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Abstract—The Artificial Intelligence (Al) development described
herein uses model-free Deep Reinforcement Learning (DRL) to
minimize energy cost during residential heating, ventilation, and
air conditioning (HVAC) operation. Building cooling loads and
HVAC operation are difficult to accurately model due to
complexity, lack of measurements and data, and model specific
performance, so online machine learning is used to allow for
real-time readjustment in performance. Energy costs for the
multi-zone cooling unit shown in this work are minimized by
scheduling on/off commands around dynamic prices. By taking
advantage of precooling events that take place when the price is
low, the agent is able to reduce operational cost without
violating user comfort. The DRL controller was tested in
simulation where the learner achieved a 43.89% cost reduction
when compared to traditional, fixed-setpoint operation. The
system is now ready for the next phase of testing in a live, real-
time home environment.

Index Terms—Automation, demand response, machine learning,
transactive control, smart grid.

l. INTRODUCTION

The genesis point of this research is the advent of demand
response pricing environments (DRE) throughout the U.S. In
DRE’s, utilities attempt to use dynamic pricing to influence
consumer behavior with the goal of reducing spinning reserve
while maintaining frequency stability [1]. In a fixed energy
pricing environment, there are no financial incentives to
strategic load scheduling. The introduction of DRE’s allows
for strategic choices that can result in benefits for both
homeowners and utilities. For example, a homeowner can use
more power when the price of electricity is low, and less at
high price. For a single home, an inhabitant could determine
the optimal scheduling themselves, but only with a significant
commitment of time and calculation.

Automation presents a more favorable alternative. Smart
Home Energy Management Systems (SHEMS) allow for the
automatic activation and deactivation of devices throughout a
home in accordance with some schedule [2]. The Heating,
Ventilation, and Air Conditioning (HVAC) appliance is an
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ideal candidate for automation due to its intermittent use and
hands-free operation. Energy consumed by the HVAC system
of a home accounts for approximately 50% of total energy
usage [3]. Attempts to automate air conditioner use through
pre-optimized automation have met with some success — even
just passively shifting AC operation to precool a room has
resulted in a reduction in electricity bills [4].

HVAC automation for cost and energy savings has been a
subject of research for over 20 years [5]. The earliest models
used Knowledge-Based Systems (KBS) for predictive control
[6] [7]. These were effective in providing cost savings, but
required input from an expert in the field. Later developments
used Model Predictive Control (MPC), which were trained in
simulation [8] [9] [10]. These systems require an accurate
model of the relevant building and HVAC system.
Researchers have struggled with thermal building modeling
because of its nonlinearity and strong specificity of application
[5]. As machine learning optimization evolved, the methods of
automation evolved as well. The most complex methods used
distributed Al systems, and required sensors not readily
available to most homes [11] [12]. The majority of
developments reported significant cost savings, but almost all
were limited to a single application [5].

In recent works, Deep Reinforcement Learning (DRL)
methods have been tested which allow for experiential control
and online learning. Researchers in [3] simulated an
environment using EnergyPlus software and used Deep Q-
Learning to manage operation of two air conditioning zones.
Their state included the time of day, zone temperature,
outdoor temperature, and solar irradiance intensity. Their
reward function used two terms: one to account for energy
cost, and the other to account for comfort violation. In their
environment, the price signal was dynamic, but consistent
across different days. The experiment reported 11% energy
savings over a rule-based baseline model. Their development
was tested exclusively in simulation [3].

Another form of DRL is Deep Deterministic Policy
Gradient (DDPG). While Deep Q-Learning methods attempt
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to approximate and generalize a Q-Table, policy gradient
methods attempt to approximate the policy. In [13], DDPG
was used as the learning algorithm, to account for the
expanding dimensionality of the action space when more
zones are added. The action space was continuous, and
included setpoints for humidity as well as temperature. The
state included indoor and outdoor temperature and humidity,
and the reward function was similar to the two-term reward
system examined in [3]. The system reported a lower cost and
faster learn rate than using a Deep Q Neural Network [13].
This could be due to the fact that humidity control is more
appropriately suited to a continuous action space. As before,
their development was only tested in simulation. In a
continuation of the work described herein, our DRL controller
will be placed in a live home and some of the claims made in
literature will be subjected to a field test.

Il.  MODEL FORMULATION

A. HVAC Modeling Challenges

When modeling a building in simulation, each room has its
own thermal profile that interacts with adjacent rooms and the
outside, and air flow between rooms must be addressed [14].
These processes create a tangled web of nonlinear interactions.
Within this section, we will use “thermal mass”, a term that
broadly refers to the amount that ambient temperature affects
indoor home temperatures, as a catch-all for the black box of
partially observable home attributes that influence the indoor
temperature.

Accounting for the presence of thermal mass during a
temperature prediction is the primary challenge of HVAC
automation. A perfectly simulated model might yield an
optimal solution, but we expect the thermal profile of a home
to change over time. An MPC fine-tuned for a home built
today could be unusable one year from now. Even the most
thorough and accurate simulations have high specificity of
application.

Reinforcement Learning (RL) presents an alternative to
model-based systems by learning iteratively through
interaction with the environment. RL has shown promise in
game-based studies as well as in power systems applications
[15]. With RL, no foreknowledge of values such as insulation
coefficients or internal heat load is necessary. The learner
simply senses the current state of its environment, makes
decisions, updates its knowledge, and attempts to tune its
decision-making strategy to maximize its cumulative reward.
Instead of a simulated model which contains every measured
variable, those attributes that are cost effective to measure are
included in the state, and every other relationship will be
accounted for by leveraging Deep Learning. A controller
equipped with such an algorithm could be configured to learn
indefinitely inside a home and take self-corrective actions
until it has approximated the lowest cost HVAC operation.

To expedite the process of algorithm development, a
building and HVAC model was developed in Python. This
model served as the environment for the RL agent. The model
was trained and validated based on data from a highly
instrumented unoccupied research house [14]. The data

presented herein is 2-zone HVAC system control using this
model as the environment.

The overall problem can be modeled as a constrained
optimization problem: minimize cost of operation, while
maintaining user comfort. Cost of operation is defined as the
instantaneous price of energy times power consumption.
Comfort is satisfied if two conditions are met:

e The AC never runs if indoor temperature is 0.5 °C
below the customer’s lower preference.

e The AC runs continually if indoor temperature is 0.5
°C above the customer’s upper preference.

B. Reinforcement Learning

RL is a branch of machine learning that studies the
conditioning of a learning agent towards accomplishing some
goal through rewards and punishments [16]. At every
iteration, the learner (agent) takes an action and is given a
positive or negative reward. The agent is not told which action
to take, but must discover the maximum long-term reward
yielding actions through trial and error. RL works best when a
problem can be modeled as a Markov Decision Process
(MDP), which brings the problem into the scope of the
Bellman Optimality Equation.

The simplified, recursive Bellman Equation is

Vis) = I'n(;lX[R(S, a) +yV(s)] "

where s is the current state, s’ is the next state having taken
action a, V(s) is the current state value, v is the discount rate,
R(s,a) is the reward (having taken action a from state s), and
V(s’) is the next state value. This equation links the states of
an MDP together and gives the agent a roadmap for deciding
the next action from its current state. The state values do not
depend solely on instantaneous reward, but on the expected
return of the entire trajectory. Solving this equation yields V,
the value function. In an MDP, the next state is dependent on
the current state and action, but independent of all previous
state-action pairs [16].

After visiting a state and taking an action, the agent
calculates an updated value for that state-action pair in
accordance with the chosen algorithm. After a sufficient
period of training has elapsed, the agent attempts to converge
at an optimal policy that indicates the best action to take from
each state for maximum expected return. The time taken to
converge is the learning rate of that algorithm. The program
may then output a value function V, which is a dataset of each
state paired with the expected return from that state, a policy
function = which shows each state and the recommended
action for maximum return, or an action value function Q
which shows each state and the value of taking each possible
action from that state.

Three auxiliary variables are common to RL algorithms: 1)
the step-size parameter o influences the learning rate by
prioritizing recently-learned information over old data; 2) the
probability € guarantees exploration in the commonly used e-



greedy approach by granting the agent a probability & of
taking a randomly selected action; 3) a discount rate y must be
applied to the rewards so that their sum will approach a
number other than infinity, if the task to be accomplished is
continuous [16].

Ultimately, this problem can be modeled as a partially
observable MDP because each transition probability is
dependent only on the present state, but thermal mass is
hidden from the observation. Therefore, RL can be applied to
this problem.

I1l.  SOLUTION ARCHITECTURE

A. Reinforcement Learning Architecture

The architecture of the final RL model is reported here.
The state was made up of the inputs shown in Table I. All
features were normalized before being recorded as an
observation.

TABLE 1. STATE USED DURING TWO-ZONE CONTROL
Feature | Title | Function
1 Z1y z17 — Upper
2 727 227 — Upper
3 Or O~
4 P1 Price(t)
5 P2 Price(t + 5)
6 Ps Price(t + 15)
7 P4 Price(t + 30)

The two indoor zone temperatures are represented, as well
as outdoor temperature and four price values. P1 measures
instantaneous price, while P,, P3, and P4 are forecasted price
values in $/kwWh for the next 5, 15, and 30 minutes,
respectively. Zone temperatures are recorded as the thermostat
temperature minus the upper temperature preference of the
customer.

The action space is all binary combinations of “Off” and
“On” for each zone. For two zones, the space [0, 1, 2, 3]
corresponds to [“Off/Off”, “Off/On”, “On/Off’, “On/On”].
Calibration and parameterization were used to realize the
modified two-term reward system

Ry = - APCy -V @

where Py is the energy price over time t, C; is the consumption
over time t, and V; is the amount any indoor zone temperature
violated that comfort zone, in degrees Celsius. Since only
cooling was tested, the system only counted a comfort
violation above the upper preference point. A is used as a
weighting factor that prioritizes cost over comfort. A A of 100
was used for the final system.

The system is able to save money over a naive, fixed-
setpoint baseline because it practices precooling. The price

forecasting features warn the DRL controller of an upcoming
price increase. The controller runs the HVAC while the price
is low, then remains off after a price increase.

B. Neural Network Architecture

The learning algorithm used in this work is a Deep Q
Neural Network (DQN). This algorithm uses an evaluation
neural network to estimate the values of a Q Table with each
iteration. A second neural network runs in parallel to give the
first network a convergence target. The system employs one
evaluation and one target network running in parallel. DQN
provides a way to execute RL control objectives while
leveraging the optimization power of deep learning. Minh et
al. were able to show that the use of two networks could offer
stability and reduce potential oscillations during training [17].
Table 11 shows some of the algorithm parameters used.

TABLE II. DQN PARAMETERS

NN Learn Rate
Input Layers
Hidden Layers

0.01
1x7, one input per feature
2x10 (2 layers with 10 neurons
each)
Output Layers | 1x4, one output per action
Reward Decay (y) | 0.9
Epsilon (¢) | 0.1
Memory Size (Experience Replay | 20,000
Memory)
Batch Size | 32
Initial Iterations | 200
At. | 300
Optimizer | AdamOptimizer

Fig. 1 shows the pseudocode for operation.

1 Reserve and initialize replay memory MB
2 Initialize evaluation network Q with random weights 8
3 Initialize target network Q with random weights 6
4 N=Maximum numberof episodes
5 TSmax= Maximum number of time steps
6 k= Minimum cycle time
7
8  forepisode=1to N:
9 Reset buildingenvironmentenv
10 Spre = GETINITIALOBSERVATION (env)
11 a = GETINITIALACTION(env)
12 forts = 1to TSmax:
13 ifts % k==0:
14 j=ts/k
15 Scurr = GETCURRENTOBSERVATION(env, ts)
16 r=GETREWARD(env, Spre, @, Seurr)
17 MB & STORETRANSITION([Spre, @, 1, Scur])
18 Sample random mini-batch(s; a; r; s41) from MB
19 if episode terminates at j+1:
20 V=1
21 else:
22 y;= Q-Learning update using @ and 6
23 endif
24 L= MSE loss between y;and Q over all j
25 0=0-a(dL/do)
26 Every At. time steps, 6 = 8
27 Spre = Scurr
28 endif
29 env = UPDATEENVIRONMENT(env, ts, @)
30 end for
31  endfor

Figure 1. DQN Algorithm pseudocode for evaluation and target networks
[18].



IV. CASE STuDY

Since the eventual goal is the incorporation of the DRL
controller into a residential home, some calibration is
necessary to facilitate operation outside of a simulated
environment. The following section describes enhancements
to the DRL controller made to consider accommodation of a
human occupant, the customer.

A. Setpoint Governance

In our model, the system is controlled by translating
“On/Off” commands into setpoints above or below the indoor
temperature. However, the controller is prohibited from
submitting a setpoint which is outside customer’s comfort
preference. Instead of the DRL controller being responsible
for comfort regulation, it is allowed to focus on price and
monetary savings. There are several benefits to this constraint:

e The model under setpoint governance produces far
lower cost operation, up to 40% less per month.

e There are fewer states to learn, increasing learning
rate.

e The amount of comfort violations drops to zero above
the customer’s upper limit.

e The customer never observes a thermostat setpoint
outside of preference.

e In case of equipment failure or loss of
communications, the setpoint left behind is always
within comfort.

B. Relative Temperature Recording

In the upper half of Fig. 2, the indoor zone temperatures
have been recorded in the state as empirical values, but the
customer’s temperature preferences have changed four times
over the course of a month. When only empirical temperatures
are considered, the DRL controller’s learning rate suffers and
the indoor temperature strays outside the customer’s comfort
boundaries. To better demonstrate this anomaly, setpoint
governance has been disengaged.
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Figure 2. Absolute (top) vs. relative (bottom) temperature recording.

When the temperatures are instead recorded as zone
temperature minus the customer’s upper limit, the system is
better able to stay within comfort, as the lower half of Fig. 2
shows. Accommodation of sudden and frequent customer
preference changes are necessary during live occupancy. Even
when setpoint governance is enforced, the observation made
by the DRL controller must include information about both
the indoor temperature and the customer’s upper preference in
order to properly function.

C. Results

For the following validation experiment, our DRL
controller was trained for one month using outdoor
temperatures from June 2018, then validated on July. During
this month, it outperformed the fixed-setpoint baseline by
43.89%. Parameters and results are shown in Table I1I.

TABLE IlI. VALIDATION RESULTS

Comfort Range | 21-24°C

Minimum Cycle Time | 15 minutes

Price Range | $0.05-$0.25/kWh

Alternating Price Period | 6 hours

Apparent Convergence | 10 days

Monthly Cost | $26.68

July Baseline Cost | $47.55

43.89

% Savings

V. CONCLUSIONS

In this work, a flexible model-free RL optimization is
developed for creating the optimal schedule for an HVAC
system. The goal is to minimize energy cost, while




maximizing the comfort of the residents. The development
was able to save 43.89% in a simulated home environment
over a fixed setpoint baseline, while maintaining comfort
throughout. Due to the consistent money-saving performance
even during cold months, and since setpoint governance acts
as a failsafe for preserving comfort, this model could be
implemented into homes as it is today with confidence that
customers could save money and maintain comfort. In future
tests, heating will be incorporated, as well as the management
of other loads. The development is ready for testing in a live
home environment.
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