
ISAVS: Interactive Scalable Analysis and Visualization System

Steve Petruzza†,*,
SCI Institute - University of Utah

Aniketh Venkat,
SCI Institute - University of Utah

Attila Gyulassy,
SCI Institute - University of Utah

Giorgio Scorzelli,
SCI Institute - University of Utah

Valerio Pascucci,
SCI Institute - University of Utah

Frederick Federer,
University of Utah

Alessandra Angelucci, and
University of Utah

Peer-Timo Bremer
Lawrence Livermore National Lab

Abstract

Modern science is inundated with ever increasing data sizes as computational capabilities and

image acquisition techniques continue to improve. For example, simulations are tackling ever

larger domains with higher fidelity, and high-throughput microscopy techniques generate larger

data that are fundamental to gather biologically and medically relevant insights. As the image sizes

exceed memory, and even sometimes local disk space, each step in a scientific workflow is

impacted. Current software solutions enable data exploration with limited interactivity for

visualization and analytic tasks. Furthermore analysis on HPC systems often require complex

hand-written parallel implementations of algorithms that suffer from poor portability and

maintainability.

We present a software infrastructure that simplifies end-to-end visualization and analysis of

massive data. First, a hierarchical streaming data access layer enables interactive exploration of

remote data, with fast data fetching to test analytics on subsets of the data. Second, a library

simplifies the process of developing new analytics algorithms, allowing users to rapidly prototype

new approaches and deploy them in an HPC setting. Third, a scalable runtime system automates

mapping analysis algorithms to whatever computational hardware is available, reducing the

†Corresponding author: spetruzza@sci.utah.edu.
*Also with University of Rome “Tor Vergata”, Italy.

HHS Public Access
Author manuscript
SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018
August 22.

Published in final edited form as:
SIGGRAPH Asia 2017 Symp Vis (2017). 2017 November ; 2017: . doi:10.1145/3139295.3139299.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

complexity of developing scaling algorithms. We demonstrate the usability and performance of

our system using a use case from neuroscience: filtering, registration, and visualization of tera-

scale microscopy data. We evaluate the performance of our system using a leadership-class

supercomputer, Shaheen II.

CCS CONCEPTS

Computing methodologies → Massively parallel algorithms; Parallel programming languages;
Software and its engineering → Development frameworks and environments; Integrated and
visual development environments

Keywords

Interactive visualization and analysis; parallel custom analysis work-flows; algorithms scalability;
microscopy

1 INTRODUCTION

High resolution microscopy systems and large-scale simulations generate an increasing

amount of data that are often used for visualization and analysis tasks. Yet, being able to

visualize and perform analysis remains a major challenge largely due to the lack of

algorithmic and computational solutions to handle, analyze and reconstruct the increasing

amount of data that are being collected. Several software tools are available for researchers,

from free and open-source solutions, such as Fiji (ImageJ) [Schindelin et al. 2012], Vaa3D

[Peng et al. 2010], and KNOSSOS [Helmstaedter et al. 2011], to commercial solutions such

as Imaris [Bitplane], Neurolucida [Glaser and Glaser 1990], Amira [FEI 2016], and Volocity

[PerkinElmer 2014]. While each offers varying degrees of functionality in terms of

visualization, annotation, and custom analytics, scaling to large data size remains a

challenge for most. Furthermore, while builtin analytics is generally limited to smaller tasks

such as filtering, adding custom analytics requires rigorous coding requirements that may

not be user-friendly.

This work introduces the first end-to-end software framework (see Fig. 2) for large-scale

interactive visualization and scalable analysis that also simplifies the definition and

execution of scientific workflows on HPC systems. The system exploits properties of the

IDX format [Pascucci and Frank 2001] that enables access to multiple levels of resolution

with low latency suitable for interactive exploration of tera-voxel datasets. Data are

produced in, or are converted to the IDX format using the high performance I/O library

PIDX [Kumar et al. 2011] that bridges the gap between large-scale writes and analytics-

appropriate reads. Interactive exploration is achieved via the ViSUS framework [Pascucci et

al. 2012] that enables seamless streaming visualization capabilities on devices ranging from

iPhones to high-end visualization machines, to multi-display powerwalls, with the data

being hosted anywhere from USB hard drives to remote HPC file systems. Finally, using a

new python software layer we interface the ViSUS framework with a set of user-defined

processing components that can perform operations on the data either interactively or on

dedicated computational resources (i.e. local or remote).

Petruzza et al. Page 2

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In this framework, we introduce a parallel library that allows fast and simple implementation

of visualization and analytic work-flows. To achieve computational scalability, the library

builds upon an existing runtime (i.e. Charm++), a C++ abstraction layer that allows a user to

define the processing algorithms as a set of idempotent tasks connected in a dataflow. This

abstraction layer introduces two main improvements:

• the user does not need knowledge of the underlying communication or threading

managed by the runtime;

• the same task graph can be executed both locally and remotely via a common

interface for interactive processing on smaller desktop class systems and also at

scale on remote HPC systems for larger data or compute intensive tasks.

Our key contributions are:

• An end-to-end software framework for interactive streaming visualization and

analysis of large-scale scientific datasets;

• Highly concurrent parallel processing abstraction layer that supports arbitrary

analytics and visualization workflows;

• Strong scalability performance for a large set of common post-processing tasks

such as filtering, alignment, stitching and visualization.

• Improve user productivity, code re-usability and portability by designing

common workflows that execute on both local desktop PCs and at scale on

remote HPC systems;

We demonstrate the usage of this system in a neuroscience setting, enabling interactive

visualization and analysis of large-scale non-human primate (NHP) brain 3D microscopy

data. We present three algorithms that are experimented at scale on the supercomputer,

Shaheen II:

• a parallel filter for denoising data

• automatic alignment and stitching of multiple 3D volumes

• interactive volume rendering and image composition.

The parallel analysis workflow is configured and launched through a scripting interface and

the output is then used to update the visualization interactively.

2 BACKGROUND

Structuring and efficiently accessing large-scale data have always been the aim of several

high level I/O libraries. The most prominent examples are HDF5 [Folk et al. 1999], Parallel

NetCDF (PnetCDF) [Li et al. 2003], and ADIOS [Lofstead et al. 2008]. These libraries

typically store data in traditional row-major blocks. While they are fast, general-purpose and

robust when it comes to data writes, they significantly lag during reads, a critical

requirement for interactive, exploratory analysis of large datasets. Parallel IDX (PIDX)

[Kumar et al. 2014, 2012; Pascucci et al. 2012], is an I/O library that writes data directly in

Petruzza et al. Page 3

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

IDX, a hierarchical, cache-oblivious, multi-resolution data format that can be easily

leveraged for fast reads required for interactive visualization and analysis.

On the visualization side, VisIt [Childs et al. 2012] and ParaView [Ahrens et al. 2005] are

well-known distributed parallel visualization and analysis applications. They are typically

executed in parallel, coordinating visualization and analysis tasks for massive data. The data

are typically loaded at full resolution, requiring large amounts of system memory and

proximity with data source. Moreover, their use of parallel computing resources is limited to

mostly data-parallel tasks and a separate modality that is not well blended with data sources

external to parallel computing environment. Both packages, though, utilize a plugin-based

architecture, so many formats are supported and have the potential of being extended. The

ViSUS application framework [Pascucci et al. 2012] is designed around a hierarchical

streaming data model available through the PIDX open library, and enables interactive

visualization and on-the-fly processing [Christensen et al. 2016] in a hardware-agnostic

manner.

The traditional model for parallel computing has been to manually couple sections of serial

computing distributed amongst processors with the exchange of messages between them.

The most common implementation of this model is the Message Passing Interface (MPI)

[Gropp et al. 1999] which is supported on virtually all medium and large-scale computing

resources. However, as the level of parallelism grows it is becoming increasingly difficult,

even for expert users, to develop efficient solutions in this rather low-level environment.

Instead, more recently, so called, task-based programming models such as Charm++ [Kale

and Zheng 2009] have been proposed. Rather than requiring users to directly manage work

distribution and message passing, these systems decompose the processing into a workflow

of explicit tasks, which are automatically mapped to physical computational resources and

executed in a parallel environment. While task-based approaches are more flexible than

MPI, both require expert developers to create efficient solutions and often needs to be

individually optimized for specific hardware infrastructures.

3 THE FRAMEWORK

Our approach to achieving interactivity in all aspects of the software infrastructure is (1) to

use a data model that enables both remote data access to be visualized in a coarse-to-fine

progressive manner while maintaining high-performance I/O for data stored locally, (2) to

map processing workflows to HPC resources with immediate progressive availability of

results, and (3) to enable the execution of identical workflows on both desktop PCs and at

scale on HPC systems. The scientific visualization pipeline begins with the production of

data from scientific applications (e.g. simulations) or microscopy scans that are stored on

local disks or large shared file system.

3.1 Data Streaming Infrastructure

The data access layer of the IDX format employs a hierarchical variant of a Lebesgue space

filling curve, commonly referred to as HZ order. Traditionally, space filling curves have been

used successfully to develop a static indexing scheme that generates a data layout suitable

for hierarchical traversal. The layout instills both spatial and hierarchical locality.

Petruzza et al. Page 4

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Conceptually, the scheme acts as a storage pyramid with each level of resolution laid out in

Z-order. Because of these properties, IDX supports progressive reads of low-resolution (sub-

sampled) data, which is very suitable for streaming based remote visualization. By

converting initially to the hierarchical space-filling IDX file format, the progressive

streaming model enables this data to be visualized interactively by the ViSUS framework no

matter where it is stored.

The ViSUS framework allows interactive visualization and exploration of large-scale

datasets, with the ability to add filters or simple scripting operations to the visualization

pipeline. Our new python interface allows interactive design of data processing work-flows

that receives an input array of data to perform custom analytics either locally or at scale

remotely. In both the cases, our framework allows data to be streamed in a coarse-to-fine

manner for interactive visualization. The user can create multiple processing nodes for

different workflows to be executed in the same environment, configure number of nodes and

processors for remote HPC sessions, provide additional parameters to inform the analysis

application about the current viewer settings (e.g. datasets loaded, active filters) and operate

on multiple datasets in a single workflow.

3.2 Analytics design library

Applying any algorithm, no matter how efficient, to terabytes of data will require massively

parallel compute resources both in terms of available storage and processing capabilities.

The traditional approach of solving this challenge is to re-implement the corresponding

algorithms in MPI or one of the more recent task-based runtimes. Not only does this require

significant expertise in these programming models, but it also leads to (at least) two separate

implementations that must be maintained. Instead, we propose to utilize the components of

the interactive workflows discussed above to build large-scale parallel workflows. More

specifically, our system provides a simple library for developers of analytics algorithms to

describe their parallel dataflow as a graph of tasks, each of which either directly uses the

interactive components or minor variations thereof. To execute a task graph, we create a

backend that interprets a given graph and instantiates at runtime a task based application

based on Charm++. This shields users from the complexities of the runtime, provides

performance portability across multiple computing environments and produces efficient and

easily maintainable systems.

The key insight enabling our system is the fact that much of the complexity in dealing with

parallel implementations comes from the extreme generality of existing environments. Not

only must existing runtimes support a wide range of communication and synchronization

primitives, but they must do so dynamically without any assumption on the underlying

algorithm. Instead, for the type of large scale data processing of interest here, one typically

deals with a static task graph that is known a priori. The graph may change in size based on

which data must be processed or how many resources are available, but the basic structure,

including a partial order of operations and all communication steps, is well known.

Therefore, we provide users with a simple interface to describe their computation explicitly

as a graph in which each task has a predefined set of inputs and outputs and executes a given

function. Each task can be implemented either as a standalone function, that can be used also

Petruzza et al. Page 5

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in the streaming computations, or even exploiting existing threading libraries such as

OpenMP [Dagum and Menon 1998]. This provides a highly modular yet so far entirely

serial implementation of the algorithm of interest. The library dynamically maps this graph

into the execution data model of Charm++, which will handle the task mapping (i.e. which

task is executed on which processor) as well as the communication. The additional layer of

abstraction provides a number of benefits: First, developing, maintaining and debugging is

significantly simpler as user level code effectively executes in serial and there exists an

explicit (offine) description of the task graph to study. Second, the system to a large extent

becomes independent of the underlying hardware and system software stack. Third, our task

graph easily integrates with existing solutions at all levels of abstraction. It is important also

to note that each task can use arbitrary existing libraries or tools virtually unmodified since

each task is simply a serial execution of some operation.

An algorithm developer using this library needs to perform three basic steps: first,

implement all tasks used in the algorithm; second, provide de-/serialization routines for the

objects that are exchanged between tasks; and third, extend the TaskGraph class to describe

the dataflow. The first two are generic and are required in some form for any

implementation. The third, represents a procedural description of the task graph. Tasks are

defined by Task objects that contain a set of input and output ids (i.e. the tasks that will be

communicating with the given task) and a callback id that defines which function will be

executed at runtime by the task. To define a TaskGraph the user needs to implement a

function (i.e. task()) that given a task id returns a Task object.

Listing 1 showcases an example implementation of a TaskGraph for a k-way reduction

dataflow with an additional wrap-up step useful for saving the final result of the reduction.

This TaskGraph together with the definition of the callback function can be used to perform

a volume rendering and composite workflow as illustrated in Listing 2. The instantiation of

the ReductionPlusOne graph in the example requires to provide the domain

decomposition (i.e. the block_decomp parameter indicates how many blocks the domain

should be divided into in three dimensions) and a reduction factor (i.e. the valence

parameter). After defining the TaskGraph, the DataFlowController is initialized by

adding the TaskGraph, registering the callbacks and providing the initial inputs. In most

cases the initial inputs simply inform the leaf nodes which part of the domain they are

suppose to operate. Finally, the DataFlowController will be responsible for the

execution of the TaskGraph on the available resources.

Listing 1

TaskGraph implementation for a k-way reduction dataflow. For simplicity we assume there

are kd many leafs

 1 // Constructor to set the valence and number of leafs
 2 ReductionPlusOne :: ReductionPlusOne (int leafs, int valence) {
 3 d = log (leafs, valence);
 4 k = valence;
 5 // Assuming k^d leafs
 6 total = (std :: pow(k, (d + 1)) –1) / (k–1)

Petruzza et al. Page 6

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 7
 8 // Add task types (i.e., callback ids)
 9 callback_ids.push_back (LEAF_CB);
10 callback_ids.push_back (REDUCE_CB);
11 callback_ids.push_back (ROOT_CB);
12 }
13
14 // Get callbacks Ids
15 vector <int> ReductionPlusOne :: callbacks () {
16 return callback_ids;
17 }
18
19 // Create a logical task from an id
20 Task ReductionPlusOne :: task (int task_id) {
21 Task t;
22 t.id = task_id;
23
24 // Assign the input for a leaf
25 if (task_id >= (total – k^d))
26 t.type = callback_ids [0];
27 else {// Assign inputs for other tasks
28 incoming.resize (k);
29 for (int i =0; i < k; i++)
30 t.incoming[i] = task_id * k+i+1 ;
31 }
32
33 // Assign the output for the root task
34 if (task_id = = 0)
35 t.type = callback_ids [2];
36 else {// Assign the output for the other tasks
37 t.type = callback_ids [1];
38 t.outgoing.resize (1);
39 t.outgoing [0].resize (1);
40 t.outgoing[0] [0] = (task_id – 1)/k;
41 }
42
43 return t;
44 }

3.3 Dynamic Runtime System

The Charm++ runtime is used as backend for the dynamic execution of the tasks. In our

implementation, we represent the tasks as chares [Kale and Zheng 2009]: migratable-objects

that represent the basic unit of parallel computation in Charm++. The tasks in the task graph

are mapped to a collection of chares called a chare array. The runtime can launch a large

number of chares simultaneously and can periodically balance the load by migrating chares

when necessary. The implementation creates a single chare array that holds all tasks needed

throughout the execution of the task graph and based on the task id, each chare is able to

determine the callback to use (i.e. using the function task(id)).

The communication between chares are done using remote procedure calls. This means that

the chares containing the input data can asynchronously start the dataflow by simply sending

the data to the corresponding chare of the dataflow. Similarly, for each outgoing Payload

each task simply adds an input to the corresponding downstream task identified through the

task id. As defined at the end of Listing 2, the controller launches the execution of the leaf

tasks (i.e. run function) that will asynchronously trigger execution of the other tasks in the

graph.

Petruzza et al. Page 7

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Listing 2

Example of volume rendering and compositing dataflow.

 1 int volume_render(vector <Payload >& in,
 2 vector <Payload >& out, TaskId id) ;
 3 int composite(vector <Payload >& in,
 4 vector <Payload >& out, TaskId id);
 5 int write_image(vector <Payload >& in,
 6 vector <Payload >& out, TaskId id);
 7
 8 // Reduction tree + additional wrap–up task
 9 ReductionPlusOne graph (block_decomp, valence);
10
11 // Initialize the library run time controller
12 DataFlowController c;
13 c. initialize (graph);
14
15 // Register the call backs
16 vector < CallbackId > avail_cid = graph.callbacks();
17 // Leaf task will volume render the local data
18 c. register Callback (avail_cid [0], volume_render);
19 // Internal nodes will composite the image
20 c. register Callback (avail_cid [1], composite);
21 // The wrap–up task will write the image
22 c. register Callback (avail_cid [2], write_image);
23
24 // Set initial inputs and start execution
25 map<TaskId, Payload > initial_inputs;
26 c. run (initial_inputs);

In order to assist users in the implementation of their algorithms, the library also provides

prototypical implementations of common task graphs, such as, reductions and broadcasts for

users to use or modify.

4 USE CASE: NEUROSCIENCE

Usability and performance of our system is demonstrated through common neuroscience

tasks such as filtering, registration and visualization of large scale NHP microscopy data. We

have acquired 2P images of axons labeled with GFP (through intracortical injections of

AAV9-GFP) and blood vessels labeled with Alexa594-conjugated tomato lectin through

transparent Clarity-treated blocks (~60mm3) of macaque V1. Typically, an injection site of

1mm diameter in V2 produces a 7x4mm field of GFP-labeled axon terminals in V1 at

several cortical depths, totaling a volume of about 60 mm3. Imaging even a small fraction of

this volume, i.e. 5 mm3 at 0.5 μm z-resolution, takes several hours of continuous acquisition,

generating approximately a terabyte of data. All the experiments presented in this section

were performed using a leadership class supercomputer, Shaheen II, a Cray XC40 system

with 6,174 dual socket compute nodes based on 16 core Intel Haswell processors with Aries

Dragonfly connectivity to capture the parallel.

4.1 Filtering

Often, algorithms can be characterized by data-parallel stencil operations, that is, operations

that can be completed independently for each voxel given a small neighborhood. Common

filtering algorithms that fit this model are minimum, maximum, average, blur, sharpen, edge

detection, and deconvolution. Designing the right set of filters to use, their sequence, and

Petruzza et al. Page 8

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

parameters, is usually achieved through by trial-and-error in an interactive exploratory

setting. Our software infrastructure enables a user to interactively test different filters

available in the ViSUS framework or custom developed through the python interface with

results instantaneously available for visualization in the ViSUS viewer. Fig. 3) illustrates the

median-filter in action on a dataset containing a billion voxels.

Within our framework, defining a dataflow that contains a median filter in combination with

a k-way reduction dataflow (i.e. a variant of the listed code in Listing 1 and 2) to execute

volume rendering and reduction image composition at scale is extremely simple. The

processing library automatically decomposes the input domain among the available tasks

(i.e. depending on the number of cores and nodes requested) where each task reads only the

sub-volume of interest for the computation. Note that due to the particular data layout,

making queries with spatial locality in IDX is more efficient compared to others (e.g. row

major order layout).

The rendering task uses the VTK [Schroeder et al. 2006] volume rendering (i.e.

SmartVolumeRendering) to render a sub-volume of the data and the composition of the

images done via a simple front-to-back ordering. Results in Fig. 4 show good scaling of the

dataflow applied to a microscopy dataset of size 2048x2048x2575 voxels to produce a

rendered image of size 2048x2048.

4.2 Registration

Image volumes of cleared brain tissue are created as a stack of 2D images taken at regular

intervals (e.g. every 0.5 micron) on the z-axis. A single volume is acquired through the depth

of the tissue at a given X,Y coordinate within the larger region of interest containing labeled

cells. The scan then moves to the next X,Y coordinate (maintaining a 15% overlap with

adjacent volumes to aid alignment in later steps) until the entire region of interest has been

imaged. As the microscope finishes scanning one field of view and moves on to the next

position, a range of movements causes the data to often be mis-aligned. To create a single

3D dataset encompassing the entire region of interest, each individual X,Y volume needs to

be aligned using the overlapping fluorescent blood vessels between adjacent volumes (see

Fig. 5).

To compute pairwise relative positions between adjacent volumes, we use 3D Normalized

Cross Correlation (NCC) as a similarity metric. The alignment process is done in three steps:

i. Decompose the volume into slabs along the Z-direction

ii. For each corresponding slab of the two adjacent volumes, load the data in the

overlapping region and compute pairwise relative position using 3D NCC

iii. Choose the most reliable displacement corresponding to the largest NCC peak

value and smallest NCC shape width of the peak

In order to scale to large volumes, contrary to sliding window based spatial correlation, we

transform the data from spatial to frequency domain using the open source FFTW library

[Frigo 1999] and compute the correlation in the frequency domain. This results in good

speed up which is further exploited in the parallel setup. Finally, for an unbiased NCC, we

Petruzza et al. Page 9

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

use summed area tables to compute the local mean square energy required to normalize the

correlation co-efficient. Fig. 6 shows a slab before and after the alignment process.

Seemingly, this strategy to align volumes makes it an ideal candidate for parallelization. We

describe the parallel dataflow implementation next and provide details for optimal global

positioning based on minimum spanning tree of the undirected weighted graph as a simple

post processing step.

To perform the registration of multiple 3D volumes in parallel, we define a dedicated

dataflow that uses 2D neighbour communication pattern (see Fig. 9) where individual

alignment for a pair of slabs is evaluated first. The results are then collected in an another

task where the alignment that report the best correlation values will be used to compute the

final global positions. To compute the optimal global positions, we find the minimum

spanning tree of an undirected weighted graph where the nodes correspond to the volumes

and the edges represent the pairwise relative positions with the best correlation value chosen

during the previous step. We use the inverse of the correlation co-efficient (i.e. higher

correlation co-efficient corresponds to lower weight of the edge in the graph) as the weights

for the spanning tree computation. This way the resulting spanning tree will maximize the

correlation factor among all the pairs in the graph. Fig. 8 shows the alignment results for a

configuration of 4 volumes. In this particular example, the minimum spanning tree is given

by the edges 0-2-3 that correspond to largest correlation factor. Finally the optimal global

positions are used by the framework to update the position of each volume in the viewer.

Due to the high memory requirements of the correlation task, we restricted the number of

cores per node to only 4 out of the 32 available cores. Figure 7 shows the results for up to

3200 nodes where the parallel execution exhibits strong scaling. It is important to notice that

for the given domain decomposition, even at 3200 nodes, each registration task will correlate

only 2 slices per slab. This means that at this scale the problem is over-decomposed and the

workload of the registration algorithm becomes very small visa-vis the communication and

runtime overhead which has a higher impact on the overall performance.

5 CONCLUSIONS

Massive amounts of scientific data are an increasing challenge for scientists and engineers.

With rapidly growing data sizes, generation, distribution, analysis and visualization of the

data requires specialized software infrastructures that (1) enables interactive visualization

and exploration, (2) enables designing complex work-flows in an interactive setting, and (3)

scales the computation of those workflows to full-scale data efficiently utilizing HPC

resources. Current solutions do not offer straight forward support for the definition and

prototyping of visualization and analysis workflow that can be executed interactively or at

scale. Furthermore, the user who intend to develop an algorithm for execution at scale is

forced to deal with the complexity of parallel programming (i.e. communication, scheduling,

resource management, portability, etc.) on HPC systems. Here, we present the first end-to-

end software framework that simplifies interactive visualization and analysis of tera-scale

datasets.

Petruzza et al. Page 10

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To enable interactive exploration of the data, the framework takes advantage of the multi-

resolution IDX data format and the ViSUS streaming infrastructure. In this environment, we

introduce a new library that creates an abstraction layer while separating the definition of the

algorithm from actual implementation and execution. This library further allows the user to

define visualization and analysis workflows as task graphs that can be executed on local

resources for interactive analysis or at scale on HPC systems.

Our new approach enables developers to implement their algorithms without the knowledge

of underlying communication primitives and resource allocation on different architectures or

at different scales. Furthermore, this component provides flexibility to easily implement an

algorithm, test it interactively on local resources using the data streaming infrastructure (i.e.

ViSUS) or at scale on HPC resources using the full-scale resolution of the data.

We demonstrated how our infrastructure scales and simplifies three algorithms applied to

large-scale neuroscience problems: rendering, de-noise filtering and 3D image registration

showing strong scaling on the leadership class supercomputer, Shaheen II. The simplicity of

use, choice of operating either locally or remotely on HPC systems, fast multi-resolution

streaming infrastructure, parallel custom analytics and a simple python interface for rapid

prototyping and analysis makes our infrastructure an ideal choice for research labs and

engineering firms with massive data aiding in improving the user productivity and

supporting scientists to find new insights and breakthroughs in their data.

Acknowledgments

This work is supported in part by NSF: CGV: Award:1314896, NSF:IIP Award :1602127 NSF:OAC Office of
Advanced Cyberinfrastructure (OAC): Award 1649923, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375,
and PIPER: ER26142 DE-SC0010498. This material is based upon work supported by the Department of Energy,
National Nuclear Security Administration, under Award Number(s) DE-NA0002375. For computer time this
research used the resources of the Supercomputing Laboratory at King Abdullah University of Science and
Technology (KAUST) in Thuwal, Saudi Arabia. Thanks to Will Usher for the teaser image.

References

Ahrens JamesGeveci BerkLaw Charles. Paraview: An end-user tool for large data visualization. The
Visualization Handbook. 2005:717.

Childs HankBrugger EricWhitlock BradMeredith JeremyAhern SeanPug-mire DavidBiagas
KathleenMiller MarkHarrison CyrusWeber Gunther H, Krishnan HariFogal ThomasSanderson
AllenGarth ChristophWes Bethel E, Camp DavidRübel OliverDurant MarcFavre Jean M, Navrátil
Paul. VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. High Performance
Visualization–Enabling Extreme-Scale Scientific Insight. 2012:357–372.

Christensen CameronLee Ji-WooLiu ShusenBremer Peer-TimoScorzelli GiorgioPascucci Valerio.
Embedded domain-specific language and runtime system for progressive spatiotemporal data
analysis and visualization. Large Data Analysis and Visualization (LDAV), 2016 IEEE 6th
Symposium on; IEEE; 2016. 1–10.

Dagum LeonardoMenon Ramesh. OpenMP: an industry standard API for shared-memory
programming. IEEE computational science and engineering. 1998; 5(1):46–55.

Amira FEI. 3D Software for Life Sciences. 2016.

Folk MikeCheng AlbertYates Kim. HDF5: A file format and I/O library for high performance
computing applications. Proceedings of Supercomputing. 1999; 99:5–33.

Frigo Matteo. Acm sigplan notices. Vol. 34. ACM; 1999. A fast Fourier transform compiler; 169–180.

Petruzza et al. Page 11

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Glaser Jacob R, Glaser Edmund M. Neuron imaging with Neurolucidaa PC-based system for image
combining microscopy. Computerized Medical Imaging and Graphics. 1990; 14(5):307–317.
[PubMed: 2224829]

Gropp WilliamLusk EwingSkjellum Anthony. Using MPI: portable parallel programming with the
message-passing interface. Vol. 1. MIT press; 1999.

Helmstaedter MoritzBriggman Kevin L, Denk Winfried. High-accuracy neurite reconstruction for
high-throughput neuroanatomy. Nature neuroscience. 2011; 14(8):1081–1088. [PubMed:
21743472]

Kale Laxmikant V, Zheng Gengbin. Charm++ and AMPI: Adaptive runtime strategies via migratable
objects. Advanced Computational Infrastructures for Parallel and Distributed Applications.
2009:265–282.

Kumar SidharthChristensen CameronSchmidt John A, Bremer Peer-TimoBrugger EricVishwanath
VenkatramCarns PhilipKolla HemanthGrout RayChen JacquelineBerzins MartinScorzelli
GiorgioPascucci Valerio. Fast Mul-tiresolution Reads of Massive Simulation Datasets. In: Kunkel
Julian-MartinLudwig ThomasMeuer HansWerner, editorsSupercomputing. Vol. 8488. Springer
International Publishing; 2014. 314–330. Lecture Notes in Computer Science

Kumar S, Vishwanath V, Carns P, Levine JA, Latham R, Scorzelli G, Kolla H, Grout R, Ross R, Papka
ME, Chen J, Pascucci V. Efficient data restructuring and aggregation for I/O acceleration in PIDX.
High Performance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for; 2012. 1–11.

Kumar SidharthVishwanath VenkatramCarns PhilipSumma BrianScorzelli GiorgioPascucci
ValerioRoss RobertChen JacquelineKolla HemanthGrout Ray. PIDX: Efficient Parallel I/O for
Multi-resolution Multi-dimensional Scientific Datasets. IEEE International Conference on Cluster
Computing; 2011.

Li JianweiLiao Wei-KengChoudhary AlokRoss RobertThakur RajeevGropp WilliamLatham
RobSiegel AndrewGallagher BradZingale Michael. Proceedings of SC2003: High Performance
Networking and Computing. IEEE Computer Society Press; Phoenix, AZ: 2003. Parallel netCDF:
A High-Performance Scientific I/O Interface.

Lofstead J, Klasky S, Schwan K, Podhorszki N, Jin C. Flexible IO and Integration for Scientific Codes
Through The Adaptable IO System (ADIOS). Proceedings of the 6th International Workshop on
Challenges of Large Applications in Distributed Environments, CLADE ’08; New York: ACM;
2008. 15–24.

Pascucci ValerioFrank Randall J. Global static indexing for real-time exploration of very large regular
grids. Supercomputing, ACM/IEEE 2001 Conference; IEEE; 2001. 45–45.

Pascucci V, Scorzelli G, Summa B, Bremer P-T, Gyulassy A, Christensen C, Philip S, Kumar S. The
ViSUS Visualization Framework. In: Wes Bethel E, Childs HankHansen Charles, editorsHigh
Performance Visualization: Enabling Extreme-Scale Scientific Insight. CRC Press; 2012.

Peng HanchuanRuan ZongcaiLong FuhuiSimpson Julie H, Myers Eugene W. V3D enables real-time
3D visualization and quantitative analysis of large-scale biological image data sets. Nature
biotechnology. 2010; 28(4):348–353.

PerkinElmer. 1998–2014. Volocity. 1998–2014. http://www.perkinelmer.com/

Schindelin JohannesArganda-Carreras IgnacioFrise ErwinKaynig VerenaLongair MarkPietzsch
TobiasPreibisch StephanRueden CurtisSaalfeld StephanSchmid Benjamin, et al. Fiji: an open-
source platform for biological-image analysis. Nature methods. 2012; 9(7):676–682. [PubMed:
22743772]

Schroeder WillMartin KenLorensen Bill. The Visualization Toolkit. 4. 2006.

Wald I, Johnson G, Amstutz J, Brownlee C, Knoll A, Jeffers J, Günther J, Navratil P. OSPRay - A CPU
Ray Tracing Framework for Scientific Visualization. IEEE Transactions on Visualization and
Computer Graphics. Jan; 2017 23(1):931–940. DOI: 10.1109/TVCG.2016.2599041 [PubMed:
27875206]

Petruzza et al. Page 12

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.perkinelmer.com/

Figure 1.
Interactive visualization of large-scale non-human primate brain data (i.e., 6 volumes, each

of size 2048x2048x2575). Rendered with OSPRay [Wald et al. 2017]

Petruzza et al. Page 13

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
System overview: (i) Data produced by simulations or high-resolution acquisitions are either

generated in or converted to the IDX format and stored locally or on shared filesystems. (ii)

The ViSUS client enables remote interactive visualization via the ViSUS server that provides

fast read access to multi-resolution data queries.(iii) A user/developer can implement

visualization/analysis algorithms using the parallel library provided by the framework

interactively through the ViSUS client or at scale on an remote HPC systems that will

eventually update the visualization for further explorations.

Petruzza et al. Page 14

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Interactive median filtering on a volume of size 1024x1024x1024. Rendering at 4fps

1024x1024 framebuffer.

Petruzza et al. Page 15

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Scaling performance for median-filter, parallel volume rendering and image compositing

using a k-way reduction dataflow with a dataset of size 2048x2048x2575 voxels.

Petruzza et al. Page 16

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Decomposition of the overlapping sub-volumes used to register two adjacent volumes.

Petruzza et al. Page 17

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Slab of NHP neuronal data before and after alignment

Petruzza et al. Page 18

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Scaling performance of registering 25 3D microscopy volumes, each of size

1024x1024x1024 voxels.

Petruzza et al. Page 19

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Undirected weighted graph of initial displacement for 4 1024x1024x1024 volumes. The

nodes correspond to the volumes and the edges report the highest correlation factor and the

displacement for each pair (in pixels).

Petruzza et al. Page 20

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Registration dataflow: for each input volume a set of tasks reads one or more z-slabs in the

overlapping region. These slabs (i.e., potentially filtered to remove noise) are then sent to the

correlation tasks to perform the registration. The results of the registration are collected by

another set of tasks (i.e., sort/evaluate) that will evaluate the final global position for each

volume.

Petruzza et al. Page 21

SIGGRAPH Asia 2017 Symp Vis (2017). Author manuscript; available in PMC 2018 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	3 THE FRAMEWORK
	3.1 Data Streaming Infrastructure
	3.2 Analytics design library

	Listing 1
	3.3 Dynamic Runtime System

	Listing 2
	4 USE CASE: NEUROSCIENCE
	4.1 Filtering
	4.2 Registration

	5 CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

