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Abstract

Modern science is inundated with ever increasing data sizes as computational capabilities and 

image acquisition techniques continue to improve. For example, simulations are tackling ever 

larger domains with higher fidelity, and high-throughput microscopy techniques generate larger 

data that are fundamental to gather biologically and medically relevant insights. As the image sizes 

exceed memory, and even sometimes local disk space, each step in a scientific workflow is 

impacted. Current software solutions enable data exploration with limited interactivity for 

visualization and analytic tasks. Furthermore analysis on HPC systems often require complex 

hand-written parallel implementations of algorithms that suffer from poor portability and 

maintainability.

We present a software infrastructure that simplifies end-to-end visualization and analysis of 

massive data. First, a hierarchical streaming data access layer enables interactive exploration of 

remote data, with fast data fetching to test analytics on subsets of the data. Second, a library 

simplifies the process of developing new analytics algorithms, allowing users to rapidly prototype 

new approaches and deploy them in an HPC setting. Third, a scalable runtime system automates 

mapping analysis algorithms to whatever computational hardware is available, reducing the 
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complexity of developing scaling algorithms. We demonstrate the usability and performance of 

our system using a use case from neuroscience: filtering, registration, and visualization of tera-

scale microscopy data. We evaluate the performance of our system using a leadership-class 

supercomputer, Shaheen II.

CCS CONCEPTS

Computing methodologies → Massively parallel algorithms; Parallel programming languages; 
Software and its engineering → Development frameworks and environments; Integrated and 
visual development environments

Keywords

Interactive visualization and analysis; parallel custom analysis work-flows; algorithms scalability; 
microscopy

1 INTRODUCTION

High resolution microscopy systems and large-scale simulations generate an increasing 

amount of data that are often used for visualization and analysis tasks. Yet, being able to 

visualize and perform analysis remains a major challenge largely due to the lack of 

algorithmic and computational solutions to handle, analyze and reconstruct the increasing 

amount of data that are being collected. Several software tools are available for researchers, 

from free and open-source solutions, such as Fiji (ImageJ) [Schindelin et al. 2012], Vaa3D 

[Peng et al. 2010], and KNOSSOS [Helmstaedter et al. 2011], to commercial solutions such 

as Imaris [Bitplane], Neurolucida [Glaser and Glaser 1990], Amira [FEI 2016], and Volocity 

[PerkinElmer 2014]. While each offers varying degrees of functionality in terms of 

visualization, annotation, and custom analytics, scaling to large data size remains a 

challenge for most. Furthermore, while builtin analytics is generally limited to smaller tasks 

such as filtering, adding custom analytics requires rigorous coding requirements that may 

not be user-friendly.

This work introduces the first end-to-end software framework (see Fig. 2) for large-scale 

interactive visualization and scalable analysis that also simplifies the definition and 

execution of scientific workflows on HPC systems. The system exploits properties of the 

IDX format [Pascucci and Frank 2001] that enables access to multiple levels of resolution 

with low latency suitable for interactive exploration of tera-voxel datasets. Data are 

produced in, or are converted to the IDX format using the high performance I/O library 

PIDX [Kumar et al. 2011] that bridges the gap between large-scale writes and analytics-

appropriate reads. Interactive exploration is achieved via the ViSUS framework [Pascucci et 

al. 2012] that enables seamless streaming visualization capabilities on devices ranging from 

iPhones to high-end visualization machines, to multi-display powerwalls, with the data 

being hosted anywhere from USB hard drives to remote HPC file systems. Finally, using a 

new python software layer we interface the ViSUS framework with a set of user-defined 

processing components that can perform operations on the data either interactively or on 

dedicated computational resources (i.e. local or remote).
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In this framework, we introduce a parallel library that allows fast and simple implementation 

of visualization and analytic work-flows. To achieve computational scalability, the library 

builds upon an existing runtime (i.e. Charm++), a C++ abstraction layer that allows a user to 

define the processing algorithms as a set of idempotent tasks connected in a dataflow. This 

abstraction layer introduces two main improvements:

• the user does not need knowledge of the underlying communication or threading 

managed by the runtime;

• the same task graph can be executed both locally and remotely via a common 

interface for interactive processing on smaller desktop class systems and also at 

scale on remote HPC systems for larger data or compute intensive tasks.

Our key contributions are:

• An end-to-end software framework for interactive streaming visualization and 

analysis of large-scale scientific datasets;

• Highly concurrent parallel processing abstraction layer that supports arbitrary 

analytics and visualization workflows;

• Strong scalability performance for a large set of common post-processing tasks 

such as filtering, alignment, stitching and visualization.

• Improve user productivity, code re-usability and portability by designing 

common workflows that execute on both local desktop PCs and at scale on 

remote HPC systems;

We demonstrate the usage of this system in a neuroscience setting, enabling interactive 

visualization and analysis of large-scale non-human primate (NHP) brain 3D microscopy 

data. We present three algorithms that are experimented at scale on the supercomputer, 

Shaheen II:

• a parallel filter for denoising data

• automatic alignment and stitching of multiple 3D volumes

• interactive volume rendering and image composition.

The parallel analysis workflow is configured and launched through a scripting interface and 

the output is then used to update the visualization interactively.

2 BACKGROUND

Structuring and efficiently accessing large-scale data have always been the aim of several 

high level I/O libraries. The most prominent examples are HDF5 [Folk et al. 1999], Parallel 

NetCDF (PnetCDF) [Li et al. 2003], and ADIOS [Lofstead et al. 2008]. These libraries 

typically store data in traditional row-major blocks. While they are fast, general-purpose and 

robust when it comes to data writes, they significantly lag during reads, a critical 

requirement for interactive, exploratory analysis of large datasets. Parallel IDX (PIDX) 

[Kumar et al. 2014, 2012; Pascucci et al. 2012], is an I/O library that writes data directly in 
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IDX, a hierarchical, cache-oblivious, multi-resolution data format that can be easily 

leveraged for fast reads required for interactive visualization and analysis.

On the visualization side, VisIt [Childs et al. 2012] and ParaView [Ahrens et al. 2005] are 

well-known distributed parallel visualization and analysis applications. They are typically 

executed in parallel, coordinating visualization and analysis tasks for massive data. The data 

are typically loaded at full resolution, requiring large amounts of system memory and 

proximity with data source. Moreover, their use of parallel computing resources is limited to 

mostly data-parallel tasks and a separate modality that is not well blended with data sources 

external to parallel computing environment. Both packages, though, utilize a plugin-based 

architecture, so many formats are supported and have the potential of being extended. The 

ViSUS application framework [Pascucci et al. 2012] is designed around a hierarchical 

streaming data model available through the PIDX open library, and enables interactive 

visualization and on-the-fly processing [Christensen et al. 2016] in a hardware-agnostic 

manner.

The traditional model for parallel computing has been to manually couple sections of serial 

computing distributed amongst processors with the exchange of messages between them. 

The most common implementation of this model is the Message Passing Interface (MPI) 

[Gropp et al. 1999] which is supported on virtually all medium and large-scale computing 

resources. However, as the level of parallelism grows it is becoming increasingly difficult, 

even for expert users, to develop efficient solutions in this rather low-level environment. 

Instead, more recently, so called, task-based programming models such as Charm++ [Kale 

and Zheng 2009] have been proposed. Rather than requiring users to directly manage work 

distribution and message passing, these systems decompose the processing into a workflow 

of explicit tasks, which are automatically mapped to physical computational resources and 

executed in a parallel environment. While task-based approaches are more flexible than 

MPI, both require expert developers to create efficient solutions and often needs to be 

individually optimized for specific hardware infrastructures.

3 THE FRAMEWORK

Our approach to achieving interactivity in all aspects of the software infrastructure is (1) to 

use a data model that enables both remote data access to be visualized in a coarse-to-fine 

progressive manner while maintaining high-performance I/O for data stored locally, (2) to 

map processing workflows to HPC resources with immediate progressive availability of 

results, and (3) to enable the execution of identical workflows on both desktop PCs and at 

scale on HPC systems. The scientific visualization pipeline begins with the production of 

data from scientific applications (e.g. simulations) or microscopy scans that are stored on 

local disks or large shared file system.

3.1 Data Streaming Infrastructure

The data access layer of the IDX format employs a hierarchical variant of a Lebesgue space 

filling curve, commonly referred to as HZ order. Traditionally, space filling curves have been 

used successfully to develop a static indexing scheme that generates a data layout suitable 

for hierarchical traversal. The layout instills both spatial and hierarchical locality. 
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Conceptually, the scheme acts as a storage pyramid with each level of resolution laid out in 

Z-order. Because of these properties, IDX supports progressive reads of low-resolution (sub-

sampled) data, which is very suitable for streaming based remote visualization. By 

converting initially to the hierarchical space-filling IDX file format, the progressive 

streaming model enables this data to be visualized interactively by the ViSUS framework no 

matter where it is stored.

The ViSUS framework allows interactive visualization and exploration of large-scale 

datasets, with the ability to add filters or simple scripting operations to the visualization 

pipeline. Our new python interface allows interactive design of data processing work-flows 

that receives an input array of data to perform custom analytics either locally or at scale 

remotely. In both the cases, our framework allows data to be streamed in a coarse-to-fine 

manner for interactive visualization. The user can create multiple processing nodes for 

different workflows to be executed in the same environment, configure number of nodes and 

processors for remote HPC sessions, provide additional parameters to inform the analysis 

application about the current viewer settings (e.g. datasets loaded, active filters) and operate 

on multiple datasets in a single workflow.

3.2 Analytics design library

Applying any algorithm, no matter how efficient, to terabytes of data will require massively 

parallel compute resources both in terms of available storage and processing capabilities. 

The traditional approach of solving this challenge is to re-implement the corresponding 

algorithms in MPI or one of the more recent task-based runtimes. Not only does this require 

significant expertise in these programming models, but it also leads to (at least) two separate 

implementations that must be maintained. Instead, we propose to utilize the components of 

the interactive workflows discussed above to build large-scale parallel workflows. More 

specifically, our system provides a simple library for developers of analytics algorithms to 

describe their parallel dataflow as a graph of tasks, each of which either directly uses the 

interactive components or minor variations thereof. To execute a task graph, we create a 

backend that interprets a given graph and instantiates at runtime a task based application 

based on Charm++. This shields users from the complexities of the runtime, provides 

performance portability across multiple computing environments and produces efficient and 

easily maintainable systems.

The key insight enabling our system is the fact that much of the complexity in dealing with 

parallel implementations comes from the extreme generality of existing environments. Not 

only must existing runtimes support a wide range of communication and synchronization 

primitives, but they must do so dynamically without any assumption on the underlying 

algorithm. Instead, for the type of large scale data processing of interest here, one typically 

deals with a static task graph that is known a priori. The graph may change in size based on 

which data must be processed or how many resources are available, but the basic structure, 

including a partial order of operations and all communication steps, is well known. 

Therefore, we provide users with a simple interface to describe their computation explicitly 

as a graph in which each task has a predefined set of inputs and outputs and executes a given 

function. Each task can be implemented either as a standalone function, that can be used also 

Petruzza et al. Page 5

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the streaming computations, or even exploiting existing threading libraries such as 

OpenMP [Dagum and Menon 1998]. This provides a highly modular yet so far entirely 

serial implementation of the algorithm of interest. The library dynamically maps this graph 

into the execution data model of Charm++, which will handle the task mapping (i.e. which 

task is executed on which processor) as well as the communication. The additional layer of 

abstraction provides a number of benefits: First, developing, maintaining and debugging is 

significantly simpler as user level code effectively executes in serial and there exists an 

explicit (offine) description of the task graph to study. Second, the system to a large extent 

becomes independent of the underlying hardware and system software stack. Third, our task 

graph easily integrates with existing solutions at all levels of abstraction. It is important also 

to note that each task can use arbitrary existing libraries or tools virtually unmodified since 

each task is simply a serial execution of some operation.

An algorithm developer using this library needs to perform three basic steps: first, 

implement all tasks used in the algorithm; second, provide de-/serialization routines for the 

objects that are exchanged between tasks; and third, extend the TaskGraph class to describe 

the dataflow. The first two are generic and are required in some form for any 

implementation. The third, represents a procedural description of the task graph. Tasks are 

defined by Task objects that contain a set of input and output ids (i.e. the tasks that will be 

communicating with the given task) and a callback id that defines which function will be 

executed at runtime by the task. To define a TaskGraph the user needs to implement a 

function (i.e. task()) that given a task id returns a Task object.

Listing 1 showcases an example implementation of a TaskGraph for a k-way reduction 

dataflow with an additional wrap-up step useful for saving the final result of the reduction. 

This TaskGraph together with the definition of the callback function can be used to perform 

a volume rendering and composite workflow as illustrated in Listing 2. The instantiation of 

the ReductionPlusOne graph in the example requires to provide the domain 

decomposition (i.e. the block_decomp parameter indicates how many blocks the domain 

should be divided into in three dimensions) and a reduction factor (i.e. the valence 

parameter). After defining the TaskGraph, the DataFlowController is initialized by 

adding the TaskGraph, registering the callbacks and providing the initial inputs. In most 

cases the initial inputs simply inform the leaf nodes which part of the domain they are 

suppose to operate. Finally, the DataFlowController will be responsible for the 

execution of the TaskGraph on the available resources.

Listing 1

TaskGraph implementation for a k-way reduction dataflow. For simplicity we assume there 

are kd many leafs

 1   // Constructor to set the valence and number of leafs
 2  ReductionPlusOne :: ReductionPlusOne (int leafs, int valence) {
 3    d = log (leafs, valence);
 4    k = valence;
 5    // Assuming k^d leafs
 6    total = (std :: pow(k, (d + 1)) –1) / (k–1)

Petruzza et al. Page 6

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 7
 8    // Add task types (i.e., callback ids)
 9    callback_ids.push_back (LEAF_CB);
10    callback_ids.push_back (REDUCE_CB);
11    callback_ids.push_back (ROOT_CB);
12  }
13
14  // Get callbacks Ids
15  vector <int> ReductionPlusOne :: callbacks () {
16    return callback_ids;
17  }
18
19  // Create a logical task from an id
20  Task ReductionPlusOne :: task (int task_id) {
21    Task t;
22    t.id = task_id;
23
24    // Assign the input for a leaf
25    if (task_id >= (total – k^d))
26        t.type = callback_ids [0];
27    else {// Assign inputs for other tasks
28        incoming.resize (k);
29        for (int i =0; i < k; i++)
30          t.incoming[i] = task_id * k+i+1 ;
31    }
32
33    // Assign the output for the root task
34    if (task_id = = 0)
35        t.type = callback_ids [2];
36    else {// Assign the output for the other tasks
37        t.type = callback_ids [1];
38        t.outgoing.resize (1);
39        t.outgoing [0].resize (1);
40        t.outgoing[0] [0] = (task_id – 1)/k;
41    }
42
43    return t;
44  }

3.3 Dynamic Runtime System

The Charm++ runtime is used as backend for the dynamic execution of the tasks. In our 

implementation, we represent the tasks as chares [Kale and Zheng 2009]: migratable-objects 

that represent the basic unit of parallel computation in Charm++. The tasks in the task graph 

are mapped to a collection of chares called a chare array. The runtime can launch a large 

number of chares simultaneously and can periodically balance the load by migrating chares 

when necessary. The implementation creates a single chare array that holds all tasks needed 

throughout the execution of the task graph and based on the task id, each chare is able to 

determine the callback to use (i.e. using the function task(id)).

The communication between chares are done using remote procedure calls. This means that 

the chares containing the input data can asynchronously start the dataflow by simply sending 

the data to the corresponding chare of the dataflow. Similarly, for each outgoing Payload 

each task simply adds an input to the corresponding downstream task identified through the 

task id. As defined at the end of Listing 2, the controller launches the execution of the leaf 

tasks (i.e. run function) that will asynchronously trigger execution of the other tasks in the 

graph.
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Listing 2

Example of volume rendering and compositing dataflow.

 1  int volume_render(vector <Payload >& in,
 2                    vector <Payload >& out, TaskId id) ;
 3  int composite(    vector <Payload >& in,
 4                    vector <Payload >& out, TaskId id);
 5  int write_image(  vector <Payload >& in,
 6                    vector <Payload >& out, TaskId id);
 7
 8  // Reduction tree + additional wrap–up task
 9  ReductionPlusOne graph (block_decomp, valence);
10
11  // Initialize the library run time controller
12  DataFlowController c;
13  c. initialize (graph);
14
15  // Register the call backs
16  vector < CallbackId > avail_cid = graph.callbacks();
17  // Leaf task will volume render the local data
18  c. register Callback (avail_cid [0], volume_render);
19  // Internal nodes will composite the image
20  c. register Callback (avail_cid [1], composite);
21  // The wrap–up task will write the image
22  c. register Callback (avail_cid [2], write_image);
23
24  // Set initial inputs and start execution
25  map<TaskId, Payload > initial_inputs;
26  c. run (initial_inputs);

In order to assist users in the implementation of their algorithms, the library also provides 

prototypical implementations of common task graphs, such as, reductions and broadcasts for 

users to use or modify.

4 USE CASE: NEUROSCIENCE

Usability and performance of our system is demonstrated through common neuroscience 

tasks such as filtering, registration and visualization of large scale NHP microscopy data. We 

have acquired 2P images of axons labeled with GFP (through intracortical injections of 

AAV9-GFP) and blood vessels labeled with Alexa594-conjugated tomato lectin through 

transparent Clarity-treated blocks (~60mm3) of macaque V1. Typically, an injection site of 

1mm diameter in V2 produces a 7x4mm field of GFP-labeled axon terminals in V1 at 

several cortical depths, totaling a volume of about 60 mm3. Imaging even a small fraction of 

this volume, i.e. 5 mm3 at 0.5 μm z-resolution, takes several hours of continuous acquisition, 

generating approximately a terabyte of data. All the experiments presented in this section 

were performed using a leadership class supercomputer, Shaheen II, a Cray XC40 system 

with 6,174 dual socket compute nodes based on 16 core Intel Haswell processors with Aries 

Dragonfly connectivity to capture the parallel.

4.1 Filtering

Often, algorithms can be characterized by data-parallel stencil operations, that is, operations 

that can be completed independently for each voxel given a small neighborhood. Common 

filtering algorithms that fit this model are minimum, maximum, average, blur, sharpen, edge 

detection, and deconvolution. Designing the right set of filters to use, their sequence, and 
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parameters, is usually achieved through by trial-and-error in an interactive exploratory 

setting. Our software infrastructure enables a user to interactively test different filters 

available in the ViSUS framework or custom developed through the python interface with 

results instantaneously available for visualization in the ViSUS viewer. Fig. 3) illustrates the 

median-filter in action on a dataset containing a billion voxels.

Within our framework, defining a dataflow that contains a median filter in combination with 

a k-way reduction dataflow (i.e. a variant of the listed code in Listing 1 and 2) to execute 

volume rendering and reduction image composition at scale is extremely simple. The 

processing library automatically decomposes the input domain among the available tasks 

(i.e. depending on the number of cores and nodes requested) where each task reads only the 

sub-volume of interest for the computation. Note that due to the particular data layout, 

making queries with spatial locality in IDX is more efficient compared to others (e.g. row 

major order layout).

The rendering task uses the VTK [Schroeder et al. 2006] volume rendering (i.e. 

SmartVolumeRendering) to render a sub-volume of the data and the composition of the 

images done via a simple front-to-back ordering. Results in Fig. 4 show good scaling of the 

dataflow applied to a microscopy dataset of size 2048x2048x2575 voxels to produce a 

rendered image of size 2048x2048.

4.2 Registration

Image volumes of cleared brain tissue are created as a stack of 2D images taken at regular 

intervals (e.g. every 0.5 micron) on the z-axis. A single volume is acquired through the depth 

of the tissue at a given X,Y coordinate within the larger region of interest containing labeled 

cells. The scan then moves to the next X,Y coordinate (maintaining a 15% overlap with 

adjacent volumes to aid alignment in later steps) until the entire region of interest has been 

imaged. As the microscope finishes scanning one field of view and moves on to the next 

position, a range of movements causes the data to often be mis-aligned. To create a single 

3D dataset encompassing the entire region of interest, each individual X,Y volume needs to 

be aligned using the overlapping fluorescent blood vessels between adjacent volumes (see 

Fig. 5).

To compute pairwise relative positions between adjacent volumes, we use 3D Normalized 

Cross Correlation (NCC) as a similarity metric. The alignment process is done in three steps:

i. Decompose the volume into slabs along the Z-direction

ii. For each corresponding slab of the two adjacent volumes, load the data in the 

overlapping region and compute pairwise relative position using 3D NCC

iii. Choose the most reliable displacement corresponding to the largest NCC peak 

value and smallest NCC shape width of the peak

In order to scale to large volumes, contrary to sliding window based spatial correlation, we 

transform the data from spatial to frequency domain using the open source FFTW library 

[Frigo 1999] and compute the correlation in the frequency domain. This results in good 

speed up which is further exploited in the parallel setup. Finally, for an unbiased NCC, we 
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use summed area tables to compute the local mean square energy required to normalize the 

correlation co-efficient. Fig. 6 shows a slab before and after the alignment process. 

Seemingly, this strategy to align volumes makes it an ideal candidate for parallelization. We 

describe the parallel dataflow implementation next and provide details for optimal global 

positioning based on minimum spanning tree of the undirected weighted graph as a simple 

post processing step.

To perform the registration of multiple 3D volumes in parallel, we define a dedicated 

dataflow that uses 2D neighbour communication pattern (see Fig. 9) where individual 

alignment for a pair of slabs is evaluated first. The results are then collected in an another 

task where the alignment that report the best correlation values will be used to compute the 

final global positions. To compute the optimal global positions, we find the minimum 

spanning tree of an undirected weighted graph where the nodes correspond to the volumes 

and the edges represent the pairwise relative positions with the best correlation value chosen 

during the previous step. We use the inverse of the correlation co-efficient (i.e. higher 

correlation co-efficient corresponds to lower weight of the edge in the graph) as the weights 

for the spanning tree computation. This way the resulting spanning tree will maximize the 

correlation factor among all the pairs in the graph. Fig. 8 shows the alignment results for a 

configuration of 4 volumes. In this particular example, the minimum spanning tree is given 

by the edges 0-2-3 that correspond to largest correlation factor. Finally the optimal global 

positions are used by the framework to update the position of each volume in the viewer.

Due to the high memory requirements of the correlation task, we restricted the number of 

cores per node to only 4 out of the 32 available cores. Figure 7 shows the results for up to 

3200 nodes where the parallel execution exhibits strong scaling. It is important to notice that 

for the given domain decomposition, even at 3200 nodes, each registration task will correlate 

only 2 slices per slab. This means that at this scale the problem is over-decomposed and the 

workload of the registration algorithm becomes very small visa-vis the communication and 

runtime overhead which has a higher impact on the overall performance.

5 CONCLUSIONS

Massive amounts of scientific data are an increasing challenge for scientists and engineers. 

With rapidly growing data sizes, generation, distribution, analysis and visualization of the 

data requires specialized software infrastructures that (1) enables interactive visualization 

and exploration, (2) enables designing complex work-flows in an interactive setting, and (3) 

scales the computation of those workflows to full-scale data efficiently utilizing HPC 

resources. Current solutions do not offer straight forward support for the definition and 

prototyping of visualization and analysis workflow that can be executed interactively or at 

scale. Furthermore, the user who intend to develop an algorithm for execution at scale is 

forced to deal with the complexity of parallel programming (i.e. communication, scheduling, 

resource management, portability, etc.) on HPC systems. Here, we present the first end-to-

end software framework that simplifies interactive visualization and analysis of tera-scale 

datasets.
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To enable interactive exploration of the data, the framework takes advantage of the multi-

resolution IDX data format and the ViSUS streaming infrastructure. In this environment, we 

introduce a new library that creates an abstraction layer while separating the definition of the 

algorithm from actual implementation and execution. This library further allows the user to 

define visualization and analysis workflows as task graphs that can be executed on local 

resources for interactive analysis or at scale on HPC systems.

Our new approach enables developers to implement their algorithms without the knowledge 

of underlying communication primitives and resource allocation on different architectures or 

at different scales. Furthermore, this component provides flexibility to easily implement an 

algorithm, test it interactively on local resources using the data streaming infrastructure (i.e. 

ViSUS) or at scale on HPC resources using the full-scale resolution of the data.

We demonstrated how our infrastructure scales and simplifies three algorithms applied to 

large-scale neuroscience problems: rendering, de-noise filtering and 3D image registration 

showing strong scaling on the leadership class supercomputer, Shaheen II. The simplicity of 

use, choice of operating either locally or remotely on HPC systems, fast multi-resolution 

streaming infrastructure, parallel custom analytics and a simple python interface for rapid 

prototyping and analysis makes our infrastructure an ideal choice for research labs and 

engineering firms with massive data aiding in improving the user productivity and 

supporting scientists to find new insights and breakthroughs in their data.
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Figure 1. 
Interactive visualization of large-scale non-human primate brain data (i.e., 6 volumes, each 

of size 2048x2048x2575). Rendered with OSPRay [Wald et al. 2017]
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Figure 2. 
System overview: (i) Data produced by simulations or high-resolution acquisitions are either 

generated in or converted to the IDX format and stored locally or on shared filesystems. (ii) 

The ViSUS client enables remote interactive visualization via the ViSUS server that provides 

fast read access to multi-resolution data queries.(iii) A user/developer can implement 

visualization/analysis algorithms using the parallel library provided by the framework 

interactively through the ViSUS client or at scale on an remote HPC systems that will 

eventually update the visualization for further explorations.
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Figure 3. 
Interactive median filtering on a volume of size 1024x1024x1024. Rendering at 4fps 

1024x1024 framebuffer.
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Figure 4. 
Scaling performance for median-filter, parallel volume rendering and image compositing 

using a k-way reduction dataflow with a dataset of size 2048x2048x2575 voxels.
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Figure 5. 
Decomposition of the overlapping sub-volumes used to register two adjacent volumes.
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Figure 6. 
Slab of NHP neuronal data before and after alignment
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Figure 7. 
Scaling performance of registering 25 3D microscopy volumes, each of size 

1024x1024x1024 voxels.
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Figure 8. 
Undirected weighted graph of initial displacement for 4 1024x1024x1024 volumes. The 

nodes correspond to the volumes and the edges report the highest correlation factor and the 

displacement for each pair (in pixels).
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Figure 9. 
Registration dataflow: for each input volume a set of tasks reads one or more z-slabs in the 

overlapping region. These slabs (i.e., potentially filtered to remove noise) are then sent to the 

correlation tasks to perform the registration. The results of the registration are collected by 

another set of tasks (i.e., sort/evaluate) that will evaluate the final global position for each 

volume.

Petruzza et al. Page 21

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 THE FRAMEWORK
	3.1 Data Streaming Infrastructure
	3.2 Analytics design library

	Listing 1
	3.3 Dynamic Runtime System

	Listing 2
	4 USE CASE: NEUROSCIENCE
	4.1 Filtering
	4.2 Registration

	5 CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

