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Project Title: Stochastic Optimization for Grid Resilience (AGM05) 

Organization: DOE OE Advanced Grid Modeling (AGM) 

Team: LLNL 

FY 2020 Funding ($K): $285k ($285k received) 

 

Project Objectives 
The goal of this project is to develop optimization techniques that can optimally allocate 
blackstart resources (pre-outage) and develop restoration sequences (post-outage) to 
improve the resiliency of the electrical grid. By building on a mathematical framework that 
models in detail power grid restrictions during restoration, our tool will enable planners to 
efficiently plan system upgrades to improve the ability of the system to recover from 
outages. Longer-term, the project will drive research in stochastic optimization-based 
planning tools to improve preparation for, emergency response to, and recovery from large-
area, long-duration blackouts. 
 
This project is currently in its third year, by end of which the team will have achieved the 
following: 

1. Developed a stochastic model for simulating the uncertain and unobservable state of 
the grid after a major blackout. 

2. Developed a dynamic programming (exact) approach to optimize power system 
restoration under uncertain grid state offline. 

3. Study approximate policies, with demonstrable theoretical or practical results 
validated against exact approach, for optimizing power system restoration with 
uncertain state online. 
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4. Validate approximate policies using real system data and against existing restoration 
plans.  

 

Summary of Major Activities in FY20 Q4:  
Task 1: Develop a stochastic model for simulating and optimizing power grid restoration 
under unobservable system state.  
FY20 Q4: No update since last quarterly report. 
 
Task 2: Mathematical analysis, technical reports and papers 
FY20 Q4: We have formalized our optimization problem under the unified framework for 
sequential decisions under uncertainty proposed by W. Powell. Using this framework, we 
have narrowed suitable policies for performing restoration to the class of deterministic 
look-ahead  policies. Within this class of policies, we are currently developing a forward 
simulator, that will let us optimize parametrized policies and obtain lower bounds to 
assert the qualities of our policies. The parameters in our policy correspond to buffers in 
system constraints, with the net effect that deterministic look-ahead solutions are more 
conservative and similar to those obtained if we were to solve the stochastic program 
exactly. This work will continue in the next quarter, when we will test it with the ARPA-E 
data for which we developed parsers in Q1. In a parallel effort, we have submitted an 
abstract to a special issue of Operations Research on our specialized approach for optimal 
power system restoration. We continue to work towards our draft on restoration with 
communication induced delays. 
 
Task 3: Develop a software tool for testing and validating our algorithms 
FY20 Q4: We have developed, implemented and tested a greedy initialization heuristic, 
inspired by dynamic programming, which generates feasible joint communication repair 
and power restoration sequences in a fraction of the time than branch-and-bound does. 
The heuristic works, roughly speaking, in three stages: (1) we ignore communications 
restrictions and build a greedy power restoration plan, (2) we take the power restoration 
plan as fixed and build a greedy communications repair plan trying to allow the power 
restoration plan to realize, and (3) we take the communications repair plan as fixed and 
build a power restoration plan that respects the restrictions of the communications plan. 
We have tested this heuristic using the IEEE-39 and IEEE-118 test cases, with various levels 
of observable communications damage, where our heuristic produces solutions between 
0.5% and 10% suboptimal. This heuristic will serve to provide an initial solution in our 
deterministic policy for restoration, as well as for our specialized algorithms finding 
bounds (offline) for benchmarking the performance of our policies. 
 
Task 4: Test framework using real system data and against existing restoration plans 
FY20 Q4: Task to begin in next quarter. 
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Project Title: Grid Data Crossing Software (GriD-Xing) 

Organization: Advanced Grid Modeling (AGM) 

Team: LLNL 

FY20 Funding ($K): $270K 

 
 
Project Objectives 

 

Grid Data Crossing (GriD-Xing) is an open-source data management and analytics tool that 
integrates data processing, storage, visualization, and analysis functionalities for users at 
industry (e.g., EMS and DMS) and universities. It can increase the applicability of large set of 
multi-source data from cross domains (e.g., power system, natural gas, and cyber data) and 
ultimately improve the resilience, reliability, and security of critical energy infrastructure. GriD-
Xing is also a research platform to identify the usefulness of large multi-source data via case 
studies of interest to industry. 
 

Major Accomplishments in FY18 (Funding $250k): Delivered data processing and storage 
software algorithms and a technical report. Specifically, 1) developed a set of data processing 
algorithms for single-source and multi-source measurements in both Python and MATLAB and 
applied them for data analytics through data-driven state estimation and event detection, and 
2) designed a new shared, distributed data storage system named UPS for transmission and 
distribution PMUs (T+D PMUs) in Go language, and tested the prototype with the benchmark 
covering QoS, flexibility, and scalability. UPS’s computing query speed is 10 times faster than 
the benchmark storage infrastructure. Successfully deployed GriD-Xing for assisting GMLC and 
LDRD projects and published three technical papers.  
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Major Accomplishments in FY19 (Funding $133k): Integrated the data processing and storage 
prototype algorithms into a software package with a user manual; Improved the data 
processing functionality, adding information fusion algorithms to address the time-skewness 
issue between synchronized and non-synchronized data (e.g., PMU/μPMU and SCADA/AMI 
data) for improving GriD-Xing usefulness. Specially, LLNL leveraged the GriD-Xing capability in 
several proposals, and successfully received a grant of $900k from the DoD ESTCP program, 
where GriD-Xing will be demonstrated at a military site. 

 

Summary of Major Activities in FY20 Q4: 
Plan: In FY 20, the team extends the scope from power grids to independent infrastructures 
and enhance GriD-Xing usability for enhancing critical infrastructure resilience under extreme 
events. Specifically, the team will develop novel energy flow models for integrated power and 
gas systems and data integration approaches for interdependent infrastructure (e.g., electric, 
gas, and communication infrastructure), which is complement to NAERM. 
 

 
Task 1: Data collection: Collecting real-world data of interdependent Infrastructure, including 
power flow, gas movement, and communication traffic data 
Completed in Q1. 
LLNL utilized the data resources from both open-source databases and prior projects to build up 
a real-world data library covering power, natural gas, and communication systems. The current 
data library has 1) real-time gas movement, capacity, and price data from pipeline EBBs and 
EIA, 2) real-time power flow, consumption, and price data from NERC Tag and ISO/RTO, and 3) 
power outage records from utilities, extreme weather records from NOAA, etc. It also includes 
the topology information of the power distribution and AMI network, from CenterPoint Energy. 
 

 
Task 2: Grid-Gas interdependence modeling: Observe and detect the probabilistic pattern of 
power and gas flows based on the historical grid-gas flow records and apply the results for 
grid-gas flow modeling 
Completed in Q3. 
Power and gas flow calculation is a fundamental problem in the operation and planning of 
integrated power and gas systems (IPGS). However, the nonlinear gas flow model introduces 
major challenges to the energy flow calculation. In Q1, the team completed the design of the 
framework and energy flow model. In Q2, the team completed the development of a tractably 
convex optimization algorithm to solve the energy flow problem. In Q3, we completed the 
testing of the proposed models and algorithms and submitted a journal paper.  
 
Task 3: GriD-Xing demonstration with resilience-oriented use cases: Deployed Grid-Xing, 
especially the data integration, data analytics, and visual analytics functionalities, on use 
cases covering power and natural gas systems.  
 

Completed in Q4. 
Use Case 1: GriD-Xing for topology reconfiguration (Completed in Q3). Topology reconfiguration 
is highly needed to improve the grid resilience and reliability. Existing optimization models for 
topology reconfiguration require a large number of integer variables to model the topology 
changes and may be computationally inefficient. Towards this end, a novel machine learning-
based approach using recursive Adaptive Boosting (AdaBoost) is developed and tested in the 
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topology reconfiguration problem. Numerical simulations on the modified IEEE 123-node 
distribution system validate the effectiveness of the proposed recursive AdaBoost. Also, the 
proposed recursive AdaBoost can be robust to the ambient noise of measurements. More 
details can be found in the following paper. 
 
M. Cui, C. Huang, J. Wang, “A Recursive AdaBoost Approach for Topology Reconfiguration in 
Unbalanced Distribution Systems”, IEEE Trans. Power Systems, submitted.  
 
 

 
Use Case 2: GriD-Xing for power and gas cascading failure studies (Completed in Q4). We 
present the preliminary results from simulating a combined cascading failure and restoration 
process in an interdependent power and natural gas system. The interdependent system for 
simulation is generated using a directed graph object, which is the approach of choice these 
days for investigating interconnected infrastructure systems. For investigating the robustness 
and resilience of the combined system, we study both random, operational failures and 
targeted, preferential failures. The targeted failure simulations are performed by failing the 
most important connections in both the underlying systems. These important connections are 
the targets of choice for any adversary. We illustrate the response of the connected network is 
significant different when the mode of attack is targeted compared to when it is entirely 
random operational failures. We also show that failure in one of the underlying systems quickly 
propagates to the other system and has a significant impact on not only its own network but on 
the other network. The impact of failure is quantified through what percentage of the facilities 
in individual networks becomes non-functional because of the failures in the other system. 
Impact is also quantified in terms of the additional distance over which power or gas has to be 
transported because of disruptions in the transmission networks. 
 
The extent of economic loss resulting from failures in an interconnected infrastructure system 
is a strong function of the restoration strategy including the time required to complete the 
restoration work. In this preliminary work, restoration is simulated using a simple rule-based 
process. In actuality, restoration is a complex exercise in scheduling and optimization, the main 
objective of which is to minimize the total economic loss from the failure events. This economic 
loss consists both of loss due to service disruptions (e.g, power and/or gas cannot be delivered 
to customers which results in revenue loss) and loss due to repairing and restoration. In the 
next step of the model development, we intend to incorporate this cost calculation and loss 
minimization scheme. Our development goal also includes coupling of the present graph-based 
simulator with a flow calculation simulator. 
 
More details can be found in the report in Appendix II. 
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--------------------------------------------------------------------------------------------------------------------- 
 
Appendix I: Summary of Major of Accomplishments 
 
Software delivered 
[1] Grid Data Crossing Software, released on LLNL Lab Network - LC, to be open source. It is now 
being utilized and tuned by two projects (A) Signature Library Framework Development, 
sponsored by DOE OE, and (B) Facility Energy Saving and Securing Technology Using Multi-
Source Data, sponsored by DoD ESTCP. 
[2] Single and Multiple Grid Events Generation Tool, to be open source. It is now being tested 
by CURENT/UTK Large-Scale Testbed. 
 
Publications 
I) Data Processing task 
[1] Y. Xu, C. Huang, X. Chen, L. Mili, C. Tong, M. Korkali, L. Min, "Response-Surface-Based 
Bayesian Inference for Power System Dynamic Parameter Estimation," IEEE Transactions on 
Smart Grid, vol. 10, no. 6, pp. 5899-5909, Nov. 2019. 
[2] C. Huang, et al, “Power Distribution System Synchrophasors with Non-Gaussian Errors: Real-
World Data Testing and Analysis,” IEEE Open Access Journal of Power and Energy, under 
review. 
 
II) Data Storage task 
[3] I. Kosen, C. Huang, Z. Chen, X. Zhang, L. Min, and Y. Liu, "UPS: Unified PMU-Data Storage 
System to Enhance T+D PMU Data Usability," IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 
739-748, Jan. 2020. 
 
III) Data Integration task 
[4] J. Zhao, C. Huang, L. Mili, Y. Zhang, and L. Min, "Robust Medium-Voltage Distribution System 
State Estimation using Multi-Source Data," IEEE PES ISGT, Washington, DC, USA, pp. 1-5, 2020. 
[5] J. Zhao, C. Huang, L. Mili, Y. Zhang, and L. Min, " Multi-source Multi-fidelity Data Fusion for 
Enhancing Power Grid Edge Situational-Awareness," IEEE Transactions on Smart Grid, under 
review. 
[6] M. Cui, C. Huang, and J. Wang, “Topology Reconfiguration for Unbalanced Distribution 
Systems via Recursive AdaBoost”, IEEE Transactions on Power Systems, under review. 
 
IV) Data and Modeling for Energy Resilience and Interdependence 
[7] Z. Chen, C. Huang, M. Nygaard, and L. Min, “Interdependent Expansion Planning for the 
Resilient Electricity and Natural Gas Networks”, IEEE Transactions on Power Systems, under 
review. 
[8] W. Jia, T. Ding, C. Huang, Z. Wang, Q. Zhou, and M. Shahidehpour, “Convex Optimization of 
Integrated Power-Gas Energy Flow Model and Application to Probabilistic Energy Flow”, IEEE 
Transactions on Power Systems, accepted. 
[9] T. Ding, S. Li, M. Qu, C. Huang, and M. Shahidehpour, “Hybrid Machine Learning Approach 
for Analyzing the Vulnerability to Random Cascading Outages in Power Systems”, IEEE 
Transactions on Power Systems, under review. 
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[10] C. Huang, and M. Shahidehpour, “Modeling of Cascading Failures and Subsequent 
Restoration in Interdependent Power and Natural Gas Systems”, IEEE Transactions on Power 
Systems, to be submitted. 
 
Outreach 
[1] Contributed to IEEE Task Force on Synchrophasor Applications in Power System Operation 
and Control White Paper, where Grid Data Crossing work was presented and discussed, 
February 2020. 
[2] Contributed to NASPI Tech. Report - Synchronized Measurements and their Applications in 
Distribution Systems, where Grid Data Crossing work was reported and cited, April 2020. 
  
Benefits to NAERM 
Ongoing work:  
1) GriD-Xing provides a data management and analysis platform for archiving, sharing, and 
analyzing data collected from cross energy sectors in NAERM 
2) GriD-Xing proposes a linearized energy flow model that can help NAERM tightly link 
nonlinear gas flow equations with linear power flow equations in NAERM Grid-Gas Use Case. 
 
--------------------------------------------------------------------------------------------------------------------- 
 
Appendix II: Report of Use Case 2 

(Attached) 

 
           

FY20 Q4 Project 
Update-AGM Data 
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Project Title: Adaptive Surrogate Modeling for Grid Risk and Reliability 
Quantification 

Organization: DOE OE Advanced Grid Modeling (AGM) 

Team: LLNL, Virginia Tech 

FY 2020 Funding ($K): $285K 

 
Project Objectives 
The goal of this project is to create an uncertainty quantification (UQ) framework for grid 
planning under uncertainty in several input data/parameters (load profiles, spatiotemporally 
correlated renewable power generation, transmission-grid topology changes, contingencies, 
etc.), accompanied with high-impact, low-frequency extreme events. The outcome of this 
research will lead to a better understanding of bulk power grid responses to severe 
perturbations in order to assess system reliability, resiliency, and security. By the end of the 
project duration, the team will successfully: 

• advance the state-of-the-art of UQ methods for grid operations, control, and 
planning to arrive at timely and credible risk-informed decisions in complex setting, 
including stochasticity, large system scale, high-dimensional correlated inputs; and 

• facilitate robust and efficient risk, reliability, and security assessment to ensure safe 
and stable grid operation. 

 
 

OE AGM Program 

Project Update (FY20 Q4) 
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Summary of Major Activities in FY20 Q4:  
• In this quarter, we have developed a computationally efficient data-driven framework 

for decision making under uncertainty in joint chance-constrained (JCC)-AC-optimal 
power-flow (OPF) problem that can characterize the security of an overall system 
performance by satisfying multiple constraints simultaneously for a predefined 
probability. Specifically, learning from the historical data, we have started by 
accurately estimating an uncertainty model of the renewable energy generation units 
and infer their marginal density functions using a kernel density estimator, which is a 
nonparametric method. Then, we have simulated the multidimensional dependence 
of these generation units using a vine-copula multivariate distribution estimate to 
model the asymmetric, tail-dependent samples. To reduce the prohibitive 
computational time required in the traditional Monte-Carlo (MC) method while 
achieving uncertainty propagation, we have applied a response-surface strategy that 
allows us to evaluate the time-consuming power-system model at arbitrary distributed 
sampled values with a negligible computational cost. Learning from the propagated 
samples, we have finally developed and applied a hybrid adaptive procedure to 
decompose the joint chance-constrained problem into an individual chance-
constrained one that yields a less conservative and less costly solution compared with 
that obtained by the traditional Boole’s inequality. Simulations conducted on a 
modified Illinois 200-bus test system demonstrate the excellent performance of the 
proposed method. 
 
Our quarterly contributions can be summarized as follows: 

• Starting from the uncertainty modeling that infers from the actual data, a kernel 
density estimator (KDE) is adopted to avoid the inaccuracy brought by the 
parametric marginal functions. Furthermore, using the vine-copula technique, 
high-dimensional, asymmetric, dependent multivariate with a variety of bivariate 
Archimedean copulas are accurately simulated. 

• In the uncertainty-propagation stage, the response surfaces of the nonlinear AC 
power-flow model based on polynomial chaos expansion (PCE) is proposed to 
improve the computing efficiency within the MC framework as well as to solve a 
JCC-AC-OPF problem. This response surface has no linear assumption and is 
further merged into the KDE framework to address arbitrary distributed marginals 
and combined with the vine copula to propagate complicated dependent 
uncertainties. 

• Finally, in the decision-making period, to overcome the conservativeness of the 
Boole’s inequality, a hybrid adaptive approach is proposed to decompose the joint 
chance constraint (JCC) into individual chance constraints (ICCs) by first properly 
detecting the statistical active constraints and then by allocating the joint chance 



 

11 

constraints into individual ones using the correlation information analyzed from 
the PCE-propagated samples. The quantile of each system state is further adopted 
to better design the tightened bounds without using any Gaussian or symmetric 
assumption. 

 
A flowchart that shows the components of the proposed hybrid adaptive framework is 
provided in Figure 1. 
 

 
      Figure 1. Flowchart of the proposed framework. 

 
Simulation Results 
Using the proposed method, various case studies are conducted on a modified 200-bus 
power system (i.e., the ACTIVSg200 case), geographically situated in the central part of 
the U.S. state of Illinois. The algorithms are tested with the MATLAB® R2018a version on a 
laptop with 2.60-GHz Intel® Core™ i7-6600U processors and a 16 GB of main memory. 
Four wind farms, each with a rated power of 50 MW, are added at Buses 5, 15, 100, and 
140, respectively, to introduce the randomness. The data for their uncertainty are 
obtained via the NREL’s Wind Data Set, within which, the real-world data are collected 
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Fig. 1. Flowchart of the proposed framework.

VI. SIMULATION RESULTS

Using the proposed method, various case studies are con-
ducted on a modified 200-bus power system, geographically
situated in the central part of the U.S. state of Illinois. 4
wind farms, each with a rated power of 50 MW, are added
at Buses 5, 15, 100, and 140, respectively, to introduce the
randomness. The data for their uncertainty are obtained via
the NREL’s Wind Data Set, within which, the real-world data
are collected from Sites #1116,#9246,#9435, and #9386,
from the first season of 2004, respectively. Their dependence
is addressed via the vine copula. It is further assumed that the
loads follow a Gaussian distribution with mean values equal
to the original bus loads and standard deviations equal to 5%
of their means [3]. The capacity of transmission line between
Buses 29 and 30 are increased from 100 MVA to 102 MVA,
and unit commitment is not considered. Besides, we further
utilize CPU-based parallel computing in evaluating collocation
points.

1) Uncertainty Modeling: Starting from uncertainty mod-
eling, apart from using KDE for marginal modeling, we
need to select a vine structure for dependence modeling. To
conduct a quantitative comparison studies among different
copula regrading their corresponding modeling accuracy, we

will use the index of log-likelihood (LL) as suggested in
the literature [12]. Within each vine structure, the inference
choices for the bivariate copula families include the Gaussian
copula, the Student’s t-copula, the Clayton copula, the Gumbel
copula, and the Frank copula as well as the rotated version of
the Archimedean copulas. We obtain the simulation results as
shown in Table I. From the quantitative test, it shows that both
the D- and C-vine copulae exhibit very high accuracy, whereas
the traditional Gaussian copula exhibits the lowest accuracy.
Therefore, we select D-vine copula in this article to simulate
the dependence among wind uncertainty.

TABLE I
QUANTITATIVE TEST FOR DIFFERENT COPULAE

Copula D-Vine C-Vine Gaussian
LL 4.215⇥ 103 4.214⇥ 103 3.892⇥ 103

2) Validation of the Proposed Method: Here, we test the
performance of the proposed method under different accept-
able violation probabilities, ✏, using 10, 000 as the sample size.
The simulation results of the proposed method are validated
with the MC method with 10, 000 samples to measure its
joint violation probability. The traditional method based on
the Boole’s inequality is also taken as a comparison. The sim-
ulation results are provided in Table II. It can be seen that the
proposed method can provide a solution with a joint violation
probability within the JCC’s setting limits while showing less
conservative solutions compared with those obtained from the
traditional Boole’s method. This demonstrates the improved
performance of the proposed method.

TABLE II
VALIDATION ON THE MODIFIED 200-BUS SYSTEM

Boole’s Proposed method
✏ = 2% 0.96% 1.88%
✏ = 5% 1.28% 2.71%

3) Tradeoff between Security and Economy: The CC-OPF
is flexible in balancing the security and the economy. As
shown in Table III, with the increase of ✏, the cost can be
further reduced at the risk of some security. Besides, the
proposed method achieves a less conservative decision that
yields more economic benefits compared with the Boole’s
method. Although the deterministic method has the lowest
operational cost, but has no security guarantee at all. Here, let
us select the voltage magnitude at Buses 11 to 20 with an upper
limit of 1.1 pu as an example (all are PQ buses), their boxplots
for the proposed method and the deterministic method are
provided in Fig. 2. It shows a significant improvement in
the security using the proposed method with a few violations.
Further, as shown in Buses 15 and 16, the system states show
obvious asymmetric distributions on the tails. This further
validates the rationality of using the quantile rule, (29), to
update bounds, instead of using symmetric assumptions.

4) Computing Efficiency: Finally, we would like to men-
tion that using the response-surface technique, the proposed
method can finish the simulation in 10 s while the traditional
MC method will spend around 1 h. This further shows the
impressive computational efficiency of the proposed method.
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from Sites #1116, #9246, #9435, and #9386, from the first season of 2004, respectively. 
Their dependence is addressed via the vine copula. It is further assumed that the loads 
follow a Gaussian distribution with mean equal to the original bus loads and standard 
deviation equal to 5% of their mean. The capacity of transmission line between Buses 29 
and 30 are increased from 100 MVA to 102 MVA, and unit commitment is not considered. 
In addition, we have utilized CPU-based parallel computing in evaluating collocation 
points. 
 
1) Uncertainty Modeling:  Starting from uncertainty modeling, apart from using KDE for 

marginal modeling, we need to select a vine structure for dependence modeling.  To 
conduct a quantitative comparison studies among different copula regarding their 
corresponding modeling accuracy, we have used the index of log-likelihood (LL) as 
suggested in the literature. Within each vine structure, the inference choices for the 
bivariate copula families include the Gaussian copula, the Student’s t-copula, the 
Clayton copula, the Gumbel copula, and the Frank copula as well as the rotated 
version of the Archimedean copulas. We obtain the simulation results as shown in 
Table I. From the quantitative test, it can be inferred that both the D- and C-vine 
copulae exhibit very high accuracy, whereas the traditional Gaussian copula exhibits 
the lowest accuracy. Therefore, we select D-vine copula in this article to simulate the 
dependence among wind uncertainty. 

 
Table I. Quantitative Test for Different Copulae 

 
 
2) Validation of the Proposed Method: Here, we test the performance of the proposed 

method under different acceptable violation probabilities, ϵ, using 10,000 as the 
sample size. The simulation results of the proposed method are validated with the MC 
method with 10,000 samples to measure its joint violation probability. The traditional 
method based on the Boole’s inequality is also taken as a comparison. The simulation 
results are provided in Table II. It can be seen that the proposed method can provide a 
solution with a joint violation probability within the JCC's setting limits while showing 
less conservative solutions compared with those obtained from the traditional Boole's 
method. This demonstrates the improved performance of the proposed method. 

 
Table II. Validation on the Modified 200-bus System 
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Fig. 1. Flowchart of the proposed framework.

VI. SIMULATION RESULTS

Using the proposed method, various case studies are con-
ducted on a modified 200-bus power system, geographically
situated in the central part of the U.S. state of Illinois. 4
wind farms, each with a rated power of 50 MW, are added
at Buses 5, 15, 100, and 140, respectively, to introduce the
randomness. The data for their uncertainty are obtained via
the NREL’s Wind Data Set, within which, the real-world data
are collected from Sites #1116,#9246,#9435, and #9386,
from the first season of 2004, respectively. Their dependence
is addressed via the vine copula. It is further assumed that the
loads follow a Gaussian distribution with mean values equal
to the original bus loads and standard deviations equal to 5%
of their means [3]. The capacity of transmission line between
Buses 29 and 30 are increased from 100 MVA to 102 MVA,
and unit commitment is not considered. Besides, we further
utilize CPU-based parallel computing in evaluating collocation
points.

1) Uncertainty Modeling: Starting from uncertainty mod-
eling, apart from using KDE for marginal modeling, we
need to select a vine structure for dependence modeling. To
conduct a quantitative comparison studies among different
copula regrading their corresponding modeling accuracy, we

will use the index of log-likelihood (LL) as suggested in
the literature [12]. Within each vine structure, the inference
choices for the bivariate copula families include the Gaussian
copula, the Student’s t-copula, the Clayton copula, the Gumbel
copula, and the Frank copula as well as the rotated version of
the Archimedean copulas. We obtain the simulation results as
shown in Table I. From the quantitative test, it shows that both
the D- and C-vine copulae exhibit very high accuracy, whereas
the traditional Gaussian copula exhibits the lowest accuracy.
Therefore, we select D-vine copula in this article to simulate
the dependence among wind uncertainty.

TABLE I
QUANTITATIVE TEST FOR DIFFERENT COPULAE

Copula D-Vine C-Vine Gaussian
LL 4.215⇥ 103 4.214⇥ 103 3.892⇥ 103

2) Validation of the Proposed Method: Here, we test the
performance of the proposed method under different accept-
able violation probabilities, ✏, using 10, 000 as the sample size.
The simulation results of the proposed method are validated
with the MC method with 10, 000 samples to measure its
joint violation probability. The traditional method based on
the Boole’s inequality is also taken as a comparison. The sim-
ulation results are provided in Table II. It can be seen that the
proposed method can provide a solution with a joint violation
probability within the JCC’s setting limits while showing less
conservative solutions compared with those obtained from the
traditional Boole’s method. This demonstrates the improved
performance of the proposed method.

TABLE II
VALIDATION ON THE MODIFIED 200-BUS SYSTEM

Boole’s Proposed method
✏ = 2% 0.96% 1.88%
✏ = 5% 1.28% 2.71%

3) Tradeoff between Security and Economy: The CC-OPF
is flexible in balancing the security and the economy. As
shown in Table III, with the increase of ✏, the cost can be
further reduced at the risk of some security. Besides, the
proposed method achieves a less conservative decision that
yields more economic benefits compared with the Boole’s
method. Although the deterministic method has the lowest
operational cost, but has no security guarantee at all. Here, let
us select the voltage magnitude at Buses 11 to 20 with an upper
limit of 1.1 pu as an example (all are PQ buses), their boxplots
for the proposed method and the deterministic method are
provided in Fig. 2. It shows a significant improvement in
the security using the proposed method with a few violations.
Further, as shown in Buses 15 and 16, the system states show
obvious asymmetric distributions on the tails. This further
validates the rationality of using the quantile rule, (29), to
update bounds, instead of using symmetric assumptions.

4) Computing Efficiency: Finally, we would like to men-
tion that using the response-surface technique, the proposed
method can finish the simulation in 10 s while the traditional
MC method will spend around 1 h. This further shows the
impressive computational efficiency of the proposed method.
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Fig. 1. Flowchart of the proposed framework.

VI. SIMULATION RESULTS

Using the proposed method, various case studies are con-
ducted on a modified 200-bus power system, geographically
situated in the central part of the U.S. state of Illinois. 4
wind farms, each with a rated power of 50 MW, are added
at Buses 5, 15, 100, and 140, respectively, to introduce the
randomness. The data for their uncertainty are obtained via
the NREL’s Wind Data Set, within which, the real-world data
are collected from Sites #1116,#9246,#9435, and #9386,
from the first season of 2004, respectively. Their dependence
is addressed via the vine copula. It is further assumed that the
loads follow a Gaussian distribution with mean values equal
to the original bus loads and standard deviations equal to 5%
of their means [3]. The capacity of transmission line between
Buses 29 and 30 are increased from 100 MVA to 102 MVA,
and unit commitment is not considered. Besides, we further
utilize CPU-based parallel computing in evaluating collocation
points.

1) Uncertainty Modeling: Starting from uncertainty mod-
eling, apart from using KDE for marginal modeling, we
need to select a vine structure for dependence modeling. To
conduct a quantitative comparison studies among different
copula regrading their corresponding modeling accuracy, we

will use the index of log-likelihood (LL) as suggested in
the literature [12]. Within each vine structure, the inference
choices for the bivariate copula families include the Gaussian
copula, the Student’s t-copula, the Clayton copula, the Gumbel
copula, and the Frank copula as well as the rotated version of
the Archimedean copulas. We obtain the simulation results as
shown in Table I. From the quantitative test, it shows that both
the D- and C-vine copulae exhibit very high accuracy, whereas
the traditional Gaussian copula exhibits the lowest accuracy.
Therefore, we select D-vine copula in this article to simulate
the dependence among wind uncertainty.

TABLE I
QUANTITATIVE TEST FOR DIFFERENT COPULAE

Copula D-Vine C-Vine Gaussian
LL 4.215⇥ 103 4.214⇥ 103 3.892⇥ 103

2) Validation of the Proposed Method: Here, we test the
performance of the proposed method under different accept-
able violation probabilities, ✏, using 10, 000 as the sample size.
The simulation results of the proposed method are validated
with the MC method with 10, 000 samples to measure its
joint violation probability. The traditional method based on
the Boole’s inequality is also taken as a comparison. The sim-
ulation results are provided in Table II. It can be seen that the
proposed method can provide a solution with a joint violation
probability within the JCC’s setting limits while showing less
conservative solutions compared with those obtained from the
traditional Boole’s method. This demonstrates the improved
performance of the proposed method.

TABLE II
VALIDATION ON THE MODIFIED 200-BUS SYSTEM

Boole’s Proposed method
✏ = 2% 0.96% 1.88%
✏ = 5% 1.28% 2.71%

3) Tradeoff between Security and Economy: The CC-OPF
is flexible in balancing the security and the economy. As
shown in Table III, with the increase of ✏, the cost can be
further reduced at the risk of some security. Besides, the
proposed method achieves a less conservative decision that
yields more economic benefits compared with the Boole’s
method. Although the deterministic method has the lowest
operational cost, but has no security guarantee at all. Here, let
us select the voltage magnitude at Buses 11 to 20 with an upper
limit of 1.1 pu as an example (all are PQ buses), their boxplots
for the proposed method and the deterministic method are
provided in Fig. 2. It shows a significant improvement in
the security using the proposed method with a few violations.
Further, as shown in Buses 15 and 16, the system states show
obvious asymmetric distributions on the tails. This further
validates the rationality of using the quantile rule, (29), to
update bounds, instead of using symmetric assumptions.

4) Computing Efficiency: Finally, we would like to men-
tion that using the response-surface technique, the proposed
method can finish the simulation in 10 s while the traditional
MC method will spend around 1 h. This further shows the
impressive computational efficiency of the proposed method.
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3) Tradeoff between Security and Economy: The CC-OPF is flexible in balancing the 

security and the economy. As shown in Table III, with the increase in ϵ, the cost can be 
further reduced at the risk of some security. Furthermore, the proposed method 
achieves a less conservative decision that yields more economic benefits compared 
with the Boole’s method. Although the deterministic method has the lowest 
operational cost, but has no security guarantee at all. Here, let us select the voltage 
magnitude at Buses 11 to 20 with an upper limit of 1.1 pu as an example (all are PQ 
buses), their boxplots for the proposed method and the deterministic method are 
provided in Figure 2. It shows a significant improvement in the security using the 
proposed method with a few violations. Further, as shown in Buses 15 and 16, the 
system states show obvious asymmetric distributions on the tails. This further 
validates the rationality of using the quantile rule to update bounds instead of using 
symmetric assumptions. 

 
Table III. Cost Comparison for the Proposed Method ($/hr) 

 
 

 
Figure 2. Boxplots of bus-voltage magnitude at Buses 11 through 20 with the (a) 
deterministic method and (b) proposed method.  
 
4) Computing Efficiency: Finally, we would like to mention that the response-surface 

technique brings significant improvement in the computing time since the proposed 
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TABLE III
COST COMPARISON FOR THE PROPOSED METHOD ($/HR)

Deterministic Boole’s Proposed method
f(✏ = 2%) 3.604⇥ 104 4.021⇥ 104 3.926⇥ 104

f(✏ = 5%) 3.604⇥ 104 3.958⇥ 104 3.906⇥ 104
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Fig. 2. Boxplots of bus-voltage magnitude at Buses 11 to 20 with (a) the
deterministic method and (b) the proposed method.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a data-driven decision making
under uncertainty framework in solving JCC-AC-OPF. Simu-
lation results have demonstrated the excellent performances of
the proposed method considering the accuracy and efficiency.

Future work will focus on enabling the proposed method
to be scalable to larger-scale power systems and extend this
framework to other decision-making-related applications, such
as optimal renewable curtailment and load shedding.
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method can finish the simulation in 10 s while the traditional MC method spends 
around 1 h. The two-order-of-magnitude speedup factor shows its capability for online 
applications. 

 
 
Plans for Future Work 
Our future work will focus on enabling the proposed method to be scalable to larger-scale 
power systems and extend this framework to other decision-making-related applications 
such as optimal renewable curtailment and load shedding. 
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Project Title: Load Sculptor 

Organization: Advanced Grid Modeling (AGM) 

Team: LLNL, Mississippi State University 

FY 2020 Funding ($K): $250K 

 

Project Objectives 
The goal of this project is to develop a data-driven multi-fidelity robust dynamic load 
modeling and uncertainty quantification tool called Load Sculptor that enhances utilities’ 
ability to perform planning, stability assessment and control tasks. This project’s technical 
approach is to integrate deep neural networks and uncertainty quantification for deriving 
reliable and flexible dynamic load models, saving computational costs and enhancing 
operators’ situational awareness to uncertainties.  

The project objectives are: 

• Develop computationally cheap surrogate load models for dynamic simulation and 
security assessment without sacrificing the accuracy requirements. 

• Derive robust load model parameter sets that are able to capture a wide range of 
operating conditions while quantifying the influences of parameter uncertainties on 
the simulation results. 

The project tasks are: 

• Task 1: NDA and contract with utility partners for acquiring field data and system 
models. (Done) 

• Task 2: Pattern recognition and dimension reduction submodules for load 

AGM Program  
Steering Committee Meeting  
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characteristic clustering. (Done) 
• Task 3: Dynamic load model reduction via multi-fidelity DNN surrogate models to 

significantly speed up time-domain simulations without loss of accuracy (statistically 
less than 3% RMS error). (Ongoing) 

• Task 4: Model validation and uncertainty assessment using simulations and field 
data. 

Summary of Major Activities in FY20 Q4: 

During this performance period, the team has established collaboration with PacifiCorp 
and is expecting the data from their proposed PMU installation locations. The team has 
also developed a dimension reduction technique that considers the nonlinear functions in 
dynamic load models. For the next performance period, the team will implement the 
WECC composite load model in the time-domain simulation platform to provide training 
data for surrogate models. 

Dimension Reduction for Dynamic Load Models: 

In this quarter, we have developed a novel model reduction approach using the discrete 
empirical interpolation method enhanced proper orthogonal decomposition (DEIM-POD)1. 
DEIM introduces an optimal selection procedure for the observation points in the state 
space so that the projection error of the nonlinear functions is minimized. DEIM provides 
a great solution for dynamic load model reduction because it not only effectively reduces 
the number of nonlinear function evaluations but also identifies the critical load locations 
where the parameters are important for the accuracy of dynamic load reduced-order 
models (ROMs). The contributions of this approach are: 

• DEIM is applied to the nonlinear functions of the dynamic load models of 3 
systems with different scales. 

• This approach uses the observation points selected by DEIM to identify the critical 
locations for maintaining dynamic load parameter accuracy. 

The observation points of the nonlinear functions in the dynamic load models are sparsely 
selected using DEIM as shown in Algorithm 1: 

 

IEEE 9-bus system 

 
1 S. Chaturantabut and D. C. Sorensen, “Nonlinear model reduction via discrete empirical interpolation,” SIAM J. 
Sci. Comput., vol. 32, no. 5, pp. 2737–2764, 2010. 
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The time evolution of the induction motor (IM) loads' state variables of the IEEE 9-bus 
system with 3 load buses after a 1-cycle 3-phase fault at bus 1 is shown in Fig. 1. The 
repetitive pattern across different IMs shows that a low-dimensional basis may exist to 
represent the full dynamic of all IM loads. This observation is verified by the singular value 
decomposition (SVD) of the state variables. As shown in Fig. 2, the time evolution of the 
full state space of dynamic loads can be represented by 6 dominant modes. 

 
Fig. 1. Manifold of the state variables of IMs defined by dx/dt = Ax+F(x, u) at 3 load buses 
of the IEEE 9-bus system. 

 
Fig. 2. Normalized singular values of x and F(x, u) for the IMs of the IEEE 9-bus system. 

However, the SVD of state space only provides a linear approximation of the dynamic 
loads. To acquire an accurate approximation for the nonlinear components, a separate 
SVD needs to be applied to the nonlinear functions F(x,u) of the dynamic load model. The 
time evolution of the nonlinear functions is shown in Fig. 3. Its dominant modes are 
shown in Fig. 2 alongside those of the state variables. With the same truncation threshold, 
the nonlinear functions have 7 dominant modes, which suggests that the nonlinear 
functions have a richer dynamic behavior than the state variables. 
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Fig. 3. Apply DEIM to the nonlinear functions F(x, u) representing IMs at 3 load buses of 
the IEEE 9-bus system. 

After applying Algorithm 1 to the basis acquired from the SVD of the nonlinear functions, 
the observation points that minimize the projection error of the nonlinear functions onto 
their basis are selected and highlighted in Fig. 3. It shows that the time evolution of s1 and 
s2 nonlinear functions can be interpolated by the nonlinear function of s3. Therefore only 
7 out of 9 nonlinear functions need to be evaluated for the ROM. 

Another insight provided by DEIM is the location of those observation points. For a larger 
power grid where fine turning all dynamic load models is prohibitively labor-intensive, 
DEIM observation points can be utilized as suggestions for critical locations for 
maintaining parameter accuracy. Although for a small system like the IEEE 9-bus system, 
the observation points cover all three load buses, for a larger system, it is possible to limit 
the number of observation points to a small number across multiple contingencies. This 
helps utilities to focus on tuning the critical dynamic load models that contribute the most 
to the accuracy of ROM. 

As suggested by Fig. 3, there are 7 state variables whose nonlinear functions need to be 
evaluated for the IEEE 9-bus system. The simulation result of these state variables using 
DEIM-POD is compared to the result of using the full model in Fig. 4. It demonstrates a 
good match for these 7 state variables. 

 
Fig. 4. Observation states comparison of the IEEE 9-bus system’s full model and DEIM 
ROM. 

The 2-norm percentage errors of the entire 2-second simulation period for all 9 state 
variables of the 3 dynamic loads are shown in Fig.  5. It shows that the observation state 
variables’ errors are minimized comparing to the interpolated states. Note that state 7 
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(i.e. s3) has the highest error among all observation states, because it is the last one 
chosen among all 7 observation states. 

 
Fig. 5. Normalized error of the IEEE 9-bus system load states simulated using DEIM. 

WECC 179-bus system 

The result from the WECC 179-bus system demonstrates a significant reduction of 
nonlinear functions. As shown in Fig. 6, only 7 states' nonlinear functions need to be 
evaluated to represent the dynamic after a 1-cycle 3-phase fault at bus 1. The 2-norm 
percentage errors of all 312 load states are shown in Fig. 7.    

 
Fig. 6. Observation states comparison of the WECC 179-bus system’s full model and DEIM 
ROM. 

 
Fig. 7. Normalized error of the WECC 179-bus system load states simulated using DEIM. 

To show the selected observation points for different contingencies, a total of 179 
simulations with 1-cycle 3-phase bus faults applied to each bus in the system are 
performed. As shown in Fig. 8, only a small number of load buses have states that are 
frequently selected by DEIM across all contingencies. The load buses that have states 
selected for at least 40 contingencies are highlighted in Fig. 9. The selected locations 
provide a comprehensive coverage of the system. It shows that DEIM can indeed be 
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utilized as a means of selecting critical locations for maintaining dynamic load model 
accuracy. 

 
Fig. 8. Number of contingencies for which each load is chosen as observation point in 
WECC 179-bus system. 

 
Fig. 9. Locations of load bus most frequently chosen as observation point in WECC 179-bus 
system. 

IEEE 2384-bus system 

For the IEEE 2384-bus system, there are 3 selected observation states as shown in Fig. 10 
after a 1-cycle 3-phase fault at bus 1. The 2-norm percentage errors of all 5478 load states 
are shown in Fig. 11 and all of them are maintained under 0.6%. 
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Fig. 10. Observation states comparison of the IEEE 2384-bus Polish system’s full model 
and DEIM ROM. 

 
Fig. 11. Normalized error of the IEEE 2384-bus Polish system load states simulated using 
DEIM. 

For 300 1-cycle 3-phase bus faults applied at different locations in the system, the top 3 
most frequently selected observation locations are load 45 (300 times), load 247 (30 
times) and load 46 (16 times). 

ROM Characteristics 

The characteristics of the ROMs constructed for the dynamics after the 1-cycle 3-phase 
fault at bus 1 of the 3 studied systems are shown in Table I. Although for the IEEE 9-bus 
system, the number of avoided nonlinear function evaluation is only 2, for the IEEE 2384-
bus system, the number reaches 5475, which suggests the potential of this approach to 
large systems. 

Table I 

ROM Characteristics of Studied Systems 

 
List of Publications and Presentations:  

Publication: 
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• N. Duan, J. Zhao, X. Chen, B. Wang, S. Wang, “Discrete empirical interpolation method 
based dynamic load model reduction”, to be submitted to IEEE PES General Meeting 2021. 

Presentation: 

• “Development update on Load Sculptor: a robust dynamic load modeling and 
uncertainty quantification tool”, WECC Modeling and Validation Subcommittee 
Meeting, Aug. 2020. 
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Project Title: Parallel in Time Algorithms for Solving Transient Stability 
Simulations for Power Systems 

Organization: Advanced Grid Modeling (AGM) 

Team: LLNL 

FY2020 Funding ($K): $90K ($488k with carryover) 

 

 
Project Purpose. Sequential time stepping in transmission systems can pose a bottleneck for simulations 
in which a larger number of time steps is required, especially for renewable systems with longer time 
horizons (e.g., wind ramping). In addition, computer systems now advance speed through concurrency 
rather than processor clock rates. Simulations can be accelerated through use of concurrency, although 
parallelizing over buses often leads to inefficient simulations due to poor linear solvers. Moreover, a full 
restructuring of the code is often needed to incorporate such concurrency. This project investigates 
computationally efficient solutions of long-term dynamic simulations through incorporation of 
computational parallelism and development of a novel multigrid reduction in time (MGRIT) integration 
scheme for transmission power grid simulation.  
 
Technical Approach. The MGRIT method pursued in this project makes use of current simulation time 
integrators by wrapping them into a multilevel time integration approach. The method leverages 
significant advances in parallel multilevel algorithms that have been developed in both theory and 
software over the last two decades. The MGRIT approach has been matured in the XBraid software 
developed at LLNL which was designed to use existing time integration code and thus requires only 
modest code modification for its use. MGRIT has mostly been applied to problems with continuous 
behaviors, so a key part of this project’s work is adapting the MGRIT method to handling discontinuities 
in power grid systems, such as occur in equipment limit adjustments or load changes. Methods must be 
tested in software on high concurrency machines to understand potential benefits and weaknesses, so 
our approach also includes implementation of the MGRIT algorithms and capabilities into the GridDyn 
transmission code at LLNL and assessing performance on LLNL’s high concurrency systems.  

AGM Program  
Steering Committee Meeting  
 
 
Project Update (FY20 Q4) 
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Summary of previous progress. An important component of this project has been the question of 
handling discontinuities. We completed an initial integration of the MGRIT algorithm into GridDyn, and 
within GridDyn, we formulated both fixed and variable step MGRIT methods for handling systems with 
scheduled discontinuities. We applied these methods to a version of the reduced WECC system with a 
discontinuous square load applied every 2 seconds and demonstrated uniform convergence of the 
MGRIT algorithm independent of the number of discontinuities. The largest problem had 460 
discontinuities yet MGRIT’s coarsest grid only had 4 time points. We observed speedups of up to 53x 
with uniform time steps and up to 47x speedup with variable step methods. Convergence was 
insensitive to the load size, which ranged from 50MW to 200MW. We presented these results at the PES 
2018 General Meeting. The paper is the first work we know of to present significant speedups with a 
parallel in time method on a power grid problem with discontinuous loads.  
 
More recently, we have focused on the unscheduled discontinuity problem. In serial, the locations of 
these discontinuities are computed in a sequential procedural way, which does not immediately 
translate to the parallel-in-time setting where they must be computed simultaneously. To address this, 
we first worked on the mathematical formulation of the problem. One approach we explored was an 
optimal control formulation designed to optimize the location of the discontinuities based on a certain 
objective function. Although successful, the approach is expensive and is unlikely to yield appreciable 
speedups. We instead directed our research to a nonlinear ODE formulation of the problem, using an 
exciter model problem as a first test example. 

For a problem with unscheduled events, the grid locations of the events must also be computed in 
parallel. This means that the temporal grid must adapt as the problem is being solved. In the scheduled 
event case, our adaptive algorithm added new time points where needed to achieve the desired 
simulation accuracy. For unscheduled events, we use the same strategy, but we also need a procedure 
for computing the event points themselves. We developed a double-step approach that allows the 
event points to “float” while the method is iterating. This allows us to refine temporally to achieve 
accuracy, while not adding too many time points to the grid. For the exciter model problem, we 
achieved speedups of up to 15x in parallel. To our knowledge, the resulting paper is the first to 
demonstrate significant speedups of a parallel-in-time algorithm for a model power grid problem with 
unscheduled events.  
 
FY2020-Q4 Progress and plans.  
To extend our results to more relevant and complex test problems that involve equipment limits and 
possibly deadbands, we are implementing our new unscheduled-event algorithm in GridDyn. This will 
allow us to easily test the two-bus regulation study model problem previously identified, but also a host 
of other more difficult model problems. It will also make it easy to compare the simulation time of our 
parallel-in-time method with traditional time-stepping approaches, using temporal adaptivity in both 
cases. In our Q4 efforts, we finished a first implementation of the code that couples GridDyn, ParaDAE, 
and XBraid, allowing us to run our double-step unscheduled-event algorithm in GridDyn (this algorithm 
had previously been implemented outside of GridDyn). We are now going through the testing phase. 
Our paper on this double-step algorithm was published and presented at the PESGM virtual meeting. 

List of Publications and Presentations during this quarter. 

Papers: 

• Stefanie Günther, Robert D. Falgout, Philip Top, Carol S. Woodward, and Jacob B. Schroder, 
“Parallel-in-time solution of power systems with unscheduled events,” IEEE Power and Energy 
Society General Meeting (PESGM) 2020. 
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Presentations: 

• Stefanie Günther, Robert D. Falgout, Philip Top, Carol S. Woodward, and Jacob B. Schroder, 
“Parallel-in-time solution of power systems with unscheduled events,” a recorded presentation 
to the IEEE Power and Energy Society General Meeting (PESGM), August 2020. 

 


