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ABSTRACT
The current diversity in nodal parallel computer architectures is
seen in machines based upon multicore CPUs, GPUs and the In-
tel Xeon Phi’s. A class of approaches for enabling scalability of
complex applications on such architectures is based upon Asyn-
chronous Many Task software architectures such as that in the Uin-
tah framework used for the parallel solution of solid and fluid me-
chanics problems. Uintah has both an applications layer with its
own programming model and a separate runtime system. While
Uintah scales well today, it is necessary to address nodal perfor-
mance portability in order for it to continue to do. Incrementally
modifying Uintah to use the Kokkos performance portability li-
brary through prototyping experiments results in improved kernel
performance by more than a factor of two.
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1. INTRODUCTION
A current trend in large scale computing is towards larger core

counts per compute node. Whether this is through the use of GPUs,
Xeon Phis or through standard/lightweight cores. One software
approach that helps in the scaling of complex applications codes
on such diverse architectures is based upon an Asynchronous Many
Task (AMT) approach in which tasks are dynamically executed as
soon as their dependencies are met, as in Charm++, Legion and
Uintah, see [1], and many other codes under development.

The Uintah software (http://www.uintah.utah.edu) [4] enforces
separation between the applications’ tasks and the runtime system
which executes them. This allows applications developers to focus
on writing tasks for discretizing the partial differential equations of
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solid and fluid mechanics on a local set of block-structured, adap-
tive mesh patches. When the runtime system executes the applica-
tions’ task it resolves details such as automatic MPI message gen-
eration, management of halo information (ghost cells) and the life
cycle of data variables, and other details. Uintah currently scales
complex applications on a variety of CPU core based architectures
up to about 700K cores. However a challenge of porting over 1M
lines of highly templated C++ to either GPU or Xeon Phi architec-
tures means that Uintah needs to use is to use a performance porta-
bility layer based upon a many-core parallel programming model
(see [3]), such as OpenMP, OpenACC, RAJA, Kokkos or OpenCL.
In this work we have chosen to use Kokkos [2] as it fits most easily
with the underlying code philosophy of Uintah. In using Kokkos it
is necessary to rewrite tasks into a form that allows Kokkos to map
the computation and data in the most appropriate way to achieve
performance on the target architecture. Kokkos does this mapping
at compile time through use of C++ template meta programming.
The challenge in using Kokkos in Uintah is that both the user code
through modified loop structures and the data warehouse through
changed data structures must be refactored. The aim of this pa-
per is to show how the Uintah’s application programming model
and its runtime system may be modified to use the Kokkos per-
formance portability layer. Results from experiments demonstrate
that Uintah applications kernels rewritten to conform to the Kokkos
programming model improves in performance, with result seen up
to a factor of at least two. This paper is a shortened form of a
more detailed technical report [6]. Following an overview of the
Uintah framework and the Arches motivating combustion code in
Section 2, Kokkos itself is described in Section 3. The details of
how Uintah may be modified, both at the applications and at the
runtime system level with the work done to modify data warehouse
to work with Kokkos are given in Section 4. The results from these
improvements on selected kernels are in Section 5 and conclusion
Section 6.

2. UINTAH AND ARCHES OVERVIEW
Uintah is used to solve problems involving fluids, solids, com-

bined fluid-structure interaction problems, and turbulent combus-
tion on multi-core and accelerator based supercomputer architec-
tures. As described in [4] and the references therein, problems are
either initially laid out on a structured grid as shown in with the
multi-material ICE code for both low and high-speed compressible



flows, or by using particles on that grid with the multi-material,
particle-based code MPM for structural mechanics or by combin-
ing the two in the fluid-structure interaction (FSI) algorithm MPM-
ICE. The ARCHES turbulent reacting CFD component [5] is de-
signed for simulating turbulent reacting flows with participating
media radiation.

Simulation data is managed by a distributed data store known
as a Data Warehouse, an object containing metadata for simulation
variables. The metadata indicates the patches on which specific
variable data resides, halo depth or number of ghost cell layers, a
pointer to the actual data, and the data type (node-centered, face-
centered, etc.). Access to simulation data in the Data Warehouse is
through a simple get and put interface. During a given time step,
there are two Data Warehouses available to the simulation, 1.) the
Old Data Warehouse contains all data from the previous time step,
and 2.) the New Data Warehouse maintains variables to be initially
computed or subsequently modified. At the end of a time step, the
New Data Warehouse is moved to the Old Data Warehouse, and
another New Data Warehouse is created. In the case of on-node
GPUs, Data Warehouses specific to GPUs are used.

Parallelism within Uintah is achieved in three ways by using:
domain decomposition to assign each MPI rank its own region of
the computational domain; task level parallelism within an MPI
rank to allow each task to run independently on node or thread
level parallelism within a node. Uintah maintains a clear separa-
tion between applications code and its runtime system, and hence
the details of the runtime system are hidden from the application
developer. The task developer must supply entry functions to the
task code, and write serial C++ code for CPU and Xeon Phi tasks
and CUDA parallel code for GPU tasks. This model for CPU, GPU
or Xeon Phi tasks currently requires that three versions of the task
code be maintained. The use of Kokkos enables a move to a single
code and allows users to exploit data parallelism within all Uintah
tasks.

The primary motivation is to extend Uintah to emerging exas-
cale problems with important commercial ramifications and ben-
efits for improving coal combustion efficiency. For example the
Arches component is being used to predict capabilities for a com-
mercial, 1000 MW coal fired boiler. Given this challenging appli-
cation, the Kokkos performance and portability improvements will
be illustrated through the Arches component.

Arches is a finite volume combustion code that has been devel-
oped over a number of years [5]. The use of the Large Eddy Sim-
ulation (LES) approach of Arches has potential to be an important
design and prediction tool. The approach used in Arches is that
of a structured, high order finite-volume mass, momentum, energy
conservation discretization method for the gas and solid phase with
combustion.

3. KOKKOS
Kokkos is a C++11 library for implementing portable thread-

parallel codes on various HPC architectures [2]. Kokkos is used
to optimize single-node performance, since most HPC codes al-
ready have strategies to optimize their intra-node performance. It
currently supports CPU, GPU, Intel Xeon Phi and IBM Power 8
architectures. The (open) source code is available at https://github.
com/kokkos/kokkos.

Kokkos allows users’ to encapsulate their code into computa-
tional kernels, and uses template meta-programming to optimize
their kernels at compile time for the given device. Kokkos is able
to optimize users kernels because it requires them to conform to
abstractions provided by the Kokkos API. The main abstractions
within Kokkos are Parallel Patterns, Execution Space, Execution

Figure 1: Modified Uintah Programming Model

Policy, Views, Memory Space, Memory Layout and Memory Traits.
The user can specify a kernel which only uses a subset of these

abstractions, and the others will default to optimal values for the
current device. The Parallel Pattern describe what type of kernel
the user wishes to execute be it a parallel_for, parallel_reduce or
parallel_scan. The Execution Space informs the compiler about
where the kernel is to be run, i.e., GPU or CPU cores, and the
Execution Policy dictates how a kernel should be executed in the
given Execution Space.

Since most scientific codes store data in multi-dimensional ar-
rays, Kokkos provides Views, which are light-weight, reference
counted multi-dimensional arrays. Emerging HPC architecture have
deep memory hierarchies so Kokkos Views allow the user to spec-
ify in which Memory Space the array exists. Memory Layout dic-
tates how the array is mapped to memory (row-major, column-
major, tiled, etc), and it is critical for performance that the mem-
ory layout is suitable for the given CPU. GPU or Xeon Phi device
as using the wrong layout can have significant performance penal-
ties. Memory Traits provides additional information about how the
views are allocated or used and can enable other compile-time op-
timizations. By using views, Kokkos is able to separate the data
locality and layout from the computational code. Kokkos is then
able to select the best memory layout and execution policy at com-
pile time for the given architecture.

To use Kokkos a user identifies a parallelizable kernel of compu-
tation and data. A user can used C++11 lambdas or create function
objects (functors) to encapsulate a kernel. Kokkos then maps the
computations onto cores and the data onto memory using the ex-
ecution and memory spaces. The user is responsible for writing
thread-scalable, high-performance kernels. Carefully written ker-
nels can obtain portable SIMD auto vectorization, as is shown in
Section 5.

4. MODIFYING UINTAH TO USE KOKKOS
Uintah, like many HPC codes, has a large legacy code base with

limited support and development resources. To refactor Uintah to
fully utilize Kokkos kernels is a substantial effort. Most of the work
involves refactoring loops into parallel kernels and converting ex-
isting array data types into Kokkos views. Figure 1 shows how
Uintah is modified overall to use Kokkos at both the data ware-
house and user task level. It is desirable to do this refactor incre-
mentally. Also, when refactoring Uintah component codes we have
been able to take advantage of new and experimental, but planned
future Kokkos features. For example we have used an experimen-



tal planned Kokkos parallel three-level loop for the final example
in Section 5.

When replacing the array data used by Uintah with Kokkos views.
the runtime system needs to be extended to return Kokkos views in
place of the current Uintah array data structures. Using the Unman-
aged memory trait, the runtime system can wrap the existing data
structures with Kokkos unmanaged views. Unmanaged views do
not include reference counting, and must be supplied a layout and
memory space. Unmanaged views allow codes to incrementally
adopt Kokkos APIs without requiring a massive upfront rewrite.
The runtime system and component codes can then incrementally
track down instances where non-view APIs are being used to refac-
tor them individually to remove the assumptions that make them in-
compatible with pure Kokkos views. After these incompatibilities
are removed the code should then be portable to other architectures.

However, codes which use unmanaged views are not portable to
different devices, so the user must incrementally verify the porta-
bility of kernels to other devices without waiting for the entire code
base to be refactored. This is achieved here by extracting kernels
into stand-alone executables with mock inputs. The kernels can
then be compiled for various devices and optimized to run better
on those devices. When doing this for a diffusion kernel within
ARCHES, we were able to obtain good SIMD vectorization on
CPUs and better caching effects on GPUs.

Uintah tasks declare and initialize mesh patch array variables
which are then used within one or more loops throughout the ex-
ecution of the task. Using C++11 the loop bodies of the tasks are
encapsulated in lambdas, which are then invoked with the appropri-
ate parallel pattern. The loop bodies could also be extracted into a
function object, and then invoked by the parallel pattern. This entire
process is incremental, but allows for performance and portability
verification at each step.

5. RESULTS
Two examples are used to test the performance of the runtime

system using Kokkos on key Uintah algorithms. The first exam-
ple is is that of a nonlinear advection scheme and the second is a
3D loop in the Arches code [5]. In Arches 30-40% of the code
is spent on model evaluation, discretization of transport and other
flow components. Kokkos is a natural fit for Arches because it is
possible to achieve lamda/functorization of existing code with rel-
atively little work. Fast initial adoption is very helpful for our en-
gineering developers. This process is illustrated by the discretiza-
tion of the simple advection component using many different, but
standard, approaches such as upwinding and flux limiting. In this
case speed-up measured for a standard upwinding discretization
from existing baseline code against the Kokkos code, using un-
managed views. The speedup for different patch sizes are shown
in Table 1. The upwind and the van Leer flux limiter show sig-
nificant speedups over the original Uintah implementation. The
van Leer result speedup is not as large as the upwind result due
to the number of branches (1 versus 5) in the computational ker-
nel. The significant speedups that are shown are a result of two
complementary changes. These are the use of the Kokkos paral-
lel_for and the improved way in which Kokkos iterates through the
memory space as compared to the original Uintah implementation
and the reimplementation of the computational kernel to perform
better. This example suggests that careful rewrites of key compu-
tational kernels in conjunction with Kokkos can offer significant
performance improvements. In porting the Arches 3D stencil ex-
ample we needed a way to avoid porting the whole of Arches. Us-
ing the technique of creating a simple mock runtime system, we
were able to verify that the diffusion kernel in Arches is portable

Patch size 83 163 323 643 1283

Upwind Kokkos Speedup 4.6 10.0 10.7 12.9 12.7
van Leer Kokkos Speedup 2.76 4.05 4.04 5.01 6.37

Table 1: Kokkos speedup on Arches advection

between GPU, CPU, and Xeon Phi devices and were able to opti-
mize to ensure that it used SIMD vectorization. The loop used is
a simple diffusion kernel which amounts to the convolution of 1D
stencils for 3 face centered variables X, Y, Z with 3D stencils of 2
cell centered variables D, phi. The initial Uintah code for this loop
uses Uintah arrays and iterators. Uintah arrays are indexed with an
IntVector representing an (i, j, k) tuple. Uintah Iterators are initial-
ized with low and high IntVectors and will iterate over the indicated
range in a column-major order. The initial Uintah code is show in
Code Listing 1. The Uintah framework used the concept of a sin-
gle loop iteration with IntVectors as an aid to the development of
the computational algorithms for the application developers. These
techniques were optimized to assist in the development and debug-
ging of application algorithms. The indirection and pointer hops
that occur in the IntVector and loop traversal are non-ideal from a
performance standpoint, but offer significant benefits to initial algo-
rithm development. While the benefits of the Uintah constructs are
numerous from an algorithm development point of view, the draw-
backs to raw performance are reflected in Table 2 and show that
rewriting the kernels with the Kokkos constructs and using tech-
niques to promote SIMD vectorization can offer significant perfor-
mance improvements.

t y p e d e f I n t V e c t o r IV ;
f o r ( I t e r a t o r i t r ( low , h igh ) ; ! i t r . done ( ) ;++ i t r ) {

IV c=∗ i t r ;
IV xp=c+IV ( 1 , 0 , 0 ) , xm=c+IV ( −1 ,0 ,0) ;
IV yp=c+IV ( 0 , 1 , 0 ) , ym=c+IV (0 , −1 ,0) ;
IV zp=c+IV ( 0 , 0 , 1 ) , zm=c+IV (0 ,0 , −1) ;

r h s [ c ]+= ax ∗ (X[ xp ]∗ (D[ xp ]+D[ c ] ) ∗ ( p h i [ xp]−p h i [ c ] )
−X[ c ] ∗ (D[ c ] +D[xm ] ) ∗ ( p h i [ c ] −p h i [xm ] ) )

+ay ∗ (Y[ yp ]∗ (D[ yp ]+D[ c ] ) ∗ ( p h i [ yp]−p h i [ c ] )
−Y[ c ] ∗ (D[ c ] +D[ym ] ) ∗ ( p h i [ c ] −p h i [ym ] ) )

+az ∗ (Z [ zp ]∗ (D[ zp ]+D[ c ] ) ∗ ( p h i [ zp]−p h i [ c ] )
−Z [ c ] ∗ (D[ c ] +D[ zm ] ) ∗ ( p h i [ c]−p h i [ zm ] ) ) ; }

Code Listing 1: Uintah 3D Stencil Kernel

There are three step to naively convert a Uintah kernel to Kokkos.
First, the iterators loops are replaced with a parallel algorithms over
the same range. Second, IntVector indexing is replaced with direct
i, j, k lookups. Lastly, Uintah arrays are wrapped and replaced with
unmanaged Kokkos views. Using unmanaged views allow for an
incremental transition to Kokkos, though to achieve performance
portability these views will need to become managed Kokkos views
in the future. The naive Kokkos loop is shown in Code Listing 2
in [6].

p a r a l l e l _ f o r ( range , [ = ] ( i n t i , i n t j , p a i r < i n t , i n t >
k_range ) {

auto r = subview ( rhs , i , j , ALL ( ) ) ;
auto x0= subview (X, i , j , ALL ( ) ) ;
auto xp= subview (X, i +1 , j , ALL ( ) ) ;
auto y0= subview (Y, i , j , ALL ( ) ) ;
auto yp= subview (Y, i , j +1 ,ALL ( ) ) ;
auto z= subview ( Z , i , j , ALL ( ) ) ;
auto d00= subview (D, i , j , ALL ( ) ) ;
auto dm0= subview (D, i −1, j , ALL ( ) ) ;
auto dp0= subview (D, i +1 , j , ALL ( ) ) ;
auto d0m= subview (D, i , j −1,ALL ( ) ) ;
auto d0p= subview (D, i , j +1 ,ALL ( ) ) ;
auto p00= subview ( phi , i , j , ALL ( ) ) ;



auto pm0= subview ( phi , i −1, j , ALL ( ) ) ;
auto pp0= subview ( phi , i +1 , j , ALL ( ) ) ;
auto p0m= subview ( phi , i , j −1,ALL ( ) ) ;
auto p0p= subview ( phi , i , j +1 ,ALL ( ) ) ;

p a r a l l e l _ f o r ( krange , [&] ( i n t k ) {
r ( k ) +=
ax ∗ ( xp ( k ) ∗ ( dp0 ( k ) +d00 ( k ) ) ∗ ( pp0 ( k )−p00 ( k ) )
− x0 ( k ) ∗ ( d00 ( k ) +dm0 ( k ) ) ∗ ( p00 ( k )−pm0 ( k ) ) )

+ay ∗ ( yp ( k ) ∗ ( d0p ( k ) +d00 ( k ) ) ∗ ( p0p ( k )−p00 ( k ) )
− y0 ( k ) ∗ ( d00 ( k ) +d0m ( k ) ) ∗ ( p00 ( k )−p0m ( k ) ) )

+az ∗ ( z ( k +1) ∗ ( d00 ( k +1)+d00 ( k ) ) ∗ ( p00 ( k +1)−p00 ( k ) )
− z ( k ) ∗ ( d00 ( k ) +d00 ( k−1) ) ∗ ( p00 ( k )−p00 ( k−1) ) ) ; } )

; } ) ;

Code Listing 2: SIMD Kokkos 3D Stencil Kernel

Optimizing this kernel as in Codelisting 2 to allow SIMD auto
vectorization requires extracting 1D subviews from the 3D arrays
views. The Kokkos subview function creates a new view from an
existing view given ranges of indices, similar to subview opera-
tions on Matlab arrays. Using C++11 auto we are able to represent
these subviews without needing to know the exact type of view that
Kokkos returns, this allows Kokkos to optimize the resulting view
for the given context. It is important to extract these 1D subviews
so that the compiler knows that we are using a stride-one memory
access pattern on the CPU in the inner loop so that it can correctly
identify the loop as a candidate for vectorization (assuming that
the arrays are laid out in row-major order on the CPU). The inner
array is then implemented with another parallel_for loop which
only depends on the kth index. The user is responsible for verify-
ing that there are no loop carry dependencies in the inner loop. The
speedups of the SIMD kernel over the initial Uintah kernel can be
seen in Table 2. These experiments were run on an 16 core Intel
Xeon with a SIMD vector length of 2 yielding an ideal speedup
of 2X of the Kokkos SIMD kernel over the Kokkos standard ker-
nel. The results in Table 2 demonstrate that with careful rewrites
of computational kernels with techniques that promote vectoriza-
tion, it is possible to achieve the ideal speedup of 2X (1.8X- 2.3X)
for sufficient workloads. We believe that the caching effects con-
tributed to the speedup of 2.3X. The speedups over standard Uin-
tah code reflect the relative inefficiency of that user-friendly code.
The CUDA results shown in the table are present to show that the
changes required to the diffusion kernel to get SIMD vectorization
do not affect the vectorization that CUDA already achieves.

6. CONCLUSIONS
We have shown how it is possible to introduce the Kokkos per-

formance portability layer into a sophisticated AMT runtime in the
Uintah software. This involved rethinking the design of the Uin-
tah nodal data warehouse and changing loops in the applications
model. The initial experiments conducted show the promise of
Kokkos as a means of providing present and future performance
portability for the Uintah software. The incorporation of Kokkos
on a standard cpu core offers anywhere from 2X speedups, to up-
wards to 12X speedups. The portability features of Kokos enable
speedups of up 30x to 50x using multiple cores and threads or
GPUs. The process of adopting Kokkos into the Uintah frame-
work offers an iterative path forward for improved performance and
portability.
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