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Abstract—The Artificial Intelligence (AI) development described 

herein uses model-free Deep Reinforcement Learning (DRL) to 

minimize energy cost during residential heating, ventilation, and 

air conditioning (HVAC) operation. Building cooling loads and 

HVAC operation are difficult to accurately model due to 

complexity, lack of measurements and data, and model specific 

performance, so online machine learning is used to allow for 

real-time readjustment in performance. Energy costs for the 

multi-zone cooling unit shown in this work are minimized by 

scheduling on/off commands around dynamic prices. By taking 

advantage of precooling events that take place when the price is 

low, the agent is able to reduce operational cost without 

violating user comfort. The DRL controller was tested in 

simulation where the learner achieved a 43.89% cost reduction 

when compared to traditional, fixed-setpoint operation. The 

system is now ready for the next phase of testing in a live, real-

time home environment. 

Index Terms—Automation, demand response, machine learning, 

transactive control, smart grid. 

I. INTRODUCTION 

The genesis point of this research is the advent of demand 
response pricing environments (DRE) throughout the U.S. In 
DRE’s, utilities attempt to use dynamic pricing to influence 
consumer behavior with the goal of reducing spinning reserve 
while maintaining frequency stability [1]. In a fixed energy 
pricing environment, there are no financial incentives to 
strategic load scheduling. The introduction of DRE’s allows 
for strategic choices that can result in benefits for both 
homeowners and utilities. For example, a homeowner can use 
more power when the price of electricity is low, and less at 
high price. For a single home, an inhabitant could determine 
the optimal scheduling themselves, but only with a significant 
commitment of time and calculation. 

Automation presents a more favorable alternative. Smart 
Home Energy Management Systems (SHEMS) allow for the 
automatic activation and deactivation of devices throughout a 
home in accordance with some schedule [2]. The Heating, 
Ventilation, and Air Conditioning (HVAC) appliance is an 

ideal candidate for automation due to its intermittent use and 
hands-free operation. Energy consumed by the HVAC system 
of a home accounts for approximately 50% of total energy 
usage [3]. Attempts to automate air conditioner use through 
pre-optimized automation have met with some success – even 
just passively shifting AC operation to precool a room has 
resulted in a reduction in electricity bills [4]. 

HVAC automation for cost and energy savings has been a 
subject of research for over 20 years [5]. The earliest models 
used Knowledge-Based Systems (KBS) for predictive control 
[6] [7]. These were effective in providing cost savings, but 
required input from an expert in the field. Later developments 
used Model Predictive Control (MPC), which were trained in 
simulation [8] [9] [10]. These systems require an accurate 
model of the relevant building and HVAC system. 
Researchers have struggled with thermal building modeling 
because of its nonlinearity and strong specificity of application 
[5]. As machine learning optimization evolved, the methods of 
automation evolved as well. The most complex methods used 
distributed AI systems, and required sensors not readily 
available to most homes [11] [12]. The majority of 
developments reported significant cost savings, but almost all 
were limited to a single application [5].  

In recent works, Deep Reinforcement Learning (DRL) 
methods have been tested which allow for experiential control 
and online learning. Researchers in [3] simulated an 
environment using EnergyPlus software and used Deep Q-
Learning to manage operation of two air conditioning zones. 
Their state included the time of day, zone temperature, 
outdoor temperature, and solar irradiance intensity. Their 
reward function used two terms: one to account for energy 
cost, and the other to account for comfort violation. In their 
environment, the price signal was dynamic, but consistent 
across different days. The experiment reported 11% energy 
savings over a rule-based baseline model. Their development 
was tested exclusively in simulation [3]. 

Another form of DRL is Deep Deterministic Policy 
Gradient (DDPG). While Deep Q-Learning methods attempt 



 

to approximate and generalize a Q-Table, policy gradient 
methods attempt to approximate the policy. In [13], DDPG 
was used as the learning algorithm, to account for the 
expanding dimensionality of the action space when more 
zones are added. The action space was continuous, and 
included setpoints for humidity as well as temperature. The 
state included indoor and outdoor temperature and humidity, 
and the reward function was similar to the two-term reward 
system examined in [3]. The system reported a lower cost and 
faster learn rate than using a Deep Q Neural Network [13]. 
This could be due to the fact that humidity control is more 
appropriately suited to a continuous action space. As before, 
their development was only tested in simulation. In a 
continuation of the work described herein, our DRL controller 
will be placed in a live home and some of the claims made in 
literature will be subjected to a field test. 

II. MODEL FORMULATION 

A. HVAC Modeling Challenges 

When modeling a building in simulation, each room has its 
own thermal profile that interacts with adjacent rooms and the 
outside, and air flow between rooms must be addressed [14]. 
These processes create a tangled web of nonlinear interactions. 
Within this section, we will use “thermal mass”, a term that 
broadly refers to the amount that ambient temperature affects 
indoor home temperatures, as a catch-all for the black box of 
partially observable home attributes that influence the indoor 
temperature. 

Accounting for the presence of thermal mass during a 
temperature prediction is the primary challenge of HVAC 
automation. A perfectly simulated model might yield an 
optimal solution, but we expect the thermal profile of a home 
to change over time. An MPC fine-tuned for a home built 
today could be unusable one year from now. Even the most 
thorough and accurate simulations have high specificity of 
application. 

Reinforcement Learning (RL) presents an alternative to 
model-based systems by learning iteratively through 
interaction with the environment. RL has shown promise in 
game-based studies as well as in power systems applications 
[15]. With RL, no foreknowledge of values such as insulation 
coefficients or internal heat load is necessary. The learner 
simply senses the current state of its environment, makes 
decisions, updates its knowledge, and attempts to tune its 
decision-making strategy to maximize its cumulative reward. 
Instead of a simulated model which contains every measured 
variable, those attributes that are cost effective to measure are 
included in the state, and every other relationship will be 
accounted for by leveraging Deep Learning. A controller 
equipped with such an algorithm could be configured to learn 
indefinitely inside a home and take self-corrective actions 
until it has approximated the lowest cost HVAC operation. 

To expedite the process of algorithm development, a 
building and HVAC model was developed in Python. This 
model served as the environment for the RL agent. The model 
was trained and validated based on data from a highly 
instrumented unoccupied research house [14]. The data 

presented herein is 2-zone HVAC system control using this 
model as the environment. 

The overall problem can be modeled as a constrained 
optimization problem: minimize cost of operation, while 
maintaining user comfort. Cost of operation is defined as the 
instantaneous price of energy times power consumption. 
Comfort is satisfied if two conditions are met: 

• The AC never runs if indoor temperature is 0.5 °C 
below the customer’s lower preference. 

• The AC runs continually if indoor temperature is 0.5 
°C  above the customer’s upper preference. 

B. Reinforcement Learning 

RL is a branch of machine learning that studies the 
conditioning of a learning agent towards accomplishing some 
goal through rewards and punishments [16]. At every 
iteration, the learner (agent) takes an action and is given a 
positive or negative reward. The agent is not told which action 
to take, but must discover the maximum long-term reward 
yielding actions through trial and error. RL works best when a 
problem can be modeled as a Markov Decision Process 
(MDP), which brings the problem into the scope of the 
Bellman Optimality Equation. 

The simplified, recursive Bellman Equation is 

   () 

where s is the current state, s’ is the next state having taken 
action a, V(s) is the current state value, γ is the discount rate, 
R(s,a) is the reward (having taken action a from state s), and 
V(s’) is the next state value. This equation links the states of 
an MDP together and gives the agent a roadmap for deciding 
the next action from its current state. The state values do not 
depend solely on instantaneous reward, but on the expected 
return of the entire trajectory. Solving this equation yields V, 
the value function. In an MDP, the next state is dependent on 
the current state and action, but independent of all previous 
state-action pairs [16]. 

After visiting a state and taking an action, the agent 
calculates an updated value for that state-action pair in 
accordance with the chosen algorithm. After a sufficient 
period of training has elapsed, the agent attempts to converge 
at an optimal policy that indicates the best action to take from 
each state for maximum expected return. The time taken to 
converge is the learning rate of that algorithm. The program 
may then output a value function V, which is a dataset of each 
state paired with the expected return from that state, a policy 
function π which shows each state and the recommended 
action for maximum return, or an action value function Q 
which shows each state and the value of taking each possible 
action from that state. 

Three auxiliary variables are common to RL algorithms: 1) 
the step-size parameter α influences the learning rate by 
prioritizing recently-learned information over old data; 2) the 
probability ε guarantees exploration in the commonly used ε-



 

greedy approach by granting the agent a probability ε of 
taking a randomly selected action; 3) a discount rate γ must be 
applied to the rewards so that their sum will approach a 
number other than infinity, if the task to be accomplished is 
continuous [16]. 

Ultimately, this problem can be modeled as a partially 
observable MDP because each transition probability is 
dependent only on the present state, but thermal mass is 
hidden from the observation. Therefore, RL can be applied to 
this problem. 

III. SOLUTION ARCHITECTURE 

A. Reinforcement Learning Architecture 

The architecture of the final RL model is reported here. 
The state was made up of the inputs shown in Table I. All 
features were normalized before being recorded as an 
observation. 

TABLE I.  STATE USED DURING TWO-ZONE CONTROL 

Feature Title Function 

1 Z1T z1T – Upper 

2 Z2T z2T – Upper 

3 OT OT 

4 P1 Price(t) 

5 P2 Price(t + 5) 

6 P3 Price(t + 15) 

7 P4 Price(t + 30) 

 

The two indoor zone temperatures are represented, as well 
as outdoor temperature and four price values. P1 measures 
instantaneous price, while P2, P3, and P4 are forecasted price 
values in $/kWh for the next 5, 15, and 30 minutes, 
respectively. Zone temperatures are recorded as the thermostat 
temperature minus the upper temperature preference of the 
customer. 

The action space is all binary combinations of “Off” and 
“On” for each zone. For two zones, the space [0, 1, 2, 3] 
corresponds to [“Off/Off”, “Off/On”, “On/Off”, “On/On”]. 
Calibration and parameterization were used to realize the 
modified two-term reward system 

,               (2) 

where Pt is the energy price over time t, Ct is the consumption 
over time t, and Vt is the amount any indoor zone temperature 
violated that comfort zone, in degrees Celsius. Since only 
cooling was tested, the system only counted a comfort 
violation above the upper preference point. λ is used as a 
weighting factor that prioritizes cost over comfort. A λ of 100 
was used for the final system. 

The system is able to save money over a naïve, fixed-
setpoint baseline because it practices precooling. The price 

forecasting features warn the DRL controller of an upcoming 
price increase. The controller runs the HVAC while the price 
is low, then remains off after a price increase. 

B. Neural Network Architecture 

The learning algorithm used in this work is a Deep Q 
Neural Network (DQN). This algorithm uses an evaluation 
neural network to estimate the values of a Q Table with each 
iteration. A second neural network runs in parallel to give the 
first network a convergence target. The system employs one 
evaluation and one target network running in parallel. DQN 
provides a way to execute RL control objectives while 
leveraging the optimization power of deep learning. Minh et 
al. were able to show that the use of two networks could offer 
stability and reduce potential oscillations during training [17]. 
Table II shows some of the algorithm parameters used. 

TABLE II.  DQN PARAMETERS 

NN Learn Rate 0.01 

Input Layers 1x7, one input per feature 

Hidden Layers 2x10 (2 layers with 10 neurons 

each) 

Output Layers 1x4, one output per action 

Reward Decay (γ) 0.9 

Epsilon (ε) 0.1 

Memory Size (Experience Replay 

Memory) 

20,000 

Batch Size 32 

Initial Iterations 200 

Δtc 300 

Optimizer AdamOptimizer 

 

Fig. 1 shows the pseudocode for operation. 

 

Figure 1.  DQN Algorithm pseudocode for evaluation and target networks 

[18]. 



 

IV. CASE STUDY 

Since the eventual goal is the incorporation of the DRL 

controller into a residential home, some calibration is 

necessary to facilitate operation outside of a simulated 

environment. The following section describes enhancements 

to the DRL controller made to consider accommodation of a 

human occupant, the customer. 

A. Setpoint Governance 

In our model, the system is controlled by translating 
“On/Off” commands into setpoints above or below the indoor 
temperature. However, the controller is prohibited from 
submitting a setpoint which is outside customer’s comfort 
preference. Instead of the DRL controller being responsible 
for comfort regulation, it is allowed to focus on price and 
monetary savings. There are several benefits to this constraint: 

• The model under setpoint governance produces far 
lower cost operation, up to 40% less per month.  

• There are fewer states to learn, increasing learning 
rate. 

• The amount of comfort violations drops to zero above 
the customer’s upper limit. 

• The customer never observes a thermostat setpoint 
outside of preference. 

• In case of equipment failure or loss of 
communications, the setpoint left behind is always 
within comfort. 

B. Relative Temperature Recording 

In the upper half of Fig. 2, the indoor zone temperatures 
have been recorded in the state as empirical values, but the 
customer’s temperature preferences have changed four times 
over the course of a month. When only empirical temperatures 
are considered, the DRL controller’s learning rate suffers and 
the indoor temperature strays outside the customer’s comfort 
boundaries. To better demonstrate this anomaly, setpoint 
governance has been disengaged. 

 

Figure 2.  Absolute (top) vs. relative (bottom) temperature recording.  

When the temperatures are instead recorded as zone 
temperature minus the customer’s upper limit, the system is 
better able to stay within comfort, as the lower half of Fig. 2 
shows. Accommodation of sudden and frequent customer 
preference changes are necessary during live occupancy. Even 
when setpoint governance is enforced, the observation made 
by the DRL controller must include information about both 
the indoor temperature and the customer’s upper preference in 
order to properly function. 

C. Results 

For the following validation experiment, our DRL 
controller was trained for one month using outdoor 
temperatures from June 2018, then validated on July. During 
this month, it outperformed the fixed-setpoint baseline by 
43.89%. Parameters and results are shown in Table III. 

TABLE III.  VALIDATION RESULTS 

Comfort Range 21 – 24 ° C 

Minimum Cycle Time 15 minutes 

Price Range $0.05-$0.25/kWh 

Alternating Price Period 6 hours 

Apparent Convergence 10 days 

Monthly Cost $26.68 

July Baseline Cost $47.55 

% Savings 43.89 

V. CONCLUSIONS 

In this work, a flexible model-free RL optimization is 
developed for creating the optimal schedule for an HVAC 
system. The goal is to minimize energy cost, while 



 

maximizing the comfort of the residents. The development 
was able to save 43.89% in a simulated home environment 
over a fixed setpoint baseline, while maintaining comfort 
throughout. Due to the consistent money-saving performance 
even during cold months, and since setpoint governance acts 
as a failsafe for preserving comfort, this model could be 
implemented into homes as it is today with confidence that 
customers could save money and maintain comfort. In future 
tests, heating will be incorporated, as well as the management 
of other loads. The development is ready for testing in a live 
home environment. 
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