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Abstract—Spiking neural networks (SNNs), the class of neural
networks used in neuromorphic computing, are difficult to train
using traditional back-propagation techniques. Spike timing-
dependent plasticity (STDP) is a biologically inspired learning
mechanism that can be used to train SNNs. Evolutionary algo-
rithms have also been demonstrated as a method for training
SNNs. In this work, we explore the relationship between these
two training methodologies. We evaluate STDP and evolutionary
optimization as standalone methods for training networks, and
also evaluate a combined approach where STDP weight updates
are applied within an evolutionary algorithm. We also apply
Bayesian hyperparameter optimization as a meta learner for
each of the algorithms. We findt hatS TDPb yi tselfi s not
an ideal learning rule for randomly connected networks, while
the inclusion of STDP within an evolutionary algorithm leads
to similar performance, with a few interesting differences. This
study suggests future work in understanding the relationship
between network topology and learning rules.

Index Terms—spiking neural networks, spike-timing depen-
dent plasticity, evolutionary algorithms, Bayesian optimization

I. INTRODUCTION

With the looming end of Moore’s law and the rise of big
data, neuromorphic computing systems offer a compelling path
forward for low power, efficient machine learning. Neuromor-
phic systems, especially those based on spiking neural net-
works (SNNs), offer the ability to perform more neuroscience-
inspired machine learning. Many neuromorphic systems, in-
cluding Intel’s Loihi [1], include on-chip learning mechanisms
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in the form of synaptic plasticity. There is tremendous promise
for utilizing these synaptic plasticity mechanisms for both
supervised and unsupervised learning. In addition, on-chip
plasticity mechanisms may have also improved noise and fault
tolerance, but these features have not been fully explored in
the literature.

One of the most common learning mechanisms imple-
mented in neuromorphic hardware is spike-timing-dependent
plasticity (STDP) [2]. Multiple types of STDP have been
explored in the literature, including both unsupervised and
supervised approaches. There has been some success with
utilizing STDP as a standalone learning mechanism, especially
on tasks such as image classification, but it is not clear how
extensible it is to new applications or how much hand-tuning
is required for STDP to work for a given application. For
example, it is not clear whether STDP will work “out-of-the-
box” on new applications, or whether significant tuning of
the network itself and other relevant hyperparameters will be
required. That is, in addition to defining hyperparameters of
the STDP process itself, there are also other aspects that must
be defined in order to utilize STDP, including the structure of
network (numbers of neurons and connectivity) and the input
encoding approach utilized for the network. As such, several
questions emerge: how useful is STDP for new tasks? Can it
be easily applied, or is significant tuning of network design
and hyperparameters required for it to be useful? Moreover,
what benefits does it provide over other learning approaches?

In this work, we seek to address some of these questions
for a particular supervised STDP learning rule. We present
approaches utilizing evolutionary algorithms and Bayesian
optimization for auto-tuning the SNN structure and hyperpa-
rameters for supervised STDP-trained networks. We compare
the performance of this supervised STDP process as a stan-
dalone learning procedure (with randomly generated network
structures) with the performance of these hyperparameter and
network design algorithms operating on top of the supervised



STDP learning approach. We also compare the performance
of these approaches without the STDP learning rule and
determine the effect of the inclusion of STDP as part of the
learning process on training and testing accuracy, network size
and structure, and network resiliency. We show that STDP
as a standalone learning process (even with hyperparameter
optimization) is significantly outperformed by the evolution-
ary approach. However, we also show that the inclusion
of STDP with the evolutionary optimization can improve
the generalization ability of the resulting networks. We also
show that networks produced by the evolutionary and STDP
process tend to produce smaller networks than those produced
by the evolutionary process alone. Finally, we examine the
resiliency characteristics of these different training algorithms
with respect to synaptic failures.

II. BACKGROUND AND RELATED WORK
A. Plasticity-based learning

Spike timing-dependent plasticity (STDP) is a biologically
inspired learning rule for synaptic weight updates in SNNs [3].
This learning rule is based on observed phenomena of synaptic
strengthening and weakening in brains. While many variations
of STDP exist, the underlying rule is that a synapse between
pre and post-synaptic neurons will be strengthened if firing
at the pre-synaptic neuron caused firing at the post-synaptic
neuron. Conversely, synapses are weakened if firing at the pre-
synaptic neuron does not induce firing at the post-synaptic
neuron. STDP can either be supervised or unsupervised. In
the original, unsupervised form, the weight updates are the
same regardless of the correctness of the network output.
However, STDP can be made to be ”supervised” in a variety
of ways. In this work, we utilize reward modulated STDP
as the supervised STDP learning approach. In this case, the
direction of the weight update (strengthened or weakened) is
dependent on the network output [4]. Firing patterns which
result in correct predictions will be strengthened, while those
that result in incorrect predictions are weakened. STDP is not
the only biologically inspired learning rule; others such as
spike driven synaptic plasticity (SDSP) base weight changes
on a combination of spike times and neuron voltages [5].

B. SNN Training and Architecture Search

Supervised training in SNNs is also done in a variety of
other ways, including gradient descent or backpropagation-
style approaches [6]-[9], which are adapted in some way to
accommodate for the spiking, non-differentiability of neurons
in the SNN. Many of these approaches do not take advantage
of the full capability of SNNG, particularly in the training and
use of synaptic or axonal delays in SNNs. Moreover, with
each of these approaches, selecting the appropriate network
architecture or hyperparameters is still an issue. Evolutionary
optimization-based approaches can overcome some of these
issues by designing all aspects of the SNNs, including pa-
rameters such as synaptic or axonal delay, as well as network
structure, such as number of neurons and synapses [10]—[13].
However, evolutionary approaches also include algorithmic
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Fig. 1. We compare three approaches in this work: STDP only, evolutionary
optimization (EONS) only, and STDP and EONS together. For each of these
approaches, we utilize a Bayesian hyperparameter optimization approach to
tune the hyperparameters. This figure shows the relationship between the three
approaches.
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hyperparameters that, once optimized, could provide better
performance.

One common approach for hyperparameter optimization in
the deep learning literature, Bayesian optimization, has also
been applied to SNNs. It has been successfully applied to op-
timize hyperparameters of backpropagation-style algorithms,
binary networks [14], [15] and liquid state machines [16], as
well as in neuromorphic computing systems with algorithmic
hyperparameters for the evolutionary optimization process,
input/output encoding, as well as hardware hyperparame-
ters [17], [18].

III. APPROACH

In this work, we combine STDP with evolutionary
optimization-based neural architecture search and parameter
optimization, along with Bayesian optimization for algorith-
mic hyperparameter optimization. We compare this combined
approach with a standalone STDP and a standalone evo-
lutionary optimization approach, both of which have also
undergone Bayesian hyperparameter optimization. These three
approaches are shown in Figure 1, which emphasizes how
they are nested together to perform different optimizations.
We describe each of the components of this approach in the
following subsections.

A. Spiking Neural Network Model

We use a leaky integrate and fire neuron model, with simple
weighted synapses and discrete time delays on the synapses.
We utilize a recurrent network architecture. In this recurrent
architecture, any neuron may be connected to any other
neuron in the network, including input and output neurons.
We specify the number of input neurons, hidden neurons,
output neurons, and the number of synapses to utilize and
then construct the network by initializing the neurons and then
randomly selecting two neurons to connect with a synapse
until the desired number of synapses is reached. All SNNs are
implemented and evaluated using the Caspian neuromorphic



processor [19], an FPGA-based neuromorphic implementation
with a hardware accurate simulator written in C++.

In this work, we utilize datasets in which the input values are
floating point or integer values that must be encoded as spikes.
Input encoding (from value to spike) is either done through
a combination of binning and rate-based encoding, which are
described in more detail in [20], or using temporal coding, in
which the time of the spike encodes the value. We focus in
this work on classification tasks with discrete outputs; as such,
each output class is represented by an output neuron and we
decode the spikes on those neurons to find the appropriate
classification value. Discrete output decoding is done by
selecting the neuron which has fired the most over the time
(a winner-take-all approach) or temporal coding, in which the
output neuron that spikes first is selected as the output class.
Determining the appropriate encoding/decoding scheme and
their associated hyperparameters are an important selection
when utilizing any SNN approach and can have a significant
impact on the performance of the algorithm. As such, we
utilize hyperparameter optimization (described below) to find
the best performing encoding/decoding approaches for each
algorithm.

B. STDP learning rule

We utilize a supervised spike timing-dependent plasticity
rule which updates all synapses within an SNN, based on
the discrete firing times of the neurons, similar to the rule
demonstrated here [4]. For synapse weight w, our update rule
is as follows:

a * sgn(w)
tpost - tpre + 0.5

where 1, is the time the pre-synaptic spike arrives at the post-
synaptic neuron, t,,s; is the spike time of the post-synaptic
neuron, « is the learning rate, and sgn(w) is the sign, positive
or negative, of the current weight value. In order to perform
supervised STDP, we use one two « values, «,(reward) and
oy, (punish), based on whether the network classification is
correct. o, is always positive, to drive the weight update in
the normal direction, while «, is always negative, to cause an
anti-STDP weight update. Since the firing times for neurons in
the Caspian processor are all discrete integers, we include the
0.5 constant in the denominator to prevent divide by zero when
tpre = tpost, While also ensuring symmetry of the magnitude of
weight updates when ;.. > t)0st OF {pre < tpost. This update
occurs for each pair of pre and post synaptic spikes which fall
within a defined window. Weight updates are computed and
applied after each training example is evaluated by the spiking
neural network.

Aw =

C. EONS

One of the key issues with utilizing a learning procedure
such as STDP is how to select the network structure and
other network parameters such as delays (in our case, on
the synapses) or neuron thresholds. The network structure as
well as the other network parameters are often hand-tuned by

the researcher for a given task. To automate this process, we
utilize Evolutionary Optimization for Neuromorphic Systems
(EONS) [12], [13] to automatically design the network struc-
ture and network parameters of synaptic delay and neuron
thresholds. EONS can be utilized as a standalone network
design process that tunes all aspects of the network, or it can
be used in combination with other training or learning ap-
proaches. In this work, we utilize EONS both as a standalone
approach for determining all aspects of the network (structure
and parameters), as well as in combination with STDP (where
EONS defines the structure and non-weight parameters).

EONS is a genetic or evolutionary algorithm-based ap-
proach for designing SNNs for neuromorphic deployment.
EONS utilizes a direct representation of the SNN in its pop-
ulation, so every aspect of the network is directly represented
in the individual stored in the population. In the case of the
EONS, the representation is the network itself (not a traditional
genomic representation). During the EONS process, each
network in the population is evaluated using a fitness function
and assigned a score. The scores are used to perform selection,
wherein better performing networks are preferentially selected
to serve as parents for the next generation. Reproduction
operations are performed on this pool of parent networks
to produce child networks for the next generation. EONS
utilizes both crossover (on the networks themselves), as well as
mutations (e.g., adding or deleting a neuron, adding or deleting
a synapse, changing a parameter value, etc.) to produce child
networks. EONS can be easily combined with other training
or learning mechanisms. In this case, we combine EONS with
the STDP learning approach by including the STDP learning
as part of the fitness evaluation process.

D. Bayesian Hyperparameter Optimization

We utilize iterative Bayesian-based technique to perform
hyperparameter optimization for our algorithms (EONS and
STDP), as well as hyperparameters associated with the
Caspian hardware (such as parameter value ranges) and hy-
perparameters associated with how input encoding from values
to spikes works. Bayesian optimization is a technique suitable
for optimizing black-box and expensive objective functions. It
builds a posterior distribution using a likelihood model (obser-
vations) and Gaussian processes as a priori. A surrogate model
is optimized and directs the search path toward estimating the
unknown black-box function (i.e., the accuracy of the network)
while determining the best next point (set of hyperparameters)
to evaluate at each step. In each iteration, the surrogate model
is calculated to ensure both exploration and exploitation of the
search space.

In this work, we optimize hyperparameters for each com-
bination of algorithms shown in Figure 1 (i.e., Bayesian opti-
mization is used as the outer optimization approach for EONS
alone, STDP alone, and EONS+STDP approaches). This step
is performed to determine the optimal hyperparameters for
each approach and to perform fair comparison between them
(rather than tailoring the hyperparameters for one approach
and using that on all approaches). For each of these individual



Parameter category

TABLE I

OPTIMIZED HYPERPARAMETERS

l

Parameter

| EONS | STDP | EONS+STDP

population size 800 1000 1100
EONS crossover rate 0.5 - 0.7
mutation rate 0.7 - 0.5
spike count 12 10 10
Encoding iqterval 7 6 7
bins 8 - 8
time to first spike - True -
max synapse weight 31 63 63
Caspian max synapse delay 15 3 15
max neuron threshold 15 31 15
window - 5 12
STDP ap - 0.6 0.5
ap - 0.6 0.5
Random network generation hidden neurons ) 20 )
synapses - 140 -

algorithmic approaches, the Bayesian optimization approach
begins by evaluating two sets of hyperparameters. The results
from those two observations are used to build the initial pos-
terior Gaussian process. In each iteration of Bayesian search,
a surrogate model (called the acquisition function) is built
based on the Gaussian distribution. The optimum point of the
acquisition function is the set of hyperparameters to evaluate
in the next iteration. In each iteration, the added observations
reduce the uncertainties of the prior Gaussian distribution and
helps predicting the actual trend for the performance of the
network. The process is repeated at least for 50 iterations
for each algorithmic approach in order to determine well-
performing hyperparameters for each approach.

IV. RESULTS

We focused our evaluation on the wine dataset from scikit-
learn, which has 13 input attributes and 3 output classes. This
is a small dataset that is easily evaluated and allows for large-
scale evaluation of these different algorithmic approaches. In
the future, we intend to investigate the effect on other datasets.

A. Hyperparameter Optimization Results

As noted in Section III, we utilize Bayesian optimization
to optimize the hyperparameters for each approach. The full
set of hyperparameters optimized is shown in Table I, where
hyperparameters that are not utilized for that algorithmic
approach are left as dashes. Note that there are five types of
hyperparameters:

« EONS: Hyperparameters for the evolutionary or genetic
approach. These are the population size, the crossover
rate, and the mutation rate.

o Spike encoding: Hyperparameters associated with how
input values are encoded into spikes.

o Caspian: Hyperparameters associated with the neuromor-
phic hardware utilized. These include maximum values
of synaptic weight, synaptic delay, and neuron threshold,
each of which are related to the precision of the value.
The maximum weight value for Caspian also determines
the minimum weight value, which is the negation of the
maximum weight value.

o STDP: Hyperparameters that are used to govern how the
supervised STDP process behaves.

o Random network generation: Hyperparameters that deter-
mine the size of the initial randomized networks.

Table I also gives the best values found using the Bayesian
optimization process for each of the three algorithmic ap-
proaches, EONS, STDP, and EONS+STDP. There are a few
interesting things to note about these values. First, for both
algorithmic approaches that utilize STDP, higher maximum
weight values, allowing for a weight range of -63 to 63, as
compared with the EONS approach, which suffices with a
weight range of -31 to 31. Because the particular hardware
implementation utilized here (Caspian) has integer weight
values, we speculate that the wider weight range is required
to be able to recognize and utilize the STDP updates. If a
smaller weight range were imposed, there would be less room
for STDP weight updates to make a difference in performance.

Also interesting to note is that the encoding approach uti-
lized for both EONS and EONS+STDP are very similar, while
the STDP approach alone uses a very different encoding ap-
proach with “time-to-first-spike” encoding. This could indicate
(along with the results below), that the optimization process
has automatically tuned the hyperparameters for EONS+STDP
more for EONS than the embedded STDP process.

B. Training and Testing Performance

Utilizing the best performing hyperparameters for each
algorithm (as listed in Table I), we then ran each of the
algorithms for 50 training epochs. In the case of the EONS
approaches, each epoch is one generation, while for the STDP
only approach, each epoch is one pass through the data for
each network in the “population.” Figure 2 shows the average
best accuracy over the course of the training epochs for each
of these approaches. As we can see in these plots, the STDP
approach does not appear to improve much over the course of
training and is not able to pull itself out of the local optima
in which only two of the three labels are classified correctly
in the wine dataset. The initial networks for the STDP only
approach perform better than the initial networks for the EONS
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and EONS+STDP approaches, but are quickly outperformed.
Both the EONS and EONS+STDP training trajectories are
very similar, indicating that the inclusion of STDP has little
effect on the training performance.

Figure 3 shows the training and testing accuracy for each
of the three algorithmic approaches. Once again, it is clear
that the STDP approach alone performs significantly worse
than the algorithmic approaches that utilize evolutionary op-
timization. However, the difference in performance between
EONS and EONS+STDP is worth noting. In particular, there
is a statistically significant performance different between the
resulting training accuracies of EONS and EONS+STDP, with
EONS outperforming the EONS+STDP result in terms of
training accuracy. However, the difference in testing perfor-
mance between EONS and EONS+STDP is not significant. As
such, this indicates that the inclusion of STDP can improve

the generalization ability of the network. With this result, it
may be that EONS+STDP networks can take longer (require
more training epochs) to achieve the same training accuracy,
but that the resulting networks perform better on new data
instances.

C. Network Structure Analysis

To understand the difference in performance between net-
works generated with the three different algorithmic ap-
proaches, we first looked at the pruned networks (networks in
which all neurons and synapses that would not lead directly to
an output are eliminated). The best performing networks for
EONS, EONS+STDP, and STDP (where the number of hidden
neurons and synapses is determined by the Bayesian optimiza-
tion approach) in Figures 4, 5, and 6, respectively. As we can
see in these figures, the networks produced by the evolutionary
process are significantly different than the random structure
initialized based on the optimized hyperparameters. Moreover,
all of these network structures are significantly different than
the traditional feed-forward networks that are often seen in
the literature, even for SNNs. In future work, we intend to
investigate the performance of these algorithms with more
structured, feed-forward style networks.

Another interesting thing to note about the networks pro-
duced by the EONS approaches is that the resulting SNNs
do not include any hidden neurons. Because EONS allows
for connections between any two neurons in the network,
including between inputs and inputs, outputs to outputs, and
outputs to inputs, EONS will often train networks that do
not require hidden neurons at all to perform classifications
or control tasks. Instead, the inputs and outputs themselves
will be used for computation as well.

Finally, Figure 7 shows the overall network size differences
between networks produced by EONS and EONS+STDP,
in terms of the number of neurons (nodes) and number of
synapses (edges). As can be seen in this figure, the networks
produced by EONS+STDP tend to be smaller than those
produced by EONS alone, and that the difference in the
network size is statistically significant. This is an interesting
result that indicates that beyond improving the generalization
ability of the SNNs produced, EONS+STDP networks can also
be smaller, and thus are more likely to be more area and energy
efficient in a neuromorphic implementation.

D. Resiliency

We examined the resiliency of the networks produced by
each of the algorithms. To measure resiliency of a network, we
randomly remove some fraction f of synapses in the network,
and measure the corresponding change in training accuracy.
This process is repeated multiple times for an individual
network to obtain and average resiliency to random deletions
for that network. The result of the resilience analysis are shown
in Figure 8. EONS and EONS+STDP demonstrate very similar
resilience curves, with a linear decrease in performance as a
function of the fraction of synapses deleted. The STDP trained
networks, while starting at a lower accuracy, appear to be
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more resilient to synapse deletions, as the slope of the STDP
resilience curve is more gradual.

V. DISCUSSION AND CONCLUSIONS

Here we hierarchically combine three different types of
learning or optimization approaches for spiking neural net-
works: STDP, EONS (an evolutionary optimization based
approach), and Bayesian hyperparameter optimization. In this
work, we focus this workflow specifically on understanding
whether the evolutionary approach and the Bayesian hyperpa-
rameter optimization approach can be used to automate some
of the hyperparameter and network design decisions that need
to be made when utilizing an algorithm for a new application
and determine whether they can improve the performance over
“out-of-the-box” network designs and hyperparameter settings.

It is worth noting that we explicitly do not utilize pre-
constructed or hand-tuned networks or hyperparameter sets
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within this work, because we do not believe that is reasonable
to expect when applying an algorithm to each new application.
However, based on other works in STDP literature, it is clear
that with hand-tuning of both the network structure and the
hyperparameters, STDP can achieve good results on some
applications.

From this work, we can see that STDP is not necessarily
an effective learning rule for the types of networks produced
through evolutionary optimization, which may contain all
types of recurrent connections and arbitrary structures. While
we observe that the inclusion of STDP within the evolutionary
optimization did not significantly impact performance across
the metrics studied in this paper, it did have several noticeable
effects, namely in reducing network size and improving gen-
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eralization ability. Both of these are desirable characteristics
in deployed SNNs.

Here we focus on a particular supervised STDP learning
rule. In future work, we intend to investigate the effect of the
inclusion of other supervised and unsupervised learning rules
with these additional optimization methods. We also intend
to investigate the effect of different types of network struc-
tures, including more traditional feed-forward neural network
structures.
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