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Abstract

Quantitative image analysis in the security sciences formulates an image deblurring
problem as a Bayesian inverse problem to reduce and quantify noise and blur. We
consider images of size 16 megapixels and, since each pixel represents an unknown, the
dimension of the Bayesian inverse problem is on the order of 10”. The large dimension
poses numerical and computational difficulties for two reasons. First, Markov chain
Monte Carlo (MCMC), typically used to solve a Bayesian inverse problem, is generally
slow to converge in high dimensions. Second, even generating one step in a Markov
chain is challenging at this size. We present a Gibbs sampler that is scalable to the
large dimension required in the security sciences and its scalability is achieved in
two steps. We (i) accelerate MCMC convergence by exploring banded structure in
the posterior precision matrix; and (i) use a matrix-free implementation, because

constructing and storing even sparse matrices is infeasible in our target application.

15



Chapter 1

Introduction

Imaging is commonly used as a qualitative source of information, where the goal is to
produce the best looking image possible. An imaging technique used in the security
sciences is pulse-powered X-ray radiography, which, in contrast, is used as a quanti-
tative diagnostic tool for scientific experiments. A radiograph is produced by pulsing
a high energy source that emits X-rays through the scene. The scene consists of ob-
jects of varying materials and densities which contribute to the attenuation of X-rays,
and the X-rays that are not attenuated are absorbed by a scintillator which converts
X-rays to visible light. The light intensity from the scintillator is photographed by a
Charge-Coupled Device (CCD) within an optical system to produce a radiograph.
The US Department of Energy (DOE) owns several high-energy X-ray imaging sys-
tems, including the Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT)
at Los Alamos National Laboratory [26], the Flash X-ray machine at the Con-
tained Firing Facility (CFF) of Lawrence Livermore National Laboratory [29], and
the Cygnus Dual Beam Radiographic Facility at the Nevada National Security Site
(NNSS) [38, 39]. These systems are part of the DOE’s stockpile stewardship program
and are used to image hydrodynamic materials experiments. The materials studied

can be very dense, and the experiments occur over a very short time scale. Thus

16



CHAPTER 1. INTRODUCTION 17

high energy X-rays are required, with precise timing and a short pulse to effectively
capture radiographic images of the experiments.

The radiographic images produced by these systems are corrupted by noise and
blur, which depend on inherent characteristics of the system, such as X-ray scatter,
the intensity profile of the X-ray source, and the physical and optical components
that produce the radiographs. In order to effectively model the system, both the
noise and blur must be taken into account. The blur in the system can be modeled
as a convolution of a true image, X, with the system response, a, which is called
the convolution kernel. This model assumes spatial invariance, i.e. that the kernel is
independent of the location in the image. A discrete convolution model is considered,
due to the discrete nature of the data collection. The noise is modeled as additive
and Gaussian. This linear model can be written in the form B = a x X + &, where
B and X are the data and true images, respectively, € is the Gaussian noise, and ‘%’
represents discrete convolution. The goal is to reconstruct the true image, X, given
the data B and the kernel a. This process is called deconvolution and is an ill-posed
inverse problem [42]. That is, small changes in the image data due to noise have
drastic effects on the solution. This is one of the hurdles that needs to be addressed
in order to produce accurate reconstructions.

Aside from ill-posedness, several other challenges exist that are the focus of this
work. Firstly, the data of interest is produced by Cygnus at the NNSS, and the
images captured are large, on the order of 16 megapixels. The dimension of the
problem is equal to the number of pixels in the image, resulting in an extremely
large matrix in the linear system associated with the linear convolution model. The
high dimensionality makes matrix based solutions infeasible. Secondly, in discrete 2D
convolution, the value of a pixel in the data B depends on the values of neighboring
pixels in the true image X, determined by the extent of the kernel a. For pixels near

the border of the data B, the kernel extends beyond the boundary of the data. Thus
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the natural domain for the reconstruction X is larger than the domain of B. The
boundaries must be carefully considered in order to avoid computational artifacts in
the reconstructions.

A classical means of performing deconvolution is via Fourier-based methods, which
do not require construction of the forward matrix [18]. These methods require as-
sumptions on the boundary — such as periodicity — that are unnatural for many
images, and can result in poor reconstructions. In order to account for these bound-
ary effects, an extended boundary on the reconstruction is assumed in this work,
as in [1, 5]. Unfortunately, these boundary conditions are incompatible with classi-
cal Fourier-based deconvolution methods and also make the inverse problem under-
determined. In this work, a deconvolution method is formulated which utilizes a
block Gibbs sampler, and careful blocking of the data into sub-images which makes
the deconvolution computationally feasible and makes the Gibbs sampler efficient.
The matrices required for the sub-images can still be prohibitively large. Functional
versions of necessary operators are developed, which do not require explicit construc-
tion of the full matrix. Additionally, to overcome the ill-posed and under-determined
nature of the inverse problem, a Bayesian approach is taken. Prior assumptions are
imposed on the reconstruction X, and samples are generated from the correspond-
ing posterior distribution. This is similar to regularization, and is a commonly used
technique [1, 2, 14, 37]. Samples are computed by numerically solving the inverse
problem using a Markov chain Monte Carlo (MCMC) method. Specifically, a block
Gibbs sampler is constructed that uses sub-images as variable blocks. The sam-
pler computes a deconvolution of each sub-image conditioned on relevant neighbors
to form a complete reconstruction at each iteration of the sampler. This blocking
scheme takes advantage of structure in the Gaussian posterior precision matrix and
the two-dimensional nature of the data.

In this work, we present a matrix-free implementation of deconvolution within a
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Bayesian framework, which can effectively produce deblurred samples of large im-
ages. The Blocked Gibbs sampler incorporates data-driven boundary conditions as
described in [1], and utilizes a blocking scheme that takes advantage of the structure
of the posterior precision matrix and the two-dimensional nature of the data. This
construction is scalable with image size allowing effective convergence of the MCMC
chain, which generally scales poorly with dimension [7, 17, 40]. Both the blurring
kernel used and the images reconstructed are larger than those analyzed in the cur-
rent literature [8, 9, 13, 20, 23, 41, 45], which makes our method applicable to a new
space of applications, including radiographs produced at DOE facilities. The method
presented also provides uncertainty estimates and results are presented on real data

from the Cygnus Dual Beam Radiography Facility at the NNSS.



Chapter 2

Background on discrete
convolution, Bayesian modeling,

and Gibbs sampling

In this chapter, necessary background information for image deblurring via 2D decon-
volution in a Bayesian setting is provided. Discrete convolution is introduced in both
1D and 2D, and different boundary conditions are discussed. Next, the Bayesian
formulation of the problem is given and the relevant probability distributions are

derived. Finally, the Gibbs sampler is introduced.

2.1 Discrete convolution and boundary conditions

As noted in the introduction, 2D convolution with a known kernel is used to model
the blur in the image data. The data obtained from the imaging systems is discrete,
which lends itself to a discrete 2D convolution model. The 2D model can be difficult
to follow due to all of the necessary indices to consider. In order to introduce the
problem structure, 1D convolution is introduced. Considering the 1D convolution

provides useful insight into the 2D convolution problem.

20
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2.1.1 1D convolution and classical boundary conditions

Discrete convolution in one dimension can be written as
o
b; = Z Qi LTy fori=1,...,my,
k=—0o0
where the b; represents the collected data, a; represents the blurring kernel, and z;
represents the true 1D signal. Here, there are my, output measurements b;. The kernel
is assumed to be known — either by a model or discrete measurement — and has finite
extent. We define a to be non-zero for indices 1 to m, and, similarly, x is non-zero

starting at index 1. Assuming that the kernel a is smaller than the true signal x, we

have
1—1 mae—1
bi = E Qi Lht+m, = E A —kLk+i for i = 1, e, M. (211)
k=i—mg k=0

Equation (2.1.1) can be written in matrix notation as

— - — . 1
bl ama amg‘fl o e DY a2 a’l O o .. 0
T2
= : . (2.1.2)
$mb+ma—2
bmb O .« .. O ama amafl .. o .. a2 a/l
- - - - _:Emb—i-ma—l_

or b = Ax. The matrix notation shows that although b € R™ the true signal
x € R™ where m, = my+m, — 1, and A € R™*™=_ That is, the natural domain of
x is larger than the domain of b, and depends on the size of the kernel. The domain
of b is commonly referred to as the field of view (FOV) in image processing. The
FOV corresponds to the center m; points in the true signal, x. The offset on the
left side of x is ¢, = [™2=1 ]| indices, and m, — ¢, on the right, where |-] represents
the floor function. Figure 2.1.1 shows how these two vectors align. The fact that x

necessarily extends beyond the FOV makes the system for the deconvolution problem
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Figure 2.1.1: The alignment of the true signal, x, with the data, b, is shown to provide
a visual representation of the field of view. (2.1.3) and (2.1.4) define two classical
choices for boundary conditions.

under-determined.

The classical means of overcoming this issue is to make assumptions about the
boundary of the true signal x, called boundary conditions. The true signal x is as-
sumed to have the same domain as the data b and outside the FOV assumptions
are enforced on the values of x based on those within the FOV. Common choices
for boundary conditions include periodic, zero, and reflecting boundary conditions
[18]. Periodic boundary conditions assume that x is periodic and thus the signal
repeats outside the FOV. Zero (or Dirichlet) boundary conditions assume that x is
zero outside the FOV. Reflecting (or Neumann) boundary conditions assume that x
is reflected over the boundary. These boundary conditions can be described mathe-

matically as

(Tmyt1s 7 Tongtem) periodic
(l’l, T 7wc7n) = (O, AR ,O) Z€ero ] (213)
(Taeny "+ s Tept1) reflecting
\
on the left hand side, and
§
(Teptts s Tmy) periodic
('IC7n+mb+17 e 7xmx) — (O7 .« e ’O) 7Zero 9 (214)
\ (Tmptems " > Trmp+2em—ma) reflecting

on the right hand side. Visual examples of the BCs for a 1D signal are shown in

Figure 2.1.2. The figure illustrates a 1D signal and its extension beyond the FOV,
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Figure 2.1.2: Boundary conditions for a 1D signal. The vertical dotted red lines
denote the domain (FOV) of the measured data. The true signal is shown on the left,
and the rest of the graphs depict the assumption of what the true signal looks like
based on various boundary conditions: periodic, zero, and reflecting (left to right).

and depicts a comparison to what the signal would look like if it satisfied the assumed
boundary conditions. Each of the signals satisfying the boundary condition choices
differ considerably outside the FOV from the true signal.

Classical boundary conditions result in a system that is no longer under-determined.
The system can be written b = Kf{, where A is the convolution operator with clas-
sical boundary conditions, and x represents the central m; elements of the vector x.
In this case, A € R™>*™ and the boundary conditions are applied to the vector in
the FOV. Each of the above classical boundary conditions is associated with an effi-
cient spectral method for solving the deconvolution problem. For periodic boundary
conditions, A is a circulant matrix, and the system is diagonalizable by the discrete
Fourier transform (DFT)[18, 42]. With zero boundary conditions, A is a Toeplitz
matrix, which can be embedded in a circulant matrix and also solved via the DFT
[1]. Reflecting boundary conditions result in an A matrix with Toeplitz-plus-Hankel
structure. If the kernel is also symmetric ( (a1, -+ ,am,) = (am,, -+ ,a1) ), then the

system is diagonalizable by a discrete cosine transform (DCT) [31].
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2.1.2 2D convolution and classical boundary conditions

The 2D case follows a structure similar to that of the 1D case. In general, 2D
convolution is written as
o o0
bij = Z Z Qi j— 0T 0 fori=1,...,my, j=1,...,n. (2.1.5)
{=—00 k=—00
As before, the kernel is assumed to be discrete, a € R™+*"s and the 2D signal — or
image — representing the data has a known size B € R™>*™_ Then for any pixel in

the data, (2.1.5) can be rewritten after re-indexing as

Ng—1mg—1

b@j = E E Amy—kng—0Li+k,j+45 for i = 1, ce ,mb,j = 1, c ooy Np. (216)
(=0 k=0

In order to write (2.1.6) as a linear system, it is necessary to vectorize the im-

ages B and X. Vectorization is generally done by column-stacking, i.e. given B =
[bl by --- bnb], then

b,
b,

b,

The notation b = B(:) is used to represent the column stacking operation. The vector
b € RM and x € RY, where M = my - ny and N = my, - n.

The inner sum of (2.1.6) has the same structure as the sum in the 1D convolution
(2.1.1). Over all ¢’s, the inner sum is equivalent to the 1D convolution between the

(ng — €)™ column of the kernel and the (j + £)™ column of the true image. Thus, the



CHAPTER 2. BACKGROUND 25

matrix A, can be defined as

Umg . OAmg—140 0 °° ase  Aip,—¢ 0 -+ 0
A, = , (2.1.7)
O e O a[mmg ama—l,f e e a27z a/l,f

similar to the matrix in (2.1.2). This matrix has size my, x m,. The subscript denotes

the corresponding column in the kernel. Then we have

Ng—1

b= A X
=0

This has a structure similar to the 1D convolution (2.1.1), except the scalar z’s and
b’s have been replaced with vectors, and the a’s have been replaced with matrices.
The full 2D operator has an overall structure that looks similar to the 1D case, with
a block diagonal structure made up of the A,’s instead of the scalar a,’s. The system

can be written as

by An A g o o Ay AL 0 - 0] |x

. o . - S
‘= 1, (2.18)

S ol

b, 0 .. 0 A, A, - - Ay Ayl |xa

or b = Ax, where there are n, x n, sub-matrices in A.

As in the 1D case, this system is generally under-determined. The same classical
boundary conditions (periodic, zero, and reflecting) can be implemented to produce
a system with a square matrix A € RM*M The size of A here implies the boundary
conditions are applied to the FOV (the central M = my-n, pixels of the image). In 2D,
the boundary conditions are applied in both the vertical and horizontal dimensions
of the image. An example with a synthetic image is provided in Figure 2.1.3, which

shows a synthetic image with an identified FOV, and how the image would look if
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X%:

Original Image Zero BCs Periodic BCs

Reflecting BCs

Figure 2.1.3: Boundary conditions for a synthetic image. The true image is included
on the left. The white box represents the field of view. The next three images show
what the figure would actually look like if it satisfied periodic, zero, or reflecting
boundary conditions (left to right). All three boundary conditions lead to images
that are different from the true image.

it satisfied classical boundary conditions. As before, outside the FOV, these images
differ considerably from the true image. As in the 1D case, each of the classical
boundary conditions have associated computationally efficient spectral methods to
solve the 2D deconvolution. These methods are similar to the 1D case, except they
use the 2D DFT and DCT [1]. Assuming classical boundary conditions in order
to use these methods can result in artifacts in the reconstructions, because prior
assumptions — the boundary conditions — enforced on the unknown x are restrictive
and lack physical motivation.

Rather than making strict boundary condition assumptions, the problem is instead
solved on the extended domain of x. That is, we consider solving the problem as

defined in (2.1.8). In [1], it is noted that this system can be represented as
b = Ax = DAx (2.1.9)

where A € R¥*N_ and D crops the output to the central M pixels. The operator
A can have any classical boundary conditions, and these boundary conditions act on
the pixels outside the FOV. The choice of classical boundary condition is arbitrary
since the pixels within the FOV are not affected. Thus spectral methods can be used
to perform the action of A on the extended domain, before cropping the output with

D to the FOV to perform the convolution.
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The unresolved issue, as previously noted, is that this system is under-determined.
Additionally, although A is diagonalizable via 2D spectral methods, A is not, mak-
ing deconvolution require prohibitively large matrices when the image is large. The
solution to this under-determined system is achieved by taking a Bayesian approach,
detailed in Section 2.2, and the issue of scalability with dimension is handled via the

block Gibbs sampler described in Chapter 3.

2.2 Bayesian formulation

Images are captured as a grid of cells, such as those found in Charge-Coupled Devices
(CCD) or Complementary metal-oxide-semiconductor (CMOS) image sensors. Each
cell in the grid measures light over a small portion of the field of view and the light
intensity can be represented as a scalar quantity. The collection of intensity values
from each pixel is stored in the 2D array B € R™>*™ which represents the image
data. The intensity value at each pixel location (i, j) is corrupted by blur and noise.
Common choices for modeling the noise include Poisson and Gaussian [2, 4], and
we focus on the Gaussian case here. The noise is modeled as an additive random

component,
b =Ax + ¢, (2.2.1)

where b, A, and x represent the column stacked data, the convolution matrix, and the
column stacked true image, respectively, as in the 2D convolution equation (2.1.8),
and e represents the additive Gaussian noise. The random error in each pixel ¢;
is assumed to be independently and identically distributed (iid) with mean 0 and
precision A > 0, or equivalently variance A~!. This is represented by € ~ N(0, A\7'T),

where N represents the Gaussian distribution, and I is the identity matrix. This
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gives rise to the Gaussian likelihood,

A
pi(b|x) o< exp <_§ [|Ax — bH2> , (2.2.2)

where ||-|| denotes the standard Euclidean norm, ||x|| = vxx, where ‘T’ denotes
transpose, and ‘o<’ denotes proportionality.

Maximizing the likelihood p;(b|x) in (2.2.2) is not well-posed. The Bayesian tech-
nique for dealing with this issue is to impose a prior probability on x. A Gaussian

prior

polx) o exp (_g L2 |2) , (22.3)

is assumed, where 6 > 0 is the prior precision parameter, and L is a sparse, symmetric
positive semidefinite matrix. In this work, the precision matrix L is specified as the
2D discrete negative Laplacian. This choice indicates some expectation of smoothness

on the image. The action of L can be represented as a convolution with the kernel
-1 4 -1}, (2.2.4)

and the boundary conditions of the Laplacian are chosen to match those of A in
(2.1.9). Due to the extended boundary conditions of A = DA, the choice of boundary
conditions has a negligible impact on the reconstructions. Because there are only
five non-zero elements in the kernel, the proportion of non-zero elements is at most
5/(mg - n,) which makes L sparse for large images. The structure of this matrix is
discussed further in Section 3.2.5.

Since both the likelihood and prior are Gaussian, applying Bayes’ Theorem results
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in a Gaussian posterior distribution:

p(x/b) o< p(b[x)p(x)

A 4]
xexp | —= ||Ax — b|[* — = HL1/2><H2
2 2
=N (mH™), (2.2.5)
where the posterior precision and mean are given by

H=)ATA + L, (2.2.6)

m=\H"'A"b. (2.2.7)

The goal is to produce samples from the posterior distribution to characterize the
distribution of the true image given the blurred and noisy data.

Although the posterior distribution is Gaussian, it is still difficult to sample from
due to the large dimension. The precision matrix H has size N x N, where N = m-n,.
The target application addressed in Chapter 4 considers images with n, ~ m, = 4000,
resulting in a problem dimension of N =~ 16-10°. This poses computational difficulties
even under the Gaussian assumption, as the standard procedure for sampling from
a Gaussian distribution involves computing matrix square roots, or other matrix
factorizations [14]. The banded structure of the posterior precision matrix makes
such factorizations infeasible at the full problem size. However, the local and sparse
nature of the operator can be exploited to break the problem into computationally

manageable pieces.

2.3 Markov Chains and Gibbs sampling

In the Bayesian setting, uncertainty quantification is performed by statistically ana-
lyzing samples drawn from the posterior distribution. It is often non-trivial to sample

directly from posterior distributions, generally due to non-standard structure, but in
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Algorithm 1: Gibbs Sampler

input : Initial state x(©) = [xﬁo) ! , Xgo) ! RN X7(10) T} T, maximum iteration
N, and conditional distributions p(x;|X1, -+ ,X;—1,Xi41,** ,Xp, b)

output: {x@ xM ... xNb where x® ~ p(x|b)

1 fork=1,...,N.do

2 fori=1,...,ndo

3 ‘ Xz(k) ~p (Xi ng)v T vxgﬁ)h Xz(izl)v T 7X1(1k_1)7 b)

4 end

5 X(k):[ng)T,X(gk)T,---,xg“)T T

6 end

this case due primarily to the high problem dimension. Markov chain Monte Carlo
(MCMC) methods are popular tools for simulating draws from these probability dis-
tributions that are otherwise intractable to sample from [7, 17]. These algorithms

produce an iterative sequence (or chain) of samples {x®}, which satisfy the Markov

property:

p (x® [x 0 xBD) = p (x® | kD) (2.3.1)

for all k& > 2. That is, each sample x*) depends only on the immediately preceding
sample, x*~1, and is independent of the history of the chain {x,... x*=2}.
The Markov chain is designed so that its stationary distribution is the posterior
distribution of interest [7, 17, 40].

The Gibbs sampler named in [16] is a widely used MCMC method in Bayesian
inference. The Gibbs sampler requires an N dimensional random variable x that
is made up of (potentially multivariate) components as its input. That is, x =
[x{, x5, ,X,—HT, where x; € R% and Y  d; = N. Starting with an initial point
x| the sampler iteratively generates samples x*) incrementally via the components

xgk). The conditional distributions p(x;|x1, -+ ,X;—1,X;41, " * , Xn, b) are used to draw

samples for each component. The Gibbs sampler is summarized in Algorithm 1. The
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Gibbs sampler presented here is systematic; the components x; are updated as a cycle
in the labeled order 1 — --- — n, and every component is updated. The stationary
distribution of the Gibbs sampler is independent of this ordering [17, 36].
Regardless of the sampling order, samples {x*)} from a Gibbs sampler are not
independent, since they are constructed with the Markov property (2.3.1). This
affects the convergence and efficiency of the chain, as well as any statistics calculated
based on these samples. Setting aside issues of transient behavior [10], the integrated
autocorrelation time (IACT), 7, is a useful measure of the efficiency of an MCMC
sampler. The correlation between samples causes statistical error to be a factor of
27y larger than in independent samples [40]. In the results, the estimator fo the
IACT proposed by [44] is used. An interpretation of this result that the number of

samples of the total that are effectively independent is given by

N,
Ny = —° (2.3.2)

- I
27_int

where N, is the total number of samples. IACT and effective sample size are indicators
of the efficiency of an MCMC algorithm. It is well known that convergence rates of
MCMC methods decrease with dimension. For example, [6], [34], and [33], show that
the proposal variance of MCMC samplers decreases with dimension of the problem,
which in turn implies that IACT grows with dimension.

Gibbs samplers can also suffer from poor scaling as dimension increases. The
convergence rates for a Gibbs sampler are affected by the update scheme used. Both
the order the variables are drawn and the way the components are blocked can have
a significant effect on convergence rates [35]. In the case of a Gaussian posterior,
choosing highly correlated components results in faster convergence [35]. It was also
shown in [28] that when the precision and covariance matrices are block-tridiagonal,
the Gibbs sampler is effective for sampling high-dimensional Gaussians. Under those

assumptions, the convergence rate is independent of dimension.
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In image deblurring via 2D convolution, the precision matrix of the Gaussian
posterior (2.2.5) is not block-tridiagonal, due to the 2D problem structure. The
precision matrix is, however, sparse with a more generally banded structure. Taking
advantage of this structure allows one to effectively sample high-dimensional images.
For 2D deconvolution, the efficiency of the Gibbs sampler depends critically on the
way the components are chosen by blocking the image x. The following section
introduces a scalable implementation of a blocked Gibbs sampler for high-dimensional

image deblurring problems.



Chapter 3

Scalable Gibbs sampling for
high-dimensional posterior

distributions in imaging

This chapter covers the implementation of a block Gibbs sampler that is effective in
the high dimensional target application. The implementation exploits the local nature
of convolution and the resulting sparsity structures of the convolution matrix A and
of the prior precision matrix L. The banded structures of both A and L are captured
in the posterior precision matrix H = MA T A + JL, whose structure can be leveraged
by carefully partitioning the state, x, of the Markov chain using sub-images to define
the components. When the images are relatively small, i.e. when it is possible to
store the posterior precision matrix H in memory, then the sampler can be directly
implemented. In this case, solutions can be computed via matrix computations on the
sub-images, with matrix sizes defined by the partitions of x. This matrix notation is
used to introduce the block Gibbs sampler as a conceptual first step toward describing
the overall approach. For larger images, matrix based methods are impractical due to

memory constraints. The target application has dimension 16 - 10°, making even an

33
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off-line assembly of the posterior precision prohibitively expensive. A function based

alternative is introduced to avoid these issues.

3.1 Effective partitioning for Gibbs sampling in
imaging

As discussed in Section 2.3, Gibbs samples are generated using the conditional dis-
tributions p(x;|X1,- - ,X;—1,X;41,** ,Xy,), and sequentially generating samples, x;,
from each conditional [15-17, 37]. In the target application, which has a Gaussian
posterior (2.2.5), the conditionals are also Gaussian. The conditional distributions in
the case of scalar components are provided in [3, 14] and can be extended to multi-

variate components. Specifically, the conditional distribution for the i*® component

X; is
R T L
( (ZH]< (k=1) —m]> +ZH”< (.’”—mj)) ,H;ﬁ), (3.1.1)
71>t 7<t

where the H;; are sub-matrices of the posterior precision matrix H, and the super-
script (k) denotes time in the Markov chain. In the context of imaging, the x;’s
correspond to groups of pixels in the image. The structure of any sub-matrix H,;
depends on how the state, or image, x is partitioned into components as sub-images,
X;.

Since the convolution matrix A defined in (2.1.8) assumes that the vector x is a
column stack of the image X, a naive choice for the components x; corresponds to
columns in the image. In this case, the components are simply sequential sub-vectors
in the column stacked x. This choice is not practical, since the blurring kernel a

extends in the vertical and horizontal directions. Each pixel in x; depends on the
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pixels within a 2D-neighborhood based on the size of the kernel, requiring x; to be
conditioned on all columns to the left and to the right of the column 7 that are
contained in this neighborhood. When x; is a single column, this corresponds to
the n, neighboring columns, and thus x; depends on n, of the remaining columns,
x;. For large kernels, n, is large, and x; must be conditioned on a large number of
neighboring columns, which reduces the efficiency of the sampler [28]. An example
of this for an image X of size 100 x 100 is shown in Figure 3.1.1a. With a kernel
of size 21 x 21, the yellow column x; depends on the 10 neighboring columns to the
left and right. When the Gibbs sampler sequentially samples the columns from left
to right, the 10 blue columns to the left represent the location of the xg-k*l), and the

" in (3.1.1). Reducing

10 green columns to the right represent the location of the X;
the number of components that each x; is conditioned on results in a more efficient
sampler [28], but, such a reduction requires a different partition of x.

Since X represents an image stored as a 2D array, and since blur is expected to
occur in the vertical and horizontal directions, a better choice for dividing the image
into components involves sub-images that have 2D structure. One way to make this

partition is to divide the full image X — which has size m, X n, —into a set of mg-npg

sub-images X,

X1 Xitmg 0 Xitmpng-1)
x| %o Koo o Keemswon | 512)
_XmB X2mB e XmBnB

The subscript on each X; indicates one possible sampling order for the Gibbs sampler,
i.e. cycling from top to bottom, left to right. In the sections that follow, it is assumed
that all sub-images have the same size — denoted X; € R™d*™ — to avoid more
cumbersome notation, but this is not a necessary requirement. When the sub-images

are all the same size, the number of sub-images (mp,np) and the size of the sub-
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(a) Column based components (b) Sub-image components

Figure 3.1.1: Panels (a) and (b), depict possible blocking schemes for an image X,
with 100 x 100 pixels and kernel size 21 x 21. In each panel, the yellow component
represent the location of x;, while the blue and green components represent the lo-

cations of x§k) and xg-k_l) from (3.1.1), respectively. The white components represent

the locations of the x; that are conditionally independent of x;. In (a), the com-
ponents are chosen as columns of the image (100 pixels each). For a kernel of size
21 x 21, x; depends on 20 neighboring columns (10 to the left and right). In (b), the
components are 10 x 10 sub-images (still 100 pixels each), and depend only on the 8
neighboring sub-images (4 in blue and 4 in green).

images (mg,ng) can be related to the size of the entire image (m,,n,) as follows:
mpg - mg = my; and ng - ng = n,. An example of this blocking scheme is shown in
Figure 3.1.1b for an image X of size 100 x 100 pixels. There are mpg - ng = 10 - 10
sub-images and each has size my X ng = 10 x 10 pixels. The yellow component in the
center of the highlighted components represents the location of x;, which depends on
the eight neighboring components highlighted in blue and green. When the Gibbs
sampling order is defined by the indices in (3.1.2), then the four blue sub-images above
and to the left represent the locations of the components that have been sampled in
the k'™ Gibbs iteration, xg-k). Similarly, the four green sub-images below and to the
right represent the locations of the components that have not been sampled in the

kth iteration of the Gibbs sampler, so the previous iteration samples, x A=)

;. are used

in (3.1.1). Compared to the column-based blocks in Figure 3.1.1a, fewer neighboring
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blocks are required at each iteration in the Gibbs sampler.

The blocked Gibbs sampler specific to the conditional distributions (3.1.1) is pro-
vided in Algorithm 2. The sums are over the sets Sy C {j : 1 < j < i} and
Spost € {J : @ < j < n}, which contain only the relevant indices j that the i
block is conditioned on. With the sub-image based blocking scheme, any block will
always only depend on at most eight neighboring blocks provided that the block
size is large enough compared to the kernel size. This is due to the local nature of
the blurring process, the relative scales of support of the kernel and the sub-image
size. Only pixels that are sufficiently close to the sub-image have an effect on the
blur, which depends on the size of the kernel. Specifically, the block and kernel sizes
must satisfy m, < 2mg + 1 and n, < 2ng + 1. When these conditions are satisfied,
the sets can be Spe = {t —mp — 1,i —mp,i —mp + 1,i — 1} N{l,--- ,n} and
Spost ={i+1,i+mp—1,i+mp,i+my+ 1} N{1,--- ,n}. This is possible due to
the fact that the rest of the H;; sub-matrices are zero under this blocking scheme.

The largest possible block size is the entire image, which is the trivial case of
solving the original problem: there is only one sub-image, X; = X, and (3.1.1)
simplifies to x; ~ N (m,H™!). Each sample of X is independent (7, = 1/2), but
the required operations are computationally infeasible when the dimension is large.
On the other extreme, the smallest possible block size is a single pixel, which requires
only scalar operations. Each pixel, however, is dependent on a number of surrounding
pixels (dependent on the size of the kernel) and, thus, the IACT increases and the
effective sample size decreases. There is thus a trade off between the computability
of the sub-problems and the efficiency of the sampler in terms of TACT. Such an
optimum is problem dependent and in the target application addressed in Chapter 4

a large block size is required for effective sampling.
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Algorithm 2: Block Gibbs Sampler
input : Precision matrix H, mean m, initial state

T T 17
0) = [xﬁo) , xéo) S, X%O) ] , and maximum iteration N,

x(

output: {x@ xM ... xMNt where x* ~ A (m, H™!)

1 fork=1,...,N.do
2 for z' =1,...,ndo
3 pre { j : visited close blocks, left or above block i}
4 Spost = {j : future close blocks, right or below block 7}
5 sample z ~ /\/'(O7 I)
6 ng) =m; +
Hi_il H;/QZ — Z Hz‘j (ng—l) - mj> + Z Hij (X§k) — l’l’lj>
JESpost JESpre
7 end
k OO BT’
s X<>:[X1 X ,...7X§1>}
9 end

3.2 Matrix free implementation for large images

Generating samples from the conditional distributions

xl(-k) =m,; + H;' H;/Qz — Z H;; (ng - m]) Z H;; (x ( - mj) ;
JE€Spost JESpre

(3.2.1)

in the Gibbs sampler from Algorithm 2 is computationally intensive when the di-

mension of x; is large. This is because the vectors x ) have dimension equal to the

number of pixels in the sub-image they represent, my X ng. Thus, the sub-matrices

H,; have dimension mgng X mgng. Instead of explicitly building the sub-matrices, it

is possible to exploit the linearity and structure in the operators A and L. In doing

so, it is possible to construct functions that perform the actions of the sub-matrices
H,; on sub-images of X.

There are four separate computational elements in (3.2.1), that require a matrix-

free implementation. The first operation requires performing a backsolve to compute
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the action of the inverse of the sub-matrix H;;,

faing(y, 1) = Hy'y. (3.2.2)
The second operation is

fsqrt(z7i) = HT/2Z, (323)

i

which produces the random component in the Gibbs sampler, i.e. a vector distributed
N (0,H;;). The final two elements are the pre- and post-sums
Frost(y,1) = Y Hyy; and  foe(y,i) = > Hyy;, (3.2.4)
JESpost JESpre
which produce the boundary conditions for the i*" sub-image, by using the neighboring
sub-images. All of these operations depend on the actions of A and L. Functions
related to A and L are derived first and used to produce the final functions for
(3.2.3)—(3.2.2), all of which return a sub-image of size my X n4.
Equations (3.2.2) — (3.2.4) all contain at least one sub-matrix H;;, and a function

computing the action of H;; is essential to each of these functions. Note that
H;j = A (A:,z‘)T A.; + 0L (3.2.5)

where the ‘" represents all block indices, i.e. A.; = [AIj AT T. Thus an

mBnB,j]
implementation of the action of H;;, depends on implementations of (A;,i)T, A.;,
and L;;. Equation (3.2.3) also requires the action of the square root of L;;. These all
rely on matrix free implementations of convolution with a kernel a for on arbitrarily
sized sub-image and a similar implementation for the prior precision. Sections 3.2.1—

3.2.3 provide a high level overview assuming these matrix free implementations are

available. Sections 3.2.4-3.2.6 provide the implementations of the required functions.
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3.2.1 Computing the action of HZ-_Z-1

The first computational element of the conditional distribution (3.2.1) is computing
the action of the inverse of H;; as stated in (3.2.2). The action of the forward operator
denoted fu,,(-) is a combination of the functions f, ,7(-), fa ;(), and fr,;(-) which
are defined in Sections 3.2.4 and 3.2.5 (see equations (3.2.14), (3.2.17), and (3.2.22)).

It is given by

an (Xi7 Z) = )‘.]C(A;,qg)—r (fA:,i (Xl)) + 5fLu (X1>7 (326>

Given the function (3.2.6) that performs the action of the forward operator, there are
a host of different methods for finding the inverse. One such method is the Conjugate
Gradient (CG) method, which is an iterative method for solving linear systems with
symmetric, positive definite (SPD) matrices. Since L is SPD, AT A is symmetric
positive semidefinite, and A,0 > 0, then H is SPD. The CG algorithm produces an
exact solution (assuming no numerical error) in n iterations, where x € R" [22, 43].
It is common to stop well before n iterations are reached, which effectively acts as
further regularization for the problem. The specific stopping criteria for CG used in

the application are covered in Chapter 4.

3.2.2 Generating Gaussian random vectors with mean 0 and
precision H;;

In Algorithm 2, the purpose of the the square root matrix HiTi/ 2 acting on a random
vector z in the conditional distribution (3.2.1) is to generate a sample from N (0, H;;).
For small matrices H;;, the usual method of producing such a sample is to compute
a matrix square root, e.g. a Choleskey factor [43]. When Hj; is large, this is both
computationally expensive and memory intensive. To avoid this, we instead consider

the structure of H;;, and generate samples via sums of independent Gaussians. Recall
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that
H; = A(A.) A + 0Ly, (3.2.7)

Consider the first term, A (A;ﬂ-)T A.;. It is easy to generate normally distributed
random vectors z with mean zero and covariance I for any dimension. The dimension
of the required vector z; = Z;(:) depends on the location of the sub-image X;, where
Z, has size (mg — m3 + 1,n4 — n3 + 1) ( defined in (3.2.16)). Then the function

fea.,y7 (), defined in (3.2.17) can be used to produce output with the distribution
f(A:’Z-)T (Z1) ~ N (07 (A:,z‘)T A:,i) .

Similarly, given a function f; r/2(-) and appropriately size Zy where z; = Zs(:) has

mean zero and covariance I, then
fLT_/Z(ZQ) ~ N(O, L“) .

An efficient implementation for the negative 2D Laplacian makes use of the fact that
L can be written as L = DIDU + DZDh, where D, and Dj, depend on the boundary
conditions of L and are covered extensively in Section 3.2.5. Due to the dependence
on D, and Dy, the functions fp,(:) and fp, (-) are required (see Equations (3.2.26)
and (3.2.26)). Then computing two independent random vectors zy,z3 ~ N(0,1)

where Zs, Zi3 have size my X ng, we have
for (Z) + foyy (Z) ~ N (0, L),
Scaling these outputs by A'/2 and §'/2, we get
N2 () + 67 (m (Zs) + for (z3)) ~ N (0,H;) (3.2.8)

i.e. this function produces outputs with the same distribution produced by the square

root matrix H;/Q in (3.2.3).
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3.2.3 Efficient computation of the pre- and post-sums

In this section, an efficient implementation of the pre- and post-sums, given in (3.2.4),
are presented by taking advantage of the linearity of H, and carefully constructing
sub-images X, and Xpos (see (3.2.31), (3.2.32)). The pre-sum can be computed
using the functions f, ;7(-), fa(‘), and a slight alteration of the fy(-) function
Jrpre(+) (see (3.2.17), (3.2.33) and (3.2.36) respectively) as

fpre<X7 7’) = )‘.]C(A:ﬂ-)-r (fA(Xpre)) + 5fL,pre<X)- (329)

Similarly, the post-sum can be computed using the functions f(A:i)T(‘), fa(+), and
a slight alteration of the fr(-) function frpest(-) (see (3.2.17), (3.2.34) and (3.2.37)

respectively) as

Spost(x,1) = )\f(A:’i)T (fa(Xpost)) + 0 fL post (X) (3.2.10)

Combining CG with (3.2.6) and using (3.2.8), (3.2.9), and (3.2.10) provides all the
necessary components for an implementation of (3.2.1) for problems where the dimen-

sion of the sub-image is so large that a matrix based implementation is infeasible.

3.2.4 The action of the convolution matrix A

In order to compute the four actions of the H;; sub-matrices defined in equations
(3.2.3)—(3.2.2) that make up the conditional distribution (3.1.1), it is necessary to
have a matrix free convolution function given a kernel a, denoted as fa. This is the

standard convolution as described in [1], and provided in Algorithm 3.
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Algorithm 3: Convolution fa
input : Image X € R™**"= and kernel a € R™e*"

output: Image Y € R™>*™

1 fori=1,...,mydo

2 for j=1,...,n, do

3 yij=a-X(@i:i+mg—1,7:j+n,—1)
4 end

5 end

In Algorithm 3 the “” represents the dot product defined in (2.1.6), and a repre-
sents the kernel a flipped both vertically and horizontally (note: this is equivalent to
a rotation of the position of the elements in a by 180°). For any pixel position (i, j)
and sub-image size (m,n) satisfying i,7 > 1, my <m <my, —i, n, <n <n, —j, we

have

faX(@:i+m—1,7:54n—-1)=Y@:i+m—m,—1,7:j+n—n,—1).
(3.2.11)
That is, the function fa applied to any sub-image of X produces the corresponding
smaller sub-image in Y. This will prove useful when considering sub-images X; of
the entire image X.
It is possible to use variations of the function fa(-) to implement actions of A. ;

as required for Equations (3.2.2) — (3.2.4). Recall that the index “:” represents all
block indices, i.e. A ; = [A;---A]

T , ‘
mBnB,j} . The matrix A.; has size M x mg - ng,

and produces an output which is the size of the entire blurred image (M pixels)
corresponding only to the j'™ sub-image of the input. Due to the local nature of
the blur, only a small portion of the M pixels in the output are non-zero. This is
illustrated in Figure 3.2.1, showing the output for an X; in the interior of the image

X, and another on the border of X. In both cases, the output is only nonzero in areas
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close to X;, and the extent depends on the size of the kernel. This can be written

using the entire operator A by setting every other block x; with ¢ # j to zero,

0
0
A xp=A | x; (3.2.12)
0
0
As an image, i.e. removing the column stacks, this is equivalent to
0 0 O
0 0 O
My XNy

where the 0 blocks are appropriately sized so that the X; block is in the j™ position.
The action of fa(+) on an image with a single non-zero sub-image is depicted in Figure
3.2.2, for the same interior and boundary sub-images as in Figure 3.2.1. Since the
non-zero portion of the output is in a relatively small section of the output, it is
possible to compute just the non-zero portion and keep track of its location in the
output. Producing just the non-zero portion of the output requires zero padding X;
based on the size of the kernel, as opposed to zero padding to the size of the whole
image X. Blocks on the boundary of the image require less padding, as shown in

figure 3.2.3. This can be written as

fa,X;)=/fal |0 X; 0] |, (3.2.14)
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o

L1

:7j2

N
|

Figure 3.2.1: A.; acts on a single sub-image X; to produce an output image of size
my X np. The dotted lines in the output indicate the sub-images, which are the
same size as in X for internal sub-images such as X;,, but differ due to the extended
boundary for sub-images on a border of the image X such as X, .

where the 0 blocks in (3.2.14) are much smaller than in (3.2.13), and depend on the
size of the kernel. Specifically, X; is padded with (m, — 1) zeros on the top and
bottom, and (n, — 1) zeros on the left and right, so long as it is not on the edge of the
image, in which case there is no zero padding. For arbitrary sub-image size (mgy, ng)

and kernel size (mg,n,), the padding can be calculated as

mq = min {ma — 1, (k?] — 1)md} ,
ny =min{n, — 1, (¢; — 1)ng},

(3.2.15)
my = min {m, — 1,m, — k;ma},

ne = min{n, — 1,n, — {;ng},

where (k;,{;) are the unique subscripts corresponding to j = k; + (¢; — 1)mp, and
satisfy 1 < k; < mp, 1 < {; < np. These values correspond to the padding to the
left (mq), right (mg), top (n1) and bottom (n2) of the sub-image X;.

Next, the action of (Azji)T is considered, as it is required to compute the action
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x ¥

| QEC |

Figure 3.2.2: On the left, the original image is shown, with two different sub-images
X; shaded in red and blue. The entire A acting on an image the size of X, where only
the X; sub-image is non-zero results in the same output as in Figure 3.2.1. The fact
that much of the output is zero indicates that it is possible to apply the convolution
to just a sub-image to produce the non-zero portion of the output (see Figure 3.2.3).

! : A

i ! s
X

e A

Figure 3.2.3: In order to produce only the non-zero portion of the output from Figure
3.2.2, the sub-images require only a small amount of zero-padding indicated by the
dotted lines. The padding differs for sub-images on the interior of the image such as
X, as compared to those on the boundary of the image such as X;,.

of H;; in (3.2.5). This block row matrix has size m, - nqg X M, and acts on an object
the size of the entire M = my, - n, pixel image Y. It produces the i*® sub-image of
the output (size mgy x ng) convolved with the blurring kernel a flipped in the vertical
and horizontal directions, denoted a. Although (A.;)" acts on M elements, only a
small proportion of the elements affect the output, due to the sparsity in A. These
elements consist of all those in the i*® sub-image, as well as the elements bordering
the sub-image, and depend on the size of the kernel. Figure 3.2.4 shows how these
bounds change depending on the location of the sub-image. For interior sub-images,
the bounds are within the neighboring sub-images. For sub-images on the border of

the image, zero-padding is required.
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X
(Asi)'

11
: — B
1

Figure 3.2.4: (A;,i)T acts on the entire image Y to produce the output of the it
sub-image when convolved with a. For any sub-image the relevant part of the input
has size (myq + m, — 1,n4 + n, — 1). For sub-images on the interior of Y such as
indexed by 71, the boundary is made up of the neighbors. For sub-images on the edge
of y such as indexed by i,, part of the boundary is zero-padded, indicated by the
dashed lines.

————————

(m3, n3)

(m4’ n3)

Figure 3.2.5: The bounds defined in (3.2.16) for the two different example indices in
figure 3.2.4. The dotted lines represent the zero-padding done by fpaa(-) in (3.2.17).

The relevant bounds in the image can be defined as

mg = 1+ max {0, (k; — L)mg — (m, — 1), }
ns =1+ max{0,(¢; — D)ng — (n, — 1), }

(3.2.16)
my = min {k;mg, my},

ny = min {{;ng,np},

where (k;, £;) are the unique subscripts corresponding to i = k; + (¢; — 1)mp, and
satisfy 1 < k; < mp, 1 < ¢; < ng. Thus the relevant portion of the image is given
by Y(ms : my,n3 : nyg). Similar to the 0 padding in (3.2.14), the size of the Y
sub-image changes with 7. The central blocks of the input Y are all the same size:
(mq+mg — 1,n4 + n, — 1), while those on the border of Y are smaller.

In order to understand how (A. ;)" acts on this block, recall that A can be written

as the product DA as in (2.1.9). Here A € RVN 5 the convolution matrix with
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RM*N"is the cropping operator, which crops

known boundary conditions, and D €
out the M elements corresponding to the output image. The transpose, AT = ;‘:TDT,
first extends the image from size M to size N, and then applies the convolution AT

As previously noted, this is just the convolution with a rather than a. Note that

~

A= (DA), = > D.;A;; = DA,
i

)

and (A ;)" = (szi)TDT. That is, the image is first extended via DT, then the
relevant portion is convolved. As with (3.2.14), the sparsity of A allows us to neglect
much of the extended input, as it does not affect the output. In the case of the i*®
block, only blocks close enough to the edge are extended. After the extension, the
total size of any block is the same as the central block: (mg + m, — 1,n4 + n, — 1).
Applying the convolution function with the appropriate kernel then returns the output

with size (mg, ng). Thus,

fia ™ (Y) = fa (fpaa (Y (m3 2 ma,ng : na))) (3.2.17)

where fyad(-) zero-pads the input to size (mg + m, — 1,n4 + n, — 1), based on the

block index 4, and fz represents convolution with a.

3.2.5 The action of the prior precision matrix L

There are many choices for the prior precision matrix L. The basic requirement for
this matrix is that it needs to be sparse and symmetric positive definite (SPD). In
order to use the method provided in this paper, a functional version of L is required
that is capable of returning the action of the sub-matrix L;;. In this section, a function
is defined for L as the discrete negative 2D Laplacian.

In Section 2.2, it is noted that the action of the 2D discrete negative Laplacian is
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equivalent to convolution with the kernel

with some specified boundary conditions. Thus the functional version for the matrix
L is similar to A, but in this case the boundary conditions need to be taken into
consideration. First, the image must be padded according to the boundary conditions,
which only require a single pixel of padding in each direction For example, with

periodic boundary conditions, the padding is defined as

me,ﬂx Xm me,I

Tyt

Xpo= | X.,, X X1 | (3.2.18)
Xl,mm Xl,: X171
where X, ; is the (i, 7)™ pixel of X, X; . represents the i row of pixels in X and X ;

represents the 7™ column of pixels in X. For zero boundary conditions, the padding

is just a single zero in each direction,

0 0 0
Xpc= |0 X 0]- (3.2.19)
0 0 0

Note that the corner zeros are not bold since they are scalars. In both cases, Xgc €

R(ma+2)x(n242) and X is the center m, x n, pixels. Then
fu(X) =4X— (XBC(l img,2:n, + 1)+ Xpe(3:me +2,2:n, + 1)
+Xpe(2:my+1,1:n,) + Xpe(l:my,3:n, + 2)) (3.2.20)

Similar to fa, this function can also be applied to any sub-image of X, e.g. for any

pixel position (7, 7) that satisfies 1 < i < m, and 1 < j < n,, and sub-image size
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(m,n) that satisfies 1 <m <m, —iand 1 <n <n, —1,

fuX@:i+m,j:j4n)=4X@GE:i+m,j:j5+n)
- (XBC(i:i+m,j+1:j+n—l—1)
+Xpo(i+2:i+m+2,7+1:5+n+1)
+Xpe(i+1:i+m+1,j:75+m)

—i—XBC(z'—i—l:i+m+1,j+2:j+n—|—2)>.

The function for the sub-block L;; corresponding to the sub-image X is very similar.
Note that L;; produces the portion of the output block ¢ due only to the input sub-
image 4. This is equivalent to the output of f, with zero boundary conditions on the

sub-image. That is,

fr,(Xi) = fu(X) (3.2.21)

with zero boundary conditions applied. For the sub-block L;;, which corresponds to
the portion of the output sub-image ¢ due to the input sub-image X;, the output
is only nonzero when X; and X, share a border. Recall the block subscripts are

as defined in (3.1.2), so the sub-images sharing a border with X; are indexed by
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je{i—1,i4+1,i —mp,i+mp}. The function for any (, j) pair for L;; is given by

(
fu(X;) (with 0 BCs) if j =i
= | Oaxg—ny X1 mg, 1) if j =i —mp
0 mg—1)Xn
— (ma—1)xnqg i1
X;(1,1:ng)
fo, )=+ (3.2.22)
Xj(md, 1: ’fld) .
N ifj=i+1
O(md—l)xnd
Ormyxng otherwise.
\

Combining this function with the functions for A given in (3.2.14) and (3.2.17), it is
possible to produce the action of any sub-matrix H;;. These are used to derive the
functions for the sums in (3.2.4).

The next function to consider is the random component, which requires the action
of the square root matrix H;/ ? defined in (3.2.3). The action of H;/ ? requires a means
of computing the square root of L. In [1], it is shown that for periodic boundary

conditions, L can also be written in the form
L=D,D,+D/D,, (3.2.23)

and D, =D, ®1,, and Dj =1, ® D,, where ® represents the Kronecker product
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and D, is the forward difference operator with periodic boundary conditions:

1

0

(3.2.24)

The zero boundary condition case can be written in a similar form, except with

V2 —
0
0

0

1/

2

32

0

Vi3

(3.2.25)

in place of D,, where n is either m, or n, in order to create the appropriately sized

matrix. Thus we can define two functions for the matrices D, and Dj; which differ

depending on the boundary conditions. In both cases, they can be formulated as

fDI(X):W1®XBC(3mx+2,2nx+1)—W2®X,

for(X) =W/ 0 Xpo(2:m, +1,3:n, +2) - W, 0 X.

(3.2.26)

(3.2.27)

where ® represents element-wise multiplication. For periodic boundary conditions,

W, = W, =1, ie. the matrix of all 1s. For zero boundary conditions, W; and W
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are defined as

V2 /372 \/4/3 ntl
W V2 \/ﬁ 4/3 = |
\/§ m 4/3 .- ﬁ
0 Vi2 /23 B/ - \/>
w,_ | \/W m \/ﬂ \/7

0 V172 V23 34 - \/7

W, contains the elements on the main diagonal of D, while W5 contains the elements
of the first super-diagonal of D, in (3.2.25). Here n = n, for fpr, and n = m, for
fDZ. The primary interest in these functions is producing random sub-images that

have distribution A(0,L;;). Since

L; = (D,D,+D,D,),,

(Du(:,3) Du(:,d) + (Dy(:,4)) | Dyl i),

we require functions for (Dy(:,4))" and (D,(:,4))". These block row matrices have
size (mg-ng) x N, and produce the output pertaining to the i*® sub-image, given the
entire image. The only relevant portion of the entire image are the pixels directly
bordering them, with the relevant boundary conditions applied to the sub-images on
the boundary of the image. Then we can just apply the fpr and fD; from Equations
(3.2.26) and (3.2.27) to produce outputs equivalent in distribution when applied to
random vectors. Such vectors are an essential component of random sub-images that

have distribution A(0, Hy;).
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Figure 3.2.6: Due to linearity, H; . can act on the three pieces of the image separately
to produce the output Y;, which are the “pre” (blue, left), i (yellow, center), and
“post” (green right) pieces in the figure. For sub-images X; on the border of the
image, part or all of the “pre” or “post” pieces will not exist. The size of the pre- and
post-pieces depend on the kernel a, but are at most the size of the dotted outline.

3.2.6 Actions required to compute the pre- and post-sums

This section provides the details on calculating the pre- and post-sums, given in
(3.2.4). These sums together contain all of the non-zero sub-matrices H;; such that
j # i. Therefore it will be useful to consider the collection of all these sub-matrices,
H, . in order to produce functions for these two sums. In order to produce functions
for these sums, it is useful to note that the i sub-image of the output from the

blurring process y = Hx can be written as

mpBng
yi=H; x= Z H;;x;
j=1
= Z Hinj + Hqu + Z Hinj (3228)
jespre jespost

That is, the result in the i*® sub-image y; of the output can be partitioned into three
components: (1) the contribution of the blocks to the left or directly above the i‘h
sub-image, i.e. the pre-blocks, (2) the contribution from the i*" sub-image x;, and (3)
the contribution from the blocks to the right or directly below the i** sub-image i.e.
the post-blocks. Figure 3.2.6 provides a visual representation of this.

Due to linearity, each term in (3.2.28) can be acted on separately by the matrix
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mo

ny ngq ng

Figure 3.2.7: The blue section on the top left indicates pixels from the relevant portion
of sub-images X; with j € Sy, the green section on the bottom right indicates pixels
from the relevant portion of sub-images X, with j € S,os, and the center yellow
sub-image is X;. Each of the sub-images has size my X ng4, and the sizes my, ms, nq,
ng are defined in (3.2.15).

H, ., which has the form y, = H, .x, where

i

H;.=\(ATA) +0L;,

= A(A;)" A 4L, (3.2.29)

The first term corresponds to convolving the entire image with the kernel a, and
then performing the partial convolution with (A.;)" which produces the i*® block of
the output. As shown with the function defined in (3.2.17), the partial convolution
(A.;)" only acts on a small portion of its input, whose size and location are defined
by the bounds mg, n3, my, ng in (3.2.16). Thus, it is only necessary to apply the initial
convolution via A to produce the portion within these bounds. Figure 3.2.7 depicts
the size of the relevant portion of the image for both the pre- and post-sums.

Similar to Equations (3.2.12) and (3.2.14), the components of the image in Figure

3.2.7 can all be acted on separately due to linearity,

()1 ([ 1) o ([T]) o

where the first term corresponds to the sum containing the pre-blocks, and the final
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term corresponds to the sum containing the post-blocks, and the center term is exactly

the same as (3.2.14). For the first and last terms, the sub-images can be defined as

Xicmp-1 Xi—1 0
Xpre = fcrop Xime 0 0 ’ (3231)

Xi—mB-i—l 0 0

O O Xi+m3—1
Xpost = fcrop 0 0 Xi-l—mB ) (3232>

0 Xip1 Xifmp+1

where the center 0 € R™¢*"4 is the location of the i®® block for both inputs. X,
corresponds to the blue part and X, corresponds to the green part of Figure 3.2.7.
The function feep(+) crops the input from all nine sub-images to the appropriate size,
which is illustrated by the colored blocks in Equation (3.2.30) and Figure 3.2.7. X,
represents the components of X; with j € Spre, and X5 represent the components

of X; with j € S,ost. Thus we can write

fa (Xpre) (3.2.33)

fA (Xpost) 3 (3234)

which produce the pixels within the bounds (3.2.16). To complete the computation
of the first term for the action of H;_ in (3.2.29), we need only apply fia, )7 defined
in (3.2.17).

Now consider the second term in (3.2.29). L;. produces the portion of the !
output block, which can be partitioned into the pre- and post-neighboring blocks,

and the center sub-image. That is,

(00 () () ()

(3.2.35)
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where the boundaries (in blue and green) represent a single pixel. As in the case of
A, the relevant sub-image blocks can be all considered at one time. The total output

for the L portion of the pre- and post-sums can be computed by

fL,pre(X> = Z Linj

i<t
0 Xi—1(mg,:) 0
= fi Xiomp (5 na) 0,5y 0 , (3.2.36)
! 0 ’ (ma+2)X(nqa+2)
Frpost(X) = D Ly,
j>i
0 0 0
=0 Opyny,  Xigmp(,n4) : (3.2.37)
0 XHl(md’ :) 0 (mg+2)x(ng+2)

respectively. In both cases, the center 0 has dimensions my X ng, and the portions of
the X;’s present are either a row or column. Combining the results from the pre-sum

functions (3.2.17), (3.2.33) and (3.2.36), the pre-sum can be computed as

Jore(X,0) = AS& (fraa (fa(Xpre))) + 01 pre(X). (3.2.38)

Similarly, combining the post-sum functions (3.2.17), (3.2.34) and (3.2.37), the post-

sum can be computed as

prSt<X7 Z) = AfA (fpad (fA(Xpost))> + 5fL,post(X> (3239)

With these functions defined, the conditional distributions (3.2.1) are complete.



Chapter 4

Application to high-energy x-ray

radiography

The US DOE owns several high energy X-ray imaging systems, one of which is located
at the Nevada National Security Site (NNSS). Scientists perform expensive hydrody-
namic materials studies experiments at the NNSS and use radiography as a primary
means of data acquisition in these experiments. The digital images produced by these
machines are high dimensional, so it is important to have a computational framework
that can effectively deblur these large images. The desired implementation must
be capable of producing O(100) deblurred image samples of size 4096 x 4096 and
provide uncertainty (via standard deviation), which the block Gibbs sampler from
from Chapter 3 is capable. This chapter provides background on radiography at the
NNSS, image specific kernel estimation and parameter selection methods required in
the block Gibbs sampler. Results from debluring a full 4096 x 4096 image are pro-
vided, using the sub-image size that optimizes the time to produce a sample. The
sampler is shown to be scalable and the process of finding the optimal sub-image size

is detailed.

58
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4.1 Data acquisition and parameter selection

4.1.1 Cygnus Dual Beam Radiography Facility

The Cygnus Dual Beam Radiographic Facility at the NNSS is a high energy X-ray
imaging system designed for hydrodynamic materials experiments. Cygnus is located
in a laboratory 100 miles northwest of Las Vegas, Nevada, and approximately 1000
feet underground, which provides security and isolation for experimentation. The
facility contains two radiographic sources, called Cygnus 1 and Cygnus 2, each of
which has a 2.25 MeV endpoint energy, 1 mm source diameter, and a 50 ns pulse
length [39], and can be shot independently to produce radiographs at different times
[30]. The machine itself is quite large, having a footprint of 22 feet by 92 feet [39].
This system differs considerably in scale and function from the more common medical
X-ray machine, and requires a different means of image acquisition and analysis.
X-rays from the Cygnus sources pass through a collimation system in a lead bulk-
head wall into the experiment room at a 60° angle [38]. The radiographic object is
housed in a containment vessel and identical camera systems opposite the Cygnus
sources collect high resolution radiographs of the object, shown in figure 4.1.1. The
imaging system functions by using a scintillator, which reacts with X-rays to produce
visible light, which is then reflected by an elliptical pellicle mirror through a set of
lenses and captured by a CCD camera [25]. The lenses allow for magnification to vary-
ing fields of view, as well as adjustment for different scintillators [24]. This complex
imaging system is difficult to model, and contributes to the blur in the images.
Since hydrodynamic materials experiments can be extremely costly and Cygnus is
a primary means of data acquisition for such experiments at the NNSS, it is imperative
to understand its imaging capabilities. In order to study the Cygnus radiographs, a
calibration object known as the Luttman Target is used. The Luttman Target is

comprised of three calibration objects: (1) a step wedge, (2) an L-rolled edge, and
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Containment Vessel

Cygnus Sources

Figure 4.1.1: Top down view of Cygnus source and imaging system (Image from [27]).

(3) an Abel cylinder, shown in Figure 4.1.2. The tantalum step wedge contains ten
different steps (two slightly outside the circular window) of varying thickness. The L-
rolled edge has a rectangular notch cut out at a 90° angle, to provide a stark contrast
between an area where X-rays are completely attenuated (the black region), and where
X-rays pass freely (in the cut out). The Abel cylinder is a radially symmetric object
comprised of three layered materials with three different bore widths, and a hollow
center. Each of these objects can be used with different models to help characterize

the imaging system [1, 12, 19, 21].
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Figure 4.1.2: The Luttman Target consists of three calibration objects: (a) the step
wedge, (b) the Abel cylinder, and (c) the L-rolled edge.

4.1.2 Kernel estimation and parameter selection

In order to use Algorithm 2 to solve the inverse problem, it is necessary to estimate
the blurring kernel and select parameters that define the operator H = AATA + JL.
The 2D convolution represented by A requires a blurring kernel, a. H also includes
the precision parameters A and 0 which provide a scaling between the model and the
regularization.

A primary cause of blur in Cygnus radiographs is the shape and extent of the
radiation source [12]. Therefore, a reconstruction of the X-ray source profile provides
a reasonable approximation for the blurring kernel. Methods for reconstructing the
source profile are based on imaging a known calibration object and solving an inverse
problem to produce the reconstruction. In [21], the kernel is assumed to have radial
symmetry, and utilizes a single line-out (cross-section) from an edge of the L-rolled
edge in the Luttman target (see Figure 4.1.2) to compute the reconstruction via
MCMC. Figure 4.1.3(a) provides an example line-out used to compute the kernel.

Since the size of the kernel has a significant effect on computation time, it is preferable
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(a) 1D data (b) Full reconstruction (¢) Cropped reconstruction

Figure 4.1.3: The line out of the L-rolled edge data used to reconstruct the radially
symmetric X-ray intensity profile is shown in (a). The full sized mean reconstruction
over 1000 samples of the intensity profile is shown in (b) on a log scale, and the
cropped portion identified by the red box in (b) is shown in (c), which is used as the
blurring kernel a.

to use the smallest possible kernel. Due to the rapid decay of the kernel from the
peak, a significant portion of the kernel reconstruction is essentially zero. Using a
threshold of 1% of the peak value of the kernel leads to a kernel of size m, = n, = 33.
Figure 4.1.3(b) shows the full sized mean reconstruction of the kernel from the line-
out in Figure 4.1.3(a), and Figure 4.1.3(c) shows the 33 x 33 cropped portion of the
full reconstruction that is used as the kernel a in the deblurred image reconstructions
in Section 4.2.

Once the kernel has been reconstructed, the precision parameters A and § can
be selected. In Section 2.2, A~! is introduced as the pixel-wise variance. Therefore,
A can be approximated by calculating a sample variance from the image. For the
Luttman target, the sample standard deviations for two subsections of the image are
1.1-107% and 3.4 - 1073, for white and black portions of the image, respectively, as
seen in Figure 4.1.4. Taking a conservative estimate, i.e. maximizing the variance
A~L ) is set using the larger SD of 1.1 - 1072, which gives A ~ 9 - 103. This choice of
A is specific to this image, and A varies depending on the image.

To obtain 9, several sub-images are used and a parameter sweep over a log space

of the ratio §/\ is tested. To decide on a practical d, several regularization parameter
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Figure 4.1.4: Data from a processed image from Cygnus is provided in (a), with
two subsections identifying the sub-images shown in (b) and (c). Each figure has a
different colorbar.

selection methods are implemented.The first is called the Discrepancy Principle (DP)
estimator, which is a standard regularization parameter selection method [11, 18, 42],
and attempts to set ||Axs — b||> equal to the noise level, where x; represents the

solution for the corresponding choice of §. That is, given the function

mp - Ny

D(3) = [|Axs — bl* — L,

(4.1.1)

the estimator dpp satisfies D(dpp) = 0. Equivalently, the estimator dpp can be found
by minimizing (D(6))* over 6. The second is called the the Unbiased Predictive Risk
Estimator (UPRE), which minimizes the predictive risk, E (||Ax; — AX||2), where
E(-) represents expectation, and x represents the truth. Then the UPRE for this

problem is given by

mpy - Ny

)\ Y

U(5) = ||Axs — b||> + ;tr (A (MATA +oL) " AT) - (4.1.2)

where tr () denotes the trace, and the estimator dyprg is found by minimizing U (J)
over § [2]. The trace is estimated via randomized trace estimation (see [2, 42]), which
generates a Gaussian vector v with mean 0 and covariance I, and approximates the

trace as

tr(A(MATA+OL) T AT) ~ (ATv) T (AATA +L) T (ATY). (4.1.3)
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The optimal values dpp and dypgrg differed by approximately one order of magnitude,
which is expected since both of these regularization parameter selection methods
define optimality in different ways [2]. The values of dpp and dyprg varied with the
size and location of the sub-images of data used. Based on the calculated values for
dpp and dyprg from several sub-images of the data, the value of 6 = 2.5-1073 - \ was

chosen.

4.2 Deblurred image reconstructions

Using the kernel a and parameters A, 0 from Section 4.1.2, full 4096 x 4096 Cygnus
images were deblurred. A sub-image size of 512 x 512 was used, for a total of 8 x8 = 64
sub-images (see the center image in Figure 4.4.1). The scalability of the block Gibbs
algorithm implemented is shown in Section 4.3 and the choice of the sub-image size
is detailed in Section 4.4.

Figures 4.2.1 — 4.2.3 show actual image reconstruction results on a full 4096 x 4096
Cygnus image. Figure 4.2.1 shows (a) the mean reconstruction over 526 samples,
(b) the sample that minimized ||[Ax — b||, and (c) the pointwise sample standard
deviation. The average standard deviation over all pixels in the reconstruction was
found to be about 0.12, which is larger than the prior standard deviation, but features
in the mean reconstruction are more distinct, which allow for higher precision on the
locations of actual features in the image.

Two sections of the full mean image in Figure 4.2.1 are highlighted with red
boxes and enlarged in Figures 4.2.2 and 4.2.3 for comparison between the original
blurred image and the reconstructions. In both Figures 4.2.2 and 4.2.3, the (a)
original blurred image is shown, with the (b) mean reconstruction and (c) sample
that minimized ||Ax — b||. Figure 4.2.2 contains a portion of the step wedge, and

it is possible to see that the step edges are sharpened in the reconstructions. Figure
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Figure 4.2.1: Results from deblurring a 4096 x4096 Cygnus radiograph of the Luttman
Target, using a sub-image size of 512x512. The mean reconstruction over 526 samples
is shown in (a), the sample that minimizes ||Ax — b|| is shown in (b), and the sample
SD is shown in (c). The subsections of the image that are boxed in (a) are shown in
more detail in Figures 4.2.2 and 4.2.3.

4.2.3 contains a portion of the Abel cylinder, and while the edge of the cylinder is
sharper, the transitions within the cylinder remain smooth as expected and desired.
Although the single sample has sharper features than the data, there is a considerable
amount of noise in the reconstruction, which indicates room for improvement. Even
still, the features of the image in the mean reconstruction show improvement over the

data, allowing the locations of features in the image to be more precisely identified.
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Figure 4.2.2: An enlarged subsection of the full image shown in Figure 4.2.1 showing
details in the step wedge.
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Figure 4.2.3: An enlarged subsection of the full image shown in Figure 4.2.1 showing
details in the Abel cylinder.
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4.3 Efficiency of the sampler

Once the parameter selection process from Section 4.1.2 is complete, the block Gibbs
sampler in Algorithm 2 can be used to produce samples from the posterior. In order to
ensure that these reconstructions produce meaningful estimates on high dimensional
data such as Cygnus radiographs, it is necessary to show that the Gibbs sampler
scales well with image size. In general, MCMC methods, including Gibbs samplers,
tend to scale poorly with dimension [7, 17, 40]. However, due to the structure and
sparsity of the operator H, the block Gibbs sampler is expected to scale well with
dimension|28]. One means of assessing the convergence of the MCMC scheme is via
the integrated auto-correlation time (IACT), 7, which provides a measure for the
number of effective samples, Neg, out of the total N, samples, as in Equation (2.3.2).
The definitions and numerical approximations found in [40, 44] are used to calculate
an estimator, 7y, for the IACT of each pixel.

In order to determine the scaling of the mean IACT with image dimension, a set
of numerical experiment was performed. Ideally, an increase in dimension would have
little effect on the IACT, indicating the method is appropriate for high dimensional
problems. The experiment conducted is as follows. Fix a sub-image size, then gener-
ate 1000 samples via the block Gibbs sampler described in Chapter 3 at a specific full
image size. Compute the mean IACT over all pixels at this image size, then repeat
the experiment for larger full image sizes.

The fixed sub-image size chosen for the experiment is mgq = ng = 27 = 128.
The full image sizes used are m, = n, = 28 --- 21 and the corresponding data
size my, X n, with a kernel of size m, = n, = 33 are outlined in Figure 4.3.1, where
my = ny = My —me+1. The positions of the smaller images were chosen to center on a
corner of the step wedge, to ensure that an interesting feature existed to deblur in the
data. The smallest image size (m, = 2% = 256) results in only mp X ng =2 x 2 =4

sub-images, while the largest image size (m, = 2'' = 2048) results in a total of
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Figure 4.3.1: The image sizes m, = n, = 2% ---2!2 were considered, and the cor-

responding data B are outlined, which have dimension m, = n, = m, — m, + 1.
The smaller images are centered on a corner of the step wedge to ensure at least one
interesting feature exists in the image.

mp X ng = 16 x 16 = 256 sub-images.

A related concern with respect to algorithmic efficiency is the burn in time for
sampling. In many cases, it can take a significant number of samples before an
MCMC chain reaches the stationary distribution [40]. The samples prior to reaching
stationarity are generally discarded, and considered the burn in. Since the samples at
the full target size are so expensive to compute, avoiding the removal of any samples
is preferable. As the target distribution is Gaussian, and seeding the chain with
the initial state as the mean, x(¥) = m, it is expected that in this case stationarity is
reached effectively immediately. To provide a small check for this, several pixel chains
are provided in Figure 4.3.3, which do not seem to exhibit any burn in. The locations
of the pixels used are marked for reference in Figure 4.3.2, and the sub-image size
was 512 x 512.

The mean TACTs for different full image sizes, all reconstructed using the fixed
sub-image size of 128 x 128, are provided in Tables 4.3.1 and 4.3.2. For each pixel,

an estimate 7y, was calculated, and the global average 7,y and maximum max {7, }
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Figure 4.3.2: The location of the line outs of the pixel chains shown in Figure 4.3.3
are marked with red x’s.

Image dimension (m, = n,) ‘ 256 512 1024 2048
27t | 1.0225  1.0372 1.0372  0.9904
2max {7} | 3.8977 3.7271 5.2049 10.2248

# sub-images (mp X np) 4 16 64 256

Table 4.3.1: Mean and max IACTs for several image sizes, with a sub-image size of
128 x 128, with 7y, as in [40].

over all pixels in the image are provided in the table. Perfectly independent samples
would expect to have 27, = 1, which gives Neg = N, (see Equation (2.3.2)). It is
possible for 273, < 1 which indicates anticorrelation, but in this case is likely simply
due to the variability of the estimator 7y, [40]. In all of the cases, twice the mean
IACT for each image size is very near 1, indicating that the blocking scheme scales
well with image dimension. There is a slight increase in the maximum Thus the block
Gibbs sampler is a viable means of producing nearly uncorrelated samples, even with

large image sizes.
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Figure 4.3.3: The line outs from 15 pixel chains are shown. In each case, there
appears to be no significant burn in, as expected since the distribution is Gaussian.
The locations of the pixels shown are provided in Figure 4.3.2.

Image dimension (m, = n,) ‘ 256 512 1024 2048
27 | 1.0275 1.0136 1.0197 1.0136
2max {Tine} | 3.6578 3.7744 4.2303 6.9804

# sub-images (mp X np) 4 16 64 256

Table 4.3.2: Mean and max TACTs for several image sizes, with a sub-image size of
128 x 128, with 7 as in [44].

4.4 Optimal sub-image size

The results in Section 4.3 indicate that, for a given sub-image size, the mean TACT
over all pixels, 7in, scales well with the dimension of the full image. There are, how-
ever, various possible sub-image sizes for any full image size. A primary goal for
the use of the block Gibbs sampler is to produce deblurred image reconstructions in
a timely manner and, thus, it is necessary to find a sub-image size that optimizes
the time required to generate a sample. Section 3.1 provides a description of the
partitioning scheme used for the following results. The reconstructed image is as-
sumed to have dimension m, X n,, which is divisible into equally sized sub-images
with dimension mg X ng, as shown in Figure 4.4.1. Sub-image sizes that are pow-
ers of 2 are considered, because this provides a computational speed increase in the

implementation of Algorithm 3.
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Figure 4.4.1: Three different sub-image partitions for an image of size 4096 x 4096.
The sub-images have size 256 x 256 (left), 512 x 512 (center) and 1024 x 1024 (right).

Different sub-image sizes result in different computation times per sample, due
to the iterative nature of the algorithm. Specifically, the inner loop in Algorithm
2 requires successive computations over each sub-image ng), where using CG to
compute the backsolve with H;; is the computational bottleneck at each iteration.
The time required for CG depends on the number of iterations required to reach the
desired tolerance and the data dimension. Figure 4.4.2 provides computation times
for different image sizes, as well as different sub-image sizes used in the Gibbs sampler.
At each full image size (m, X n), five deblurred image samples were produced using
the block Gibbs sampler (Algorithm 2) with various sub-image sizes (mg x ng4), and
the average time to produce a sample was calculated. In all cases, the CG tolerance
was set as 10719, and the maximum number of CG iterations was set to mg-nq/16. For
small images (256 x 256 — 512 x 512), the sub-image size does not have a significant
effect on the computation time per iteration, which is evident in the computation
times shown in Figure 4.4.2(a). For larger images (2048 x 2048 — 4096 x 4096), the
sub-image size begins to have an appreciable effect and a sub-image size of 512 x 512
emerges as an optimal choice. This optimum is dependent on the configuration of
the CG solver, the kernel size, and the hardware constraints of the computer used
to solve the problem. One node from the University of Arizona High Performance

Computing (HPC) cluster, was used to produce results, which consists of a 2.3 GHz
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Figure 4.4.2: Average computation times to produce a full sample X*) for various
image sizes (m, X m,) and sub-image sizes (mg X my). The average time to recon-
struct larger images (b) depends more heavily on the sub-image size than the time to
reconstruct smaller images (a).

Dual 14-core processor with 192 GBs of memory available. Using a sub-image size of
512 x 512, it is possible to generate a sample X®*) of size 4096 x 4096 on the order
of 12 minutes. Assuming that O(100) samples are required to estimate pixel-wise
standard deviations, the algorithm can solve the inverse problem at this size in about

20 hours.



Chapter 5

Conclusion

In this thesis, a scalable Gibbs sampler for deconvolution-based image deblurring
problems was derived, implemented, and tested on radiographic data from the Cygnus
Dual Beam Radiographic Facility at the NNSS. The success of the method hinges on
exploiting the local nature of deconvolution (which defines the sparsity pattern of
the posterior precision) and developing matrix free algorithms. Defining the blocks
in the Gibbs sampler as 2D sub-images that are large enough with respect to the
blurring kernel results in a scheme where each block depends on at most eight other
blocks. Optimizing the blocking structure allowed for faster generation of image
reconstructions on Cygnus data.

The discrete 2D deconvolution matrix with a small blurring kernel relative to the
image size is sparse and highly structured. A careful partitioning of the image into
sub-images results in a 9-block-diagonal matrix. Using a block Gibbs sampler based
on this blocking technique was shown to be scalable — as measured by the mean
pixel-wise integrated autocorrelation time — to images up to size 4096 x 4096.

The algorithm was successfully implemented at this size by constructing func-
tions that perform the actions of the required high dimensional matrices. A matrix

free implementation was necessary due to the infeasibility of storing and construct-
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ing matrices of the dimensions seen in the target application. Such functions were
made possible by utilizing previously existing convolution functions and exploiting
the linearity of the operator.

The optimal choice for the block size that minimizes solution time is problem-
dependent and relies on factors such as the parameters chosen for CG (which affects
the number of CG iterations required), the size of the blurring kernel, the statistics
of the image, the prior chosen, and the hardware used to compute the solutions. For
applications to Cygnus radiographs with a kernel of size 33 x 33, a sub-image size of
512 x 512 was found to be optimal, allowing for O(100) full image reconstructions
of size 4096 x 4096 to be produced in under a day with one node on the University
of Arizona High Performance Computing cluster. The mean reconstructions display
sharper features than the data, while still preserving smooth features in the image.
This allows for the locations of features to be measured more precisely. The results
shown on images of static calibration objects can be used on images of hydrodynamic
materials experiments, providing better quantitative image analysis than currently

available.
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