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Abstract 12 

Specific leaf area (SLA, leaf area per unit dry mass) is a key canopy structural characteristic, a 13 

measure of photosynthetic capacity, and an important input into many terrestrial process models. 14 

Although many studies have examined SLA variation, relatively few data exist from high 15 

latitude, climate-sensitive permafrost regions. We measured SLA and soil and topographic 16 

properties across a boreal forest permafrost transition, in which dominant tree species changed as 17 

permafrost deepened from 54 to >150 cm over 75 m hillslope transects in Caribou-Poker Creeks 18 

Research Watershed, Alaska. We characterized both linear and threshold relationships between 19 

topographic and edaphic variables and SLA and developed a conceptual model of these 20 

relationships. We found that the depth of the soil active layer above permafrost was significantly 21 

and positively correlated with SLA for both coniferous and deciduous boreal tree species. 22 

Intraspecific SLA variation was associated with a fivefold increase in net primary production, 23 

suggesting that changes in active layer depth due to permafrost thaw could strongly influence 24 

ecosystem productivity. While this is an exploratory study to begin understanding SLA variation 25 

in a non-contiguous permafrost system, our results indicate the need for more extensive 26 

evaluation across larger spatial domains. These empirical relationships and associated 27 

uncertainty can be incorporated into ecosystem models that use dynamic traits, improving our 28 

ability to predict ecosystem-level carbon cycling responses to ongoing climate change. 29 

 30 

  31 
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Introduction 32 

The boreal forest is changing rapidly with climate change [1]. Permafrost soil underlaying the 33 

boreal is currently degrading and in many places predicted to disappear entirely, by the end of 34 

the 21st century in Alaska [2] and other circumpolar regions [3]. Permafrost thaw affects 35 

ecosystem carbon, water, and nutrient cycling [4–6], which are expected to, in turn, produce 36 

shifts in tree cover and canopy physiology [7]. Moreover, permafrost thaw has been shown to be 37 

a threshold for these environmental shifts [8,9]. 38 

Phenotypic plasticity allows plants to adapt to environmental shifts, resulting in intraspecific 39 

trait variation. A particularly variable trait is specific leaf area (SLA). SLA—leaf area per unit 40 

dry mass—is a trait that corresponds with differences in leaf structure associated with 41 

photosynthesis [10] and importantly ecosystem carbon gain  [11]. SLA has been used in 42 

numerous meta-analyses to predict leaf physiology and other functional traits [12]. 43 

Understanding the consequences of permafrost thaw on SLA variation and ecosystem 44 

productivity is particularly important, as shifting environmental gradients may impact 45 

intraspecific trait variation, with potentially large consequences on carbon accumulation across 46 

the landscape. In environments with optimal soil resources (e.g., water, nutrients), for example, 47 

plants can produce more leaf biomass with high SLA, maximizing carbon gain per unit leaf mass 48 

[13,14]. Conversely, in suboptimal resource environments, small and thick leaves (i.e., with low 49 

SLA) allow plants to maximize leaf longevity. The relatively thick (low SLA) leaves of black 50 

spruce, a typical boreal evergreen conifer, last an average of 50-60 months, compared to the 4-6 51 

month life span of the relatively thinner (high SLA) leaves of boreal deciduous species (Reich, 52 

Tjoelker, Walters, Vanderklein, & Buschena, 1998). 53 
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In boreal systems underlain by permafrost, the thaw depth of the seasonally-thawed active 54 

layer [9] is coupled to soil moisture and nutrient availability, and is hypothesized to govern leaf 55 

area and plant productivity [16–18]. While SLA of boreal vegetation has been shown to vary 56 

with environmental conditions, including tree species and soil resources [19–22], the effect of 57 

permafrost on SLA variation is not well understood, due in large part to the lack of empirical 58 

SLA data across a broad range of permafrost conditions. 59 

Global analyses reveal that specific leaf area varies with climatic and edaphic gradients 60 

[23,24]. In contrast, SLA variation within a species is less well understood. Intraspecific SLA 61 

variation has been shown to contribute significantly to total trait variability [20,25–27], and used 62 

to understand local and regional community assembly processes and explain the coexistence of 63 

multiple species across environmental gradients [28–30]. 64 

Because SLA is linked to forest productivity through photosynthetic potential, 65 

understanding the environmental controls on SLA variation is also important for predictive 66 

ecosystem modeling [31], especially in climate-sensitive permafrost systems. Most ecosystem 67 

models assign a specific leaf area value based on plant functional types [32], and efforts have 68 

been made to improve mean canopy estimates of SLA [33]. While this captures variation in 69 

specific leaf area as a function of climate or species, these fixed trait-based approaches miss the 70 

variation in a trait within a given plant functional type. Without data on intraspecific trait 71 

variation, it is not clear whether these models can be successful. 72 

In this study we examined intraspecific SLA variation and associated topographic and 73 

edaphic factors across a permafrost and vegetation transition within an Alaskan boreal forest. We 74 

hypothesized that (i) SLA would be significantly correlated with active layer depth, which 75 

governs the availability of soil resources such as water and nutrients, and (ii) intraspecific SLA 76 
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variation across the permafrost transition would in turn positively correlate with aboveground net 77 

primary production. This is an exploratory study to begin understanding SLA variation in a 78 

permafrost forest ecosystem. Our results indicate significant influences of environmental features 79 

across the permafrost transition zone, indicating the need for more extensive evaluation of SLA 80 

and forest production across larger spatial domains in forested ecosystems. 81 

 82 

Materials and methods 83 

Site description 84 

The field component of this research took place in the Caribou-Poker Creeks Research 85 

Watershed (CPCRW), a 104 km2 basin located in the Yukon-Tanana Uplands northeast of 86 

Fairbanks, AK, and part of the Bonanza Creek LTER (http://www.lter.uaf.edu/research/study-87 

sites-cpcrw). This fieldwork was conducted under verbal permission of Jamie Hollingsworth, 88 

Site Manager of the Bonanza Creek LTER. Mean annual precipitation is 400 mm, about one-89 

third of which falls as snow; mean annual temperature is -2.5 °C [34]. The watershed's lowlands 90 

and north-facing slopes are dominated by black and white spruce (Picea mariana and Picea 91 

glauca, respectively), feathermoss (Pleurozium schreberi and others), and Sphagnum spp.; the 92 

drier south slopes tend to be deciduous with a mixture of quaking aspen (Populus tremuloides), 93 

paper birch (Betula neoalaskana), and patches of alder (Alnus crispa). 94 

In 2014 we established six replicate 75 m east-facing transects along a vegetation and 95 

permafrost gradient. To efficiently characterize spatial variation across north-south and east-west 96 

dimensions, we used a cyclic sampling design, a scheme that uses a repeated pattern of sampling 97 

points across space to allow comparison between sampling pairs at multiple distances (S1 Fig) 98 

[35]. The transects were centered on 65.1616° N 147.4859° W at 248-266 m asl, with the east 99 
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end of each transect dominated by black spruce in continuous, valley-floor permafrost, and the 100 

west end upslope dominated by paper birch with no permafrost within 150 cm. Both spruce and 101 

alder co-occur across the entire sampling transect. The forest in this study site was at least 90 102 

years old, based on tree rings taken at the stem base of several of the largest white spruce (Picea 103 

glauca). Measured across the transects and inclusive of spruce, birch, and alder, stand density 104 

varied greatly across the site (overall 4890 trees ha-1 ± 3290 standard deviation), with relatively 105 

low density at the top and bottom of the hillslope and a densely vegetated transition zone in the 106 

middle area, where black and white spruce co-occur. Similarly, basal area also varied greatly 107 

(17.6 m2 ha-1 ± 15.5 standard deviation), generally increasing towards the upslope portion of the 108 

site. The soil is characterized as a silt loam in the Olnes (well-drained, top of hillslope) or 109 

Karshner (poorly-drained, bottom of hillslope) series [36].  110 

 111 

Specific leaf area analysis 112 

In August 2015, mature leaf samples from the top one-third of the canopy were collected from 113 

alder, black spruce, and white spruce. Spruce and alder were selected for this study because they 114 

co-occurred across the entire sampling transect. Leaves were sampled at six locations (0, 15, 30, 115 

45, 60, and 72 m, from E to W) along each transect, with up to 10 leaves per tree per species and 116 

location (S1 Fig). To maintain field moisture, leaves were stored with wet tissues in a cooler or 117 

refrigerator until analysis. Projected leaf area was determined using a flatbed scanner (HP Digital 118 

Sender 9250c, 300 dpi) and ImageJ [37] version 1.48. Hue and saturation were set at 255, and 119 

brightness at 170 for broadleaf species and 180 for needleleaf species. The default thresholding 120 

method was used, with color set to red. Hemisurface leaf area for nonflat spruce (Picea spp.) 121 

needles was calculated using equations from the literature [38]. Leaf dry mass was determined 122 
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after drying to a constant mass in a forced-air oven at 60 °C, and specific leaf area (SLA, cm2 g-123 

1) calculated by dividing leaf surface area by dry mass [39]. Black and white spruce species 124 

hybridize across vegetation transition zones such as the one in this study, making it difficult to 125 

distinguish them in some cases. For this reason, we pooled spruce species into a single 126 

vegetation type (“spruce”); this approach is consistent with a modeling-relevant approach [40]. 127 

However, we recognize the importance of species-specific data, and thus provide the full (raw) 128 

data with putative species tags (see Supporting Information for data availability). 129 

 130 

Site characteristics and soil properties 131 

Landscape slope, active layer depth (ALD), and soil cores were sampled in a cyclic sampling 132 

design to allow for efficient spatial analyses (S1 Fig) [35]. Landscape slope was measured using 133 

a clinometer over a 2 m length centered at each soil sampling location. ALD was measured from 134 

the soil surface every 2.5 m along each transect in September 2014 using a 150 cm probe; 135 

September thaw depths were used to capture maximum thaw. If permafrost was not reached at 136 

three consecutive positions moving upslope, ALD was assumed to be > 150 cm. 137 

Along the southernmost three transects, soil cores were taken in September 2014 at each 138 

sampling location using a forest floor sampler [41]. After coring, thermistors were installed to 139 

measure depth-resolved soil temperatures, and the depth of the moss layer was recorded. To 140 

enable field-model comparisons, soil cores were subsampled for physicochemical and biological 141 

measurements at depth increments (1.75 cm, 6 cm, and 12 cm) corresponding with those used in 142 

the Community Land Model (CLM4.5) [40]. Soil moisture was determined by measuring the 143 

difference between fresh and dry mass after drying samples in a forced-air oven to a constant 144 

mass (g water per g dry soil), and pH was measured using 1:1 CaCl2 mixture. Total soil carbon 145 
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and nitrogen were determined using an Elementar Vario EL Cube Elementar (Elementar 146 

Analysensysteme GmbH, Hanau, Germany); C:N ratios were calculated from these data [24]. All 147 

site and soil data were linearly interpolated to match SLA data locations. 148 

 149 

Aboveground tree net primary production 150 

Net primary production (NPP) was determined using tree cores taken from a representative 151 

sample of trees (birch, alder, black spruce, and white spruce) every 10 m along each transect. At 152 

each sample point, we cored 3-5 trees per species; sample discs were taken from trees too small 153 

to core. Cores were embedded into larger boards for protection, sanded, and scanned at 800 dpi 154 

using a flatbed scanner (Epson Workforce 840, Epson America Inc., Long Beach, CA, USA). 155 

Bark thickness and wood annual increments were measured to the nearest 0.001 mm using 156 

CooRecorder 7.6 (http://www.cybis.se/forfun/dendro/). For each of the most recent five years, 157 

ring width was used to calculate diameter in each year, and biomass estimated from species- and 158 

region-specific allometric equations [42]. For each year, tree NPP was computed as the 159 

difference between successive biomass estimates, and these values averaged to produce 5-year 160 

mean NPP for each species at each transect sample point. Annual mortality is typically low in 161 

mature boreal forests [43] and we did not correct for it in the calculated five-year window. The 162 

mean NPP was scaled to the site level using a tree inventory performed on all trees with a 5 m 163 

radius of each grid sample point within each transect. Here, we present both total NPP 164 

(combination of above-named species) and black spruce-specific NPP. The latter was performed 165 

on tree cores from the lower portion (E end) of the transects, where we were confident of the 166 

identity of black spruce trees (versus white spruce). 167 

 168 
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Statistical analyses 169 

All statistical analyses were performed using R [44] version 3.2.4. We assessed SLA variation 170 

across two scales: within and among individuals in a tree species. To partition the variation in 171 

these two scales, we fitted a general linear model to the variance across leaf and tree scales [27], 172 

with leaf nested in tree, and with separate analyses for each species (S1 Appendix). 173 

Because we have high-resolution spatial data, we used linear regressions (with SLA 174 

averaged by tree individual for each species) to test the hypothesized relationships between SLA 175 

and topographic and edaphic properties (Fig 1). Specifically, we performed Theil-Sen 176 

regressions as robust estimators against outliers, using the R function mblm in the ‘mblm’ 177 

package, version 0.12.1. Spearman’s rank correlations were used to determine the significance 178 

and strength of relationships between ALD and slope and between ALD and SLA, using R 179 

function cor.test in the R ‘stats’ package, version 3.2.4. Where we saw relationships in the linear 180 

regressions, we used T- and F-tests to examine shifts in means and variances, respectively. When 181 

bivariate regressions showed nonlinear relationships, we used the function segmented in the R 182 

‘segmented’ package to test for breakpoints and tested for significance of these breakpoints using 183 

the davies.test function. 184 

 185 

Fig 1. Conceptual diagram linking topographic and edaphic features with specific leaf area 186 

(SLA) and net primary production (NPP) [18]. Arrows indicate direct relationships; double-187 

headed arrows indicate feedbacks. Arrow labels correspond to Figures. 188 

 189 

Results 190 

Inter- and intraspecific SLA variation 191 
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Specific leaf area (SLA) averaged by tree varied by over a factor of three between alder (n = 33 192 

trees) and spruce (n = 36 trees), with high levels of intraspecific variation as well (Table 1). SLA 193 

for alder ranged from 121 to 364 cm2 g-1 (214 ± 66.1 cm2 g-1). Spruce SLA ranged from 37.1 to 194 

88.7 cm2 g-1, (57.1 ± 9.61 cm2 g-1). Partitioning the variance of SLA into the leaf and tree scales 195 

revealed that most of the variation in SLA is between rather than within individual trees, for both 196 

alder and spruce (Table 2). Thus, all subsequent analyses were performed using tree-averaged 197 

SLA values, following the relationships in Fig 1. 198 

 199 

Table 1. Minimum, maximum, and mean specific leaf area values (cm2 g-1) and coefficients of 200 

variation by species. Values in parentheses indicate 1 standard deviation. 201 

Species n Minimum  Maximum  Mean (s.d.) 
Coefficient of 

Variation 

Alder 33 120.5 363.5 213.8 (66.1) 0.309 

Spruce 36 37.1 88.7 57.1 (9.6) 0.168 

 202 

Table 2. Variance partitioning of the full nested linear models on SLA across leaf and tree 203 

scales. SLA data were natural log transformed prior to analysis. n = 169 leaves and 33 trees for 204 

alder; n = 190 leaves and 36 trees for spruce. 205 

Species 
Between-tree SLA 

variation (%) 

Within-tree SLA 

variation (%) 

Alder 93.7 6.3 

Spruce 74.0 26.0 

 206 
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Impact of SLA on net primary production 207 

Spruce-specific NPP was determined for the bottom four positions on the hillslope where we had 208 

corresponding data, and ranged from 23.1 to 364 g C m-2 yr-1. Because we did not determine 209 

alder-specific NPP across the whole spatial domain, SLA and NPP were compared only for 210 

spruce. Spruce-specific NPP was significantly higher as spruce SLA increased (p < 0.001, R2 = 211 

0.42, Fig 2a). 212 

 213 

Fig 2. Relationships between (a) spruce-specific SLA (cm2 g-1) and net primary production 214 

(NPP, g C m-2 yr-1), and (b) total NPP and soil C:N. The blue lines represents the linear 215 

regression, and the shaded areas shows the 95% confidence level interval for predictions. 216 

 217 

We hypothesized that SLA has a direct effect on NPP (Fig 1). However, it has been shown 218 

that soil nutrient status (e.g., soil C:N) may have a direct influence on NPP [45]. We found that 219 

spruce NPP and SLA were significantly correlated (p < 0.001, R2 = 0.42, Fig 2a) as well as total 220 

NPP (from representative species, see Methods) and soil C:N (p < 0.05, R2 = 0.24, Fig 2b). 221 

 222 

Relationship between soil resources and SLA 223 

While our data show a negative linear relationship between both spruce and alder SLA and soil 224 

moisture the residual plots for the SLA and soil moisture linear regressions highlight potential 225 

nonlinearities in these relationships (S2 Fig). Because of the small number of data points in this 226 

study limits further interpretation of a nonlinear fit for these data, we therefore used linear 227 

regressions, which show higher SLA values correlated with lower soil moisture values (p < 0.05, 228 

R2 = 0.40 for alder, Fig 3a; p < 0.001, R2 = 0.52 for spruce, Fig 3b). For both alder and spruce, 229 
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higher soil C:N values correlated with lower SLA values (p < 0.05; R2 = 0.30 for alder, Fig 3c; 230 

R2 = 0.26 for spruce, Fig 3d). 231 

 232 

Fig 3. Relationships between specific leaf area (SLA) and (a,b) gravimetric soil moisture and 233 

(b,c) C:N, for alder and spruce. The blue line represents the regressions, and the shaded area 234 

shows the 95% confidence level intervals for predictions. 235 

 236 

Relationship between active layer depth and SLA 237 

Across the entire field site, ALD ranged from 54 cm to above 150 cm (median 137.2 cm). Soil 238 

moisture at 6 cm ranged from 0.18 – 0.93 g g-1 (mean = 0.68 g g-1); we used soil data from 6 cm 239 

depth for comparisons with landscape and SLA data, as this depth is more relevant than surface 240 

soil to rhizosphere processes. Soil was drier at deeper ALD (for 6 cm, p < 0.05, Fig 4). For 241 

subsequent analyses, we used the ALD-moisture relationship to divide the data into two ALD 242 

classes: shallow (< 140 cm) and deep (> 140 cm) ALD; we used segmented regression to 243 

determine this breakpoint. Moisture values were marginally different between shallow and deep 244 

ALD classes (p = 0.0755). The variance in soil moisture differed significantly between the two 245 

ALD classes (F9,7 = 0.0672, p < 0.001). 246 

 247 

Fig 4. Relationship between active layer depth (ALD) and gravimetric soil moisture. Only 6 cm 248 

soil depth was used. Vertical dashed line indicates cut-off for shallow (< 140 cm) and deep (> 249 

140 cm) ALD classes. 250 

 251 
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Mean alder SLA for deep ALD was 266 cm2 g-1, and for shallow ALD was 158 cm2 g-1. 252 

Mean spruce SLA for deep ALD was 62.0 cm2 g-1, and for shallow ALD was 52.1 cm2 g-1. SLA 253 

for both alder and spruce increased with thicker ALD (p < 0.001, R2 = 0.62, ρ = 0.75 for alder, 254 

Fig 5a; p < 0.001, R2 = 0.36, ρ = 0.62 for spruce, Fig 5b). For both alder and spruce, mean SLA 255 

corresponding with shallow and deep ALD were significantly different (T30 = 8.94 for alder; T34 256 

= 5.01 for spruce; p < 0.001). There was no difference in SLA variances between the two ALD 257 

classes (F15,16 = 0.557; p = 0.265 for alder; F17,17 = 1.02; p = 0.971 for spruce). 258 

 259 

Fig 5. Relationships between specific leaf area (SLA) and active layer depth (ALD), for (a) alder 260 

and (b) spruce. Vertical dashed lines indicate cut-off for shallow (< 140 cm) and deep (> 140 261 

cm) ALD classes. The blue line represents the linear regression, and the shaded area shows the 262 

95% confidence level interval for predictions. 263 

 264 

Topography influences on active layer depth 265 

Across the field site, slope ranged from 13-56% (mean = 23.7%). ALD was positively correlated 266 

with landscape slope (p < 0.001, ρ = 0.63, Fig 6). Above 23% slope, ALD was consistently 267 

deeper than the maximum probe depth (150 cm); below this value, there was no significant 268 

correlation between ALD and slope (p = 0.157, rho = -0.31, Fig 6). 269 

 270 

Fig 6. Active layer depth (ALD) as a function of slope. The whole data set was tested using 271 

Spearman’s rank test (p < 0.001, ρ = 0.628). Below 23% slope (indicated by solid gray line), 272 

there was no significant correlation between ALD and slope (p = 0.32, ρ = -0.305). 273 

 274 
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Interactions between active layer depth, moss depth, and soil properties  275 

Moss thickness varied from 3.0 to 23.5 cm (mean = 14.4 cm), and the 6 cm soil temperature at 276 

the time of coring ranged from 2.8 to 10.1 °C (mean = 5.4 °C). The moss layer was thickest in 277 

areas of shallow ALD (p < 0.05; R2 = 0.27, Fig 7a). Soil temperature decreased with increased 278 

moss thickness (p < 0.05, R2 = 0.41, Fig 7b), and increased with deeper ALD (p < 0.001, R2 = 279 

0.63, Fig 7c). The means of both moss depth (T12 = -4.11, p < 0.05) and soil temperature (T12= 280 

4.56, p < 0.001) in the shallow and deep ALD classes were significantly different. 281 

 282 

Fig 7. Interactions of (a) the moss layer and active layer depth (ALD), (b) soil temperature and 283 

moss depth, and (c) soil temperature and ALD. Vertical dashed lines in panels (a) and (c) 284 

indicate cut-off for shallow (< 140 cm) and deep (> 140 cm) ALD classes. The blue line 285 

represents the linear regression, and the shaded area shows the 95% confidence level interval for 286 

predictions. 287 

 288 

Soil C:N at 6 cm depth ranged from 13.8 to 57.9 (mean = 34.4). Soil C:N values were 289 

significantly higher in wetter soil conditions associated with shallower ALD (p < 0.001, R2 = 290 

0.40, Fig 8a). Soil C:N at 6 cm decreased with increased soil temperatures (p < 0.05, R2 = 0.16, 291 

Fig 8b), and increased with thicker moss layers (p < 0.05, R2 = 0.46, Fig 8c). 292 

 293 

Fig 8. Relationships between soil C:N and (a) soil moisture, (b) soil temperature, and (c) moss 294 

depth. All soil depths were used in panels (a) and (b) (1.75 cm, 6 cm, 12 cm). Only 6 cm soil 295 

depth was used in panel (c). The blue line represents the linear regression, and the shaded area 296 

shows the 95% confidence level interval for predictions. 297 
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 298 

Discussion 299 

Ecosystem productivity implications of intraspecific SLA variation 300 

The empirical data presented here suggest that in permafrost-affected systems, the depth of the 301 

active layer can function as a threshold for various soil parameters, influencing plant traits such 302 

as SLA (Fig 5). SLA is directly associated with leaf-level photosynthesis, and has been shown to 303 

have a direct positive correlation with photosynthesis and productivity [14]. Here, we show that 304 

across a permafrost transition, a doubling in black spruce SLA corresponds to a much larger 305 

(five-fold) increase in NPP (Fig 2a). Further, our data suggest a direct connection between SLA 306 

and NPP (Fig 2a) and an indirect and weaker influence of soil C:N on NPP (Fig 2b). Because the 307 

control on maximum SLA is mediated by ALD (Fig 5a,b), when permafrost thaws, the nonlinear 308 

relationship between specific leaf area and NPP represents an avenue for the ecosystem to gain 309 

carbon. This result is especially relevant to boreal systems, where climate change is expected to 310 

appreciably thaw the permafrost  [2,9]. This suggests that as the active soil layer deepens, carbon 311 

cycling will undergo nonlinear acceleration, a phenomenon called a tipping point. 312 

In addition, the deepening of the active layer may accelerate belowground decomposition 313 

and thereby release carbon to the atmosphere [3]. Under warming conditions, while the released 314 

carbon might in principle be more readily fixed through the parallel increase in photosynthesis, 315 

analyses in warming boreal and arctic systems suggest that, in fact, respiration typically 316 

increases faster than photosynthesis [46]; this is also consistent with a recent global synthesis 317 

[47]. Ecosystem-scale carbon cycling responses will however depend on specific ecosystem 318 

parameters such as water balance, soil carbon composition, and carbon bioavailability [48,49]. 319 
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The balance between respiration and productivity warrants further exploration in permafrost-320 

affected ecosystems sensitive to climate change. 321 

 322 

Influence of active layer depth on SLA variation 323 

We found that while soil moisture does have a negative linear relationship with SLA (Fig 3a, b), 324 

this relationship has potential nonlinearities (S2 Fig), although we note that the small number of 325 

data points at low moisture conditions limits this interpretation. SLA and moisture have been 326 

shown to be positively correlated in systems with low soil moisture values (0.05 – 0.30 g g-1) 327 

[29]. In contrast, studies in boreal systems with more consistently saturated conditions (0.60+ g 328 

g-1) have shown that SLA is constrained at high-moisture sites with shallow ALD [19,22], likely 329 

due to saturated conditions in which the anaerobic environment leads to reduced root 330 

conductance [50], limited nutrient availability, and generally poorer conditions for plant growth. 331 

The relatively large range of soil moisture included our study site (0.18 – 0.93 g g-1) may 332 

therefore explain the nonlinearities in the relationship between SLA and soil. We reiterate that 333 

SLA data in boreal systems more evenly distributed across a wide range of soil moisture values 334 

are needed to unambiguously distinguish between a negative linear relationship (more soil 335 

moisture always means lower SLA, as the negative correlations in our data show) versus a 336 

quadratic one (implying a moisture optimum). 337 

Significant variation in SLA was also explained by soil C:N (Fig 3c,d). Global interspecific 338 

plant trait studies have shown that higher soil C:N correlates with lower SLA [24]. In our study 339 

looking at intraspecific SLA variation across an ALD gradient, we find that higher soil C:N also 340 

correlates with lower SLA. This is an important plant-soil relationship in the context of 341 

predictive trait modeling, especially in N-limited high latitude systems subject to permafrost 342 
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thaw and thus changes in water, carbon, and nutrient cycling [4–6]. If permafrost thaw increases 343 

the pool of available soil N (i.e., lower soil C:N), then photosynthetic nitrogen demands could be 344 

alleviated, potentially increasing SLA and site productivity; furthermore, if this response to 345 

changes in soil C:N varies within a species, current fixed-trait models will not capture these 346 

changes. 347 

For both species, we found that ALD is highly correlated with SLA, with an approximate 348 

two-fold increase in species-specific SLA values from shallow to deep ALD locations (Fig 5). 349 

Further, ALD has a thresholding effect on intraspecific SLA, whereby a relatively small change 350 

in ALD corresponds to a large change in SLA (Fig 5). While SLA at the landscape scale is 351 

controlled by soil resources (moisture and nutrients) [51], in this boreal system this control is 352 

mediated by ALD, which constrains SLA (Fig 5). Our data extend the findings of SLA dynamics 353 

in permafrost systems [19,22,52] by providing a broad range of continuous ALD across a small-354 

scale and critical soil transition zone, while also examining a network of soil and landscape 355 

influences to understand controls on SLA (Fig 9). 356 

 357 

Fig 9. Revised conceptual diagram (not formal SEM) based on this study’s results linking 358 

topographic and edaphic features, including active layer depth (ALD), with specific leaf area 359 

(SLA) and net primary production (NPP) [18]. Relationships are based on bivariate regressions. 360 

Solid lines indicate statistically significant linear relationships and dashed lines indicate a 361 

nonlinear threshold relationship. Arrow color indicates direction of correlation: red is positive; 362 

blue is negative; gray represents a marginally significant linear relationship.  363 

 364 
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Given the structure of our hypothesized relationships between SLA and environmental 365 

correlates (Fig 1), we considered path analysis (a type of structural equation modeling, SEM). 366 

However, we have insufficient data given the number of variables that would be contained 367 

within an SEM. For example, separating the soils dataset by tree species, we have 18 data points, 368 

and the number of parameters is 7 (excluding NPP, Fig 1); our number of samples per parameter 369 

is 2.6, which is on the low end of sample adequacy [53]. We instead performed bivariate linear 370 

regressions as detailed above, using our hypothesized relationships (Fig 1) to construct a 371 

conceptual diagram (Fig 9). Further studies should consider increasing sample size to allow for 372 

SEM analysis. Because we evaluated relationships based on a priori hypothesized relationships 373 

(Fig 1), we did not perform a global selection model to explain variation in SLA. As a caveat, 374 

our data describe one spatial domain (75m x 75m), and further study is needed to confirm if the 375 

relationships between SLA and active layer depth and soil properties apply at other spatial 376 

scales. 377 

We assume here that the high degree of SLA variation among individuals in a given species 378 

(Table 1) is due to phenotypic plasticity in response to environmental gradients, rather than 379 

genetic variation. Given the relatively small spatial domain of our study site (ca. 75 m x 75 m) 380 

and the steep topographic, vegetation, and permafrost gradients encountered, we believe this is a 381 

reasonable assumption. While we do not attempt to resolve all ecological scales that influence 382 

total trait variation (i.e. leaf, canopy-level, tree, species, plot, and site) [27], our results suggest 383 

that it is at the stand or plot level that environmental filters (e.g., ALD, soil C:N) act on SLA. 384 

This is similar to studies in tropical [27] and Mediterranean [29] systems, and provides guidance 385 

in the level at which intraspecific trait variation is ecologically relevant. 386 

 387 
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Relationships between active layer depth and edaphic and topographic features 388 

The relationships between permafrost and topographic and edaphic features are well documented 389 

[54,55]. Landscape slope and aspect affect the amount of incoming solar radiation, which in turn 390 

influences soil thermal conditions and depth to permafrost [18,48,56]. We controlled for aspect 391 

in this study (all transects are east-facing), allowing us to isolate the effect of slope on ALD. We 392 

found a threshold in the slope-ALD relationship, with permafrost not encountered at 150 cm 393 

depth at slopes greater than 23% (Fig 6). This is not unexpected, as deeper ALD is predicted on 394 

steeper slopes due both to increased drainage and to high solar radiation inputs in high latitude 395 

systems [18]. 396 

Because permafrost is a physical barrier to water drainage, the shallower active layers 397 

generally maintain high soil moisture conditions [18]. We found that shallow active layers (< 398 

140 cm) constrain soil moisture values to near saturation and lowered their variance (Fig 4). 399 

Together, high moisture and low temperatures of permafrost-associated soils limit 400 

decomposition, thus maintaining high C:N ratios in the thick moss layer and limiting nutrient 401 

availability [5] (Fig 8). Past the observed ALD threshold of 140 cm, soil moisture and thermal 402 

conditions shift rapidly (Figs 4, 7), likely because deeper ALD (often found at steeper slopes) 403 

promotes both water drainage and heat advection by pore water flow [57,58]. Together, these 404 

conditions likely favor aerobic decomposition of soil organic matter and increase available 405 

nutrients for plant uptake. 406 

In boreal systems, both the surface moss and organic soil layer play important roles in soil 407 

thermal dynamics, nutrient cycling, and ecosystem carbon accumulation [59]. Specifically, the 408 

moss and organic layers act as insulation to maintain low soil temperatures and shallow ALD 409 

[9,18,54,60], an effect modulated by soil moisture [61]. In support of this thermal regulation 410 
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mechanism, our data show expected relationships between moss depth, temperature, and ALD 411 

(Fig. 7). In turn, low soil temperatures maintained by the moss layer can limit decomposition and 412 

maintain high soil C:N (Fig 8), and thus limit the availability of soil nutrients [18]. 413 

 414 

Implications for Earth System Models 415 

Most ecosystem process models represent vegetation by plant functional types (PFTs), each of 416 

which has fixed photosynthetic parameters such as SLA that collectively control PFT 417 

photosynthesis, allocation, mortality, and decomposability. In the Community Land Model 418 

(CLM4.5), for example, the assigned SLA value for each PFT is mechanistically linked to 419 

photosynthesis through leaf N concentration [40,62]. Modifications to CLM have been proposed 420 

that improve representations of leaf traits, nitrogen availability, and plant productivity, with large 421 

implications for gross primary production [63]. However, averaging plant trait parameters is 422 

problematic, because for several important traits there is more variation within PFTs than 423 

between PFTs [12,64,65]. 424 

Extensive plant trait databases allow for the study of intraspecific variation across species 425 

and PFTs [65], which has led to calls for inclusion of such variation in ecological studies [66]. In 426 

turn, ecosystem models have been developed which incorporate trait plasticity into the existing 427 

PFT representation based on soil and climate relationships [67–69], and also approaches that 428 

utilize dynamic functional trade-offs rather than PFTs [70]. Model simulations with dynamic 429 

traits based on empirical trait-environment relationships show that high latitude systems become 430 

a stronger carbon sink through the next century, due in part to increased productivity [67]. 431 

Knowledge of empirical patterns like those shown in this study—whereby high intraspecific 432 

SLA variation leads to nonlinear increases in productivity (Fig 2a)—is necessary to increase the 433 
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predictive power of these models and provide benchmark data with which to test their 434 

performance. Such knowledge is especially crucial in climate-sensitive high-latitude systems, 435 

where permafrost thaw impacts drivers of plant trait variation [71]. 436 

 437 

Conclusions 438 

The empirically-derived relationships presented in this exploratory study (Fig 9) can guide 439 

the structural form and associated uncertainty of environmental controls on and consequences of 440 

SLA variation in process models. Our results indicate the need for more extensive evaluation of 441 

SLA variation and its impacts on forest ecosystem production, particularly across larger spatial 442 

domains that are replicated across multiple hillslopes distributed through non-contiguous 443 

permafrost ecosystems. Together, our study connects fundamental understanding of the linkages 444 

between SLA and system features with a meaningful way to incorporate them into the latest 445 

Earth System Models and a predictive framework for forest management under climate change. 446 

 447 

Supporting information. 448 

S1 Appendix. Methods for partitioning variation of specific leaf area (SLA) within and among 449 
trees. 450 

S1 Fig. Field site layout. Large gray circles indicate SLA sampling locations. Small black circles 451 

indicate soil sampling locations, in a cyclic sampling scheme in north-south and east-west 452 

dimensions (3/10 with 4 m grid cell). Two soil sampling locations (indicated by *) are offset 453 

from the cyclic design due to previous coring activities at original locations. Due to offsets, soil 454 

data were linearly interpolated to match the SLA data. For reference, active layer depth and tree 455 

core data were taken along each transect every 2.5 m and 10 m, respectively. 456 
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S2 Fig. Residual plots highlighting non-linearity for linear regressions of SLA vs. gravimetric 457 

soil moisture for (a) alder and (b) spruce. The blue line represents a smooth local regression from 458 

loess smoothing, and the shade area represents the 95% confidence level interval for predictions. 459 
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