference on Mining
Software Repositories, 2–11. URL: https://doi.org/10.1145/2597073.2597085.

Liu, H., Sun, C., Su, Z., Jiang, Y., Gu, M. and Sun, J. (2017) Stochastic optimization of program obfuscation. In Software
Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on, 221–231. IEEE. URL: https://doi.org/10.1109/
ICSE.2017.28.

Madeyski, L. and Radyk, N. (2010) Judy–a mutation testing tool for Java. IET software, 4, 32–42. URL: https://doi.org/10.
1049/iet-sen.2008.0038.

Mateas, M. and Montfort, N. (2005) A Box, Darkly: Obfuscation, Weird Languages, and Code Aesthetics. In Proceedings of the
6th Digital Arts and Culture Conference, 144–153.

McCabe, T. J. (1976) A complexity measure. IEEE Transactions on software Engineering, 308–320. URL: https://doi.org/10.
1109/TSE.1976.233837.

McElreath, R. (2018) Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC.

Miele, J. (2018) The bot problem on mturk. http://turkrequesters.blogspot.com/2018/08/the-bot-problem-on-mturk.
html. Accessed: May 2019.

Mol, Michael (2020) Rosetta Code. URL: http://www.rosettacode.org/wiki/Rosetta_Code.

Morgan, E. and Levy, R. (2015) Modeling idiosyncratic preferences: How generative knowledge and expression frequency
jointly determine language structure. In CogSci.

— (2016) Abstract knowledge versus direct experience in processing of binomial expressions. Cognition, 157, 384–402. URL:
https://doi.org/10.1016/j.cognition.2016.09.011.

Obaidellah, U., Al Haek, M. and Cheng, P. C.-H. (2018) A Survey on the Usage of Eye-Tracking in Computer Programming.
ACM Computing Surveys (CSUR), 51, 5. URL: https://doi.org/10.1145/3145904.

Ott, M. (2019) Unique Turker. URL: https://uniqueturker.myleott.com/.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y. and Harman, M. (2019) Mutation Testing Advances: An Analysis and
Survey. In Advances in Computers, vol. 112, 275–378. Elsevier. URL: https://doi.org/10.1016/bs.adcom.2018.03.015.

Peksag, B. and Maupin, P. (2019) astor. URL: https://pypi.org/project/astor/.

Pennington, N. (1987) Stimulus structures and mental representations in expert comprehension of computer programs. Cog-
nitive Psychology, 19, 295 – 341. URL: https://doi.org/10.1016/0010-0285(87)90007-7.

Posnett, D., Hindle, A. and Devanbu, P. (2011) A simpler model of software readability. In Proceedings of the 8th working
conference on mining software repositories, 73–82. URL: https://doi.org/10.1145/1985441.1985454.

Prana, G. A. A., Treude, C., Thung, F., Atapattu, T. and Lo, D. (2019) Categorizing the content of github readme files. Empirical
Software Engineering, 24, 1296–1327. URL: https://doi.org/10.1007/s10664-018-9660-3.

Python Software Foundation (2020) Python 3 Abstract Syntax Tree Module. URL: https://docs.python.org/3/library/ast.
html.

https://www.pnas.org/content/106/50/21086
https://www.pnas.org/content/106/50/21086
https://doi.org/10.1145/2597073.2597085
https://doi.org/10.1109/ICSE.2017.28
https://doi.org/10.1109/ICSE.2017.28
https://doi.org/10.1049/iet-sen.2008.0038
https://doi.org/10.1049/iet-sen.2008.0038
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
http://turkrequesters.blogspot.com/2018/08/the-bot-problem-on-mturk.html
http://turkrequesters.blogspot.com/2018/08/the-bot-problem-on-mturk.html
http://www.rosettacode.org/wiki/Rosetta_Code
https://doi.org/10.1016/j.cognition.2016.09.011
https://doi.org/10.1145/3145904
https://uniqueturker.myleott.com/
https://doi.org/10.1016/bs.adcom.2018.03.015
https://pypi.org/project/astor/
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1145/1985441.1985454
https://doi.org/10.1007/s10664-018-9660-3
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

Casey Casalnuovo et al. 39

Sami, A., Yadegari, B., Rahimi, H., Peiravian, N., Hashemi, S. and Hamze, A. (2010)Malware detection based onmining API calls.
In Proceedings of the 2010 ACM symposium on applied computing, 1020–1025. URL: https://doi.org/10.1145/1774088.
1774303.

Scalabrino, S., Bavota, G., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D. and Oliveto, R. (2017) Automatically Assess-
ing Code Understandability: How far are we? In 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 417–427. IEEE. URL: https://doi.org/10.1109/ASE.2017.8115654.

Scalabrino, S., Linares-Vasquez, M., Poshyvanyk, D. and Oliveto, R. (2016) Improving code readability models with textual
features. In 2016 IEEE 24th International Conference on Program Comprehension (ICPC), 1–10. IEEE. URL: https://doi.
org/10.1109/ICPC.2016.7503707.

Schmitt, N. and Carter, R. (2004) Formulaic sequences in action. Formulaic sequences: Acquisition, processing and use, 1–22.

Schwab, J. F., Casey, L.-W. and Goldberg, A. E. (2018) When regularization gets it wrong: Children over-simplify language
input only in production. Journal of child language, 45, 1054–1072. URL: https://doi.org/10.1017/S0305000918000041.

Sennrich, R., Haddow, B. and Birch, A. (2016) Neural Machine Translation of Rare Words with Subword Units. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1715–1725. Berlin,
Germany: Association for Computational Linguistics. URL: https://doi.org/10.18653/v1/P16-1162.

Shaft, T. M. and Vessey, I. (1995) The Relevance of Application Domain Knowledge: The Case of Computer Program Compre-
hension. Information systems research, 6, 286–299. URL: https://doi.org/10.1287/isre.6.3.286.

Shneiderman, B. and Mayer, R. (1979) Syntactic/semantic interactions in programmer behavior: A model and experimental
results. International Journal of Computer & Information Sciences, 8, 219–238. URL: https://doi.org/10.1007/BF00977789.

Siegmund, J. (2016) ProgramComprehension: Past, Present, and Future. In 2016 IEEE23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 5, 13–20. IEEE. URL: https://doi.org/10.1109/SANER.2016.35.

Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., Saake, G. and Brechmann, A. (2014) Understanding
understanding source codewith functional magnetic resonance imaging. In Proceedings of the 36th International Conference
on Software Engineering, 378–389. ACM. URL: https://doi.org/10.1145/2568225.2568252.

Siegmund, J., Peitek, N., Parnin, C., Apel, S., Hofmeister, J., Kästner, C., Begel, A., Bethmann, A. and Brechmann, A. (2017)
Measuring neural efficiency of program comprehension. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, 140–150. ACM. URL: https://doi.org/10.1145/3106237.3106268.

Smith, N. J. and Levy, R. (2013) The effect of word predictability on reading time is logarithmic. Cognition, 128, 302–319. URL:
https://10.1016/j.cognition.2013.02.013.

Snedeker, J. and Trueswell, J. (2003) Using prosody to avoid ambiguity: Effects of speaker awareness and referential context.
Journal of Memory and language, 48, 103–130. URL: https://doi.org/10.1016/S0749-596X(02)00519-3.

Svyatkovskiy, A., Deng, S. K., Fu, S. and Sundaresan, N. (2020) Intellicode compose: Code generation using transformer. arXiv
preprint arXiv:2005.08025.

Tiarks, R. (2011) What maintenance programmers really do: An observational study. In Workshop on Software Reengineering,
36–37. Citeseer.

Trockman, A., Cates, K., Mozina, M., Nguyen, T., Kästner, C. and Vasilescu, B. (2018) "Automatically Assessing Code Under-
standability" Reanalyzed: Combined Metrics Matter. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), 314–318. IEEE. URL: https://doi.org/10.1145/3196398.3196441.

Tu, Z., Su, Z. and Devanbu, P. (2014) On the Localness of Software. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, 269–280. New York, NY, USA: ACM. URL: https://doi.acm.
org/10.1145/2635868.2635875.

https://doi.org/10.1145/1774088.1774303
https://doi.org/10.1145/1774088.1774303
https://doi.org/10.1109/ASE.2017.8115654
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1017/S0305000918000041
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1287/isre.6.3.286
https://doi.org/10.1007/BF00977789
https://doi.org/10.1109/SANER.2016.35
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1145/3106237.3106268
https://10.1016/j.cognition.2013.02.013
https://doi.org/10.1016/S0749-596X(02)00519-3
https://doi.org/10.1145/3196398.3196441
https://doi.acm.org/10.1145/2635868.2635875
https://doi.acm.org/10.1145/2635868.2635875

40 Casey Casalnuovo et al.

Vasilescu, B., Casalnuovo, C. and Devanbu, P. (2017) Recovering Clear, Natural Identifiers from Obfuscated JS Names. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, 683–693. ACM. URL: https://doi.
org/10.1145/3106237.3106289.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. and Polosukhin, I. (2017) Attention is all
you need. In Advances in neural information processing systems, 5998–6008.

Vee, A. (2017) Coding literacy: How computer programming is changing writing. Mit Press. URL: https://doi.org/10.7551/
mitpress/10655.001.0001.

Von Mayrhauser, A. and Vans, A. M. (1993) From program comprehension to tool requirements for an industrial environ-
ment. In [1993] IEEE Second Workshop on Program Comprehension, 78–86. IEEE. URL: https://doi.org/10.1109/WPC.
1993.263903.

Watanabe, S. (2010) Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular
learning theory. Journal of Machine Learning Research, 11, 3571–3594.

Weisstein, E. W. (2004) Bonferroni correction.

Zhan, M. and Levy, R. P. (2018) Comparing theories of speaker choice using a model of classifier production in mandarin
chinese. Association for Computational Linguistics. URL: https://doi.org/10.18653/v1/N18-1181.

Zhong, H., Xie, T., Zhang, L., Pei, J. and Mei, H. (2009) MAPO: Mining and recommending API usage patterns. In European
Conference on Object-Oriented Programming, 318–343. Springer. URL: https://doi.org/10.1007/978-3-642-03013-0_15.

https://doi.org/10.1145/3106237.3106289
https://doi.org/10.1145/3106237.3106289
https://doi.org/10.7551/mitpress/10655.001.0001
https://doi.org/10.7551/mitpress/10655.001.0001
https://doi.org/10.1109/WPC.1993.263903
https://doi.org/10.1109/WPC.1993.263903
https://doi.org/10.18653/v1/N18-1181
https://doi.org/10.1007/978-3-642-03013-0_15

	Introduction
	Predictability in Code and in Natural Language
	Dual Channel Constraints and Equivalent Meaning in Code
	Overall Experimental Summary

	Background
	Corpus Study
	Data
	Language Models
	Meaning-Preserving Transformations
	Selecting Transformation Samples

	Modeling
	Corpus Study Results
	Swapping Expressions
	Parentheses Transformations
	Variable Renaming Transformations
	Discussion

	Human Study 1: Extreme N-gram Surprisal
	Materials
	Method
	Procedure
	Participants
	Modeling
	Results
	Discussion

	Human Study 2: Gradient Transformer Surprisal
	Materials
	Method
	Procedure
	Participants
	Modeling
	Results
	Discussion

	General Discussion
	Cognitive Origins of Preferences
	Threats and Generalizability
	Actionability and Future Work
	Readability and Complexity Metrics
	Building Tools and Validating Models
	Developing Cognitive Models of Predictability

