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1 Introduction

Liquid samples are usually classified as aque-
ous, nonaqueous, and mixtures. Examples of
aqueous liquids are most often surface water,
groundwater, drinking water, and wastewater,
whereas nonaqueous liquids include organic
solvents, oils, and many other hydrophobic lig-
uids. Mixtures may be referred to as the combi-
nation of aqueous and nonaqueous liquids.
Although most laser-induced breakdown spec-
troscopy (LIBS) research has been focused on
the characterization of solid samples, the analy-
sis of liquid samples by LIBS offers a huge
potential in a number of applications such as
surface and groundwater monitoring, oceanog-
raphy, carbon dioxide (CO,) leak detection in
geologic carbon storage, quality control in
pharmaceutical and food industries, medical
diagnostics, and industrial process monitoring
[1-4]. Traditionally, the analysis of liquid sam-
ples has been performed by well-established
laboratory-based analytical techniques such as
inductively coupled plasma atomic emission

spectroscopy and inductively coupled plasma
mass spectrometry. However, LIBS offers
numerous advantages over the aforementioned
techniques, including in situ and online mea-
surements. Indeed, LIBS analysis is relatively
fast, the instrumentation can be miniaturized
to make the system portable, and the coupling
of fiber optics allows LIBS measurements in
harsh environments and places that are in-
accessible by traditional lab-based techniques.
In addition, only optical access to the sample
is needed to perform a LIBS measurement to
allow a standoff analysis.

LIBS analysis can be performed in a bulk
liquid, in static or laminar flow of the liquid
surface, in jets, and in a stream of aerosols or
droplets [5-10]. Although bulk liquid analysis
is relatively simple to set up, it is only usable
for transparent liquids. The sensitivity of analy-
sis in bulk liquid remains the main issue since
most of the plasma energy is lost in vaporization
of the surrounding liquid and in generation of
a shockwave and cavitation bubble accom-
panying breakdown. Only a small fraction of
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the plasma energy is converted into radiative
energy. Furthermore, plasma formation in bulk
water generally suffers from short lifetimes as
the emission intensity falls steeply after approx-
imately 1 ps. On the other hand, liquid surface
analysis is typically more sensitive than bulk
analysis because of plasma expansion in air.
However, strong mechanical effects arising from
the laser-liquid surface interaction cause several
experimental difficulties (i.e., splashing, genera-
tion of bubbles and aerosol, and ripples on the
liquid surface), which greatly affect the accu-
racy, repeatability, and reproducibility of the
measurement. Interestingly, most of these diffi-
culties can be minimized by using various
experimental configurations to convert liquid
into jets, aerosols, or droplets. However, LIBS
setup complexity increases due to the use of
additional instrumentation (e.g., peristaltic
pump or various types of nebulizers) to trans-
form the liquid sample and to ensure that there
is a continuous exchange of the sample in the
flow channel. The limits of detection (LODs)
obtained using the aforementioned configura-
tions are mostly in the parts per million
(ppm) or high parts per billion (ppb) level.
Even though the sensitivity of these configura-
tions can be satisfactory for a number of appli-
cations, research is under way to improve the
detection limits and to expand LIBS applicabi-
lity to a higher number of applications that
require detection at trace level. To this end,
many researchers have investigated various
alternative approaches involving sample prep-
aration or pretreatment [11-15] or the use
of two successive laser pulses (double-pulse
LIBS [DP-LIBS]) [16-19], including the use of
hyphenated approaches (e.g., LIBS-laser-
induced fluorescence [LIF]) [20-23]. Another
approach proposed to enhance LIBS sensitivity
is the use of an ArF laser at 193nm as an
excitation source instead of the commonly used
1064-nm YAG laser [24-26]. This chapter pre-
sents some general aspects and research trends
on liquid sample analysis using LIBS. General
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procedures for preparing and analyzing liquid
samples are described.

2 Experimental details

2.1 Samples

The main goal of LIBS study is to characterize
a sample for its elemental composition qualita-
tively and quantitatively. LIBS has extensively
been used for the analysis of liquids, particularly
aqueous samples. In principle, sample prepara-
tion is not required for test samples; however,
for quantifying the elemental concentrations a
reliable calibration of the instrument is required.
The calibration is generally achieved by using
analyte solutions of known concentrations.
These solutions are known as calibration stan-
dards and are prepared by mixing pure analyte
liquid standards or dissolving analyte salts in
desired concentrations. For construction of the
calibration curves in their study of metal ions,
Goueguel et al. [27] prepared stock solutions
by dissolving pure powders of CaCl,-2H,0,
MHC12'4H20, SrC12-6H20, MgC126H20, and
BaCl,-2H,0 in ultrapure water. The stock solu-
tions were then used to prepare sets of calibra-
tion standards for quantification of Ca, Mn, Sr,
and Mg. Ba solution served as an internal stan-
dard in this study. Bhatt et al. [28, 29] used solu-
tions of Eu (10,017 + 29 pg/mL Eu, 7% HNO;)
and Yb (9978 £ 27 pg/mL Yb, 7% HNO;), which
were diluted with deionized water containing
2% HNO; to obtain the desired concentrations
of solutions for generating the calibration curves
for Eu and Yb. In a separate study, Bhatt et al.
[30] utilized calibration standards of Ca, Mg,
Mn, and Sr for investigating the leaching of these
metals from their carbonate pellets under rising
CO, pressure. The released amount of Ca, Mg,
Mn, and Sr from their corresponding metal car-
bonates was measured by LIBS and quantified
by developing calibration curves using the cali-
bration standards. A similar study by Goueguel
et al. with CaCO; is reported in [31].
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2.2 Experimental apparatus

In general, the LIBS apparatus consists of three
units: excitation source (laser), optics (lens, opti-
cal fiber), and detection system coupled with a
computer (camera, spectrometer) for analysis.
For the LIBS study of liquids, the laser pulse is
focused either on the surface or into the liquid.
The generation of a laser spark on the liquid sur-
face sometimes results in splashing and surface
agitation. The excitation capacity, on the other
hand, may be compromised due to lower temper-
ature spark in the liquid. The experimental setup
used by Goueguel et al. [31] for liquid LIBS anal-
ysis is shown in Fig. 1. Laser radiation at 1064 nm
was produced in pulses of 6-ns duration by a
solid-state Nd:YAG laser (Q-smart 850, Quantel).
The laser beam was focused 2 cm inside the lig-
uid using two ultraviolet-grade fused-silica pla-
noconvex lenses of 180 and 70 mm focal length,
and 25.4 cm diameter. The lenses were separated
by 1 mm, resulting in a focal length of approxi-
mately 50 mm. In these experiments, the laser
repetition rate was held at 5 Hz. Pulse energy
levels were attenuated by means of two pairs of
half-wave plates and polarizing beam splitter
cubes. The monitoring of the pulse-to-pulse
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energy was carried out using a high-energy pyro-
electric head detector (70,273, Oriel Instruments)
connected to a computer through an Ophir
compact Juno USB interface. The liquid samples
were kept in a 0.5-L stainless-steel high-pressure
vessel to perform measurements under pres-
surized conditions. Similar LIBS setups have
been reported by other research groups with
some changes in laser sources, optics, and detec-
tion systems depending on the nature of the
study and availability of the equipment [32, 33].
Joseph and David created laser sparks on the
surface of the solution to determine uranium
[34]. If DP-LIBS is to be used, a second source
of excitation can be added to the system in vari-
ous geometrical configurations, such as collinear,
orthogonal, and oblique [16, 18, 35, 36]. Rai et al.
[18, 37] focused the laser pulse on the jet
orthogonally.

3 Optimization of experimental
parameters

Major experimental parameters that come into
play in a single-pulse LIBS (SP-LIBS) study of
liquid samples are laser energy, gate time delay,
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FIG. 1 Experimental setup for laser-induced breakdown spectroscopy.
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gate width, and sample-to-the-focusing lens dis-
tance. Interpulse delay adds up when two lasers
are used for sample excitation in DP-LIBS. For
generating accurate and precise results, all these
parameters need to be optimized. LIBS study
primarily depends on emission lines of analyte
elements. The intensity profile of spectral lines
provides hints as to whether there are any detri-
mental effects, like self-absorption, phase rever-
sals, and unequal temperature in the center and
edges of the plasma. For quantitative analysis,
emission lines should be free from these effects.
Moreover, for better sensitivity, emission inten-
sity of analyte lines should be maximum with
minimum background effects. Considering
favorable signal-to-noise ratio (SNR) values is
one of the more widely followed practices for
optimization of experimental parameters.
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Generally, signal intensity is higher in the
beginning and decreases as time delay increases.
Since the background emission is higher at early
times, the SNR consideration would be better for
the determination of optimum time delay.
Goueguel et al. [38] optimized gate time delay
and laser energy by using SNR as shown in
Fig. 2 to study the matrix effect of sodium
compounds on metal ions in aqueous solutions.
Optimum values of experimental parameters
are not always those producing the largest
SNR; some adverse effects may be associated
with them. For instance, higher laser energy
may produce larger SNR, but it sometimes
causes plasma shielding and moving the break-
down along the laser beam pathway. Therefore
moderate energy is preferred rather than the
energy values producing the largest SNR [39].
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FIG. 2 3Ddisplay of the signal-to-noise ratio for the Ca 1422.67-nm, Sr 1460.73-nm, Li I 670.80-nm, and K 1766.49-nm emis-

sion lines versus laser energy versus gate delay [38].
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4 LIBS signal enhancement techniques

In DP-LIBS, an appropriate interpulse delay
is required to maximize sample ablation and
plasma production. With larger plasmas, both
plasma temperature and electron density will
be increased producing stronger emission sig-
nals in the LIBS spectra. Optimum interpulse
delay for underwater LIBS measurements is
generally analyte and pressure dependent.
Michel et al. [40] reported the importance of
shorter interpulse delay at high pressures.

4 LIBS signal enhancement techniques

Laser-induced plasma formation and its
emission mechanism are different in an aqueous
media than in gas. This is due primarily to
the difference in compressibility of liquids
compared to gases. The formation and evolu-
tion of plasma and emission spectra from a
plasma created in liquids generally suffer from
matrix, pressure, plasma shielding, line broad-
ening due to increased collisions, and Stark-
broadening effects [38, 39, 41-46]. Moreover,
the plasma loses its energy more rapidly to
the surrounding liquid, resulting in reduction
of persistence time and lower temperature.
All these effects in the liquid environment con-
tribute to weakening of the emission signals
and compromising the sensitivity, accuracy,
reproducibility, and stability of analysis.
Although these effects are inevitable while
using LIBS in real field applications, it is impor-
tant to explore ways of enhancing the emission
signals. To enhance the emission signals, several
enhancement techniques have been reported by
various research groups. Some of the common
enhancement techniques are briefly described
in the following sections.

4.1 Substrate technique

In this pretreatment technique, liquid sam-
ples are transformed into solid samples by using
different solid substrates. Chen et al. [47] used a
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wood slice as the solid substrate in their experi-
ment for fast and sensitive trace heavy metal
analysis and claimed two- to threefold improve-
ment in LODs for Cr, Mn, Cu, Cd, and Pb. Like-
wise, carbon planchet, paper, Ca(OH),, and ion
exchange polymer membrane have also been
used as solid substrates [48-53]. When calcium
oxide (CaO) is added to aqueous solution, cal-
cium hydroxide (Ca(OH),) is formed and the
resulting precipitate in the form of solid can be
used for LIBS analysis. The ion exchange poly-
mer containing an iminodiacetic acid functional
group has also been used for preconcentrating
liquid samples for LIBS analysis. As carboxylate
groups are negatively charged, the membrane
exchanges cations at a pH > 5 [49].

In their recent study, He et al. [54] reported
LOD in low ppb (18.4 ppb) for Li detection in
a liquid sample by using filter paper as the
adsorption substrate. To analyze Mn in aqueous
solution and seawater, the use of a paper sub-
strate as an absorber is demonstrated in [55].
Alamelu et al. and Sarkar et al. were able to
detect low levels of some lanthanides and acti-
nides in aqueous solutions by LIBS using the
substrate techniques [56, 57].

4.2 Dual-pulse technique

Another useful and widely used technique for
enhancing emission signals is DP-LIBS. In
DP-LIBS, two laser pulses either from two differ-
ent sources or from the same source in various
geometrical configurations are employed to
induce sample ablation and subsequent plasma
expansion and emission. Various research groups
have used different geometrical configurations,
like collinear, orthogonal, prespark, orthogonal
preheating, and dual-pulse crossed-beam modes
for signal enhancement. In double-pulse mode,
the first pulse induces the plasma, which starts
cooling down and decaying. Depending on the
interpulse delay, the second pulse will reheat
the plasma produced by the first laser pulse or a
certain portion will be absorbed by the plasma
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and the rest will be used for further ablation of the
sample. The second pulse could also ablate the
sample again to create a plasma. Therefore inter-
pulse delay has a significant role in signal
enhancement in the double-pulse regime.
Cremers et al. [58] were the first to demon-
strate bulk liquid analysis by using multiple
laser sparks. They studied the emission lines
of Be, Mg, Ca, B, Al, and five alkali metals (Li,
Na, K, Rb, Cs) without taking pressure effects
into account. Nakamura et al. [59] reported
detection of a 20-ppb concentration of Fe in
FeO(OH) colloidal suspensions by using two
laser pulses at optimum interpulse delay and
gate delay time. Laser pulses were focused per-
pendicularly onto the laminar jet of aqueous Cr
solution to study the temporal enhancement of
Cr emission by Rai et al. [37]. These authors
observed that the material ablation in DP-LIBS
was >3-5 times that of SP-LIBS. Their experi-
mental results were found to qualitatively match
with theoretical calculation of the enhancement.
By combining DP- and crossed-beam LIBS, the
detection limit of Na was brought down to
0.1 ppb by Kuwako et al. [60]. DP-LIBS has also
been used for the study of submerged materials
in water and the analytical performances were
evaluated for sensitivity enhancement [35, 61, 62].

4.3 Hyphenated techniques

In hyphenated techniques, two different
analytical techniques are combined or coupled
to form a more powerful integrated system for
material analysis. Hyphenated techniques
may include separation-separation, separation-
identification, and identification-identification
techniques. Nakane etal. [20] reported the detec-
tion of trace metal atoms in water by combining
LIBS and laser-excited atomic fluorescence spec-
troscopy and claimed LODs as low as10 ppb for
Fe in water. Loudyi et al. [21] detected traces of
metallic impurities in acid solutions using LIBS
combined with LIF; the LODs obtained were
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39 and 65 ppb for Pb and Fe, respectively. The
authors claimed that the use of a flow cell
improved the reproducibility of analysis.
Similarly, other groups have also combined
LIF with LIBS for improvement in sensitivity
and analytical performance [22, 23].

5 Underwater LIBS measurements

Underwater LIBS has been demonstrated as a
powerful tool for the analysis of both dissolved
materials and submerged materials. This is
becoming a very useful technique for a number
of applications, including environmental and
industrial waste monitoring, and geological
and marine research activities [63-65]. Although
problems related to splashing of a sample by a
liquid surface are eliminated in underwater
LIBS, the liquid pressure comes into play when
the plasma is created at depths below the sur-
face. This becomes more prominent when LIBS
analysis is performed in oceanic and hydrother-
mal vent fluids [33, 39]. In the complex natural
aqueous samples, matrix effects also affect the
LIBS analysis. It is therefore important to ana-
lyze and quantify matrix and pressure effects
on the LIBS signal to assist in designing appro-
priate instrumentation for underwater LIBS
measurements.

5.1 Matrix effects

Matrix effects are simply an influence of con-
stituents other than analyte of interest on the
analyte signal. In LIBS, major matrix effects
can be explained as spectral, chemical, and
physical effects [66]. When weak emission lines
of an element of interest and strong emission
lines of matrix elements overlap, spectral inter-
ference takes place. If emission characteristics
of analyte are altered due to the presence of
matrix elements, it is known as the chemical
matrix effect. Lastly, because of differences in
physical properties of elements present in the
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sample the plasma behavior can be affected
resulting in a physical matrix effect. The matrix
effect could bring increased false-positive or
false-negative LIBS response to compromise
analytical precision. For quantitative measure-
ments in complex matrix samples, multivariate
analysis is generally preferred to achieve better
accuracy. In oceanic environments, deep saline
waters contain Na as the most abundant element
constituting approximately 70%-90% of the total
cation mass [67, 68]. Other major constituents of
saline brines include Ca, Mg, and K; however,
brine composition varies by location. Therefore
understanding the matrix effect of NaCl on LIBS
measurements becomes crucial. In general,
matrix effects cause suppression of analyte
emission signals; however, in the case of an
NaCl matrix, the outcome is different. While
atomic emission signals are enhanced the
suppression of ionic spectral lines was observed
in the presence of a sodium chloride (NaCl)
matrix. This effect on spectral lines may be
because of the higher plasma temperature and
electron number density caused by NaCl. Signif-
icant increase in the intensity of atomic emission
(Ca1422.67 nm) and no notable change in ionic
emission (Ca II 393366 nm and Ca I
396.847 nm) were observed by Michel et al.
[32] with NaCl addition. Likewise, Thornton
et al. [69] also observed more intense Ca signals
in an Na matrix when they compared the spectra
recorded from solutions with and without NaCl.
While decrease in intensity ratio of Ca(Il)/Ca
(I) was reported by Cremers et al. [58], Michel
et al. [32] did not observe any change in Mn
1403 and K1(766.491-nm and 769.897-nm) inten-
sities by NaCl. Goueguel et al. [38, 41] carried
out a detailed study of the effect of NaCl concen-
tration and other Na compounds on underwater
LIBS measurements of common metal ions. For
determining the effect of NaCl on Ca and K the
authors used three concentrations (0.5 M, 2 M,
and 3 M) of NaClL. Although NaCl enhanced
both Ca and K signals the magnitude of
enhancement varied. Intensity of a Ca I 422.67-
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nm line increased two-, four-, and eightfold in
the presence of 0.5M, 2M, and 3M NaCl,
respectively (Fig. 3A). In the case of a K I
766.49-nm line the magnitude of enhancement
was fivefold with 0.5 M NaCl and 10-fold with
3 M NaCl added to the solution (Fig. 3B). Signal
enhancement by NaCl in this study was attrib-
uted to the increase in plasma temperature
and electron density.

In an another study, Gouguel et al. [38] inves-
tigated the effect of Na compounds (NaCl,
Na,COj3, and Na,SO,4) on the LIBS measure-
ments of Li. The analyte emission intensity
was found to increase in the presence of NaCl
and Na,SO, and decreased with addition of
Na,CO; as shown in Fig. 4. This behavior
appears to be related to a change in Bremsstrah-
lung process efficiency with increasing amount
of impurities and difference in the thermal prop-
erties (boiling point and thermal conductivity)
of the impurities.

Gouguel et al. [38] also generated calibration
curves of Li and K in the presence of three differ-
ent concentrations (0.1, 1, and 10 wt%) of NaCl,
NaySOy4, and NayCO; (Fig. 5). The authors
pointed out that it is feasible to perform quanti-
tative analysis by LIBS in complex matrix sam-
ples such as groundwater.

5.2 Pressure effects

The laser-induced plasma formation process
is basically the same in gaseous and liquid media;
however, there are some differences in plasma
expansion and emission processes. Plasmas
formed in liquid are more confined than those
in air and are relatively smaller in size. As
surrounding pressure increases, both plasma
evolution and emission process are affected sig-
nificantly [70]. It should be noted that the extent
of pressure effect on emission line intensity and
width depends on several factors, including
emission lines, elemental concentration, sample
matrix, and experimental conditions (tempera-
ture, laser energy, gate delay). Effect of pressure
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in underwater LIBS measurements was first
taken into account by Lawrence-Snyder et al.
[46]. The authors reported larger pressure
effects on the emission line width and minor
effects on the intensity of the Li I 670-nm line,
mostly during late-stage plasma evolution.

In 2014, Hou et al. [71] observed the pressure
effects on the peak width, intensity, and inte-
grated intensity of Ca, K, and Mg in seawater.
The intensity of three atomic lines, Ca I 422 nm,
K I 766 nm, and Mg I 518 nm, increased with
increasing pressure until 15MPa and then
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samples [38].

decreased. It was, however, noticed that the
atomic and ionic lines of Ca behaved differently
and followed a different trend in variation of
their intensity as the pressure was increased.
While the intensity of the atomic line (Ca
I 422 nm) increased until 15MPa and then
decreased, the intensity of the ionic line (Ca II
393 nm) increased steadily with increasing pres-
sure up to 40 MPa except a marginal decrease
observed in the pressure range of 15-20 MPa. In
contrast, the integrated intensity and the line
width of both the Ca lines increased gradually
with the increasing pressure. The integrated
intensity of the Mg I 518-nm line also gradually
increased with increasing pressure; however, in

the case of the K I 766-nm line, the intensity
increased sharply up to 15MPa and then
decreased steadily.

In separate studies, Thornton et al. [9, 69, 72]
reported no significant effect of pressure on Zn
and Cu spectra recorded from metal plates
immersed in water. However, decrease in
emission intensity of Zn I lines and broadening
of Cu lines in DP-LIBS with rising pressure are
reported in [73, 74], respectively. LIBS has also
been demonstrated for the study of sediments
in aqueous medium. Lazic et al. [75] used DP
excitation from a single laser source to
study natural and certified sediments by
underwater LIBS.
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FIG. 5 Comparison of the effect of NaCl,
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5.3 LIBS study in a compressed gas-water
mixture

Pressure conditions in oceanic and downhole
environments generally change due to increas-
ing depth and hydrothermal activities. It is
therefore important to evaluate the effect of
increasing pressure on the LIBS measurement
in compressed gas-water mixtures. Goueguel
et al. [76] performed underwater LIBS measure-
ments to detect Ca under rising CO, and N,
pressures. Their study demonstrated that Ca
emission line (Ca I 422.67nm) intensity
decreased with increasing CO, and N, pres-
sures. However, the gas-dependent differences
were evident as the Ca line intensity in CO,
was found to be higher at 120 bar but lower at
10 bar than that in N,. LIBS measurements of
common metal ions (Ba, Ca, Mg, Mn, Sr) in a
compressed CO,-water mixture are also
reported by Goueguel et al. [27]. In these exper-
iments, the Ba emission line was used as an
internal standard; LIBS spectra in the wave-
length range of 375-510 nm are shown in Fig. 6.

Underwater LIBS study in a compressed
CO,-water mixture could be useful in geological
carbon storage (GCS). In GCS, CO; is captured
and injected deep underground for permanent
storage. In case of leakage, upward migration
of CO, could react with carbonate minerals of
storage formations to release specific metals to
shallow groundwater aquifers. These metals
could be useful to provide early indication of
CO; leakage. Goueguel et al. [31] demonstrated
underwater LIBS for studying the dissolution of
calcium carbonate under elevated CO, pres-
sures up to 350 bar. In this study a CaCO; pellet
was inserted into an aqueous BaCl, solution in a
pressure vessel, and Ba was added to use it as an
internal standard. CO, was injected into the lig-
uid to raise the pressure to 50, 150, 250, and
350 bar and LIBS spectra were recorded at each
pressure setting (Fig. 7). Ca emission lines
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(which were not present at ambient conditions)
were detected at higher pressures confirming
the pressure-induced leaching of Ca ion from
the carbonate by CO,-enriched water. Increas-
ing intensity of Ca emission lines with increase
in pressure revealed the proportionate dissolu-
tion of CaCO; with applied CO, pressure. The
amount of dissolved Ca at each pressure setting
was quantified by generating calibration curves
at the corresponding CO, pressure (Fig. 8). It is
clear from Fig. 8 that the released amount of Ca
increased up to 150 bar and then remained
almost constant up to 350 bar.

Bhatt et al. [28] analyzed two rare earth ele-
ments (REEs), Eu and Yb, by underwater LIBS
in a compressed gas—water mixture. LIBS spectra
were recorded at six different pressure settings
(ambient, 50,100, 150,200, 250 bar) from solutions
of Eu and Yb and the detected emission lines are
shown in Fig. 9. This study demonstrated the
capability of LIBS to identify REE liquid sources
present in high-pressure environments.

Effect of pressure and gate delays on the inten-
sity and integrated intensity (area under curve)
of Eu II 420.50-nm and Yb I 398.79-nm lines
shown in Fig. 10. Intensity and integrated inten-
sity of both elements declined with increase in
gate delay. On the other hand, a steep decline
in intensity and integrated intensity was obser-
ved in the beginning of CO, injection until the
pressure reached 50 bar. No significant changes
in both parameters were seen after 50 bar and
the influence of pressure on the emission of Eu
and Yb remained negligible up to 250 bar. The
suppression of emission intensity in this study
could be attributed to the confinement of laser-
induced plasma by pressure in the beginning of
CO, injection. Michel et al. [32] and Thornton
etal. [9] also reported the weak effect of pressure
on emission of Ca, Na, and Zn.

6 Conclusions

This chapter partially reviewed the applica-
tions of LIBS for the analysis of liquid samples.
The technique could be used for in situ analysis
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and quantification of elements in both ambient
and high-pressure conditions. Major challenges
in underwater LIBS measurements and possible
solutions to generate reliable data were dis-
cussed. Improvement in analytical performance
could be achieved to some extent by using an
appropriate experimental setup, proper gating
parameters, excitation energy, and averaging
the emission line intensity for several laser shots.
LIBS signals in liquid media are generally
weaker than in solids, therefore the signal
enhancement techniques were briefly described.
Lastly, matrix and pressure effects play a major
role in underwater LIBS analysis that could
bring challenges in quantitative analysis. Based
on the recently published research, these effects
were explained to improve the accuracy of anal-
ysis in liquids.
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