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X-ray Radiography at the NNSS

Photo courtesy of www.nnsa.energy.gov/cygnus

Schematic courtesy of [9]

Dual-axis, 2.25 MeV X-ray source
Used to image dynamic and static material studies
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Calibration Imagery

Radiographs of a set of test objects called the “Luttman Target” from the
Cygnus Dual Beam Radiography Facility at the NNSS in North Las Vegas.
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Objectives

Quantitative imaging objectives:
Reduce image blur
Quantify uncertainties
Deblur large images in a reasonable amount of time

Solution:
Use a Bayesian approach to solve the inverse problem
Produce a mean reconstruction and pixel-wise standard
deviation via Markov chain Monte Carlo (MCMC)

Issues:
Computational tractability is an issue with large images (high
dimension)
Number of samples required for MCMC tends to increase with
dimension (i.e. image size) [12]

My contribution:
MCMC sampler that produces O(100) samples of a full size
(4096× 4096 pixel) Cygnus image in a day
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Discrete 2D Convolution

B

=

X

∗

a

Assuming a ∈ Rma×na is smaller than X ∈ Rmx×nx ,

bi,j =

na−1∑
`=0

ma−1∑
k=0

ama−k,na−`xi+k,j+`, for i = 1, . . . ,mb, j = 1, . . . , nb

B = a ∗ X can be written as b = Ax by column stacking images [6]
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Boundary Conditions

Deconvolution requires boundary conditions (BCs)

Deconvolution with traditional BCs allow for fast solution via spectral
methods [6]
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Dealing with Boundary Artifacts

Blurred Image

=

Reconstructed Image

∗

Kernel

+ ε

Assume extended boundary on the reconstruction x
Boundary conditions on extended boundary have small effect on
field of view (FOV) [1, 3]
Underdetermined system
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Bayesian Formulation

b

Measured noisy data, column stacked

Discretized model form: b = Ax + ε

Assume Gaussian noise: ε ∼ N (0, λ−1I)

Parameter λ ∈ R>0

Likelihood: π(b|x, λ) ∼ N
(
Ax, λ−1I

)

A
Discretization of imaging system model

Ill-conditioned [13]

x

Unknown, reconstructed image, column
stacked

Impose prior π(x|δ) ∼ N
(
0, (δL)−1) [11]

L: regularization matrix (e.g. Laplacian)

δ ∈ R>0 is a scaling parameter
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Bayesian Formulation

Density of x:

x|b, λ, δ ∼ N
((
λA>A + δL

)−1
λA>b,

(
λA>A + δL

)−1
)

In the context of the 2D Deconvolution problem:

x def
= X(:), i.e. a column stack of an image X ∈ Rmx×nx

b def
= B(:), i.e. a column stack of an image B ∈ Rmb×nb

H = λA>A + δL is sparse and large
λ: likelihood precision
δ: prior precision
A: convolution matrix
L: regularization matrix

Want to generate samples from this joint density for x
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Gibbs Sampler Refresher

MCMC algorithm for drawing samples from a joint distribution
p(x) = p ([x1, x2, · · · , xn])

Iterative, used to sample large sets of variables
Useful when the conditional distribution is easy to sample from,
but the joint distribution is not

Given samples x(k) =
[
x(k)

1 , · · · , x(k)
i , · · · , x(k)

n

]
, then the i th

variable (or block of variables) is sampled from the conditional
distribution

x(k)
i ∼ p

(
xi

∣∣∣∣x(k)
1 , · · · , x(k)

i−1, x
(k−1)
i+1 , · · · x(k−1)

n

)
Produces correlated samples with stationary distribution p(x) [5]
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Integrated Autocorrelation Time (IACT)

Can compute τint to assess the efficiency of an MCMC algorithm
IACT tends to increase with dimension: τint ∝ np, p > 0

e.g. p = 1 for random walk Metropolis, p = 1/2 for Hamiltonian
MCMC, and p = 1/4 for Metropolis-adjusted Langevin Algorithm
[10]

Given a sample size, Ne, the effective sample size is

Neff =
Ne

2τint

Statistics from Ne correlated samples are similar to those from
Neff independent samples [15]
Ne = 2τintNeff ∝ np
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Issues and Objectives

Issues:
Data-driven BCs: cannot deconvolve via
FFT
Large image size: cannot sample directly
MCMC expected to converge slowly:
Ne ∝ τint ∝ np

Objective:
A sampler with IACT independent of image
size, using data-driven BCs
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Gibbs Sampling Example

Consider a small example where x has four components,
x = [x1, x2, x3, x4].

Independent samples
1

[
x (k)

1 , x (k)
2 , x (k)

3 , x (k)
4

]
∼ p(x)

Standard Gibbs
1 x (k)

1 ∼ p
(

x1 x (k−1)
2 , x (k−1)

3 , x (k−1)
4

)
2 x (k)

2 ∼ p
(

x2 x (k)
1 , x (k−1)

3 , x (k−1)
4

)
3 x (k)

3 ∼ p
(

x3 x (k)
1 , x (k)

2 , x (k−1)
4

)
4 x (k)

4 ∼ p
(

x4 x (k)
1 , x (k)

2 , x (k)
3

)
Correlated samples
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Gibbs Sampling Example

Block Gibbs sampling:
One Block of 2

1 x (k)
1 ∼ p

(
x1 x (k−1)

2 , x (k−1)
3 , x (k−1)

4

)
2 x (k)

2 ∼ p
(

x2 x (k)
1 , x (k−1)

3 , x (k−1)
4

)
3

[
x (k)

3 , x (k)
4

]
∼ p

(
[x3, x4] x (k)

1 , x (k)
2

)
Two blocks of 2

1

[
x (k)

1 , x (k)
2

]
∼ p

(
[x1, x2] x (k−1)

3 , x (k−1)
4

)
2

[
x (k)

3 , x (k)
4

]
∼ p

(
[x3, x4] x (k)

1 , x (k)
2

)
One block of 3

1 x (k)
1 ∼ p

(
x1 x (k−1)

2 , x (k−1)
3 , x (k−1)

4

)
2

[
x (k)

2 , x (k)
3 , x (k)

4

]
∼ p

(
[x2, x3, x4] x (k)

1

)
The stationary distribution in all cases is p(x)
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4
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2
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1 x (k)
1 ∼ p

(
x1 x (k−1)

2

)
= p

(
x1 x (k−1)

2 , x (k−1)
3 , x (k−1)

4

)
2 x (k)
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2
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This can improve efficiency (w.r.t. IACT) [10]
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In the context of imaging, x consists of all the pixels xi .
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Gibbs Sampling in images

Want to generate samples x(k) b, λ, δ ∼ N
(
m,H−1

)
by sampling

x(k)
i b, λ, δ ∼ p

(
xi

∣∣∣∣x(k)
1 , · · · , x(k)

i−1, x
(k−1)
i+1 , · · · x(k−1)

n ,b, λ, δ
)

How should X be broken up into smaller sub-images Xi?

(a) Column based components (b) Sub-image components
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Gibbs Sampling in images

X =


X1 X1+mB · · · X1+mB(nB−1)
X2 X2+mB · · · X2+mB(nB−1)
...

...
. . .

...
XmB X2mB · · · XmBnB



Xi−mB−1

Xi−mB

Xi−mB+1

Xi−1

Xi

Xi+1

Xi+mB−1

Xi+mB

Xi+mB+1

Partition X into a grid of mB × nB sub-images
Generate samples of Xi conditioned only on 8 neighbors:

x(k)
i ∼ p

(
xi

{
x(k)

j j ∈ Spre

}
,
{

x(k−1)
j j ∈ Spost

}
,b
)

= p
(

xi

{
x(k)

j j < i
}
,
{

x(k−1)
j j > i

}
,b
)

where xi = X(:) is marked in yellow, Spre corresponds to blue,
and Spost corresponds to green
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Block Gibbs Algorithm

Inputs:
Precision H = λA>A + δL
Mean m
Initial state x0

# sub-images nB = [mB, nB]

# samples Ne

Sampling:

x(k)i

{
x(k)j j ∈ Spre

}
,

{
x(k−1)

j j ∈ Spost

}
, b, λ, δ

∼ N
(

mi −
( ∑

j∈Spost

Hij

(
x(k−1)

j − mj

)

+
∑

j∈Spre

Hij

(
x(k)j − mj

))
, H−1

ii

)

Output: Samples x(1), · · · , x(Ne)

distributed N (m,H−1)

Image X with sub-images Xi (yellow), Xj
with j ∈ Spre (blue), and Xj with j ∈ Spost
(green) highlighted.
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Efficiency and Scalability

How does τint change with image size?
Is there an optimal sub-image size to minimize computation time
per sample?
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IACT Experiment

Reminder: Ne = 2τintNeff, τint ∝ np

Fix sub-image size of
128× 128
Consider full image sizes of
mx × nx = 256× 256, 512×
512, 1024×1024, 2048×2048
Generate 1000 samples at
each size, and calculate
mean sample IACT, τ̂ int

Data B outlined at various sizes.

Image dimension (mx = nx ) 256 512 1024 2048
2τ̂ int 1.0225 1.0372 1.0372 0.9904
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Image dimension (mx = nx ) 256 512 1024 2048
2τ̂ int 1.0225 1.0372 1.0372 0.9904
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Optimal Sub-image Size

Full image size: 4096× 4096
Sub-image sizes: 256× 256 (left), 512× 512 (center) and
1024× 1024 (right)
Regardless of sub-image size, still generating samples with
stationary distribution p(x|b, λ, δ)
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Sub-image Computation Times

Experiment:
Consider full image size mx × nx = 4096× 4096
Vary sub-image size, compute average computation times over
five samples
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Block Gibbs Computations

Sampling a sub-image requires sub-matrices Hij ∈ Rmd nd×md nd :

x(k)
i = mi + H−1

ii

H>/2
ii z−

 ∑
j∈Spost

Hij

(
x(k−1)

j −mj

)
+
∑

j∈Spre

Hij

(
x(k)

j −mj

)
which has three main components:

fdiag(y, i) = H−1
ii y (1)

fsqrt(z, i) = H>/2
ii z (2)

fpost(y, i) =
∑

j∈Spost

Hijyj , fpre(y, i) =
∑

j∈Spre

Hijyj (3)
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Block Gibbs Computations (cont.)

x(k)
i = mi + H−1

ii

H>/2
ii z−

 ∑
j∈Spost

Hij

(
x(k−1)

j −mj

)
+
∑

j∈Spre

Hij

(
x(k)

j −mj

)
Each of these components contains at least one sub-matrix Hij ,

which has the form

Hij = λ (A:,i)
> A:,j + δLij ,

and provides the portion of the blur in the i th output sub-image due to
the j th input sub-image.
In order to write the functions (1) – (3), it is necessary to also have
functions fA:,j (), f(A:,i )>(), and fLij (). Then

Hijy = fHij (Y) = λf(A:,i )>
(
fA:,j (Y)

)
+ δfLij (Y)
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Efficient Computation of fdiag and fsqrt

fdiag(y, i) = H−1
ii y

Can use the forward function fHii (Yi) in combination with an
iterative algorithm for solving Ax = b such as Conjugate
Gradient (CG) [8, 14]

fhalf(z, i) = H>/2
ii z

Additional assumption: can compute a square root of
Lii = (L:,i)

>/2 (L:,i)
1/2

Generate

z1 ∼ N (0, I1) , z2 ∼ N (0, I2) ,

where the size of I1, I2 depend on the sub-image
Then

√
λf(A:,i )

>(Z1) +
√
δf(L:,i )

>/2(Z2) ∼ N (0,Hii)
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Efficient Computation of the pre- and post-sums

fpost(y, i) =
∑

j∈Spost

Hijyj , fpre(y, i) =
∑

j∈Spre

Hijyj

Yi

Ypre Ypost

Assuming that Li,:y can be
calculated with fL() similar to Ai,:y,
then

fpre(y, i) = λf(A:,i )
> (fA (Ypre))

+ δfL(Ypre)

fpost(y, i) = λf(A:,i )
> (fA (Ypost))

+ δfL(Ypost)
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Problem

Density of x:

x|b, λ, δ ∼ N
((
λA>A + δL

)−1
λA>b,

(
λA>A + δL

)−1
)

Need to define the kernel and precision parameters:
a: convolution kernel
λ: likelihood precision
δ: prior precision
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Kernel

Idea:
Blur mostly due to X-ray intensity profile [4]
Use a model that gives the kernel from an edge in the image [7]
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Kernel

Idea:
Blur mostly due to X-ray intensity profile [4]
Use a model that gives the kernel from an edge in the image [7]
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(a) Line out from L-rolled edge in Luttman target
(b) Mean reconstruction of X-ray intensity profile over 1000 samples
(c) Cropped portion of (b) in the red box, used as the kernel a



27/31

X-ray Radiography Background Issues and Objectives Block Gibbs Algorithm Application

Parameter Selection

(a) Full image (b) Pixel-wise var:
≈ 1.1 · 10−4

(c) Pixel-wise var:
≈ 1.1 · 10−5

Data from a processed image from Cygnus is provided in (a), with
two subsections identifying the sub-images shown in (b) and (c).
Each figure has a different colorbar

λ ≈ 9000 defined by variance in the image
δ ≈ 22 chosen by a parameter sweep over smaller portions of
the image, and parameter estimation techniques [6, 13]
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Deconvolution Results

(a) Blurred data (b) Mean reconstruction

Kernel size: 33× 33
λ ≈ 9000, δ ≈ 22
md × nd = 512× 512 pixels (8× 8 = 64 sub-images)
526 samples
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Deconvolution Results Step Wedge

(a) Blurred image (b) Mean reconstruction (c) Sample # 410
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Deconvolution Results Abel Cylinder

(a) Blurred image

(b) Mean reconstruction

(c) Sample # 410
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Conclusion

No published MCMC algorithms in the literature using images
and kernels of this size, even with traditional BCs
Presented a block Gibbs sampler which:

is efficient w.r.t. IACT
is scalable to images of size 4096× 4096

Can generate O(100) deblurred images per day on a reasonable
desktop (or with a factor of 2 time increase with a 2017 Macbook
Pro: 2.3 GHz Intel Core i5, 8 GB 2133 MHz DDR3)
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Thank you for coming!

Questions?

In collaboration with Dr. Matthias Morzfeld, Dr. Aaron Luttman, and
Dr. Kevin Joyce.
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Conjugate Gradient

Iterative method for solving Rx = d where R is SPD

Equivalent to minimizing the quadratic Q(x) =
1
2

x>Rx− x>d,
which has gradient (Rx− d)
In our case, R = Hii

The method:
Start with an initial guess (commonly x0 = 0), and build a set of
basis vectors vi which are conjugate, i.e. v>i Rvj = 0 for i 6= j
Similar to gradient descent, which chooses the search direction
rj = d− Rxj (negative gradient)
Conjugacy imposed similar to Gram-Schmidt:

vj = rj −
∑
i<j

v>i Rrj

v>i Rvi
vi

Update step: xj+1 = xj + tjvj , tj =
v>j rj

v>j Rvj

This algorithm will produce an exact solution (assuming no
numerical error) in n iterations, where x ∈ Rn [8, 14].
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