1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018
August 22.

Published in final edited form as:
SIGGRAPH Asia 2017 Symp Vis (2017). 2017 November ; 2017: . doi:10.1145/3139295.3139299.

-, HHS Public Access
«

ISAVS: Interactive Scalable Analysis and Visualization System

Steve Petruzza'”,
SCI Institute - University of Utah

Aniketh Venkat,
SCI Institute - University of Utah

Attila Gyulassy,
SCI Institute - University of Utah

Giorgio Scorzelli,
SCI Institute - University of Utah

Valerio Pascucci,
SCI Institute - University of Utah

Frederick Federer,
University of Utah

Alessandra Angelucci, and
University of Utah

Peer-Timo Bremer
Lawrence Livermore National Lab

Abstract

Modern science is inundated with ever increasing data sizes as computational capabilities and
image acquisition techniques continue to improve. For example, simulations are tackling ever
larger domains with higher fidelity, and high-throughput microscopy techniques generate larger
data that are fundamental to gather biologically and medically relevant insights. As the image sizes
exceed memory, and even sometimes local disk space, each step in a scientific workflow is
impacted. Current software solutions enable data exploration with limited interactivity for
visualization and analytic tasks. Furthermore analysis on HPC systems often require complex
hand-written parallel implementations of algorithms that suffer from poor portability and
maintainability.

We present a software infrastructure that simplifies end-to-end visualization and analysis of
massive data. First, a hierarchical streaming data access layer enables interactive exploration of
remote data, with fast data fetching to test analytics on subsets of the data. Second, a library
simplifies the process of developing new analytics algorithms, allowing users to rapidly prototype
new approaches and deploy them in an HPC setting. Third, a scalable runtime system automates
mapping analysis algorithms to whatever computational hardware is available, reducing the

I{Corresponding author: spetruzza@sci.utah.edu.
Also with University of Rome “Tor Vergata”, Italy.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al. Page 2

complexity of developing scaling algorithms. We demonstrate the usability and performance of
our system using a use case from neuroscience: filtering, registration, and visualization of tera-
scale microscopy data. We evaluate the performance of our system using a leadership-class
supercomputer, Shaheen I1.

CCS CONCEPTS

Computing methodologies — Massively parallel algorithms; Parallel programming languages;
Software and its engineering — Development frameworks and environments; Integrated and
visual development environments

Keywords

Interactive visualization and analysis; parallel custom analysis work-flows; algorithms scalability;
microscopy

1 INTRODUCTION

High resolution microscopy systems and large-scale simulations generate an increasing
amount of data that are often used for visualization and analysis tasks. Yet, being able to
visualize and perform analysis remains a major challenge largely due to the lack of
algorithmic and computational solutions to handle, analyze and reconstruct the increasing
amount of data that are being collected. Several software tools are available for researchers,
from free and open-source solutions, such as Fiji (ImageJ) [Schindelin et al. 2012], Vaa3D
[Peng et al. 2010], and KNOSSOS [Helmstaedter et al. 2011], to commercial solutions such
as Imaris [Bitplane], Neurolucida [Glaser and Glaser 1990], Amira [FEI 2016], and Volocity
[PerkinElmer 2014]. While each offers varying degrees of functionality in terms of
visualization, annotation, and custom analytics, scaling to large data size remains a
challenge for most. Furthermore, while builtin analytics is generally limited to smaller tasks
such as filtering, adding custom analytics requires rigorous coding requirements that may
not be user-friendly.

This work introduces the first end-to-end software framework (see Fig. 2) for large-scale
interactive visualization and scalable analysis that also simplifies the definition and
execution of scientific workflows on HPC systems. The system exploits properties of the
IDX format [Pascucci and Frank 2001] that enables access to multiple levels of resolution
with low latency suitable for interactive exploration of tera-voxel datasets. Data are
produced in, or are converted to the IDX format using the high performance 1/0 library
PIDX [Kumar et al. 2011] that bridges the gap between large-scale writes and analytics-
appropriate reads. Interactive exploration is achieved via the ViSUS framework [Pascucci et
al. 2012] that enables seamless streaming visualization capabilities on devices ranging from
iPhones to high-end visualization machines, to multi-display powerwalls, with the data
being hosted anywhere from USB hard drives to remote HPC file systems. Finally, using a
new python software layer we interface the ViSUS framework with a set of user-defined
processing components that can perform operations on the data either interactively or on
dedicated computational resources (i.e. local or remote).

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al. Page 3

In this framework, we introduce a parallel library that allows fast and simple implementation
of visualization and analytic work-flows. To achieve computational scalability, the library
builds upon an existing runtime (i.e. Charm++), a C++ abstraction layer that allows a user to
define the processing algorithms as a set of idempotent tasks connected in a dataflow. This
abstraction layer introduces two main improvements:

. the user does not need knowledge of the underlying communication or threading
managed by the runtime;

. the same task graph can be executed both locally and remotely via a common
interface for interactive processing on smaller desktop class systems and also at
scale on remote HPC systems for larger data or compute intensive tasks.

Our key contributions are:

. An end-to-end software framework for interactive streaming visualization and
analysis of large-scale scientific datasets;

. Highly concurrent parallel processing abstraction layer that supports arbitrary
analytics and visualization workflows;

. Strong scalability performance for a large set of common post-processing tasks
such as filtering, alignment, stitching and visualization.

. Improve user productivity, code re-usability and portability by designing
common workflows that execute on both local desktop PCs and at scale on
remote HPC systems;

We demonstrate the usage of this system in a neuroscience setting, enabling interactive
visualization and analysis of large-scale non-human primate (NHP) brain 3D microscopy
data. We present three algorithms that are experimented at scale on the supercomputer,

Shaheen II:
. a parallel filter for denoising data
. automatic alignment and stitching of multiple 3D volumes
. interactive volume rendering and image composition.

The parallel analysis workflow is configured and launched through a scripting interface and
the output is then used to update the visualization interactively.

2 BACKGROUND

Structuring and efficiently accessing large-scale data have always been the aim of several
high level I/O libraries. The most prominent examples are HDF5 [Folk et al. 1999], Parallel
NetCDF (PnetCDF) [Li et al. 2003], and ADIOS [Lofstead et al. 2008]. These libraries
typically store data in traditional row-major blocks. While they are fast, general-purpose and
robust when it comes to data writes, they significantly lag during reads, a critical
requirement for interactive, exploratory analysis of large datasets. Parallel IDX (PIDX)
[Kumar et al. 2014, 2012; Pascucci et al. 2012], is an 1/O library that writes data directly in

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al.

Page 4

IDX, a hierarchical, cache-oblivious, multi-resolution data format that can be easily
leveraged for fast reads required for interactive visualization and analysis.

On the visualization side, Vislt [Childs et al. 2012] and ParaView [Ahrens et al. 2005] are
well-known distributed parallel visualization and analysis applications. They are typically
executed in parallel, coordinating visualization and analysis tasks for massive data. The data
are typically loaded at full resolution, requiring large amounts of system memory and
proximity with data source. Moreover, their use of parallel computing resources is limited to
mostly data-parallel tasks and a separate modality that is not well blended with data sources
external to parallel computing environment. Both packages, though, utilize a plugin-based
architecture, so many formats are supported and have the potential of being extended. The
ViSUS application framework [Pascucci et al. 2012] is designed around a hierarchical
streaming data model available through the PIDX open library, and enables interactive
visualization and on-the-fly processing [Christensen et al. 2016] in a hardware-agnostic
manner.

The traditional model for parallel computing has been to manually couple sections of serial
computing distributed amongst processors with the exchange of messages between them.
The most common implementation of this model is the Message Passing Interface (MPI)
[Gropp et al. 1999] which is supported on virtually all medium and large-scale computing
resources. However, as the level of parallelism grows it is becoming increasingly difficult,
even for expert users, to develop efficient solutions in this rather low-level environment.
Instead, more recently, so called, task-based programming models such as Charm++ [Kale
and Zheng 2009] have been proposed. Rather than requiring users to directly manage work
distribution and message passing, these systems decompose the processing into a workflow
of explicit tasks, which are automatically mapped to physical computational resources and
executed in a parallel environment. While task-based approaches are more flexible than
MPI, both require expert developers to create efficient solutions and often needs to be
individually optimized for specific hardware infrastructures.

3 THE FRAMEWORK

Our approach to achieving interactivity in all aspects of the software infrastructure is (1) to
use a data model that enables both remote data access to be visualized in a coarse-to-fine
progressive manner while maintaining high-performance 1/O for data stored locally, (2) to
map processing workflows to HPC resources with immediate progressive availability of
results, and (3) to enable the execution of identical workflows on both desktop PCs and at
scale on HPC systems. The scientific visualization pipeline begins with the production of
data from scientific applications (e.g. simulations) or microscopy scans that are stored on
local disks or large shared file system.

3.1 Data Streaming Infrastructure

The data access layer of the IDX format employs a hierarchical variant of a Lebesgue space
filling curve, commonly referred to as HZ order. Traditionally, space filling curves have been
used successfully to develop a static indexing scheme that generates a data layout suitable
for hierarchical traversal. The layout instills both spatial and hierarchical locality.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al. Page 5

Conceptually, the scheme acts as a storage pyramid with each level of resolution laid out in
Z-order. Because of these properties, IDX supports progressive reads of low-resolution (sub-
sampled) data, which is very suitable for streaming based remote visualization. By
converting initially to the hierarchical space-filling IDX file format, the progressive
streaming model enables this data to be visualized interactively by the ViSUS framework no
matter where it is stored.

The ViSUS framework allows interactive visualization and exploration of large-scale
datasets, with the ability to add filters or simple scripting operations to the visualization
pipeline. Our new python interface allows interactive design of data processing work-flows
that receives an input array of data to perform custom analytics either locally or at scale
remotely. In both the cases, our framework allows data to be streamed in a coarse-to-fine
manner for interactive visualization. The user can create multiple processing nodes for
different workflows to be executed in the same environment, configure number of nodes and
processors for remote HPC sessions, provide additional parameters to inform the analysis
application about the current viewer settings (e.g. datasets loaded, active filters) and operate
on multiple datasets in a single workflow.

3.2 Analytics design library

Applying any algorithm, no matter how efficient, to terabytes of data will require massively
parallel compute resources both in terms of available storage and processing capabilities.
The traditional approach of solving this challenge is to re-implement the corresponding
algorithms in MPI or one of the more recent task-based runtimes. Not only does this require
significant expertise in these programming models, but it also leads to (at least) two separate
implementations that must be maintained. Instead, we propose to utilize the components of
the interactive workflows discussed above to build large-scale parallel workflows. More
specifically, our system provides a simple library for developers of analytics algorithms to
describe their parallel dataflow as a graph of tasks, each of which either directly uses the
interactive components or minor variations thereof. To execute a task graph, we create a
backend that interprets a given graph and instantiates at runtime a task based application
based on Charm++. This shields users from the complexities of the runtime, provides
performance portability across multiple computing environments and produces efficient and
easily maintainable systems.

The key insight enabling our system is the fact that much of the complexity in dealing with
parallel implementations comes from the extreme generality of existing environments. Not
only must existing runtimes support a wide range of communication and synchronization
primitives, but they must do so dynamically without any assumption on the underlying
algorithm. Instead, for the type of large scale data processing of interest here, one typically
deals with a static task graph that is known a priori. The graph may change in size based on
which data must be processed or how many resources are available, but the basic structure,
including a partial order of operations and all communication steps, is well known.
Therefore, we provide users with a simple interface to describe their computation explicitly
as a graph in which each task has a predefined set of inputs and outputs and executes a given
function. Each task can be implemented either as a standalone function, that can be used also

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al. Page 6

in the streaming computations, or even exploiting existing threading libraries such as
OpenMP [Dagum and Menon 1998]. This provides a highly modular yet so far entirely
serial implementation of the algorithm of interest. The library dynamically maps this graph
into the execution data model of Charm++, which will handle the task mapping (i.e. which
task is executed on which processor) as well as the communication. The additional layer of
abstraction provides a number of benefits: First, developing, maintaining and debugging is
significantly simpler as user level code effectively executes in serial and there exists an
explicit (offine) description of the task graph to study. Second, the system to a large extent
becomes independent of the underlying hardware and system software stack. Third, our task
graph easily integrates with existing solutions at all levels of abstraction. It is important also
to note that each task can use arbitrary existing libraries or tools virtually unmodified since
each task is simply a serial execution of some operation.

An algorithm developer using this library needs to perform three basic steps: first,
implement all tasks used in the algorithm; second, provide de-/serialization routines for the
objects that are exchanged between tasks; and third, extend the TaskGraph class to describe
the dataflow. The first two are generic and are required in some form for any
implementation. The third, represents a procedural description of the task graph. Tasks are
defined by Task objects that contain a set of input and output ids (i.e. the tasks that will be
communicating with the given task) and a callback id that defines which function will be
executed at runtime by the task. To define a TaskGraph the user needs to implement a
function (i.e. task()) that given a task id returns a Task object.

Listing 1 showcases an example implementation of a TaskGraph for a k-way reduction
dataflow with an additional wrap-up step useful for saving the final result of the reduction.
This TaskGraph together with the definition of the callback function can be used to perform
a volume rendering and composite workflow as illustrated in Listing 2. The instantiation of
the ReductionPlusOne graph in the example requires to provide the domain
decomposition (i.e. the block_decomp parameter indicates how many blocks the domain
should be divided into in three dimensions) and a reduction factor (i.e. the valence
parameter). After defining the TaskGraph, the DataFlowControl ler is initialized by
adding the TaskGraph, registering the callbacks and providing the initial inputs. In most
cases the initial inputs simply inform the leaf nodes which part of the domain they are
suppose to operate. Finally, the DataFlowControl ler will be responsible for the
execution of the TaskGraph on the available resources.

Listing 1

TaskGraph implementation for a A~way reduction dataflow. For simplicity we assume there
are k“many leafs

// Constructor to set the valence and number of leafs
ReductionPlusOne :: ReductionPlusOne (int leafs, int valence) {
d = log (leafs, valence);
k = valence;
// Assuming k~d leafs
total = (std :: pow(k, (d + 1)) -1) /7 (k-1)

OUhWNE

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al. Page 7

7

8 // Add task types (i.e., callback ids)

9 callback_ids.push_back (LEAF_CB);

10 callback_ids.push_back (REDUCE_CB);

11 callback_ids.push_back (ROOT_CB);

12 3}

13

14 // Get callbacks lds

15 vector <int> ReductionPlusOne :: callbacks () {
16 return callback_ids;

17 3}

18

19 // Create a logical task from an id

20 Task ReductionPlusOne :: task (int task_id) {
21 Task t;

22 t.id = task_id;

23

24 // Assign the input for a leaf

25 if (task_id >= (total - k~d))

26 t.type = callback_ids [0];

27 el se {// Assign inputs for other tasks
28 incoming.resize (k);

29 for (int 1 =0; 1 < k; i++)

30 t.incoming[i] = task_id * k+i+l ;
31 }

32

33 // Assign the output for the root task
34 if (task_id = = 0)

35 t.type = callback_ids [2];

36 el se {// Assign the output for the other tasks
37 t.type = callback_ids [1];

38 t.outgoing.resize (1);

39 t.outgoing [0].resize (1);

40 t.outgoing[0] [0] = (task_id — 1)/k;
41 }

42

43 return t;

44 3}

3.3 Dynamic Runtime System

The Charm++ runtime is used as backend for the dynamic execution of the tasks. In our
implementation, we represent the tasks as chares [Kale and Zheng 2009]: migratable-objects
that represent the basic unit of parallel computation in Charm++. The tasks in the task graph
are mapped to a collection of chares called a chare array. The runtime can launch a large
number of chares simultaneously and can periodically balance the load by migrating chares
when necessary. The implementation creates a single chare array that holds all tasks needed
throughout the execution of the task graph and based on the task id, each chare is able to
determine the callback to use (i.e. using the function task(id)).

The communication between chares are done using remote procedure calls. This means that
the chares containing the input data can asynchronously start the dataflow by simply sending
the data to the corresponding chare of the dataflow. Similarly, for each outgoing Payload
each task simply adds an input to the corresponding downstream task identified through the
task id. As defined at the end of Listing 2, the controller launches the execution of the leaf
tasks (i.e. run function) that will asynchronously trigger execution of the other tasks in the
graph.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al.

Page 8

Listing 2

Example of volume rendering and compositing dataflow.

int volume_render(vector <Payload >& in,

vector <Payload >& out, Taskld id) ;
int composite(vector <Payload >& in,

vector <Payload >& out, Taskld id);
int write_image(vector <Payload >& in,

vector <Payload >& out, Taskld id);

// Reduction tree + additional wrap—up task
ReductionPlusOne graph (block_decomp, valence);

OCoOo~NOOUTAWNE

11 /7 Initialize the library run time controller
12 DataFlowController c;
13 c. initialize (graph);

15 // Register the call backs

16 vector < Callbackld > avail_cid = graph.callbacks();
17 // Leaf task will volume render the local data

18 c. register Callback (avail_cid [0], volume_render);
19 // Internal nodes will composite the image

20 c. register Callback (avail_cid [1], composite);

21 // The wrap-up task will write the image

22 c. register Callback (avail_cid [2], write_image);

24 // Set initial inputs and start execution
25 map<Taskld, Payload > initial_inputs;
26 c. run (initial_inputs);

In order to assist users in the implementation of their algorithms, the library also provides
prototypical implementations of common task graphs, such as, reductions and broadcasts for
users to use or modify.

4 USE CASE: NEUROSCIENCE

4.1 Filtering

Usability and performance of our system is demonstrated through common neuroscience
tasks such as filtering, registration and visualization of large scale NHP microscopy data. We
have acquired 2P images of axons labeled with GFP (through intracortical injections of
AAV9-GFP) and blood vessels labeled with Alexa594-conjugated tomato lectin through
transparent Clarity-treated blocks (~60/m77) of macaque V1. Typically, an injection site of
1mm diameter in V2 produces a 7x4mm field of GFP-labeled axon terminals in V1 at
several cortical depths, totaling a volume of about 60 /m/7R. Imaging even a small fraction of
this volume, i.e. 5 mm? at 0.5 ym z-resolution, takes several hours of continuous acquisition,
generating approximately a terabyte of data. All the experiments presented in this section
were performed using a leadership class supercomputer, Shaheen I, a Cray XC40 system
with 6,174 dual socket compute nodes based on 16 core Intel Haswell processors with Aries
Dragonfly connectivity to capture the parallel.

Often, algorithms can be characterized by data-parallel stencil operations, that is, operations
that can be completed independently for each voxel given a small neighborhood. Common
filtering algorithms that fit this model are minimum, maximum, average, blur, sharpen, edge
detection, and deconvolution. Designing the right set of filters to use, their sequence, and

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al.

Page 9

parameters, is usually achieved through by trial-and-error in an interactive exploratory
setting. Our software infrastructure enables a user to interactively test different filters
available in the ViSUS framework or custom developed through the python interface with
results instantaneously available for visualization in the ViSUS viewer. Fig. 3) illustrates the
median-filter in action on a dataset containing a billion voxels.

Within our framework, defining a dataflow that contains a median filter in combination with
a k-way reduction dataflow (i.e. a variant of the listed code in Listing 1 and 2) to execute
volume rendering and reduction image composition at scale is extremely simple. The
processing library automatically decomposes the input domain among the available tasks
(i.e. depending on the number of cores and nodes requested) where each task reads only the
sub-volume of interest for the computation. Note that due to the particular data layout,
making queries with spatial locality in IDX is more efficient compared to others (e.g. row
major order layout).

The rendering task uses the VTK [Schroeder et al. 2006] volume rendering (i.e.
SmartVolumeRendering) to render a sub-volume of the data and the composition of the
images done via a simple front-to-back ordering. Results in Fig. 4 show good scaling of the
dataflow applied to a microscopy dataset of size 2048x2048x2575 voxels to produce a
rendered image of size 2048x2048.

4.2 Registration

Image volumes of cleared brain tissue are created as a stack of 2D images taken at regular
intervals (e.g. every 0.5 micron) on the z-axis. A single volume is acquired through the depth
of the tissue at a given X,Y coordinate within the larger region of interest containing labeled
cells. The scan then moves to the next X,Y coordinate (maintaining a 15% overlap with
adjacent volumes to aid alignment in later steps) until the entire region of interest has been
imaged. As the microscope finishes scanning one field of view and moves on to the next
position, a range of movements causes the data to often be mis-aligned. To create a single
3D dataset encompassing the entire region of interest, each individual X,Y volume needs to
be aligned using the overlapping fluorescent blood vessels between adjacent volumes (see
Fig. 5).

To compute pairwise relative positions between adjacent volumes, we use 3D Normalized
Cross Correlation (NCC) as a similarity metric. The alignment process is done in three steps:

i Decompose the volume into slabs along the Z-direction

ii. For each corresponding slab of the two adjacent volumes, load the data in the
overlapping region and compute pairwise relative position using 3D NCC

iii. Choose the most reliable displacement corresponding to the largest NCC peak
value and smallest NCC shape width of the peak

In order to scale to large volumes, contrary to sliding window based spatial correlation, we
transform the data from spatial to frequency domain using the open source FFTW library
[Frigo 1999] and compute the correlation in the frequency domain. This results in good
speed up which is further exploited in the parallel setup. Finally, for an unbiased NCC, we

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al. Page 10

use summed area tables to compute the local mean square energy required to normalize the
correlation co-efficient. Fig. 6 shows a slab before and after the alignment process.
Seemingly, this strategy to align volumes makes it an ideal candidate for parallelization. We
describe the parallel dataflow implementation next and provide details for optimal global
positioning based on minimum spanning tree of the undirected weighted graph as a simple
post processing step.

To perform the registration of multiple 3D volumes in parallel, we define a dedicated
dataflow that uses 2D neighbour communication pattern (see Fig. 9) where individual
alignment for a pair of slabs is evaluated first. The results are then collected in an another
task where the alignment that report the best correlation values will be used to compute the
final global positions. To compute the optimal global positions, we find the minimum
spanning tree of an undirected weighted graph where the nodes correspond to the volumes
and the edges represent the pairwise relative positions with the best correlation value chosen
during the previous step. We use the inverse of the correlation co-efficient (i.e. higher
correlation co-efficient corresponds to lower weight of the edge in the graph) as the weights
for the spanning tree computation. This way the resulting spanning tree will maximize the
correlation factor among all the pairs in the graph. Fig. 8 shows the alignment results for a
configuration of 4 volumes. In this particular example, the minimum spanning tree is given
by the edges 0-2-3 that correspond to largest correlation factor. Finally the optimal global
positions are used by the framework to update the position of each volume in the viewer.

Due to the high memory requirements of the correlation task, we restricted the number of
cores per node to only 4 out of the 32 available cores. Figure 7 shows the results for up to
3200 nodes where the parallel execution exhibits strong scaling. It is important to notice that
for the given domain decomposition, even at 3200 nodes, each registration task will correlate
only 2 slices per slab. This means that at this scale the problem is over-decomposed and the
workload of the registration algorithm becomes very small visa-vis the communication and
runtime overhead which has a higher impact on the overall performance.

5 CONCLUSIONS

Massive amounts of scientific data are an increasing challenge for scientists and engineers.
With rapidly growing data sizes, generation, distribution, analysis and visualization of the
data requires specialized software infrastructures that (1) enables interactive visualization
and exploration, (2) enables designing complex work-flows in an interactive setting, and (3)
scales the computation of those workflows to full-scale data efficiently utilizing HPC
resources. Current solutions do not offer straight forward support for the definition and
prototyping of visualization and analysis workflow that can be executed interactively or at
scale. Furthermore, the user who intend to develop an algorithm for execution at scale is
forced to deal with the complexity of parallel programming (i.e. communication, scheduling,
resource management, portability, etc.) on HPC systems. Here, we present the first end-to-
end software framework that simplifies interactive visualization and analysis of tera-scale
datasets.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al.

Page 11

To enable interactive exploration of the data, the framework takes advantage of the multi-
resolution IDX data format and the ViSUS streaming infrastructure. In this environment, we
introduce a new library that creates an abstraction layer while separating the definition of the
algorithm from actual implementation and execution. This library further allows the user to
define visualization and analysis workflows as task graphs that can be executed on local
resources for interactive analysis or at scale on HPC systems.

Our new approach enables developers to implement their algorithms without the knowledge
of underlying communication primitives and resource allocation on different architectures or
at different scales. Furthermore, this component provides flexibility to easily implement an
algorithm, test it interactively on local resources using the data streaming infrastructure (i.e.
ViSUS) or at scale on HPC resources using the full-scale resolution of the data.

We demonstrated how our infrastructure scales and simplifies three algorithms applied to
large-scale neuroscience problems: rendering, de-noise filtering and 3D image registration
showing strong scaling on the leadership class supercomputer, Shaheen Il. The simplicity of
use, choice of operating either locally or remotely on HPC systems, fast multi-resolution
streaming infrastructure, parallel custom analytics and a simple python interface for rapid
prototyping and analysis makes our infrastructure an ideal choice for research labs and
engineering firms with massive data aiding in improving the user productivity and
supporting scientists to find new insights and breakthroughs in their data.

Acknowledgments

This work is supported in part by NSF: CGV: Award:1314896, NSF:11P Award :1602127 NSF:OAC Office of
Advanced Cyberinfrastructure (OAC): Award 1649923, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375,
and PIPER: ER26142 DE-SC0010498. This material is based upon work supported by the Department of Energy,
National Nuclear Security Administration, under Award Number(s) DE-NA0002375. For computer time this
research used the resources of the Supercomputing Laboratory at King Abdullah University of Science and
Technology (KAUST) in Thuwal, Saudi Arabia. Thanks to Will Usher for the teaser image.

References

Ahrens JamesGeveci BerkLaw Charles. Paraview: An end-user tool for large data visualization. The
Visualization Handbook. 2005:717.

Childs HankBrugger EricWhitlock BradMeredith JeremyAhern SeanPug-mire DavidBiagas
KathleenMiller MarkHarrison CyrusWeber Gunther H, Krishnan HariFogal ThomasSanderson
AllenGarth ChristophWes Bethel E, Camp DavidRbel OliverDurant MarcFavre Jean M, Navratil
Paul. Vislt: An End-User Tool For Visualizing and Analyzing Very Large Data. High Performance
Visualization—-Enabling Extreme-Scale Scientific Insight. 2012:357-372.

Christensen CameronLee Ji-WooLiu ShusenBremer Peer-TimoScorzelli GiorgioPascucci Valerio.
Embedded domain-specific language and runtime system for progressive spatiotemporal data
analysis and visualization. Large Data Analysis and Visualization (LDAV), 2016 IEEE 6th
Symposium on; IEEE; 2016. 1-10.

Dagum LeonardoMenon Ramesh. OpenMP: an industry standard API for shared-memory
programming. |IEEE computational science and engineering. 1998; 5(1):46-55.

Amira FEI. 3D Software for Life Sciences. 2016.

Folk MikeCheng AlbertYates Kim. HDF5: A file format and 1/0 library for high performance
computing applications. Proceedings of Supercomputing. 1999; 99:5-33.

Frigo Matteo. Acm sigplan notices. Vol. 34. ACM; 1999. A fast Fourier transform compiler; 169-180.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Petruzza et al. Page 12

Glaser Jacob R, Glaser Edmund M. Neuron imaging with Neurolucidaa PC-based system for image
combining microscopy. Computerized Medical Imaging and Graphics. 1990; 14(5):307-317.
[PubMed: 2224829]

Gropp WilliamLusk EwingSkjellum Anthony. Using MPI: portable parallel programming with the
message-passing interface. Vol. 1. MIT press; 1999.

Helmstaedter MoritzBriggman Kevin L, Denk Winfried. High-accuracy neurite reconstruction for
high-throughput neuroanatomy. Nature neuroscience. 2011; 14(8):1081-1088. [PubMed:
21743472]

Kale Laxmikant V, Zheng Gengbin. Charm++ and AMPI: Adaptive runtime strategies via migratable
objects. Advanced Computational Infrastructures for Parallel and Distributed Applications.
2009:265-282.

Kumar SidharthChristensen CameronSchmidt John A, Bremer Peer-TimoBrugger EricVishwanath
VenkatramCarns PhilipKolla HemanthGrout RayChen JacquelineBerzins MartinScorzelli
GiorgioPascucci Valerio. Fast Mul-tiresolution Reads of Massive Simulation Datasets. In: Kunkel
Julian-MartinLudwig ThomasMeuer HansWerner, editorsSupercomputing. Vol. 8488. Springer
International Publishing; 2014. 314-330. Lecture Notes in Computer Science

Kumar S, Vishwanath V, Carns P, Levine JA, Latham R, Scorzelli G, Kolla H, Grout R, Ross R, Papka
ME, Chen J, Pascucci V. Efficient data restructuring and aggregation for 1/O acceleration in PIDX.
High Performance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for; 2012. 1-11.

Kumar SidharthVishwanath VenkatramCarns PhilipSumma BrianScorzelli GiorgioPascucci
ValerioRoss RobertChen JacquelineKolla HemanthGrout Ray. PIDX: Efficient Parallel 1/0 for
Multi-resolution Multi-dimensional Scientific Datasets. IEEE International Conference on Cluster
Computing; 2011.

Li JianweiLiao Wei-KengChoudhary AlokRoss RobertThakur RajeevGropp WilliamLatham
RobSiegel AndrewGallagher BradZingale Michael. Proceedings of SC2003: High Performance
Networking and Computing. IEEE Computer Society Press; Phoenix, AZ: 2003. Parallel netCDF:
A High-Performance Scientific 1/0 Interface.

Lofstead J, Klasky S, Schwan K, Podhorszki N, Jin C. Flexible 10 and Integration for Scientific Codes
Through The Adaptable 10 System (ADIOS). Proceedings of the 6th International Workshop on
Challenges of Large Applications in Distributed Environments, CLADE *08; New York: ACM;
2008. 15-24.

Pascucci ValerioFrank Randall J. Global static indexing for real-time exploration of very large regular
grids. Supercomputing, ACM/IEEE 2001 Conference; IEEE; 2001. 45-45.

Pascucci V, Scorzelli G, Summa B, Bremer P-T, Gyulassy A, Christensen C, Philip S, Kumar S. The
ViSUS Visualization Framework. In: Wes Bethel E, Childs HankHansen Charles, editorsHigh
Performance Visualization: Enabling Extreme-Scale Scientific Insight. CRC Press; 2012.

Peng HanchuanRuan ZongcailLong FuhuiSimpson Julie H, Myers Eugene W. V3D enables real-time
3D visualization and quantitative analysis of large-scale biological image data sets. Nature
biotechnology. 2010; 28(4):348-353.

PerkinElmer. 1998-2014. \olocity. 1998-2014. http://www.perkinelmer.com/

Schindelin JohannesArganda-Carreras IgnacioFrise ErwinKaynig VerenaLongair MarkPietzsch
TobiasPreibisch StephanRueden CurtisSaalfeld StephanSchmid Benjamin, et al. Fiji: an open-
source platform for biological-image analysis. Nature methods. 2012; 9(7):676-682. [PubMed:
22743772]

Schroeder WillMartin KenLorensen Bill. The Visualization Toolkit. 4. 2006.

Wald I, Johnson G, Amstutz J, Brownlee C, Knoll A, Jeffers J, Ginther J, Navratil P. OSPRay - A CPU
Ray Tracing Framework for Scientific Visualization. IEEE Transactions on Visualization and
Computer Graphics. Jan; 2017 23(1):931-940. DOI: 10.1109/TVCG.2016.2599041 [PubMed:
27875206]

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

http://www.perkinelmer.com/

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Petruzza et al.

Page 13

Figure 1.
Interactive visualization of large-scale non-human primate brain data (i.e., 6 volumes, each

of size 2048x2048x2575). Rendered with OSPRay [Wald et al. 2017]

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Petruzza et al.

Page 14

Data Streaming 7\",
‘ Query - - User/Analysis
2 R ——— developer
v’ - ViSUS
e VISUS Sairver __ Interactive visualzation imolement

Interactive

Scientific data production Analysis
Update
l Generate data Large scale
Analysis

\ Task Graph

Save data

Data repository
local / shared file system

HPC System

Figure 2.
System overview: (i) Data produced by simulations or high-resolution acquisitions are either

generated in or converted to the IDX format and stored locally or on shared filesystems. (ii)
The ViSUS client enables remote interactive visualization via the ViSUS server that provides
fast read access to multi-resolution data queries.(iii) A user/developer can implement
visualization/analysis algorithms using the parallel library provided by the framework
interactively through the ViSUS client or at scale on an remote HPC systems that will
eventually update the visualization for further explorations.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Petruzza et al.

Median Filter
B

Zoom out/
rotate

Figure 3.
Interactive median filtering on a volume of size 1024x1024x1024. Rendering at 4fps

1024x1024 framebuffer.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

Page 15

1duosnuey Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuey Joyiny

Petruzza et al. Page 16

70 T . T
Volume rendering mm
Image compositing m——
60 Filtering mmm

Time (sec)

1024 2048 4096 8192 16384
Number of cores

Figure 4.

Scaling performance for median-filter, parallel volume rendering and image compositing
using a k-way reduction dataflow with a dataset of size 2048x2048x2575 voxels.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Petruzza et al.

Page 17

Figure 5.
Decomposition of the overlapping sub-volumes used to register two adjacent volumes.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Petruzza et al.

Page 18

Tiles after
alignment

: o

Initial tiles —
(misaligned)

Figure 6.
Slab of NHP neuronal data before and after alignment

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Petruzza et al.

Time (sec)

Figure 7.

250

200

150

100

50

Page 19

Registration ——

256 512

1024 2048

Number of nodes

Scaling performance of registering 25 3D microscopy volumes, each of size
1024x1024x1024 voxels.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Petruzza et al.

Page 20

0.61
[6-10]

0.71
[-330]

0.64
[-140]

Figure 8.

0.58
[4 -2 0]

Undirected weighted graph of initial displacement for 4 1024x1024x1024 volumes. The
nodes correspond to the volumes and the edges report the highest correlation factor and the

displacement for each pair (in pixels).

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Petruzza et al.

Page 21

—

[Read/Filter

[Read/Filter Correlate]—P Sort/Evaluate

Z-Slab 1

[ReadFilter J [Read/Filter H Correlate

Correlate]

.. e
/\ Registration
& [Read/Filter [Read|Filter Correlate Pair results
a Global
< Alignment
K4 L Oth
N er
N : : i Registration
[Read/Filter J [Read/Filter H Correlate] [Correlate]—'[Sort/Evaluate] vy results

_—

Figure 9.
Registration dataflow: for each input volume a set of tasks reads one or more z-slabs in the

overlapping region. These slabs (i.e., potentially filtered to remove noise) are then sent to the
correlation tasks to perform the registration. The results of the registration are collected by
another set of tasks (i.e., sort/evaluate) that will evaluate the final global position for each
volume.

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 THE FRAMEWORK
	3.1 Data Streaming Infrastructure
	3.2 Analytics design library

	Listing 1
	3.3 Dynamic Runtime System

	Listing 2
	4 USE CASE: NEUROSCIENCE
	4.1 Filtering
	4.2 Registration

	5 CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

