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X-ray Radiography at the NNSS

Photo courtesy of www.nnsa.energy.gov/cygnus

Schematic courtesy of [9]

o Dual-axis, 2.25 MeV X-ray source
o Used to image dynamic and static material studies
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Calibration Imagery

Radiographs of a set of test objects called the “Luttman Target” from the
Cygnus Dual Beam Radiography Facility at the NNSS in North Las Vegas.



X-ray Radiography Background Issues and Objectives Block Gibbs Algorithm Application
000 0000000 e} 00000 00000000 0000000

Calibration Imagery

Radiographs of a set of test objects called the “Luttman Target” from the
Cygnus Dual Beam Radiography Facility at the NNSS in North Las Vegas.



Objectives

Quantitative imaging objectives:
o Reduce image blur
o Quantify uncertainties
o Deblur large images in a reasonable amount of time
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Objectives

Quantitative imaging objectives:

o Reduce image blur

o Quantify uncertainties

o Deblur large images in a reasonable amount of time
Solution:

o Use a Bayesian approach to solve the inverse problem

o Produce a mean reconstruction and pixel-wise standard
deviation via Markov chain Monte Carlo (MCMC)
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0000000



X-ray Radiography Background Issues and Objectives Block Gibbs Algorithm
ooe 0000000 o 00000 00000000

Objectives

Quantitative imaging objectives:

o Reduce image blur

o Quantify uncertainties

o Deblur large images in a reasonable amount of time
Solution:

o Use a Bayesian approach to solve the inverse problem

o Produce a mean reconstruction and pixel-wise standard
deviation via Markov chain Monte Carlo (MCMC)

Issues:

o Computational tractability is an issue with large images (high

dimension)

@ Number of samples required for MCMC tends to increase with

dimension (i.e. image size) [12]
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Objectives

Quantitative imaging objectives:

o Reduce image blur

o Quantify uncertainties

o Deblur large images in a reasonable amount of time
Solution:

o Use a Bayesian approach to solve the inverse problem

o Produce a mean reconstruction and pixel-wise standard
deviation via Markov chain Monte Carlo (MCMC)

Issues:

o Computational tractability is an issue with large images (high
dimension)

@ Number of samples required for MCMC tends to increase with
dimension (i.e. image size) [12]
My contribution:

@ MCMC sampler that produces O(100) samples of a full size
(4096 x 4096 pixel) Cygnus image in a day
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Discrete 2D Convolution

B X a

‘2Bl \¢. B
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Discrete 2D Convolution

Assuming a € R™*"= is smaller than X € R™*"x,

= Z Z k,naffxl'+k,/'+€a fori= 17"'7mb7j: 17"'7nb
=0 k=0
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Discrete 2D Convolution

Assuming a € R™*"= is smaller than X € R™*"x,

= Z Z k,naffxl'+k,/'+€a fori= 17"'7mb7j: 17"'7nb
=0 k=0

B = a x X can be written as b = Ax by column stacking images [6]
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Boundary Conditions

Deconvolution requires boundary conditions (BCs)

Original Image Zero BCs Periodic BCs Reflecting BCs
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Boundary Conditions

Deconvolution requires boundary conditions (BCs)

Original Image Zero BCs Periodic BCs Reflecting BCs

Deconvolution with traditional BCs allow for fast solution via spectral
methods [6]
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Dealing with Boundary Artifacts

Blurred Image Reconstructed Image Kernel

Pl Rl o
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Dealing with Boundary Artifacts

Blurred Image Reconstructed Image Kernel

B e

o Assume extended boundary on the reconstruction x

o Boundary conditions on extended boundary have small effect on
field of view (FOV) [1, 3]

@ Underdetermined system




X-ray Radiography
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Bayesian Formulation

o
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Measured noisy data, column stacked
Discretized model form: b = Ax + ¢
Assume Gaussian noise: e ~ N (0, A7)
Parameter A € R

Likelihood: 7(b[x, A) ~ N (Ax,A~'I)

Algorithm
00000000

Application
0000000

o Discretization of imaging system model
9 lll-conditioned [13]

AN

© ©

Unknown, reconstructed image, column
stacked

o Impose prior 7(x|d) ~ A (0, (5L)~") [11]

L: regularization matrix (e.g. Laplacian)
0 € R, is a scaling parameter




Density of x:

Xb, .8~ N (AATA +4L) ' AATb, \ATA+6L) )

8/31



X-ray Radiography Background Issues and Objectives Block Gibbs Algorithm
000 0000800 o 00000 00000000

Bayesian Formulation

Density of x:
Xb, A6 ~ A ((AATA+6L) ' AATb, (AATA+6L) )

In the context of the 2D Deconvolution problem:
o x Z X(:), i.e. a column stack of an image X € R

o b= B(:), i.e. a column stack of an image B € R™*"
o H= )\ATA 4+ /L is sparse and large

A: likelihood precision

d: prior precision

A: convolution matrix

L: regularization matrix

o Want to generate samples from this joint density for x

©

© © o

Application
0000000
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Gibbs Sampler Refresher

o MCMC algorithm for drawing samples from a joint distribution
p(x) = p([x1 D CRRN 7xn])
o lterative, used to sample large sets of variables

o Useful when the conditional distribution is easy to sample from,
but the joint distribution is not
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Gibbs Sampler Refresher

@ MCMC algorithm for drawing samples from a joint distribution
p(x) = p([X1, X2, Xn])

o lterative, used to sample large sets of variables

o Useful when the conditional distribution is easy to sample from,
but the joint distribution is not

o Given samples x(*) = [xﬁ“,..- ,xfk),--- ,xE,k)}, then the i

variable (or block of variables) is sampled from the conditional
distribution

ng) ~p (Xi

o Produces correlated samples with stationary distribution p(x) [5]

X Xip 5

X x®) (kD) ...xgkﬂ)



Integrated Autocorrelation Time (IACT)

o Can compute 7 to assess the efficiency of an MCMC algorithm
o IACT tends to increase with dimension: 7t < NP, p > 0

o e.g. p =1 for random walk Metropolis, p = 1/2 for Hamiltonian
MCMC, and p = 1/4 for Metropolis-adjusted Langevin Algorithm
[10]
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Integrated Autocorrelation Time (IACT)

o Can compute 7t to assess the efficiency of an MCMC algorithm
o IACT tends to increase with dimension: iy & n°, p > 0

o e.g. p =1 for random walk Metropolis, p = 1/2 for Hamiltonian
MCMC, and p = 1/4 for Metropolis-adjusted Langevin Algorithm
[10]

o Given a sample size, N, the effective sample size is

Statistics from N, correlated samples are similar to those from
Nett independent samples [15]

0 Ng = 2nintNet < nP
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Issues and Objectives

Issues:

o Data-driven BCs: cannot deconvolve via
FFT

o Large image size: cannot sample directly
o MCMC expected to converge slowly:
Ne o Tint o< nP
Objective: ram
o A sampler with IACT independent of image SN EEEEEEEEEEEEEE
size, using data-driven BCs
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Consider a small example where x has four components,
X = [X1 » X2, X3, X4]'

12/31
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Gibbs Sampling Example

Consider a small example where x has four components,
X = [X1, X2, X3, Xa4].

o Independent samples
k k k k
@ [0, 40, 640] ~ p(x)

12/31
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Gibbs Sampling Example

Consider a small example where x has four components,
X = [X1, X2, X3, Xa4].

o Independent samples
@ [ 600,60 ~ p(x)
o Standard Gibbs
@ X1(k) ~p (X1 ‘Xz(k—1)7 ék—1)7xik—1))

@ X" ~p (xz‘xik),xék_”,xik_”
@ " p (oo 0 " 1)
e ngk) ~p <X4 ‘ X1(k)7 Xék)v Xigk))

Correlated samples

12/31
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Gibbs Sampling Example

Block Gibbs sampling:

o One Block of 2
@ x~p <X1 ‘Xz(k_”,xék_”,xﬁk_”)
[5) xék) ~p (XZ‘X1(k)7X:§k—1)7X§k—1)
@ |:X:§k)7xik)] Np([x3,x4]‘ ka)’xék))

o Two blocks of 2
@ [ka),xék)] Np([x1,x2]‘ Xék—1),xik—1)>
® [Xék)’xik)] ~p ([X37X4] ‘ X1(k)7xék))

o One block of 3
@ 5~ p (3 |0 g
@ [Xék),xék),xik)] ~p ([x2,x3,x4]‘ X1(k))

The stationary distribution in all cases is p(x)

13/31
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Gibbs Sampling Example

Block Gibbs sampling:
o One Block of 2
@ X1(k) ~p <X1 ‘ (k—1) (k—1),X§k—1))
@ x( ~p<x ‘X1(k)7xék 1) Xék—ﬂ
() [xék),xik)] ~p ([x3,x4]‘ xk ,xék))

o If x1 is mdependent of X3, X4

( ‘ (k 1)) ( ‘Xz(kq),xékq)’)(ikq))

Q Xék) ~P<X ‘Xik),xs‘ R
@ [Xs(,k),Xik)] ~p ([x3,x4]‘ xz(k)) -p ([Xa,X4]‘ X1(k)’X2(k))
o This can improve efficiency (w.r.t. IACT) [10]

13/31
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Gibbs Sampling Example

Block Gibbs sampling:
o One Block of 2
) X1(k) ~p <X1 ‘ (k—1) (k—1),X§k—1))
Q X( ~p<x ‘X1(k)7xék 1) Xékq))
@ [ 5] ~ p (1] | 4 419)
o If x1 is mdependent of X3, X4

( ‘ (k 1)) ( ‘Xz(kq),xékq)’)(ikq))

@ o

@ [7.x7] ~ p (bl | X9) = p (I, xal| X9, 149)
o This can improve efficiency (w.r.t. IACT) [10]
In the context of imaging, x consists of all the pixels x;.

13/31



Gibbs Sampling in images
o Want to generate samples x¥) | b, A, § ~ A" (m,H~") by sampling

(k)
Xj » R R

b,)\,éwp(x,-

xgk)? e x(k) x(k_1)v o 'xﬁlk_”? b7 )‘76)

@ How should X be broken up into smaller sub-images X;?
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Gibbs Sampling in images

o Want to generate samples x¥) | b, A, § ~ A" (m,H~") by sampling

X

b,)\,éwp(x,-

X

b ,ng)wx,(i;‘),'"Xﬁ,k‘”,b,)\,é)

@ How should X be broken up into smaller sub-images X;?

20

40

60

80

100
20 40

(a) Column based components

60

80

100

20

40

60

80

100

20 40 60 80 100
(b) Sub-image components
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Gibbs Sampling in images

Xi Xigms o Xipmg(ng—1)
Xo Xovms 0 Xogmg(neg—1)
Xms X2m3 e Xmsns

o Partition X into a grid of mg x ng sub-images

15/31
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Gibbs Sampling in images

Algorithm Application
00000 00000000 0000000

Xi—mg—1 Xi—1 Xitmg—1

X1 X1+mB X1+m3(n3—1) .......... . ............
B X2 Xoymg X2t mg(ng—1) Xi_fnge X, Xispms
Xma X2m5 XmBnB

o Partition X into a grid of mg x ng sub-images
o Generate samples of X; conditioned only on 8 neighbors:

(615} (51 S} )

(i< iy {1 i) )

where x; = X(:) is marked in yellow, Syre corresponds to blue,
and Spost COrresponds to green

X,('k) ~p (Xi

:P(Xi
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Block Gibbs Algorithm
Inputs: i=1

o Precision H=)ATA + 6L

o Mean m 1| X;

o Initial state xg
o # sub-images ng = [mg, ng]
o # samples N,

Sampling:

Xf- )‘ { x(k) ‘/ € Spre} {xl(k ‘)‘/e Spost},b,x,(s

~ (= (2w (0 - m)

J€ Spost

o o~ W DN

1 2 3 4 5 6
+ 30wy (x0 —my) )ow
o m))w) K<) [= ]+

Output: Samples x(V), ... x(Ne)  Image X with sub-images X; (yellow), X;
distributed A/(m,H=") with j € Spre (blue), and X; with j € Spost
(green) highlighted.
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Efficiency and Scalability

o How does 7, change with image size?

o Is there an optimal sub-image size to minimize computation time
per sample?

17/31



X-ray Radiography
000

IACT Experiment

Background Issues and Objectives
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Reminder: Ng = 27intNef, Tint o< NP

o Fix sub-image size of
128 x 128

o Consider full image sizes of
my x Ny = 256 x 256,512 x
512,1024 x 1024,2048 x 2048

o Generate 1000 samples at

each size, and calculate
mean sample IACT, Tint

Block Gibbs
00000

Algorithm
08000000

Application
0000000

1000

2000 3000 4000

Data B outlined at various sizes.
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IACT Experiment

Reminder: Ng = 27intNef, Tint o< NP

o Fix sub-image size of
128 x 128

o Consider full image sizes of
my x Ny = 256 x 256,512 x
512,1024 x 1024,2048 x 2048

o Generate 1000 samples at
each size, and calculate 1000 2000 3000 4000
mean sample IACT, Tint

Data B outlined at various sizes.

Image dimension (my = ny) \ 256 512 1024 2048
2T int \ 1.0225 1.0372 1.0372 0.9904
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Optimal Sub-image Size

ENEEF
ErfEEE N

[
ANEL
[T 1]
[ L1 1]

o Fullimage size: 4096 x 4096

@ Sub-image sizes: 256 x 256 (left), 512 x 512 (center) and
1024 x 1024 (right)

o Regardless of sub-image size, still generating samples with
stationary distribution p(x|b, A, §)



Sub-image Computation Times

Experiment:
o Consider full image size my x n, = 4096 x 4096
o Vary sub-image size, compute average computation times over

five samples

30+

2571

time (min)
n
o

15+

128 256 512 1024 2048
Sub-image dimension (m)
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Sub-image Computation Times

Experiment:
o Consider full image size my x n, = 4096 x 4096

o Vary sub-image size, compute average computation times over
five samples

128 256 512 1024 2048
Sub-image dimension (my)

20/31



Experiment:

o Consider full image size my x n, = 4096 x 4096
o Vary sub-image size, compute average computation times over
five samples

Can build H; ~ Cannot build H;
30

25

20+

time (min)

128 256 512 1024 2048
Sub-image dimension (m,)
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Block Gibbs Computations

Sampling a sub-image requires sub-matrices H; € R/ > Ma"a

X =m; +H;" [H;/ZZ— ( > H (x,(-k_” —mf) + > H (X/(-k)—mj)>]

JE Spost J€E Spre
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Block Gibbs Computations

Sampling a sub-image requires sub-matrices H; € R™a">Ma’a;

x = m; + H;' [HT/ZZ— ( > H; (x](.k_” —mj) + > H,,( x{k )—m,)>]
i

/€ Spost J€E Spre

which has three main components:

faiag(y, 1) = H; 'y (1)

fiqn(z,7) = H] /%2 @)

foost (y, 1) Z Hyy; pI'E(Y7 i) = Z H;y; )
JE€Spost JE€Spre

21/31
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Block Gibbs Computations (cont.)

X,(-k):mf+H,-T1 [HT/ZZ— ( Z H; (xj(k 1) —m,) + Z u( —m,)>]
/

€ Spost JESpre

Each of these components contains at least one sub-matrix Hj;,
which has the form

Hj = \(A.) A+ 6Ly,

and provides the portion of the blur in the i output sub-image due to
the j input sub-image.



X-ray Radiography Background Issues and Objectives Block Gibbs Algorithm Application
000 0000000 o 00000 00000000 0000000

Block Gibbs Computations (cont.)

X,(-k):mf+H,-T1 [HT/ZZ— ( Z H; (xj(k 1) —m,) + Z u( —m,>>]
/

€ Spost JESpre

Each of these components contains at least one sub-matrix Hj;,
which has the form

Hj=X(A.)" A +Lj,
and provides the portion of the blur in the i output sub-image due to
the j input sub-image.

In order to write the functions (1) — (3), it is necessary to also have
functions fa (), fa 7 (), and f,(). Then

Hiy = f,(Y) = Ma ) (fa; (Y)) + 01, (Y)



Efficient Computation of fyiag @and fsqgrt

faiag(¥, 1) = H; 'y

o Can use the forward function fy,(Y;) in combination with an
iterative algorithm for solving Ax = b such as Conjugate
Gradient (CG) [8, 14]

23/31
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Efficient Computation of fjiag and fsgrt

faiag(¥, 1) = H; 'y

@ Can use the forward function fy,(Y;) in combination with an
iterative algorithm for solving Ax = b such as Conjugate
Gradient (CG) [8, 14]

ha(z,)) = H] %z

o Additional assumption: can compute a square root of
Li= (L) 2(L.)'"?
o Generate
Zq NN(0,|1) , Zo NN(O,'Q) R
where the size of I, I, depend on the sub-image
o Then

\/Xf(A:J)T (21) =+ \/gf(L:J)T/z (22) ~ ./\/'(O7 H,',‘)

Application
0000000



Efficient Computation of the pre- and post-sums

foost(Y; 1) Z Hiyi , forely,i) = Z Hjy;

JESpost JESpre

Assuming that L; .y can be
calculated with f_() similar to A; .y,
then

: : : 5 fpre(yy i) = Af(A:,,»)T (fA (Ypre))
+ 6 (Yore)

fpost(yy i) = Af(A;,;)T (Ta (YPOSI))
I ’J + 5fL(Ypost)

Ypre Ypost
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Density of x:

Xb, .8~ N (AATA+4L) ' AATb, \ATA+6L) )
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Problem

Density of x:
Xb, A3 ~ A (AATA +4L) ' AATb, (AATA +4L) )

Need to define the kernel and precision parameters:
o a: convolution kernel
o \: likelihood precision
o §: prior precision

25/31



Idea:
o Blur mostly due to X-ray intensity profile [4]
o Use a model that gives the kernel from an edge in the image [7]
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Kernel
Idea:

o Blur mostly due to X-ray intensity profile [4]
o Use a model that gives the kernel from an edge in the image [7]

107

10

10°
100 200 300 400

(a) 1D data (b) Full kernel (c) Cropped kernel

0.8

0.6

04

0.2

100 200 300 400

5 10 15 20 25 30

(a) Line out from L-rolled edge in Luttman target
(b) Mean reconstruction of X-ray intensity profile over 1000 samples
(c) Cropped portion of (b) in the red box, used as the kernel a



Parameter Selection

0052

1005
0048
0046
0.044
0.042
004
0038
0036
0.034

0
1000 2000 3000 4000

100 200 300 400 500 100 200 300 400 500

(a) Fullimage (b) Pixel-wise var: (c) Pixel-wise var:
~1.1-107* ~1.1-107°

Data from a processed image from Cygnus is provided in (a), with
two subsections identifying the sub-images shown in (b) and (c).
Each figure has a different colorbar

@ A =~ 9000 defined by variance in the image

0 0 ~ 22 chosen by a parameter sweep over smaller portions of
the image, and parameter estimation techniques [6, 13]
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Deconvolution Results

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2
1000 2000 3000 4000 0 100 2000 3000 4000
(a) Blurred data (b) Mean reconstruction

o Kernel size: 33 x 33

2 A= 9000, ~ 22

0 my x ng =512 x 512 pixels (8 x 8 = 64 sub-images)
o 526 samples
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Deconvolution Results Step Wedge

200 10.8 200 10.8 200
400 0.6 400 0.6 400
600 0.4 600 0.4 600

800 0.2 800 0.2 800

0 0 1000 0 1000
50 150 50 150 50 150

(a) Blurred image (b) Mean reconstruction (c) Sample # 410



Deconvolution Results Abel Cylinder

100 0.5
150
200

1000

(a) Blurred image

50
100
150
200

200 400 600 800 1000

(c) Sample # 410

30/31



X-ray Radiography Background Issues and Objectives Block Gibbs Algorithm Application
000 0000000 o 00000 00000000 000000@

Conclusion

@ No published MCMC algorithms in the literature using images
and kernels of this size, even with traditional BCs
o Presented a block Gibbs sampler which:
o is efficient w.r.t. IACT
o is scalable to images of size 4096 x 4096
o Can generate O(100) deblurred images per day on a reasonable
desktop (or with a factor of 2 time increase with a 2017 Macbook
Pro: 2.3 GHz Intel Core i5, 8 GB 2133 MHz DDR3)



Thank you for coming!

Questions?

In collaboration with Dr. Matthias Morzfeld, Dr. Aaron Luttman, and
Dr. Kevin Joyce.
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Conjugate Gradient

o lterative method for solving Rx = d where R is SPD

. D . 1
o Equivalent to minimizing the quadratic Q(x) = ExTle —x'd,
which has gradient (Rx —d)
o Inour case, R = H;
o The method:
o Start with an initial guess (commonly xo = 0), and build a set of
basis vectors v; which are conjugate, i.e. v Rv; = 0 for j # j
o Similar to gradient descent, which chooses the search direction
r; = d — Rx; (negative gradient)
o Conjugacy imposed similar to Gram-Schmidt:

-
v; Rr;

Vi—=rF — Vi

1 I Z V,TRV/ !

i<j

T
o Update step:  xj11 = X; + §v;, = valnv-
i Y
This algorithm will produce an exact solution (assuming no
numerical error) in n iterations, where x € R" [8, 14].

i
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