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Abstract

Quantitative image analysis in the security sciences formulates an image deblurring

problem as a Bayesian inverse problem to reduce and quantify noise and blur. We

consider images of size 16 megapixels and, since each pixel represents an unknown, the

dimension of the Bayesian inverse problem is on the order of 107. The large dimension

poses numerical and computational difficulties for two reasons. First, Markov chain

Monte Carlo (MCMC), typically used to solve a Bayesian inverse problem, is generally

slow to converge in high dimensions. Second, even generating one step in a Markov

chain is challenging at this size. We present a Gibbs sampler that is scalable to the

large dimension required in the security sciences and its scalability is achieved in

two steps. We (i) accelerate MCMC convergence by exploring banded structure in

the posterior precision matrix; and (ii) use a matrix-free implementation, because

constructing and storing even sparse matrices is infeasible in our target application.

15



Chapter 1

Introduction

Imaging is commonly used as a qualitative source of information, where the goal is to

produce the best looking image possible. An imaging technique used in the security

sciences is pulse-powered X-ray radiography, which, in contrast, is used as a quanti-

tative diagnostic tool for scientific experiments. A radiograph is produced by pulsing

a high energy source that emits X-rays through the scene. The scene consists of ob-

jects of varying materials and densities which contribute to the attenuation of X-rays,

and the X-rays that are not attenuated are absorbed by a scintillator which converts

X-rays to visible light. The light intensity from the scintillator is photographed by a

Charge-Coupled Device (CCD) within an optical system to produce a radiograph.

The US Department of Energy (DOE) owns several high-energy X-ray imaging sys-

tems, including the Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT)

at Los Alamos National Laboratory [26], the Flash X-ray machine at the Con-

tained Firing Facility (CFF) of Lawrence Livermore National Laboratory [29], and

the Cygnus Dual Beam Radiographic Facility at the Nevada National Security Site

(NNSS) [38, 39]. These systems are part of the DOE’s stockpile stewardship program

and are used to image hydrodynamic materials experiments. The materials studied

can be very dense, and the experiments occur over a very short time scale. Thus

16
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high energy X-rays are required, with precise timing and a short pulse to effectively

capture radiographic images of the experiments.

The radiographic images produced by these systems are corrupted by noise and

blur, which depend on inherent characteristics of the system, such as X-ray scatter,

the intensity profile of the X-ray source, and the physical and optical components

that produce the radiographs. In order to effectively model the system, both the

noise and blur must be taken into account. The blur in the system can be modeled

as a convolution of a true image, X, with the system response, a, which is called

the convolution kernel. This model assumes spatial invariance, i.e. that the kernel is

independent of the location in the image. A discrete convolution model is considered,

due to the discrete nature of the data collection. The noise is modeled as additive

and Gaussian. This linear model can be written in the form B = a ∗X + ε, where

B and X are the data and true images, respectively, ε is the Gaussian noise, and ‘∗’

represents discrete convolution. The goal is to reconstruct the true image, X, given

the data B and the kernel a. This process is called deconvolution and is an ill-posed

inverse problem [42]. That is, small changes in the image data due to noise have

drastic effects on the solution. This is one of the hurdles that needs to be addressed

in order to produce accurate reconstructions.

Aside from ill-posedness, several other challenges exist that are the focus of this

work. Firstly, the data of interest is produced by Cygnus at the NNSS, and the

images captured are large, on the order of 16 megapixels. The dimension of the

problem is equal to the number of pixels in the image, resulting in an extremely

large matrix in the linear system associated with the linear convolution model. The

high dimensionality makes matrix based solutions infeasible. Secondly, in discrete 2D

convolution, the value of a pixel in the data B depends on the values of neighboring

pixels in the true image X, determined by the extent of the kernel a. For pixels near

the border of the data B, the kernel extends beyond the boundary of the data. Thus
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the natural domain for the reconstruction X is larger than the domain of B. The

boundaries must be carefully considered in order to avoid computational artifacts in

the reconstructions.

A classical means of performing deconvolution is via Fourier-based methods, which

do not require construction of the forward matrix [18]. These methods require as-

sumptions on the boundary – such as periodicity – that are unnatural for many

images, and can result in poor reconstructions. In order to account for these bound-

ary effects, an extended boundary on the reconstruction is assumed in this work,

as in [1, 5]. Unfortunately, these boundary conditions are incompatible with classi-

cal Fourier-based deconvolution methods and also make the inverse problem under-

determined. In this work, a deconvolution method is formulated which utilizes a

block Gibbs sampler, and careful blocking of the data into sub-images which makes

the deconvolution computationally feasible and makes the Gibbs sampler efficient.

The matrices required for the sub-images can still be prohibitively large. Functional

versions of necessary operators are developed, which do not require explicit construc-

tion of the full matrix. Additionally, to overcome the ill-posed and under-determined

nature of the inverse problem, a Bayesian approach is taken. Prior assumptions are

imposed on the reconstruction X, and samples are generated from the correspond-

ing posterior distribution. This is similar to regularization, and is a commonly used

technique [1, 2, 14, 37]. Samples are computed by numerically solving the inverse

problem using a Markov chain Monte Carlo (MCMC) method. Specifically, a block

Gibbs sampler is constructed that uses sub-images as variable blocks. The sam-

pler computes a deconvolution of each sub-image conditioned on relevant neighbors

to form a complete reconstruction at each iteration of the sampler. This blocking

scheme takes advantage of structure in the Gaussian posterior precision matrix and

the two-dimensional nature of the data.

In this work, we present a matrix-free implementation of deconvolution within a
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Bayesian framework, which can effectively produce deblurred samples of large im-

ages. The Blocked Gibbs sampler incorporates data-driven boundary conditions as

described in [1], and utilizes a blocking scheme that takes advantage of the structure

of the posterior precision matrix and the two-dimensional nature of the data. This

construction is scalable with image size allowing effective convergence of the MCMC

chain, which generally scales poorly with dimension [7, 17, 40]. Both the blurring

kernel used and the images reconstructed are larger than those analyzed in the cur-

rent literature [8, 9, 13, 20, 23, 41, 45], which makes our method applicable to a new

space of applications, including radiographs produced at DOE facilities. The method

presented also provides uncertainty estimates and results are presented on real data

from the Cygnus Dual Beam Radiography Facility at the NNSS.



Chapter 2

Background on discrete

convolution, Bayesian modeling,

and Gibbs sampling

In this chapter, necessary background information for image deblurring via 2D decon-

volution in a Bayesian setting is provided. Discrete convolution is introduced in both

1D and 2D, and different boundary conditions are discussed. Next, the Bayesian

formulation of the problem is given and the relevant probability distributions are

derived. Finally, the Gibbs sampler is introduced.

2.1 Discrete convolution and boundary conditions

As noted in the introduction, 2D convolution with a known kernel is used to model

the blur in the image data. The data obtained from the imaging systems is discrete,

which lends itself to a discrete 2D convolution model. The 2D model can be difficult

to follow due to all of the necessary indices to consider. In order to introduce the

problem structure, 1D convolution is introduced. Considering the 1D convolution

provides useful insight into the 2D convolution problem.

20
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2.1.1 1D convolution and classical boundary conditions

Discrete convolution in one dimension can be written as

bi =
∞∑

k=−∞

ai−kxk for i = 1, . . . ,mb,

where the bi represents the collected data, ai represents the blurring kernel, and xi

represents the true 1D signal. Here, there are mb output measurements bi. The kernel

is assumed to be known – either by a model or discrete measurement – and has finite

extent. We define a to be non-zero for indices 1 to ma and, similarly, x is non-zero

starting at index 1. Assuming that the kernel a is smaller than the true signal x, we

have

bi =
i−1∑

k=i−ma

ai−kxk+ma =
ma−1∑
k=0

ama−kxk+i for i = 1, . . . ,mb. (2.1.1)

Equation (2.1.1) can be written in matrix notation as



b1

b2

...

bmb


=



ama ama−1 · · · · · · a2 a1 0 · · · 0

0
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . 0

0 · · · 0 ama ama−1 · · · · · · a2 a1





x1

x2

...

xmb+ma−2

xmb+ma−1


, (2.1.2)

or b = Ax. The matrix notation shows that although b ∈ Rmb , the true signal

x ∈ Rmx , where mx = mb +ma− 1, and A ∈ Rmb×mx . That is, the natural domain of

x is larger than the domain of b, and depends on the size of the kernel. The domain

of b is commonly referred to as the field of view (FOV) in image processing. The

FOV corresponds to the center mb points in the true signal, x. The offset on the

left side of x is cm = bma−1
2
c indices, and ma − cm on the right, where b·c represents

the floor function. Figure 2.1.1 shows how these two vectors align. The fact that x

necessarily extends beyond the FOV makes the system for the deconvolution problem
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[ x1 · · · xcm︸ ︷︷ ︸
left boundary

[
|

b1 · · · · · · · · · bmb

xcm+1 · · · x2cm · · · xmb+1 · · · xmb+cm︸ ︷︷ ︸
center mb elements

]
| xmb+cm+1 · · · xmx︸ ︷︷ ︸

right boundary

]

Figure 2.1.1: The alignment of the true signal, x, with the data, b, is shown to provide
a visual representation of the field of view. (2.1.3) and (2.1.4) define two classical
choices for boundary conditions.

under-determined.

The classical means of overcoming this issue is to make assumptions about the

boundary of the true signal x, called boundary conditions. The true signal x is as-

sumed to have the same domain as the data b and outside the FOV assumptions

are enforced on the values of x based on those within the FOV. Common choices

for boundary conditions include periodic, zero, and reflecting boundary conditions

[18]. Periodic boundary conditions assume that x is periodic and thus the signal

repeats outside the FOV. Zero (or Dirichlet) boundary conditions assume that x is

zero outside the FOV. Reflecting (or Neumann) boundary conditions assume that x

is reflected over the boundary. These boundary conditions can be described mathe-

matically as

(x1, · · · , xcm) =


(xmb+1, · · · , xmb+cm) periodic

(0, · · · , 0) zero

(x2cm , · · · , xcm+1) reflecting

, (2.1.3)

on the left hand side, and

(xcm+mb+1, · · · , xmx) =


(xcm+1, · · · , xma) periodic

(0, · · · , 0) zero

(xmb+cm , · · · , xmb+2cm−ma) reflecting

, (2.1.4)

on the right hand side. Visual examples of the BCs for a 1D signal are shown in

Figure 2.1.2. The figure illustrates a 1D signal and its extension beyond the FOV,
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Figure 2.1.2: Boundary conditions for a 1D signal. The vertical dotted red lines
denote the domain (FOV) of the measured data. The true signal is shown on the left,
and the rest of the graphs depict the assumption of what the true signal looks like
based on various boundary conditions: periodic, zero, and reflecting (left to right).

and depicts a comparison to what the signal would look like if it satisfied the assumed

boundary conditions. Each of the signals satisfying the boundary condition choices

differ considerably outside the FOV from the true signal.

Classical boundary conditions result in a system that is no longer under-determined.

The system can be written b = Âx̃, where Â is the convolution operator with clas-

sical boundary conditions, and x̃ represents the central mb elements of the vector x.

In this case, Â ∈ Rmb×mb and the boundary conditions are applied to the vector in

the FOV. Each of the above classical boundary conditions is associated with an effi-

cient spectral method for solving the deconvolution problem. For periodic boundary

conditions, Â is a circulant matrix, and the system is diagonalizable by the discrete

Fourier transform (DFT)[18, 42]. With zero boundary conditions, A is a Toeplitz

matrix, which can be embedded in a circulant matrix and also solved via the DFT

[1]. Reflecting boundary conditions result in an A matrix with Toeplitz-plus-Hankel

structure. If the kernel is also symmetric ( (a1, · · · , ama) = (ama , · · · , a1) ), then the

system is diagonalizable by a discrete cosine transform (DCT) [31].
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2.1.2 2D convolution and classical boundary conditions

The 2D case follows a structure similar to that of the 1D case. In general, 2D

convolution is written as

bi,j =
∞∑

`=−∞

∞∑
k=−∞

ai−k,j−`xk,` for i = 1, . . . ,mb, j = 1, . . . , nb. (2.1.5)

As before, the kernel is assumed to be discrete, a ∈ Rma×na , and the 2D signal – or

image – representing the data has a known size B ∈ Rmb×nb . Then for any pixel in

the data, (2.1.5) can be rewritten after re-indexing as

bi,j =
na−1∑
`=0

ma−1∑
k=0

ama−k,na−`xi+k,j+`, for i = 1, . . . ,mb, j = 1, . . . , nb. (2.1.6)

In order to write (2.1.6) as a linear system, it is necessary to vectorize the im-

ages B and X. Vectorization is generally done by column-stacking, i.e. given B =[
b1 b2 · · · bnb

]
, then

b = B(:) =



b1

b2

...

bnb


The notation b = B(:) is used to represent the column stacking operation. The vector

b ∈ RM and x ∈ RN , where M = mb · nb and N = mx · nx.

The inner sum of (2.1.6) has the same structure as the sum in the 1D convolution

(2.1.1). Over all i’s, the inner sum is equivalent to the 1D convolution between the

(na− `)th column of the kernel and the (j + `)th column of the true image. Thus, the
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matrix A` can be defined as

A` =



ama,` ama−1,` · · · · · · a2,` a1,na−` 0 · · · 0

0
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . 0

0 · · · 0 ama,` ama−1,` · · · · · · a2,` a1,`


, (2.1.7)

similar to the matrix in (2.1.2). This matrix has size mb×mx. The subscript denotes

the corresponding column in the kernel. Then we have

bj =
na−1∑
`=0

Ana−`xj+`.

This has a structure similar to the 1D convolution (2.1.1), except the scalar x’s and

b’s have been replaced with vectors, and the a’s have been replaced with matrices.

The full 2D operator has an overall structure that looks similar to the 1D case, with

a block diagonal structure made up of the A`’s instead of the scalar a`’s. The system

can be written as

b1

b2

...

bnb


=



Ana Ana−1 · · · · · · A2 A1 0 · · · 0

0
. . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . 0

0 · · · 0 Ana Ana−1 · · · · · · A2 A1





x1

x2

...

xnx


, (2.1.8)

or b = Ax, where there are nb × nx sub-matrices in A.

As in the 1D case, this system is generally under-determined. The same classical

boundary conditions (periodic, zero, and reflecting) can be implemented to produce

a system with a square matrix Â ∈ RM×M . The size of Â here implies the boundary

conditions are applied to the FOV (the central M = mb·nb pixels of the image). In 2D,

the boundary conditions are applied in both the vertical and horizontal dimensions

of the image. An example with a synthetic image is provided in Figure 2.1.3, which

shows a synthetic image with an identified FOV, and how the image would look if
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Figure 2.1.3: Boundary conditions for a synthetic image. The true image is included
on the left. The white box represents the field of view. The next three images show
what the figure would actually look like if it satisfied periodic, zero, or reflecting
boundary conditions (left to right). All three boundary conditions lead to images
that are different from the true image.

it satisfied classical boundary conditions. As before, outside the FOV, these images

differ considerably from the true image. As in the 1D case, each of the classical

boundary conditions have associated computationally efficient spectral methods to

solve the 2D deconvolution. These methods are similar to the 1D case, except they

use the 2D DFT and DCT [1]. Assuming classical boundary conditions in order

to use these methods can result in artifacts in the reconstructions, because prior

assumptions – the boundary conditions – enforced on the unknown x are restrictive

and lack physical motivation.

Rather than making strict boundary condition assumptions, the problem is instead

solved on the extended domain of x. That is, we consider solving the problem as

defined in (2.1.8). In [1], it is noted that this system can be represented as

b = Ax = DÂx (2.1.9)

where Â ∈ RN×N , and D crops the output to the central M pixels. The operator

Â can have any classical boundary conditions, and these boundary conditions act on

the pixels outside the FOV. The choice of classical boundary condition is arbitrary

since the pixels within the FOV are not affected. Thus spectral methods can be used

to perform the action of Â on the extended domain, before cropping the output with

D to the FOV to perform the convolution.



CHAPTER 2. BACKGROUND 27

The unresolved issue, as previously noted, is that this system is under-determined.

Additionally, although Â is diagonalizable via 2D spectral methods, A is not, mak-

ing deconvolution require prohibitively large matrices when the image is large. The

solution to this under-determined system is achieved by taking a Bayesian approach,

detailed in Section 2.2, and the issue of scalability with dimension is handled via the

block Gibbs sampler described in Chapter 3.

2.2 Bayesian formulation

Images are captured as a grid of cells, such as those found in Charge-Coupled Devices

(CCD) or Complementary metal–oxide–semiconductor (CMOS) image sensors. Each

cell in the grid measures light over a small portion of the field of view and the light

intensity can be represented as a scalar quantity. The collection of intensity values

from each pixel is stored in the 2D array B ∈ Rmb×nb which represents the image

data. The intensity value at each pixel location (i, j) is corrupted by blur and noise.

Common choices for modeling the noise include Poisson and Gaussian [2, 4], and

we focus on the Gaussian case here. The noise is modeled as an additive random

component,

b = Ax + ε, (2.2.1)

where b, A, and x represent the column stacked data, the convolution matrix, and the

column stacked true image, respectively, as in the 2D convolution equation (2.1.8),

and ε represents the additive Gaussian noise. The random error in each pixel εi

is assumed to be independently and identically distributed (iid) with mean 0 and

precision λ > 0, or equivalently variance λ−1. This is represented by ε ∼ N (0, λ−1I),

where N represents the Gaussian distribution, and I is the identity matrix. This
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gives rise to the Gaussian likelihood,

pl(b|x) ∝ exp

(
−λ

2
||Ax− b||2

)
, (2.2.2)

where ||·|| denotes the standard Euclidean norm, ||x|| =
√

x>x, where ‘>’ denotes

transpose, and ‘∝’ denotes proportionality.

Maximizing the likelihood pl(b|x) in (2.2.2) is not well-posed. The Bayesian tech-

nique for dealing with this issue is to impose a prior probability on x. A Gaussian

prior

p0(x) ∝ exp

(
−δ

2

∣∣∣∣L1/2x
∣∣∣∣2) , (2.2.3)

is assumed, where δ > 0 is the prior precision parameter, and L is a sparse, symmetric

positive semidefinite matrix. In this work, the precision matrix L is specified as the

2D discrete negative Laplacian. This choice indicates some expectation of smoothness

on the image. The action of L can be represented as a convolution with the kernel
0 −1 0

−1 4 −1

0 −1 0

 , (2.2.4)

and the boundary conditions of the Laplacian are chosen to match those of Â in

(2.1.9). Due to the extended boundary conditions of A = DÂ, the choice of boundary

conditions has a negligible impact on the reconstructions. Because there are only

five non-zero elements in the kernel, the proportion of non-zero elements is at most

5/(mx · nx) which makes L sparse for large images. The structure of this matrix is

discussed further in Section 3.2.5.

Since both the likelihood and prior are Gaussian, applying Bayes’ Theorem results
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in a Gaussian posterior distribution:

p(x|b) ∝ p(b|x)p(x)

∝ exp

(
−λ

2
||Ax− b||2 − δ

2

∣∣∣∣L1/2x
∣∣∣∣2)

= N
(
m,H−1

)
, (2.2.5)

where the posterior precision and mean are given by

H = λA>A + δL, (2.2.6)

m = λH−1A>b. (2.2.7)

The goal is to produce samples from the posterior distribution to characterize the

distribution of the true image given the blurred and noisy data.

Although the posterior distribution is Gaussian, it is still difficult to sample from

due to the large dimension. The precision matrix H has size N×N , where N = mx·nx.

The target application addressed in Chapter 4 considers images with nx ≈ mx ≈ 4000,

resulting in a problem dimension of N ≈ 16·106. This poses computational difficulties

even under the Gaussian assumption, as the standard procedure for sampling from

a Gaussian distribution involves computing matrix square roots, or other matrix

factorizations [14]. The banded structure of the posterior precision matrix makes

such factorizations infeasible at the full problem size. However, the local and sparse

nature of the operator can be exploited to break the problem into computationally

manageable pieces.

2.3 Markov Chains and Gibbs sampling

In the Bayesian setting, uncertainty quantification is performed by statistically ana-

lyzing samples drawn from the posterior distribution. It is often non-trivial to sample

directly from posterior distributions, generally due to non-standard structure, but in
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Algorithm 1: Gibbs Sampler

input : Initial state x(0) =
[
x

(0)
1

>
, x

(0)
2

>
, · · · , x(0)

n

>]>
, maximum iteration

Ne, and conditional distributions p(xi|x1, · · · ,xi−1,xi+1, · · · ,xn,b)
output:

{
x(0),x(1), · · · ,x(Ne)

}
where x(k) ∼ p(x|b)

1 for k = 1, . . . , Ne do
2 for i = 1, . . . , n do

3 x
(k)
i ∼ p

(
xi

∣∣∣x(k)
1 , · · · ,x(k)

i−1,x
(k−1)
i+1 , · · · ,x(k−1)

n ,b
)

4 end

5 x(k) =
[
x

(k)
1

>
, x

(k)
2

>
, · · · , x(k)

n

>
]>

6 end

this case due primarily to the high problem dimension. Markov chain Monte Carlo

(MCMC) methods are popular tools for simulating draws from these probability dis-

tributions that are otherwise intractable to sample from [7, 17]. These algorithms

produce an iterative sequence (or chain) of samples {x(k)}, which satisfy the Markov

property:

p
(
x(k) x(1), · · · ,x(k−1)

)
= p

(
x(k) x(k−1)

)
, (2.3.1)

for all k ≥ 2. That is, each sample x(k) depends only on the immediately preceding

sample, x(k−1), and is independent of the history of the chain
{
x(1), · · · ,x(k−2)

}
.

The Markov chain is designed so that its stationary distribution is the posterior

distribution of interest [7, 17, 40].

The Gibbs sampler named in [16] is a widely used MCMC method in Bayesian

inference. The Gibbs sampler requires an N dimensional random variable x that

is made up of (potentially multivariate) components as its input. That is, x =[
x>1 ,x

>
2 , · · · ,x>n

]>
, where xi ∈ Rdi , and

∑n
i=1 di = N . Starting with an initial point

x(0), the sampler iteratively generates samples x(k) incrementally via the components

x
(k)
i . The conditional distributions p(xi|x1, · · · ,xi−1,xi+1, · · · ,xn,b) are used to draw

samples for each component. The Gibbs sampler is summarized in Algorithm 1. The
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Gibbs sampler presented here is systematic; the components xi are updated as a cycle

in the labeled order 1 → · · · → n, and every component is updated. The stationary

distribution of the Gibbs sampler is independent of this ordering [17, 36].

Regardless of the sampling order, samples {x(k)} from a Gibbs sampler are not

independent, since they are constructed with the Markov property (2.3.1). This

affects the convergence and efficiency of the chain, as well as any statistics calculated

based on these samples. Setting aside issues of transient behavior [10], the integrated

autocorrelation time (IACT), τint, is a useful measure of the efficiency of an MCMC

sampler. The correlation between samples causes statistical error to be a factor of

2τint larger than in independent samples [40]. In the results, the estimator fo the

IACT proposed by [44] is used. An interpretation of this result that the number of

samples of the total that are effectively independent is given by

Neff =
Ne

2τint

, (2.3.2)

where Ne is the total number of samples. IACT and effective sample size are indicators

of the efficiency of an MCMC algorithm. It is well known that convergence rates of

MCMC methods decrease with dimension. For example, [6], [34], and [33], show that

the proposal variance of MCMC samplers decreases with dimension of the problem,

which in turn implies that IACT grows with dimension.

Gibbs samplers can also suffer from poor scaling as dimension increases. The

convergence rates for a Gibbs sampler are affected by the update scheme used. Both

the order the variables are drawn and the way the components are blocked can have

a significant effect on convergence rates [35]. In the case of a Gaussian posterior,

choosing highly correlated components results in faster convergence [35]. It was also

shown in [28] that when the precision and covariance matrices are block-tridiagonal,

the Gibbs sampler is effective for sampling high-dimensional Gaussians. Under those

assumptions, the convergence rate is independent of dimension.
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In image deblurring via 2D convolution, the precision matrix of the Gaussian

posterior (2.2.5) is not block-tridiagonal, due to the 2D problem structure. The

precision matrix is, however, sparse with a more generally banded structure. Taking

advantage of this structure allows one to effectively sample high-dimensional images.

For 2D deconvolution, the efficiency of the Gibbs sampler depends critically on the

way the components are chosen by blocking the image x. The following section

introduces a scalable implementation of a blocked Gibbs sampler for high-dimensional

image deblurring problems.



Chapter 3

Scalable Gibbs sampling for

high-dimensional posterior

distributions in imaging

This chapter covers the implementation of a block Gibbs sampler that is effective in

the high dimensional target application. The implementation exploits the local nature

of convolution and the resulting sparsity structures of the convolution matrix A and

of the prior precision matrix L. The banded structures of both A and L are captured

in the posterior precision matrix H = λA>A + δL, whose structure can be leveraged

by carefully partitioning the state, x, of the Markov chain using sub-images to define

the components. When the images are relatively small, i.e. when it is possible to

store the posterior precision matrix H in memory, then the sampler can be directly

implemented. In this case, solutions can be computed via matrix computations on the

sub-images, with matrix sizes defined by the partitions of x. This matrix notation is

used to introduce the block Gibbs sampler as a conceptual first step toward describing

the overall approach. For larger images, matrix based methods are impractical due to

memory constraints. The target application has dimension 16 · 106, making even an

33
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off-line assembly of the posterior precision prohibitively expensive. A function based

alternative is introduced to avoid these issues.

3.1 Effective partitioning for Gibbs sampling in

imaging

As discussed in Section 2.3, Gibbs samples are generated using the conditional dis-

tributions p(xi|x1, · · · ,xi−1,xi+1, · · · ,xn), and sequentially generating samples, xi,

from each conditional [15–17, 37]. In the target application, which has a Gaussian

posterior (2.2.5), the conditionals are also Gaussian. The conditional distributions in

the case of scalar components are provided in [3, 14] and can be extended to multi-

variate components. Specifically, the conditional distribution for the ith component

xi is

x
(k)
i

∣∣∣x(k)
1 , · · · ,x(k)

i−1,x
(k−1)
i+1 , · · · ,x(k−1)

n ,b, λ, δ

∼ N

(
mi −

(∑
j>i

Hij

(
x

(k−1)
j −mj

)
+
∑
j<i

Hij

(
x

(k)
j −mj

))
,H−1

ii

)
, (3.1.1)

where the Hij are sub-matrices of the posterior precision matrix H, and the super-

script (k) denotes time in the Markov chain. In the context of imaging, the xi’s

correspond to groups of pixels in the image. The structure of any sub-matrix Hij

depends on how the state, or image, x is partitioned into components as sub-images,

xi.

Since the convolution matrix A defined in (2.1.8) assumes that the vector x is a

column stack of the image X, a näıve choice for the components xi corresponds to

columns in the image. In this case, the components are simply sequential sub-vectors

in the column stacked x. This choice is not practical, since the blurring kernel a

extends in the vertical and horizontal directions. Each pixel in xi depends on the
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pixels within a 2D-neighborhood based on the size of the kernel, requiring xi to be

conditioned on all columns to the left and to the right of the column i that are

contained in this neighborhood. When xi is a single column, this corresponds to

the na neighboring columns, and thus xi depends on na of the remaining columns,

xj. For large kernels, na is large, and xi must be conditioned on a large number of

neighboring columns, which reduces the efficiency of the sampler [28]. An example

of this for an image X of size 100 × 100 is shown in Figure 3.1.1a. With a kernel

of size 21 × 21, the yellow column xi depends on the 10 neighboring columns to the

left and right. When the Gibbs sampler sequentially samples the columns from left

to right, the 10 blue columns to the left represent the location of the x
(k−1)
j , and the

10 green columns to the right represent the location of the x
(k)
j in (3.1.1). Reducing

the number of components that each xi is conditioned on results in a more efficient

sampler [28], but, such a reduction requires a different partition of x.

Since X represents an image stored as a 2D array, and since blur is expected to

occur in the vertical and horizontal directions, a better choice for dividing the image

into components involves sub-images that have 2D structure. One way to make this

partition is to divide the full image X – which has size mx×nx – into a set of mB ·nB

sub-images Xi,

X =



X1 X1+mB
· · · X1+mB(nB−1)

X2 X2+mB
· · · X2+mB(nB−1)

...
...

. . .
...

XmB
X2mB

· · · XmBnB


. (3.1.2)

The subscript on each Xi indicates one possible sampling order for the Gibbs sampler,

i.e. cycling from top to bottom, left to right. In the sections that follow, it is assumed

that all sub-images have the same size – denoted Xi ∈ Rmd×nd – to avoid more

cumbersome notation, but this is not a necessary requirement. When the sub-images

are all the same size, the number of sub-images (mB, nB) and the size of the sub-
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(a) Column based components (b) Sub-image components

Figure 3.1.1: Panels (a) and (b), depict possible blocking schemes for an image X,
with 100 × 100 pixels and kernel size 21 × 21. In each panel, the yellow component
represent the location of xi, while the blue and green components represent the lo-
cations of x

(k)
j and x

(k−1)
j from (3.1.1), respectively. The white components represent

the locations of the xj that are conditionally independent of xi. In (a), the com-
ponents are chosen as columns of the image (100 pixels each). For a kernel of size
21× 21, xi depends on 20 neighboring columns (10 to the left and right). In (b), the
components are 10× 10 sub-images (still 100 pixels each), and depend only on the 8
neighboring sub-images (4 in blue and 4 in green).

images (md, nd) can be related to the size of the entire image (mx, nx) as follows:

mB · md = mx and nB · nd = nx. An example of this blocking scheme is shown in

Figure 3.1.1b for an image X of size 100 × 100 pixels. There are mB · nB = 10 · 10

sub-images and each has size md×nd = 10× 10 pixels. The yellow component in the

center of the highlighted components represents the location of xi, which depends on

the eight neighboring components highlighted in blue and green. When the Gibbs

sampling order is defined by the indices in (3.1.2), then the four blue sub-images above

and to the left represent the locations of the components that have been sampled in

the kth Gibbs iteration, x
(k)
j . Similarly, the four green sub-images below and to the

right represent the locations of the components that have not been sampled in the

kth iteration of the Gibbs sampler, so the previous iteration samples, x
(k−1)
j , are used

in (3.1.1). Compared to the column-based blocks in Figure 3.1.1a, fewer neighboring
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blocks are required at each iteration in the Gibbs sampler.

The blocked Gibbs sampler specific to the conditional distributions (3.1.1) is pro-

vided in Algorithm 2. The sums are over the sets Spre ⊂ {j : 1 ≤ j < i} and

Spost ⊂ {j : i < j ≤ n}, which contain only the relevant indices j that the ith

block is conditioned on. With the sub-image based blocking scheme, any block will

always only depend on at most eight neighboring blocks provided that the block

size is large enough compared to the kernel size. This is due to the local nature of

the blurring process, the relative scales of support of the kernel and the sub-image

size. Only pixels that are sufficiently close to the sub-image have an effect on the

blur, which depends on the size of the kernel. Specifically, the block and kernel sizes

must satisfy ma ≤ 2md + 1 and na ≤ 2nd + 1. When these conditions are satisfied,

the sets can be Spre = {i − mB − 1, i − mB, i − mB + 1, i − 1} ∩ {1, · · · , n} and

Spost = {i + 1, i + mB − 1, i + mB, i + mb + 1} ∩ {1, · · · , n}. This is possible due to

the fact that the rest of the Hij sub-matrices are zero under this blocking scheme.

The largest possible block size is the entire image, which is the trivial case of

solving the original problem: there is only one sub-image, X1 = X, and (3.1.1)

simplifies to x1 ∼ N (m,H−1). Each sample of X is independent (τint = 1/2), but

the required operations are computationally infeasible when the dimension is large.

On the other extreme, the smallest possible block size is a single pixel, which requires

only scalar operations. Each pixel, however, is dependent on a number of surrounding

pixels (dependent on the size of the kernel) and, thus, the IACT increases and the

effective sample size decreases. There is thus a trade off between the computability

of the sub-problems and the efficiency of the sampler in terms of IACT. Such an

optimum is problem dependent and in the target application addressed in Chapter 4

a large block size is required for effective sampling.
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Algorithm 2: Block Gibbs Sampler

input : Precision matrix H, mean m, initial state

x(0) =
[
x

(0)
1

>
, x

(0)
2

>
, · · · , x(0)

n

>]>
, and maximum iteration Ne

output:
{
x(0),x(1), · · · ,x(Ne)

}
where x(k) ∼ N (m,H−1)

1 for k = 1, . . . , Ne do
2 for i = 1, . . . , n do
3 Spre = {j : visited close blocks, left or above block i}
4 Spost = {j : future close blocks, right or below block i}
5 sample z ∼ N (0, I)

6 x
(k)
i = mi +

H−1
ii

H
>/2
ii z−

 ∑
j∈Spost

Hij

(
x

(k−1)
j −mj

)
+
∑
j∈Spre

Hij

(
x

(k)
j −mj

)
7 end

8 x(k) =
[
x

(k)
1

>
, x

(k)
2

>
, · · · , x(k)

n

>
]>

9 end

3.2 Matrix free implementation for large images

Generating samples from the conditional distributions

x
(k)
i = mi + H−1

ii

H
>/2
ii z−

 ∑
j∈Spost

Hij

(
x

(k−1)
j −mj

)
+
∑
j∈Spre

Hij

(
x

(k)
j −mj

) ,
(3.2.1)

in the Gibbs sampler from Algorithm 2 is computationally intensive when the di-

mension of xi is large. This is because the vectors x
(k)
i have dimension equal to the

number of pixels in the sub-image they represent, md × nd. Thus, the sub-matrices

Hij have dimension mdnd ×mdnd. Instead of explicitly building the sub-matrices, it

is possible to exploit the linearity and structure in the operators A and L. In doing

so, it is possible to construct functions that perform the actions of the sub-matrices

Hij on sub-images of X.

There are four separate computational elements in (3.2.1), that require a matrix-

free implementation. The first operation requires performing a backsolve to compute
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the action of the inverse of the sub-matrix Hii,

fdiag(y, i) = H−1
ii y. (3.2.2)

The second operation is

fsqrt(z, i) = H
>/2
ii z, (3.2.3)

which produces the random component in the Gibbs sampler, i.e. a vector distributed

N (0,Hii). The final two elements are the pre- and post-sums

fpost(y, i) =
∑

j∈Spost

Hijyj and fpre(y, i) =
∑
j∈Spre

Hijyj, (3.2.4)

which produce the boundary conditions for the ith sub-image, by using the neighboring

sub-images. All of these operations depend on the actions of A and L. Functions

related to A and L are derived first and used to produce the final functions for

(3.2.3)–(3.2.2), all of which return a sub-image of size md × nd.

Equations (3.2.2) – (3.2.4) all contain at least one sub-matrix Hij, and a function

computing the action of Hij is essential to each of these functions. Note that

Hij = λ (A:,i)
>A:,j + δLij (3.2.5)

where the ‘:’ represents all block indices, i.e. A:,j =
[
A>1,j · · ·A>mBnB ,j

]>
. Thus an

implementation of the action of Hij, depends on implementations of (A:,i)
>, A:,j,

and Lij. Equation (3.2.3) also requires the action of the square root of Lii. These all

rely on matrix free implementations of convolution with a kernel a for on arbitrarily

sized sub-image and a similar implementation for the prior precision. Sections 3.2.1–

3.2.3 provide a high level overview assuming these matrix free implementations are

available. Sections 3.2.4–3.2.6 provide the implementations of the required functions.
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3.2.1 Computing the action of H−1ii

The first computational element of the conditional distribution (3.2.1) is computing

the action of the inverse of Hii as stated in (3.2.2). The action of the forward operator

denoted fHii
(·) is a combination of the functions f(A:,i)

>(·), fA:,j
(·), and fLij

(·) which

are defined in Sections 3.2.4 and 3.2.5 (see equations (3.2.14), (3.2.17), and (3.2.22)).

It is given by

fHii
(xi, i) = λf(A:,i)>

(
fA:,i

(Xi)
)

+ δfLii
(Xi), (3.2.6)

Given the function (3.2.6) that performs the action of the forward operator, there are

a host of different methods for finding the inverse. One such method is the Conjugate

Gradient (CG) method, which is an iterative method for solving linear systems with

symmetric, positive definite (SPD) matrices. Since L is SPD, A>A is symmetric

positive semidefinite, and λ, δ > 0, then H is SPD. The CG algorithm produces an

exact solution (assuming no numerical error) in n iterations, where x ∈ Rn [22, 43].

It is common to stop well before n iterations are reached, which effectively acts as

further regularization for the problem. The specific stopping criteria for CG used in

the application are covered in Chapter 4.

3.2.2 Generating Gaussian random vectors with mean 0 and

precision Hii

In Algorithm 2, the purpose of the the square root matrix H
>/2
ii acting on a random

vector z in the conditional distribution (3.2.1) is to generate a sample from N (0,Hii).

For small matrices Hii, the usual method of producing such a sample is to compute

a matrix square root, e.g. a Choleskey factor [43]. When Hii is large, this is both

computationally expensive and memory intensive. To avoid this, we instead consider

the structure of Hii, and generate samples via sums of independent Gaussians. Recall
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that

Hii = λ (A:,i)
>A:,i + δLii. (3.2.7)

Consider the first term, λ (A:,i)
>A:,i. It is easy to generate normally distributed

random vectors z with mean zero and covariance I for any dimension. The dimension

of the required vector z1 = Z1(:) depends on the location of the sub-image Xi, where

Z1 has size (m4 − m3 + 1, n4 − n3 + 1) ( defined in (3.2.16)). Then the function

f(A:,i)
>(·), defined in (3.2.17) can be used to produce output with the distribution

f(A:,i)
>(Z1) ∼ N

(
0, (A:,i)

>A:,i

)
.

Similarly, given a function f
L
>/2
ii

(·) and appropriately size Z2 where z2 = Z2(:) has

mean zero and covariance I, then

f
L
>/2
ii

(Z2) ∼ N (0,Lii) .

An efficient implementation for the negative 2D Laplacian makes use of the fact that

L can be written as L = D>v Dv + D>hDh, where Dv and Dh depend on the boundary

conditions of L and are covered extensively in Section 3.2.5. Due to the dependence

on Dv and Dh, the functions fDv(·) and fDh
(·) are required (see Equations (3.2.26)

and (3.2.26)). Then computing two independent random vectors z2, z3 ∼ N (0, I)

where Z2,Z3 have size md × nd, we have

fD>
v

(Z2) + fD>
h

(Z3) ∼ N (0,Lii) .

Scaling these outputs by λ1/2 and δ1/2, we get

λ1/2f(A:,i)
>(Z1) + δ1/2

(
fD>

v
(Z2) + fD>

h
(Z3)

)
∼ N (0,Hii) , (3.2.8)

i.e. this function produces outputs with the same distribution produced by the square

root matrix H
>/2
ii in (3.2.3).
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3.2.3 Efficient computation of the pre- and post-sums

In this section, an efficient implementation of the pre- and post-sums, given in (3.2.4),

are presented by taking advantage of the linearity of H, and carefully constructing

sub-images Xpre and Xpost (see (3.2.31), (3.2.32)). The pre-sum can be computed

using the functions f(A:,i)
>(·), fA(·), and a slight alteration of the fL(·) function

fL,pre(·) (see (3.2.17), (3.2.33) and (3.2.36) respectively) as

fpre(x, i) = λf(A:,i)
> (fA(Xpre)) + δfL,pre(X). (3.2.9)

Similarly, the post-sum can be computed using the functions f(A:,i)
>(·), fA(·), and

a slight alteration of the fL(·) function fL,post(·) (see (3.2.17), (3.2.34) and (3.2.37)

respectively) as

fpost(x, i) = λf(A:,i)
> (fA(Xpost)) + δfL,post(X) (3.2.10)

Combining CG with (3.2.6) and using (3.2.8), (3.2.9), and (3.2.10) provides all the

necessary components for an implementation of (3.2.1) for problems where the dimen-

sion of the sub-image is so large that a matrix based implementation is infeasible.

3.2.4 The action of the convolution matrix A

In order to compute the four actions of the Hij sub-matrices defined in equations

(3.2.3)–(3.2.2) that make up the conditional distribution (3.1.1), it is necessary to

have a matrix free convolution function given a kernel a, denoted as fA. This is the

standard convolution as described in [1], and provided in Algorithm 3.
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Algorithm 3: Convolution fA
input : Image X ∈ Rmx×nx , and kernel a ∈ Rma×na

output: Image Y ∈ Rmb×nb

1 for i = 1, . . . ,mb do

2 for j = 1, . . . , nb do

3 yij = ã ·X(i : i+ma − 1, j : j + na − 1)

4 end

5 end

In Algorithm 3 the “·” represents the dot product defined in (2.1.6), and ã repre-

sents the kernel a flipped both vertically and horizontally (note: this is equivalent to

a rotation of the position of the elements in a by 180◦). For any pixel position (i, j)

and sub-image size (m,n) satisfying i, j ≥ 1, ma ≤ m ≤ mx − i, na ≤ n ≤ nx − j, we

have

fA(X(i : i+m− 1, j : j + n− 1)) = Y(i : i+m−ma − 1, j : j + n− na − 1).

(3.2.11)

That is, the function fA applied to any sub-image of X produces the corresponding

smaller sub-image in Y. This will prove useful when considering sub-images Xj of

the entire image X.

It is possible to use variations of the function fA(·) to implement actions of A:,j

as required for Equations (3.2.2) – (3.2.4). Recall that the index “:” represents all

block indices, i.e. A:,j =
[
A>1,j · · ·A>mBnB ,j

]>
. The matrix A:,j has size M ×md · nd,

and produces an output which is the size of the entire blurred image (M pixels)

corresponding only to the jth sub-image of the input. Due to the local nature of

the blur, only a small portion of the M pixels in the output are non-zero. This is

illustrated in Figure 3.2.1, showing the output for an Xj in the interior of the image

X, and another on the border of X. In both cases, the output is only nonzero in areas
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close to Xj, and the extent depends on the size of the kernel. This can be written

using the entire operator A by setting every other block xi with i 6= j to zero,

A:,jxj = A



0

...

0

xj

0

...

0



. (3.2.12)

As an image, i.e. removing the column stacks, this is equivalent to

A:,jxj = fA




0 0 0

0 Xj 0

0 0 0


mx×nx

 , (3.2.13)

where the 0 blocks are appropriately sized so that the Xj block is in the jth position.

The action of fA(·) on an image with a single non-zero sub-image is depicted in Figure

3.2.2, for the same interior and boundary sub-images as in Figure 3.2.1. Since the

non-zero portion of the output is in a relatively small section of the output, it is

possible to compute just the non-zero portion and keep track of its location in the

output. Producing just the non-zero portion of the output requires zero padding Xj

based on the size of the kernel, as opposed to zero padding to the size of the whole

image X. Blocks on the boundary of the image require less padding, as shown in

figure 3.2.3. This can be written as

fA:,j
(Xj) = fA




0 0 0

0 Xj 0

0 0 0


 , (3.2.14)
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Xj1 A:,j1

Xj2 A:,j2

Figure 3.2.1: A:,j acts on a single sub-image Xj to produce an output image of size
mb × nb. The dotted lines in the output indicate the sub-images, which are the
same size as in X for internal sub-images such as Xj1 , but differ due to the extended
boundary for sub-images on a border of the image X such as Xj2 .

where the 0 blocks in (3.2.14) are much smaller than in (3.2.13), and depend on the

size of the kernel. Specifically, Xj is padded with (ma − 1) zeros on the top and

bottom, and (na−1) zeros on the left and right, so long as it is not on the edge of the

image, in which case there is no zero padding. For arbitrary sub-image size (md, nd)

and kernel size (ma, na), the padding can be calculated as

m1 = min {ma − 1, (kj − 1)md} ,

n1 = min {na − 1, (`j − 1)nd} ,

m2 = min {ma − 1,mx − kjmd} ,

n2 = min {na − 1, nx − `jnd} ,

(3.2.15)

where (kj, `j) are the unique subscripts corresponding to j = kj + (`j − 1)mB, and

satisfy 1 ≤ kj ≤ mB, 1 ≤ `j ≤ nB. These values correspond to the padding to the

left (m1), right (m2), top (n1) and bottom (n2) of the sub-image Xj.

Next, the action of (A:,i)
> is considered, as it is required to compute the action
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A A

Figure 3.2.2: On the left, the original image is shown, with two different sub-images
Xj shaded in red and blue. The entire A acting on an image the size of X, where only
the Xj sub-image is non-zero results in the same output as in Figure 3.2.1. The fact
that much of the output is zero indicates that it is possible to apply the convolution
to just a sub-image to produce the non-zero portion of the output (see Figure 3.2.3).

Xj1

Xj2

A

A

Figure 3.2.3: In order to produce only the non-zero portion of the output from Figure
3.2.2, the sub-images require only a small amount of zero-padding indicated by the
dotted lines. The padding differs for sub-images on the interior of the image such as
Xj1 as compared to those on the boundary of the image such as Xj2 .

of Hij in (3.2.5). This block row matrix has size md · nd ×M , and acts on an object

the size of the entire M = mb · nb pixel image Y. It produces the ith sub-image of

the output (size md× nd) convolved with the blurring kernel a flipped in the vertical

and horizontal directions, denoted ã. Although (A:,i)
> acts on M elements, only a

small proportion of the elements affect the output, due to the sparsity in A. These

elements consist of all those in the ith sub-image, as well as the elements bordering

the sub-image, and depend on the size of the kernel. Figure 3.2.4 shows how these

bounds change depending on the location of the sub-image. For interior sub-images,

the bounds are within the neighboring sub-images. For sub-images on the border of

the image, zero-padding is required.
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Y

Xi1(A:,i1)
>

Y Xi2(A:,i2)
>

Figure 3.2.4: (A:,i)
> acts on the entire image Y to produce the output of the ith

sub-image when convolved with ã. For any sub-image the relevant part of the input
has size (md + ma − 1, nd + na − 1). For sub-images on the interior of Y such as
indexed by i1, the boundary is made up of the neighbors. For sub-images on the edge
of y such as indexed by i2, part of the boundary is zero-padded, indicated by the
dashed lines.

(m4, n3)

(m3, n3)

(m4, n4)

(m3, n4)

•

•

•

•

(m4, n3)

(m3, n3)

(m4, n4)

(m3, n4)

•

•

•

•

Figure 3.2.5: The bounds defined in (3.2.16) for the two different example indices in
figure 3.2.4. The dotted lines represent the zero-padding done by fpad(·) in (3.2.17).

The relevant bounds in the image can be defined as

m3 = 1 + max {0, (ki − 1)md − (ma − 1), }

n3 = 1 + max {0, (`i − 1)nd − (na − 1), }

m4 = min {kimd,mb} ,

n4 = min {`ind, nb} ,

(3.2.16)

where (ki, `i) are the unique subscripts corresponding to i = ki + (`i − 1)mB, and

satisfy 1 ≤ ki ≤ mB, 1 ≤ `i ≤ nB. Thus the relevant portion of the image is given

by Y(m3 : m4, n3 : n4). Similar to the 0 padding in (3.2.14), the size of the Y

sub-image changes with i. The central blocks of the input Y are all the same size:

(md +ma − 1, nd + na − 1), while those on the border of Y are smaller.

In order to understand how (A:,i)
> acts on this block, recall that A can be written

as the product DÂ as in (2.1.9). Here Â ∈ RN×N is the convolution matrix with
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known boundary conditions, and D ∈ RM×N is the cropping operator, which crops

out the M elements corresponding to the output image. The transpose, A> = Â>D>,

first extends the image from size M to size N , and then applies the convolution Â>.

As previously noted, this is just the convolution with ã rather than a. Note that

A:,i = (DÂ):,i =
∑
j

D:,jÂj,i = DÂ:,i,

and (A:,i)
> = (Â:,i)

>D>. That is, the image is first extended via D>, then the

relevant portion is convolved. As with (3.2.14), the sparsity of A allows us to neglect

much of the extended input, as it does not affect the output. In the case of the ith

block, only blocks close enough to the edge are extended. After the extension, the

total size of any block is the same as the central block: (md + ma − 1, nd + na − 1).

Applying the convolution function with the appropriate kernel then returns the output

with size (md, nd). Thus,

f(A:,i)>(Y) = fÃ (fpad (Y(m3 : m4, n3 : n4))) , (3.2.17)

where fpad(·) zero-pads the input to size (md + ma − 1, nd + na − 1), based on the

block index i, and fÃ represents convolution with ã.

3.2.5 The action of the prior precision matrix L

There are many choices for the prior precision matrix L. The basic requirement for

this matrix is that it needs to be sparse and symmetric positive definite (SPD). In

order to use the method provided in this paper, a functional version of L is required

that is capable of returning the action of the sub-matrix Lij. In this section, a function

is defined for L as the discrete negative 2D Laplacian.

In Section 2.2, it is noted that the action of the 2D discrete negative Laplacian is
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equivalent to convolution with the kernel
0 −1 0

−1 4 −1

0 −1 0

 ,
with some specified boundary conditions. Thus the functional version for the matrix

L is similar to A, but in this case the boundary conditions need to be taken into

consideration. First, the image must be padded according to the boundary conditions,

which only require a single pixel of padding in each direction For example, with

periodic boundary conditions, the padding is defined as

XBC =


Xmx,nx Xmx,: Xmx,1

X:,nx X X:,1

X1,mx X1,: X1,1

 , (3.2.18)

where Xi,j is the (i, j)th pixel of X, Xi,: represents the ith row of pixels in X and X:,j

represents the jth column of pixels in X. For zero boundary conditions, the padding

is just a single zero in each direction,

XBC =


0 0 0

0 X 0

0 0 0

 . (3.2.19)

Note that the corner zeros are not bold since they are scalars. In both cases, XBC ∈

R(mx+2)×(nx+2), and X is the center mx × nx pixels. Then

fL(X) = 4X−
(

XBC(1 : mx, 2 : nx + 1) + XBC(3 : mx + 2, 2 : nx + 1)

+ XBC(2 : mx + 1, 1 : nx) + XBC(1 : mx, 3 : nx + 2)

)
. (3.2.20)

Similar to fA, this function can also be applied to any sub-image of X, e.g. for any

pixel position (i, j) that satisfies 1 ≤ i < mx and 1 ≤ j < nx, and sub-image size
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(m,n) that satisfies 1 ≤ m ≤ mx − i and 1 ≤ n ≤ nx − i,

fL(X(i : i+m, j : j + n)) = 4X(i : i+m, j : j + n)

−
(

XBC(i : i+m, j + 1 : j + n+ 1)

+ XBC(i+ 2 : i+m+ 2, j + 1 : j + n+ 1)

+ XBC(i+ 1 : i+m+ 1, j : j +m)

+ XBC(i+ 1 : i+m+ 1, j + 2 : j + n+ 2)

)
.

The function for the sub-block Lii corresponding to the sub-image X is very similar.

Note that Lii produces the portion of the output block i due only to the input sub-

image i. This is equivalent to the output of fL with zero boundary conditions on the

sub-image. That is,

fLii
(Xi) = fL(Xi) (3.2.21)

with zero boundary conditions applied. For the sub-block Lij, which corresponds to

the portion of the output sub-image i due to the input sub-image Xj, the output

is only nonzero when Xi and Xj share a border. Recall the block subscripts are

as defined in (3.1.2), so the sub-images sharing a border with Xi are indexed by
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j ∈ {i− 1, i+ 1, i−mB, i+mB}. The function for any (i, j) pair for Lij is given by

fLij
(Xj) =



fL(Xj) (with 0 BCs) if j = i

−
[
0md×(nd−1) Xj(1 : md, 1)

]
if j = i−mB

−

 0(md−1)×nd

Xj(1, 1 : nd)

 if j = i− 1

−

Xj(md, 1 : nd)

0(md−1)×nd

 if j = i+ 1

−
[
Xj(1 : md, nd) 0md×(nd−1)

]
if j = i+mB

0md×nd
otherwise.

(3.2.22)

Combining this function with the functions for A given in (3.2.14) and (3.2.17), it is

possible to produce the action of any sub-matrix Hij. These are used to derive the

functions for the sums in (3.2.4).

The next function to consider is the random component, which requires the action

of the square root matrix H
>/2
ii defined in (3.2.3). The action of H

>/2
ii requires a means

of computing the square root of L. In [1], it is shown that for periodic boundary

conditions, L can also be written in the form

L = D>hDh + D>v Dv, (3.2.23)

and Dv = Dp ⊗ Imx and Dh = Inx ⊗Dp, where ⊗ represents the Kronecker product
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and Dp is the forward difference operator with periodic boundary conditions:

Dp =



−1 1 0 · · · 0

0 −1 1
. . .

...

...
. . . . . . . . . 0

0
. . . . . . −1 1

1 0 · · · 0 −1


. (3.2.24)

The zero boundary condition case can be written in a similar form, except with

Dz =



√
2 −

√
1/2 0 · · · 0

0
√

3/2 −
√

2/3
. . .

...

0
. . .

√
4/3

. . . 0

...
. . . . . . . . . −

√
n−1
n

0 · · · · · · 0
√

n+1
n


, (3.2.25)

in place of Dp, where n is either mx or nx in order to create the appropriately sized

matrix. Thus we can define two functions for the matrices Dv and Dh which differ

depending on the boundary conditions. In both cases, they can be formulated as

fD>
v

(X) = W1 �XBC(3 : mx + 2, 2 : nx + 1)−W2 �X, (3.2.26)

fD>
h

(X) = W>
1 �XBC(2 : mx + 1, 3 : nx + 2)−W>

2 �X. (3.2.27)

where � represents element-wise multiplication. For periodic boundary conditions,

W1 = W2 = 1, i.e. the matrix of all 1s. For zero boundary conditions, W1 and W2
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are defined as

W1 =



√
2
√

3/2
√

4/3 · · ·
√

n+1
n

√
2
√

3/2
√

4/3 · · ·
√

n+1
n

...
...

...
. . .

...
√

2
√

3/2
√

4/3 · · ·
√

n+1
n


,

W2 =



0
√

1/2
√

2/3
√

3/4 · · ·
√

n−1
n

0
√

1/2
√

2/3
√

3/4 · · ·
√

n−1
n

...
...

...
...

. . .
...

0
√

1/2
√

2/3
√

3/4 · · ·
√

n−1
n


.

W1 contains the elements on the main diagonal of Dz, while W2 contains the elements

of the first super-diagonal of Dz in (3.2.25). Here n = nx for fD>
v

, and n = mx for

fD>
h

. The primary interest in these functions is producing random sub-images that

have distribution N (0,Lii). Since

Lii =
(
D>hDh + D>v Dv

)
ii

= (Dh(:, i))
>Dh(:, i) + (Dv(:, i))

>Dv(:, i),

we require functions for (Dh(:, i))
> and (Dv(:, i))

>. These block row matrices have

size (md ·nd)×N , and produce the output pertaining to the ith sub-image, given the

entire image. The only relevant portion of the entire image are the pixels directly

bordering them, with the relevant boundary conditions applied to the sub-images on

the boundary of the image. Then we can just apply the fD>
v

and fD>
h

from Equations

(3.2.26) and (3.2.27) to produce outputs equivalent in distribution when applied to

random vectors. Such vectors are an essential component of random sub-images that

have distribution N (0,Hii).
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 Xi Xi

Xi Yi

Hi,:

Figure 3.2.6: Due to linearity, Hi,: can act on the three pieces of the image separately
to produce the output Yi, which are the “pre” (blue, left), i (yellow, center), and
“post” (green right) pieces in the figure. For sub-images Xi on the border of the
image, part or all of the “pre” or “post” pieces will not exist. The size of the pre- and
post-pieces depend on the kernel a, but are at most the size of the dotted outline.

3.2.6 Actions required to compute the pre- and post-sums

This section provides the details on calculating the pre- and post-sums, given in

(3.2.4). These sums together contain all of the non-zero sub-matrices Hij such that

j 6= i. Therefore it will be useful to consider the collection of all these sub-matrices,

Hi,: in order to produce functions for these two sums. In order to produce functions

for these sums, it is useful to note that the ith sub-image of the output from the

blurring process y = Hx can be written as

yi = Hi,:x =

mBnB∑
j=1

Hijxj

=

∑
j∈Spre

Hijxj

+ Hiixi +

 ∑
j∈Spost

Hijxj

 (3.2.28)

That is, the result in the ith sub-image yi of the output can be partitioned into three

components: (1) the contribution of the blocks to the left or directly above the ith

sub-image, i.e. the pre-blocks, (2) the contribution from the ith sub-image xi, and (3)

the contribution from the blocks to the right or directly below the ith sub-image i.e.

the post-blocks. Figure 3.2.6 provides a visual representation of this.

Due to linearity, each term in (3.2.28) can be acted on separately by the matrix
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m2

md

m1

n1 nd n2

Xi−mB−1

Xi−mB

Xi−mB+1

Xi−1

Xi

Xi+1

Xi+mB−1

Xi+mB

Xi+mB+1

Figure 3.2.7: The blue section on the top left indicates pixels from the relevant portion
of sub-images Xj with j ∈ Spre, the green section on the bottom right indicates pixels
from the relevant portion of sub-images Xj with j ∈ Spost, and the center yellow
sub-image is Xi. Each of the sub-images has size md × nd, and the sizes m1, m2, n1,
n2 are defined in (3.2.15).

Hi,:, which has the form yi = Hi,:x, where

Hi,: = λ
(
A>A

)
i,:

+ δLi,:

= λ (A:,i)
>A + δLi,:. (3.2.29)

The first term corresponds to convolving the entire image with the kernel a, and

then performing the partial convolution with (A:,i)
> which produces the ith block of

the output. As shown with the function defined in (3.2.17), the partial convolution

(A:,i)
> only acts on a small portion of its input, whose size and location are defined

by the bounds m3, n3,m4, n4 in (3.2.16). Thus, it is only necessary to apply the initial

convolution via A to produce the portion within these bounds. Figure 3.2.7 depicts

the size of the relevant portion of the image for both the pre- and post-sums.

Similar to Equations (3.2.12) and (3.2.14), the components of the image in Figure

3.2.7 can all be acted on separately due to linearity,

fA

( )
= fA

( )
+ fA

( )
+ fA

( )
, (3.2.30)

where the first term corresponds to the sum containing the pre-blocks, and the final
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term corresponds to the sum containing the post-blocks, and the center term is exactly

the same as (3.2.14). For the first and last terms, the sub-images can be defined as

Xpre = fcrop




Xi−mB−1 Xi−1 0

Xi−mB
0 0

Xi−mB+1 0 0


 , (3.2.31)

Xpost = fcrop




0 0 Xi+mB−1

0 0 Xi+mB

0 Xi+1 Xi+mB+1


 , (3.2.32)

where the center 0 ∈ Rmd×nd is the location of the ith block for both inputs. Xpre

corresponds to the blue part and Xpost corresponds to the green part of Figure 3.2.7.

The function fcrop(·) crops the input from all nine sub-images to the appropriate size,

which is illustrated by the colored blocks in Equation (3.2.30) and Figure 3.2.7. Xpre

represents the components of Xj with j ∈ Spre, and Xpost represent the components

of Xj with j ∈ Spost. Thus we can write

fA (Xpre) , (3.2.33)

fA (Xpost) , (3.2.34)

which produce the pixels within the bounds (3.2.16). To complete the computation

of the first term for the action of Hi,: in (3.2.29), we need only apply f(A:,i)> defined

in (3.2.17).

Now consider the second term in (3.2.29). Li,: produces the portion of the ith

output block, which can be partitioned into the pre- and post-neighboring blocks,

and the center sub-image. That is,

fLi,:

( )
= fLi,:

( )
+ fLi,:

( )
+ fLi,:

( )
,

(3.2.35)
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where the boundaries (in blue and green) represent a single pixel. As in the case of

A, the relevant sub-image blocks can be all considered at one time. The total output

for the L portion of the pre- and post-sums can be computed by

fL,pre(X) =
∑
j<i

Lijxj

= fL




0 Xi−1(md, :) 0

Xi−mB
(:, nd) 0md×nd

0

0 0 0


(md+2)×(nd+2)

 , (3.2.36)

fL,post(X) =
∑
j>i

Lijxj

= fL




0 0 0

0 0md×nd
Xi+mB

(:, nd)

0 Xi+1(md, :) 0


(md+2)×(nd+2)

 , (3.2.37)

respectively. In both cases, the center 0 has dimensions md× nd, and the portions of

the Xj’s present are either a row or column. Combining the results from the pre-sum

functions (3.2.17), (3.2.33) and (3.2.36), the pre-sum can be computed as

fpre(X, i) = λfÃ (fpad (fA(Xpre))) + δfL,pre(X). (3.2.38)

Similarly, combining the post-sum functions (3.2.17), (3.2.34) and (3.2.37), the post-

sum can be computed as

fpost(X, i) = λfÃ (fpad (fA(Xpost))) + δfL,post(X) (3.2.39)

With these functions defined, the conditional distributions (3.2.1) are complete.



Chapter 4

Application to high-energy x-ray

radiography

The US DOE owns several high energy X-ray imaging systems, one of which is located

at the Nevada National Security Site (NNSS). Scientists perform expensive hydrody-

namic materials studies experiments at the NNSS and use radiography as a primary

means of data acquisition in these experiments. The digital images produced by these

machines are high dimensional, so it is important to have a computational framework

that can effectively deblur these large images. The desired implementation must

be capable of producing O(100) deblurred image samples of size 4096 × 4096 and

provide uncertainty (via standard deviation), which the block Gibbs sampler from

from Chapter 3 is capable. This chapter provides background on radiography at the

NNSS, image specific kernel estimation and parameter selection methods required in

the block Gibbs sampler. Results from debluring a full 4096 × 4096 image are pro-

vided, using the sub-image size that optimizes the time to produce a sample. The

sampler is shown to be scalable and the process of finding the optimal sub-image size

is detailed.

58
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4.1 Data acquisition and parameter selection

4.1.1 Cygnus Dual Beam Radiography Facility

The Cygnus Dual Beam Radiographic Facility at the NNSS is a high energy X-ray

imaging system designed for hydrodynamic materials experiments. Cygnus is located

in a laboratory 100 miles northwest of Las Vegas, Nevada, and approximately 1000

feet underground, which provides security and isolation for experimentation. The

facility contains two radiographic sources, called Cygnus 1 and Cygnus 2, each of

which has a 2.25 MeV endpoint energy, 1 mm source diameter, and a 50 ns pulse

length [39], and can be shot independently to produce radiographs at different times

[30]. The machine itself is quite large, having a footprint of 22 feet by 92 feet [39].

This system differs considerably in scale and function from the more common medical

X-ray machine, and requires a different means of image acquisition and analysis.

X-rays from the Cygnus sources pass through a collimation system in a lead bulk-

head wall into the experiment room at a 60◦ angle [38]. The radiographic object is

housed in a containment vessel and identical camera systems opposite the Cygnus

sources collect high resolution radiographs of the object, shown in figure 4.1.1. The

imaging system functions by using a scintillator, which reacts with X-rays to produce

visible light, which is then reflected by an elliptical pellicle mirror through a set of

lenses and captured by a CCD camera [25]. The lenses allow for magnification to vary-

ing fields of view, as well as adjustment for different scintillators [24]. This complex

imaging system is difficult to model, and contributes to the blur in the images.

Since hydrodynamic materials experiments can be extremely costly and Cygnus is

a primary means of data acquisition for such experiments at the NNSS, it is imperative

to understand its imaging capabilities. In order to study the Cygnus radiographs, a

calibration object known as the Luttman Target is used. The Luttman Target is

comprised of three calibration objects: (1) a step wedge, (2) an L-rolled edge, and
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Figure 4.1.1: Top down view of Cygnus source and imaging system (Image from [27]).

(3) an Abel cylinder, shown in Figure 4.1.2. The tantalum step wedge contains ten

different steps (two slightly outside the circular window) of varying thickness. The L-

rolled edge has a rectangular notch cut out at a 90◦ angle, to provide a stark contrast

between an area where X-rays are completely attenuated (the black region), and where

X-rays pass freely (in the cut out). The Abel cylinder is a radially symmetric object

comprised of three layered materials with three different bore widths, and a hollow

center. Each of these objects can be used with different models to help characterize

the imaging system [1, 12, 19, 21].
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Figure 4.1.2: The Luttman Target consists of three calibration objects: (a) the step
wedge, (b) the Abel cylinder, and (c) the L-rolled edge.

4.1.2 Kernel estimation and parameter selection

In order to use Algorithm 2 to solve the inverse problem, it is necessary to estimate

the blurring kernel and select parameters that define the operator H = λA>A + δL.

The 2D convolution represented by A requires a blurring kernel, a. H also includes

the precision parameters λ and δ which provide a scaling between the model and the

regularization.

A primary cause of blur in Cygnus radiographs is the shape and extent of the

radiation source [12]. Therefore, a reconstruction of the X-ray source profile provides

a reasonable approximation for the blurring kernel. Methods for reconstructing the

source profile are based on imaging a known calibration object and solving an inverse

problem to produce the reconstruction. In [21], the kernel is assumed to have radial

symmetry, and utilizes a single line-out (cross-section) from an edge of the L-rolled

edge in the Luttman target (see Figure 4.1.2) to compute the reconstruction via

MCMC. Figure 4.1.3(a) provides an example line-out used to compute the kernel.

Since the size of the kernel has a significant effect on computation time, it is preferable
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Figure 4.1.3: The line out of the L-rolled edge data used to reconstruct the radially
symmetric X-ray intensity profile is shown in (a). The full sized mean reconstruction
over 1000 samples of the intensity profile is shown in (b) on a log scale, and the
cropped portion identified by the red box in (b) is shown in (c), which is used as the
blurring kernel a.

to use the smallest possible kernel. Due to the rapid decay of the kernel from the

peak, a significant portion of the kernel reconstruction is essentially zero. Using a

threshold of 1% of the peak value of the kernel leads to a kernel of size ma = na = 33.

Figure 4.1.3(b) shows the full sized mean reconstruction of the kernel from the line-

out in Figure 4.1.3(a), and Figure 4.1.3(c) shows the 33 × 33 cropped portion of the

full reconstruction that is used as the kernel a in the deblurred image reconstructions

in Section 4.2.

Once the kernel has been reconstructed, the precision parameters λ and δ can

be selected. In Section 2.2, λ−1 is introduced as the pixel-wise variance. Therefore,

λ can be approximated by calculating a sample variance from the image. For the

Luttman target, the sample standard deviations for two subsections of the image are

1.1 · 10−2 and 3.4 · 10−3, for white and black portions of the image, respectively, as

seen in Figure 4.1.4. Taking a conservative estimate, i.e. maximizing the variance

λ−1, λ is set using the larger SD of 1.1 · 10−2, which gives λ ≈ 9 · 103. This choice of

λ is specific to this image, and λ varies depending on the image.

To obtain δ, several sub-images are used and a parameter sweep over a log space

of the ratio δ/λ is tested. To decide on a practical δ, several regularization parameter
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(a) Full image (b) Sample SD 1.1 · 10−2 (c) Sample SD 3.4 · 10−3

Figure 4.1.4: Data from a processed image from Cygnus is provided in (a), with
two subsections identifying the sub-images shown in (b) and (c). Each figure has a
different colorbar.

selection methods are implemented.The first is called the Discrepancy Principle (DP)

estimator, which is a standard regularization parameter selection method [11, 18, 42],

and attempts to set ||Axδ − b||2 equal to the noise level, where xδ represents the

solution for the corresponding choice of δ. That is, given the function

D(δ) = ||Axδ − b||2 − mb · nb
λ

, (4.1.1)

the estimator δDP satisfies D(δDP) = 0. Equivalently, the estimator δDP can be found

by minimizing (D(δ))2 over δ. The second is called the the Unbiased Predictive Risk

Estimator (UPRE), which minimizes the predictive risk, E
(
||Axδ −Ax||2

)
, where

E(·) represents expectation, and x represents the truth. Then the UPRE for this

problem is given by

U(δ) = ||Axδ − b||2 +
2

λ
tr
(
A
(
λA>A + δL

)−1
A>
)
− mb · nb

λ
, (4.1.2)

where tr (·) denotes the trace, and the estimator δUPRE is found by minimizing U(δ)

over δ [2]. The trace is estimated via randomized trace estimation (see [2, 42]), which

generates a Gaussian vector v with mean 0 and covariance I, and approximates the

trace as

tr
(
A
(
λA>A + δL

)−1
A>
)
≈
(
A>v

)> (
λA>A + δL

)−1 (
A>v

)
. (4.1.3)
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The optimal values δDP and δUPRE differed by approximately one order of magnitude,

which is expected since both of these regularization parameter selection methods

define optimality in different ways [2]. The values of δDP and δUPRE varied with the

size and location of the sub-images of data used. Based on the calculated values for

δDP and δUPRE from several sub-images of the data, the value of δ = 2.5 · 10−3 · λ was

chosen.

4.2 Deblurred image reconstructions

Using the kernel a and parameters λ, δ from Section 4.1.2, full 4096 × 4096 Cygnus

images were deblurred. A sub-image size of 512×512 was used, for a total of 8×8 = 64

sub-images (see the center image in Figure 4.4.1). The scalability of the block Gibbs

algorithm implemented is shown in Section 4.3 and the choice of the sub-image size

is detailed in Section 4.4.

Figures 4.2.1 – 4.2.3 show actual image reconstruction results on a full 4096×4096

Cygnus image. Figure 4.2.1 shows (a) the mean reconstruction over 526 samples,

(b) the sample that minimized ||Ax− b||, and (c) the pointwise sample standard

deviation. The average standard deviation over all pixels in the reconstruction was

found to be about 0.12, which is larger than the prior standard deviation, but features

in the mean reconstruction are more distinct, which allow for higher precision on the

locations of actual features in the image.

Two sections of the full mean image in Figure 4.2.1 are highlighted with red

boxes and enlarged in Figures 4.2.2 and 4.2.3 for comparison between the original

blurred image and the reconstructions. In both Figures 4.2.2 and 4.2.3, the (a)

original blurred image is shown, with the (b) mean reconstruction and (c) sample

that minimized ||Ax− b||. Figure 4.2.2 contains a portion of the step wedge, and

it is possible to see that the step edges are sharpened in the reconstructions. Figure
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(a) Mean reconstruction (b) Sample # 410 (c) Sample SD

Figure 4.2.1: Results from deblurring a 4096×4096 Cygnus radiograph of the Luttman
Target, using a sub-image size of 512×512. The mean reconstruction over 526 samples
is shown in (a), the sample that minimizes ||Ax− b|| is shown in (b), and the sample
SD is shown in (c). The subsections of the image that are boxed in (a) are shown in
more detail in Figures 4.2.2 and 4.2.3.

4.2.3 contains a portion of the Abel cylinder, and while the edge of the cylinder is

sharper, the transitions within the cylinder remain smooth as expected and desired.

Although the single sample has sharper features than the data, there is a considerable

amount of noise in the reconstruction, which indicates room for improvement. Even

still, the features of the image in the mean reconstruction show improvement over the

data, allowing the locations of features in the image to be more precisely identified.
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(a) Blurred image (b) Mean reconstruction (c) Sample # 410

Figure 4.2.2: An enlarged subsection of the full image shown in Figure 4.2.1 showing
details in the step wedge.
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(a) Blurred image

(b) Mean reconstruction

(c) Sample # 410

Figure 4.2.3: An enlarged subsection of the full image shown in Figure 4.2.1 showing
details in the Abel cylinder.
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4.3 Efficiency of the sampler

Once the parameter selection process from Section 4.1.2 is complete, the block Gibbs

sampler in Algorithm 2 can be used to produce samples from the posterior. In order to

ensure that these reconstructions produce meaningful estimates on high dimensional

data such as Cygnus radiographs, it is necessary to show that the Gibbs sampler

scales well with image size. In general, MCMC methods, including Gibbs samplers,

tend to scale poorly with dimension [7, 17, 40]. However, due to the structure and

sparsity of the operator H, the block Gibbs sampler is expected to scale well with

dimension[28]. One means of assessing the convergence of the MCMC scheme is via

the integrated auto-correlation time (IACT), τint, which provides a measure for the

number of effective samples, Neff, out of the total Ne samples, as in Equation (2.3.2).

The definitions and numerical approximations found in [40, 44] are used to calculate

an estimator, τ̂int, for the IACT of each pixel.

In order to determine the scaling of the mean IACT with image dimension, a set

of numerical experiment was performed. Ideally, an increase in dimension would have

little effect on the IACT, indicating the method is appropriate for high dimensional

problems. The experiment conducted is as follows. Fix a sub-image size, then gener-

ate 1000 samples via the block Gibbs sampler described in Chapter 3 at a specific full

image size. Compute the mean IACT over all pixels at this image size, then repeat

the experiment for larger full image sizes.

The fixed sub-image size chosen for the experiment is md = nd = 27 = 128.

The full image sizes used are mx = nx = 28, · · · , 211, and the corresponding data

size mb × nb with a kernel of size ma = na = 33 are outlined in Figure 4.3.1, where

mb = nb = mx−ma+1. The positions of the smaller images were chosen to center on a

corner of the step wedge, to ensure that an interesting feature existed to deblur in the

data. The smallest image size (mx = 28 = 256) results in only mB × nB = 2× 2 = 4

sub-images, while the largest image size (mx = 211 = 2048) results in a total of
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Figure 4.3.1: The image sizes mx = nx = 28, · · · 212 were considered, and the cor-
responding data B are outlined, which have dimension mb = nb = mx − ma + 1.
The smaller images are centered on a corner of the step wedge to ensure at least one
interesting feature exists in the image.

mB × nB = 16× 16 = 256 sub-images.

A related concern with respect to algorithmic efficiency is the burn in time for

sampling. In many cases, it can take a significant number of samples before an

MCMC chain reaches the stationary distribution [40]. The samples prior to reaching

stationarity are generally discarded, and considered the burn in. Since the samples at

the full target size are so expensive to compute, avoiding the removal of any samples

is preferable. As the target distribution is Gaussian, and seeding the chain with

the initial state as the mean, x(0) = m, it is expected that in this case stationarity is

reached effectively immediately. To provide a small check for this, several pixel chains

are provided in Figure 4.3.3, which do not seem to exhibit any burn in. The locations

of the pixels used are marked for reference in Figure 4.3.2, and the sub-image size

was 512× 512.

The mean IACTs for different full image sizes, all reconstructed using the fixed

sub-image size of 128 × 128, are provided in Tables 4.3.1 and 4.3.2. For each pixel,

an estimate τ̂int was calculated, and the global average ¯̂τint and maximum max {τ̂int}
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Figure 4.3.2: The location of the line outs of the pixel chains shown in Figure 4.3.3
are marked with red x’s.

Image dimension (mx = nx) 256 512 1024 2048
2¯̂τint 1.0225 1.0372 1.0372 0.9904

2 max {τ̂int} 3.8977 3.7271 5.2049 10.2248
# sub-images (mB × nB) 4 16 64 256

Table 4.3.1: Mean and max IACTs for several image sizes, with a sub-image size of
128× 128, with τ̂int as in [40].

over all pixels in the image are provided in the table. Perfectly independent samples

would expect to have 2τint = 1, which gives Neff = Ne (see Equation (2.3.2)). It is

possible for 2τint < 1 which indicates anticorrelation, but in this case is likely simply

due to the variability of the estimator τ̂int [40]. In all of the cases, twice the mean

IACT for each image size is very near 1, indicating that the blocking scheme scales

well with image dimension. There is a slight increase in the maximum Thus the block

Gibbs sampler is a viable means of producing nearly uncorrelated samples, even with

large image sizes.
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Figure 4.3.3: The line outs from 15 pixel chains are shown. In each case, there
appears to be no significant burn in, as expected since the distribution is Gaussian.
The locations of the pixels shown are provided in Figure 4.3.2.

Image dimension (mx = nx) 256 512 1024 2048
2¯̂τint 1.0275 1.0136 1.0197 1.0136

2 max {τ̂int} 3.6578 3.7744 4.2303 6.9804
# sub-images (mB × nB) 4 16 64 256

Table 4.3.2: Mean and max IACTs for several image sizes, with a sub-image size of
128× 128, with τ̂int as in [44].

4.4 Optimal sub-image size

The results in Section 4.3 indicate that, for a given sub-image size, the mean IACT

over all pixels, ¯̂τint, scales well with the dimension of the full image. There are, how-

ever, various possible sub-image sizes for any full image size. A primary goal for

the use of the block Gibbs sampler is to produce deblurred image reconstructions in

a timely manner and, thus, it is necessary to find a sub-image size that optimizes

the time required to generate a sample. Section 3.1 provides a description of the

partitioning scheme used for the following results. The reconstructed image is as-

sumed to have dimension mx × nx, which is divisible into equally sized sub-images

with dimension md × nd, as shown in Figure 4.4.1. Sub-image sizes that are pow-

ers of 2 are considered, because this provides a computational speed increase in the

implementation of Algorithm 3.
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Figure 4.4.1: Three different sub-image partitions for an image of size 4096 × 4096.
The sub-images have size 256×256 (left), 512×512 (center) and 1024×1024 (right).

Different sub-image sizes result in different computation times per sample, due

to the iterative nature of the algorithm. Specifically, the inner loop in Algorithm

2 requires successive computations over each sub-image X
(k)
i , where using CG to

compute the backsolve with Hii is the computational bottleneck at each iteration.

The time required for CG depends on the number of iterations required to reach the

desired tolerance and the data dimension. Figure 4.4.2 provides computation times

for different image sizes, as well as different sub-image sizes used in the Gibbs sampler.

At each full image size (mx × nx), five deblurred image samples were produced using

the block Gibbs sampler (Algorithm 2) with various sub-image sizes (md × nd), and

the average time to produce a sample was calculated. In all cases, the CG tolerance

was set as 10−10, and the maximum number of CG iterations was set to md ·nd/16. For

small images (256× 256− 512× 512), the sub-image size does not have a significant

effect on the computation time per iteration, which is evident in the computation

times shown in Figure 4.4.2(a). For larger images (2048 × 2048 − 4096 × 4096), the

sub-image size begins to have an appreciable effect and a sub-image size of 512× 512

emerges as an optimal choice. This optimum is dependent on the configuration of

the CG solver, the kernel size, and the hardware constraints of the computer used

to solve the problem. One node from the University of Arizona High Performance

Computing (HPC) cluster, was used to produce results, which consists of a 2.3 GHz
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(a) Small images (b) Large images

Figure 4.4.2: Average computation times to produce a full sample X(k) for various
image sizes (mx ×mx) and sub-image sizes (md ×md). The average time to recon-
struct larger images (b) depends more heavily on the sub-image size than the time to
reconstruct smaller images (a).

Dual 14-core processor with 192 GBs of memory available. Using a sub-image size of

512 × 512, it is possible to generate a sample X(k) of size 4096 × 4096 on the order

of 12 minutes. Assuming that O(100) samples are required to estimate pixel-wise

standard deviations, the algorithm can solve the inverse problem at this size in about

20 hours.



Chapter 5

Conclusion

In this thesis, a scalable Gibbs sampler for deconvolution-based image deblurring

problems was derived, implemented, and tested on radiographic data from the Cygnus

Dual Beam Radiographic Facility at the NNSS. The success of the method hinges on

exploiting the local nature of deconvolution (which defines the sparsity pattern of

the posterior precision) and developing matrix free algorithms. Defining the blocks

in the Gibbs sampler as 2D sub-images that are large enough with respect to the

blurring kernel results in a scheme where each block depends on at most eight other

blocks. Optimizing the blocking structure allowed for faster generation of image

reconstructions on Cygnus data.

The discrete 2D deconvolution matrix with a small blurring kernel relative to the

image size is sparse and highly structured. A careful partitioning of the image into

sub-images results in a 9-block-diagonal matrix. Using a block Gibbs sampler based

on this blocking technique was shown to be scalable – as measured by the mean

pixel-wise integrated autocorrelation time – to images up to size 4096 × 4096.

The algorithm was successfully implemented at this size by constructing func-

tions that perform the actions of the required high dimensional matrices. A matrix

free implementation was necessary due to the infeasibility of storing and construct-
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ing matrices of the dimensions seen in the target application. Such functions were

made possible by utilizing previously existing convolution functions and exploiting

the linearity of the operator.

The optimal choice for the block size that minimizes solution time is problem-

dependent and relies on factors such as the parameters chosen for CG (which affects

the number of CG iterations required), the size of the blurring kernel, the statistics

of the image, the prior chosen, and the hardware used to compute the solutions. For

applications to Cygnus radiographs with a kernel of size 33× 33, a sub-image size of

512 × 512 was found to be optimal, allowing for O(100) full image reconstructions

of size 4096 × 4096 to be produced in under a day with one node on the University

of Arizona High Performance Computing cluster. The mean reconstructions display

sharper features than the data, while still preserving smooth features in the image.

This allows for the locations of features to be measured more precisely. The results

shown on images of static calibration objects can be used on images of hydrodynamic

materials experiments, providing better quantitative image analysis than currently

available.
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