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Abstract—Neuromorphic computing offers one path forward
for AI at the edge. However, accessing and effectively utilizing a
neuromorphic hardware platform is non-trivial. In this work,
we present a complete pipeline for neuromorphic computing
at the edge, including a small, inexpensive, low-power, FPGA-
based neuromorphic hardware platform, a training algorithm for
designing spiking neural networks for neuromorphic hardware,
and a software framework for connecting those components. We
demonstrate this pipeline on a real-world application, engine con-
trol for a spark-ignition internal combustion engine. We illustrate
how we connect engine simulations with neuromorphic hard-
ware simulations and training software to produce hardware-
compatible spiking neural networks that perform engine control
to improve fuel efficiency. We present initial results on the
performance of these spiking neural networks and illustrate that
they outperform open-loop engine control. We also give size,
weight, and power estimates for a deployed solution of this type.

Index Terms—neuromorphic, FPGA, engine control unit, in-
ternal combustion engine

I. INTRODUCTION

Neuromorphic computers provide an intriguing platform for
low power artificial intelligence (AI) at the edge [1]. However,
there are several key hurdles to developing neuromorphic com-
puting solutions to real-world applications, including finding
sufficiently low power neuromorphic hardware, implementing
the appropriate algorithms used to train a spiking neural
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network (SNN) to deploy onto the hardware platform, and
ensuring that the trained SNN fits within the constraints of
the pre-determined neuromorphic hardware system.

In this work, we present a complete pipeline for training and
deploying a low size, weight, and power (SWaP) neuromorphic
hardware solution for a real-world application. The real-world
application of interest is an engine control unit (ECU) of a
spark-ignition internal combustion engine. To improve engine
efficiency and reduce greenhouse gas emissions, transportation
researchers have developed advanced combustion strategies
that minimize the amount of fuel needed to run the engine.
However, as the engine efficiency is pushed to the practical
limit, instabilities in the combustion process cause sporadic
misfires and partial burns. Such events increase the cycle-
to-cycle variability (CCV) of the combustion process which
causes undesired levels of noise, vibration, and harshness
(NVH). In order to mitigate combustion instabilities, the ECU
should command a higher amount of fuel during combustion
cycles where misfires or partial burns would otherwise occur.
In this case, we would like to utilize a neuromorphic hardware
system that will take as input information about the engine
combustion’s state at each cycle and provide as output the
amount of fuel to inject during the next cycle. The goal is to
keep the engine running with few or no engine misfires and
partial burns in order to minimize combustion CCV and keep
the engine running smoothly, but also to minimize the amount
of extra fuel needed to stabilize the combustion events.

We present how we combined several previous works in a
complete workflow to produce a low cost, low power neuro-
morphic engine controller that could be reasonably deployed
in an engine as part of the ECU. This workflow includes a
low cost FPGA-based neuromorphic hardware system called
µCaspian [2], an SNN training methodology called EONS [3],
[4] that integrates with the engine simulation code, and a



neuromorphic software workflow based on the TENNLab
software framework [5] to connect each of the components
together. In the following sections, we discuss each of these
individual components and how they are combined into a
single workflow. We show how the resulting trained SNNs
perform on the ECU task within engine simulations and
estimate their size, weight, and power performance in the
deployed neuromorphic hardware.

II. RELATED WORK

Though neuromorphic computing has grown in popularity
in recent years, there are relatively few complete workflows
for training an SNN and then deploying to existing neuro-
morphic hardware. Nengo [6] provides a complete workflow
with multiple neuromorphic hardware backends, including
an FPGA implementation [7] and Intel’s Loihi. Nengo also
includes backpropagation-based training approaches with Nen-
goDL [8], so it is possible to train an SNN in Nengo that can
then be deployed to a neuromorphic system on an FPGA or a
system like Loihi. This type of workflow has been utilized to
train low power SNNs for tasks such as keyword spotting [9].
However, this training approach does not natively allow for
training multiple objectives and is not easily extendable to
control tasks (without the use of additional algorithms).

Modern ECUs with increasing computational capacity have
enabled the use of model-based control strategies in ad-
vanced combustion modes such as stoichiometric diluted
combustion [10], homogeneous charge compression ignition
(HCCI) [11], partially premixed combustion [12], and reactiv-
ity controlled compression ignition (RCCI) [13] among others.
Such closed-loop combustion control strategies, however, re-
quire physics-based control-oriented models accurate enough
for model-based control but computationally low cost for real-
time implementation. Given the restrictive environment of the
combustion chamber and the complex physical phenomena
occurring during the process, simplifications in modeling are
unavoidable. To overcome these limitations and fully utilize
the information contained in empirical engine data, model-free
control based on learning has increasingly gained popularity
in the engine research community [14].

III. APPROACH

A. Engine Simulators

The engine simulator is based on the control-oriented cycle-
to-cycle combustion model proposed by Daw et al. [15]:
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Fig. 1. Top: cycle-to-cycle values of combustion efficiency ηc[k] as function

of in-cylinder composition λ′[k] =
Mair[k] +Minert[k]

Mfuel[k]
·

1

AFRs
. Bottom:

residual gas fraction Xres[k] as function of gross heat release Qgross[k].

Here, the states of the system Mfuel, Mair, and Minert are
the total amount of fuel, air, and inert gases for cycle k. The
model parameters consist of the stoichiometric air-to-fuel ratio
AFRs = 14.85, the lower heating value of the fuel QLHV =
41 MJ/kg, the combustion efficiency ηc, and the residual gas
fraction Xres. The inputs are the injected fuel mass (control)
mfuel and the admitted masses of air mair = 308.37 mg and
recirculated exhaust gas mEGR = 58.03 mg. The target variable
for CVV control is the gross heat release Qgross. Low values of
Qgross indicate the occurrence of partial burns and misfires. For
offline simulations, the parameters ηc and Xres are required to
be functions of the states. The authors in [16] identified simple
parametric functions corresponding to the blue dash-dotted
lines in Figure 1. The variability observed in the empirical
data was simulated using additive Gaussian noise. We will
refer to this approach as the “simple” model.

A more accurate model, however, can be developed using
the kernel density estimation (KDE) technique. Here, the
model parameters are sampled from two different conditional
density functions based on Gaussian kernels:

ηc[k] ∼ pwη (ηc | λ′k, hη) (3)
Xres[k] ∼ pwX (Xres | Qgross[k], hX) (4)

where hη and hX are the corresponding bandwidths. Such hy-
perparameters were chosen using maximum likelihood cross-
validation. The inverse cumulative distribution function (CDF)
sampling technique was used to obtain ηc and Xres from the
uniform random variables wη and wX , respectively. We will
refer to this approach as the “hybrid” model.

Assuming complete observation of the system, each of these
simulators produce the following information about the current
state of the engine at each cycle: Mfuel, Mair, Minert. The action
mfuel is applied to the simulator by changing the amount of



TABLE I
INITIAL AND NOMINAL VALUES FOR ENGINE SIMULATOR

State/Variable Label Value
Initial total in-cylider fuel Mfuel[0] 20.68 mg
Initial total in-cylider air Mair[0] 309.25 mg
Initial total in-cylider inert gas Minert[0] 77.45 mg
Nominal fuel injected mfuel,0 20.632 mg
Nominal heat release Qnorm 806 J
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Fig. 2. Heat release values for simulation runs with different fixed fuel
injection amounts for the simple model. Values below the red dashed line
would likely manifest as partial burns or misfires.

fuel injected. The output value of Qgross is used as an indicator
of partial burns and misfires. Table I shows the initial values of
each state at the start of the simulation as well as the nominal
values for the fuel control command and the heat release.

Figures 2 and 3 show examples of the heat release results for
different fixed fuel values for the simple and hybrid models.
The amount of fuel injected in each cycle is increased from top
to bottom. Thus, as can be seen in these figures, by increasing
the fixed amount of fuel injected, the number of partial burns
and misfires can be reduced and then eliminated. The goal
for a closed-loop control system is to decrease or eliminate
partial burns and misfires and utilize less fuel than the open-
loop, fixed fuel injection approach requires.

B. µCaspian

For both training and deploying a spiking neural network,
we use the Caspian neuromorphic platform. Caspian provides
both software simulation and hardware implementations using
a unified API [2]. In this work, we use the µCaspian hardware
architecture which implements a highly efficient event-driven
neuromorphic core with 256 integrate-and-fire neurons and
4096 configurable synapses [17].

We have developed a custom board for µCaspian to al-
low for deployment in real environments. For flexibility, the
development board has both USB and direct I/O interfaces.
When using the USB interface, the board consumes around
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Fig. 3. Heat release values for simulation runs with different fixed fuel
injection amounts for the hybrid model. Values below the red dashed line
would likely manifest as partial burns or misfires.

500 mW including I/O and power regulation losses. However,
removing USB and extra development circuitry, µCaspian
could approach a total power consumption on the order of
10-20 mW. Of that, about 6 mW is necessary for the static
and dynamic power of the FPGA logic.

C. Connecting µCaspian and the Engine

To evaluate how an SNN is performing on this engine
controller task, we must connect µCaspian with the engine
simulator (and, in the future, the engine itself). For this task,
the engine simulator (or the engine) will produce a set of
observations (Mfuel, Mair, Minert) that will be used as input to
the SNN running on µCaspian. Each of these observations will
be numerical values that need to be converted into spikes. We
use the TENNLab framework spike encoding methodology to
perform this conversion [18]. In this case, we have fixed the
spike encoding scheme to utilize 10 bins for each input. All
of the observations have a nominal range in which they will
appear, [a, b]. With 10 bins, these ranges will be split into 10
equal-sized ranges, [a, a+ (b−a)

10 ], [a+ (b−a)
10 , a+ 2(b−a)

10 ], etc.
An input neuron will be created for each of these ranges. Then,
for a given observation value x, the neuron corresponding to
the appropriate range will be spiked once to indicate that value
to the network. Because there are three input values, there are a
total of 30 input neurons. Neurons in our SNNs are indicated
with ID values. Neurons 0-9 correspond to the bins for the
amount of fuel observation value, neurons 10-19 correspond
to bins for the amount of air observation value, and neurons
20-29 correspond to the inert gas observation value.



TABLE II
FUEL INJECTION ACTIONS PER CYCLE

Output Neuron Index Amounts Relationship to mfuel,0
30 20.632 mg mfuel,0
31 20.642 mg mfuel,0 + 0.05%
32 20.652 mg mfuel,0 + 0.1%
33 20.673 mg mfuel,0 + 0.2%
34 20.735 mg mfuel,0 + 0.5%
35 20.838 mg mfuel,0 + 1%
36 21.044 mg mfuel,0 + 2%
37 21.251 mg mfuel,0 + 3%
38 21.457 mg mfuel,0 + 4%

Once the input spikes have been created by the input
encoder, they will be sent to µCaspian (either the board itself
or the simulator). Then, the SNN on µCaspian will be run for
some number of time steps to allow the SNN to decide on an
action based on its previous observations. In this case, we run
the SNN for 50 time steps, though this value could potentially
be changed to improve performance. Similarly to the encoding
step, the network on µCaspian will produce spikes as output.
These spikes must be converted into a selection of the ap-
propriate action. As noted in the description of the simulator
above, the action produced is the amount of fuel to be injected.
In this case, we restrict the possible amounts of fuel injected to
nine fixed fuel amounts, shown in Table II. These fuel amounts
are based on the nominal mfuel,0 value. We use a “winner-take-
all” approach to convert output spikes to the corresponding
decision. In particular, we create an output neuron for each of
the possible actions. Whichever output neuron fires the most
corresponds to the chosen action. This conversion of spike
counts to actions is performed by an output decoder module,
also from the TENNLab software framework. Once the action
has been determined, the corresponding action is applied to the
engine simulator and a new set of observations are produced
that is then provided to the SNN, and so on. This completed
system of closed-loop control of the engine using µCaspian is
depicted in Figure 4.

Although we currently perform spike encoding and decod-
ing in software, these operations could be integrated into the
hardware. The FPGA design can be modified to also include a
custom communication interface suitable for sending and re-
ceiving real-time engine information. In such a configuration,
the decision making process would be self-contained with new
data going in and a new action coming out for every time
increment.

D. EONS

Evolutionary Optimization for Neuromorphic Systems
(EONS) is an evolutionary algorithm-based training approach
for SNNs for neuromorphic systems [3], [4]. The EONS
algorithm operates by starting with an initial population of
potential SNN solutions for the task at hand. Each of the
networks are then evaluated using a fitness evaluation to
produce a fitness score. The fitness scores are used to drive
the selection and reproduction processes in EONS to produce
the next population of networks.

Combustion
Engine or 
Simulator

μCaspian Board 
or Simulator

Spike 
Encoding

Spike 
Decoding

Spikes

Observations
Action

Spikes

Closed Loop Control with uCaspian

Fig. 4. Closed loop control system, showing how µCaspian and the engine
simulator (or engine itself) interact with each other.

In this case, during the fitness evaluation, the candidate
SNN solution is simulated on the µCaspian simulator and
the car engine is simulated using one of the two engine
simulators described above. They are connected to each other
via the encoder/decoder modules and the network is simulated
controlling the engine for 5000 cycles.

We then use the simulation outputs to calculate a fitness
score designed to produce our dual goals of maintaining
near nominal engine performance while also minimizing fuel
consumption. We heavily penalize misfires and partial burns.
To accomplish this, our fitness function is split into three parts.
The first is to keep near the normal performance of the engine
by maintaining the heat release value close to the nominal
value:

Qerror =
1

Q2
norm

5000∑
k=1

(Qgross[k]−Qnorm)
2 (5)

The second is to minimize fuel usage by keeping the fuel
value close to the desired value for the fuel:

fuelin =
1

m2
fuel,0

5000∑
k=1

(mfuel[k]−mfuel,0)
2 (6)

The third is to count the number of cycles where partial
burns or misfires occur, where the heat release value is low.

Nbad =

5000∑
k=1

g(Qk) (7)

In this case, g(Qk) refers to:

g(Qk) =

{
0 Qgross[k] ≥ 645

1 Qgross[k] < 645
(8)

Finally, since EONS maximizes the fitness function value,
and we are interested in minimizing these values, our final
fitness function utilizes the negation of each of these. Within
this function is a penalty term for each of the three components
to weight the importance of those values. In this work, we set
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Fig. 5. Full workflow, from training the SNN using EONS to deploying the
SNN onto the µCaspian board. The closed loop control box is depicted in
more detail in Figure 4.

σQ = 1, σf = 1e4, and σn = 500. We have determined
these values experimentally, but in future work, we intend to
investigate the effect of hyperparameter optimization for these
penalty values.

fitness = − (σQQerror + σffuelin + σnNbad) (9)

E. Summary

A diagram showing the complete workflow and all compo-
nents of the workflow described above is shown in Figure 5.
Though we have fixed the approach here, we have previously
shown that by tuning the input encoding hyperparameters, one
can significantly improve the performance of the SNN [19].
Similarly, by tuning other hyperparameters such as how long
the network is evaluated, hardware parameters of the µCaspian
board itself, and parameters of the training process we may
also significantly improve performance. We intend to perform
a hyperparameter optimization process in the future to deter-
mine the correct input and output coding parameters.

IV. RESULTS

We ran EONS for 100 generations ten times for both the
simple engine model and the hybrid engine model to produce
spiking neural networks suitable for deployment on µCaspian
for each simulation model. To understand the performance of
these networks, we look at two metrics:
• Total fuel injected over all 5000 cycles
• CoV: Coefficient of variation for the heat release

value (Q). For this metric, we would like to see values
less than three percent (based on industry standards).

As our fitness function is attempting to balance multiple
conflicting objectives, we track the best performing networks
over the course of evolution. Thus, each run of EONS produces
100 SNNs (the best SNN from each generation). We then
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Fig. 6. Coefficient of variation (CoV) and total fuel injected results for the
best SNNs for each generation of evolution for all ten runs for the simple
engine simulator. The best network is defined as the network with the lowest
fuel injected that is also below the CoV threshold of 3 percent (averaged over
ten test runs).

evaluate these networks on ten new engine simulation runs.
Because the simulations are stochastic, there is some variation
in the performance across the ten runs, and we average our
two metrics across the ten runs. We compare the performance
to approaches with no control system, i.e., those in which the
fuel injected at each cycle is fixed (examples of which are
shown in Figures 2 and 3 for the simple and hybrid models
respectively).

A. Simple Model Results

The results for all 1000 SNNs produced over the course
of the ten evolutions for the simple engine simulation model
are shown in Figure 6. As can be seen in this figure, many
of the networks produced utilize less fuel but reported high
CoV values. However, there are also a large cluster of net-
works towards the lower left corner. We highlight the “best”
performing SNN for the simple model. We define “best” as the
SNN that utilized the least fuel over the course of simulation
and also produced an average CoV (over the ten simulation
runs) of at most 3 percent.

A window of 100 cycles of the simulation of the best SNN is
shown in Figure 7, illustrating the policy that the SNN utilizes
in switching between two fuel injection amounts. We omit
showing the full 5000 cycles because the policy is not clear
on those plots, but appears to be repeating throughout. The
SNN that produces this behavior is shown in Figure 8. As can
be seen in this figure, the network model is very small and
utilizes a non-traditional structure in which output-to-output,
as well as output-to-input connections are allowed. Moreover,
there are no hidden neurons required in this network. The
network size is 17 neurons and 17 synapses, resulting in a
very small, very compact SNN that can allow for an extremely
efficient implementation on µCaspian. Additionally, because
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Fig. 7. The first 100 cycles of one simulation as controlled by the best SNN
for the simple model. The top plot shows the control policy that the SNN
trained to perform.

Fig. 8. The best SNN structure evolved by EONS for the simple model. The
labels on the neurons indicate their ID in the network. Indices 0-9 encode the
fuel observation, indices 10-19 encode the air observation, and indices 20-29
encode the inert gas observation. Output neurons are 30-38 and correspond
to the fuel commands shown in Table II.

the µCaspian system is event-driven, the network size roughly
corresponds with processing time required. In this case, we
would expect a network of this size to require less than 200
microseconds to make a control decision at each engine cycle
(not including I/O time).

B. Hybrid Engine Model Results

The results for all 1000 SNNs produced over the course
of the ten evolutions for the hybrid engine simulation model
are shown in Figure 9. With this more complex simulator,
it is clear that it will likely benefit from longer training
runs. The networks produced over the course of training do
drive towards the Pareto front, but are not as successful in
pushing consistently past the performance of the fixed control
approach. However, as in the simple model case, there are
several networks that utilize less fuel than the best fixed control
approach and still perform below three percent for the CoV
test. Again, we highlight the best performing network for
this task. In this case, the best SNN runs the engine with

103 104 105 106 107 108
Total Fuel Injected (g)

2

4

6

8

10

12

14

16

Co
V 

fo
r Q

SNN
Fixed Control
CoV Threshold
Best

Fig. 9. Coefficient of variation (CoV) and total fuel injected results for the
best SNNs for each generation of evolution for all ten runs for the hybrid
engine simulator. The best network is defined as the network with the lowest
fuel injected that is also below the CoV threshold of 3 percent (averaged over
ten test runs).

approximately 26.4 mg less fuel over the course of the 5000
cycles than the fixed control task.

As in the simple case, we show a window of 100 cycles of
the simulation of the best SNN produced for the hybrid engine
simulator in Figure 10. However, since the policy in this case
is not periodic, we show the results for a complete 5000 cycle
simulation in Figure 11. As we can see in these figures, there is
more variation in the actions that the best network takes over
the course of a single simulation and the actions taken are
more responsive to the observation values from the engine.
In general, we saw that the policies trained for the hybrid
model were more complex than those trained for the simple
model. This is consistent with what we expected, as the hybrid
model itself is more complex and driven by real-world data
observations.

The best performing SNN for the hybrid model is shown
in Figure 12. Clearly this network is more complex than the
best SNN trained for the simple model, but the network still
requires no hidden neurons. This network includes a total of
23 neurons and 23 synapses. Similar to the hybrid model,
we would expect a network of this size to require less than
200 microseconds to make a control decision at each engine
cycle (not including I/O time). Interestingly, in this case we
can see that many of the observations integrate together to
inform when the higher fuel values should be injected, but the
lower fuel values are driven by very little input information.
We intend to explore these relationships between observation
values further in future work in order to understand how the
network is making decisions.

C. Size, Weight, and Power

The SNNs evolved in this work are clearly small enough to
fit on the FGPA utilized in the µCaspian implementation. As
noted in Section III-B, the full µCaspian development board,
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Fig. 11. The full 5000 cycles of one simulation as controlled by the best
SNN for the hybrid model. The top plot shows the control policy that the
SNN trained to perform.

as shown in Figure 5, utilizes 500 mW, which includes I/O
and power regulation losses. This development board forms a
“worst-case scenario” for the deployment of this system, as it
includes several features for development.

As noted in Section III-B, by removing components asso-
ciated with the development board, such as USB and extra
development circuitry, we estimate that the µCaspian imple-
mentation would consume between 10 mW and 20 mW. The
FPGA used to implement the µCaspian architecture is the
Lattice iCE40 UP5K1. The iCE40 UP5K is available in a
2.15 × 2.55 mm packaging, with a weight of approximately
0.0505 oz. Moreover, these systems are extremely inexpensive
and are commercially available, providing a feasible path
forward for rapid, low size, weight, and power deployment

1https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
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Fig. 12. The best SNN structure evolved by EONS for the simple model. The
labels on the neurons indicate their ID in the network. Indices 0-9 encode the
fuel observation, indices 10-19 encode the air observation, and indices 20-29
encode the inert gas observation. Output neurons are 30-38 and correspond
to the control commands shown in Table II.

of neuromorphic systems on real-world applications.

V. FUTURE WORK AND CONCLUSIONS

In this work, we have demonstrated a complete neuromor-
phic workflow, from application to hardware, for training and
deploying low size, weight, and power neuromorphic solutions
for real-world applications. We demonstrated the results of this
workflow on a control task to improve fuel efficiency in spark-
ignition internal combustion engines. By utilizing low power
AI hardware such as neuromorphic systems, we can potentially
enable more efficient engines and reduce greenhouse gas
emissions. We show that it is feasible to utilize an SNN
approach as deployed on neuromorphic hardware to control an
engine in simulation. We show that even this preliminary SNN
approach can outperform current, open-loop control strategies.
Moreover, we demonstrate the resulting SNNs are very small
and sparse and can be deployed onto an inexpensive and
low size, weight, and power commercial FPGA, providing the
opportunity for rapid deployment.

There are several avenues that we intend to pursue for
future work. First, the engine simulators we use in this work
are based on a single set of engine operating conditions.
We intend to apply this same workflow to train SNNs for
other engine characteristic settings. We will also investigate
whether a single SNN can be optimized to generalize across
a variety of engine operating conditions. Additionally, here,
we trained and tested on two engine simulators. We intend to
utilize these trained SNNs on the µCaspian development board
on a real spark-ignition combustion engine at the National
Transportation Research Center to evaluate how it performs
in a real-world setting.

As noted in Section III, there are several hyperparameters
associated with this approach, including hyperparameters for
the µCaspian hardware, EONS algorithm, spike encoding



and decoding, and the penalty terms in the fitness function.
In this work, we utilize default hyperparameters for EONS
and µCaspian, and spike encoding/decoding, and we hand-
tuned penalty terms by selecting them from a small set of
values. We have previously utilized Bayesian optimization
to automatically tune these hyperparameters to improve per-
formance on classification tasks [20]. By optimizing these
hyperparameters, we expect that we can significantly improve
the performance of the resulting SNNs on the ECU task.
We also intend to include this hyperparameter optimization
approach in our neuromorphic pipeline in future work to
further automate the use and deployment of neuromorphic
systems. We have previously investigated the use of multi-
objective optimization approaches with EONS to minimize
energy or size of SNNs or to improve resiliency [21], as well as
utilizing hyperparameter optimization approaches to minimize
size, weight, and power [19]. By tuning the hyperparameters,
we expect that we may be able to further reduce the size or
energy usage of our networks on µCaspian.

Finally, the prototype neuromorphic pipeline we have
demonstrated in this work will allow us to quickly develop,
evaluate, and deploy low size, weight, and power neuromor-
phic solutions for real-world applications. We intend to explore
other tasks at the National Transportation Research Center,
as well as tasks associated with wearable medical devices,
such as real-time monitoring and anomaly detection, and tasks
associated with smart infrastructure.
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