

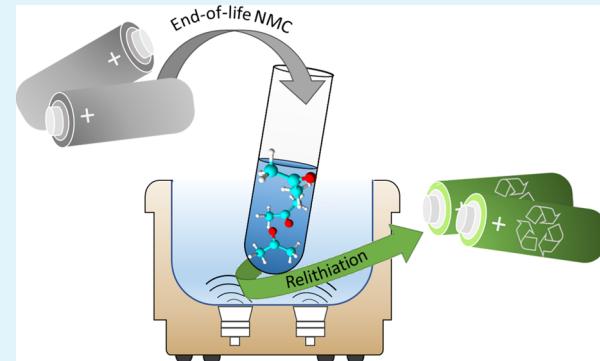
Impacts of Solvent Washing on the Electrochemical Remediation of Commercial End-Of-Life Cathodes

3 Kae Fink,* Paul Gasper, Jaclyn E. Coyle, Nathaniel Sunderlin, and Shriram Santhanagopalan

Cite This: <https://dx.doi.org/10.1021/acsaem.0c02260>

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Changes to the surface structure and chemistry occurring throughout the functional lifetime of lithium-ion batteries (LIBs) may impact the effectiveness of end-of-life rejuvenation methods. Solvent washing prior to electrochemical relithiation is shown to both increase relithiation efficacy and beneficially alter the interfacial chemistry of the heavily degraded industrial cathode material. Four common solvents (acetone, diethyl carbonate, isopropyl alcohol, and propylene carbonate) are employed to investigate the role of varying physicochemical solvent properties on the mechanism of capacity recovery. Electrochemical (dQ/dV , EIS), structural (XRD), and chemical (SPME-GC-MS) analysis techniques are employed to comprehensively analyze solvent–cathode interactions. Highly nucleophilic solvents (acetone, DEC) are found to reduce cathode charge-transfer impedance and enable stable impedance growth throughout subsequent cycling. The use of nucleophilic solvents under mechanically aggressive washing conditions may also enable the reintroduction of bulk lattice oxygen, thereby restoring anionic redox capacity. Further, the four solvents are found to selectively remove a subset of surface species from the aged cathode material, including residual electrolyte, additives, and electrolyte–additive reaction products, which are qualitatively analyzed. Surface species removal by each solvent is correlated with the electrochemical performance of the correspondingly washed cathode, highlighting the importance of an optimized washing protocol for effective remediation in the context of direct LIB recycling. For the material under study, the use of a simple acetone-washing protocol prior to electrochemical relithiation enables up to 174% capacity recovery relative to unwashed/relithiated black mass.

KEYWORDS: direct recycling, solvent washing, electrochemical relithiation, cathode remediation, surface reconstruction, cathode–electrolyte interface

1. INTRODUCTION

In the past decade, the number of electric vehicles on the road has increased dramatically. As of 2019, an estimated 7.2 million electric vehicles were in use globally, with electric vehicle sales accounting for a record 2.6% of all car sales.¹ By 2030, conservative projections predict a global EV stock of 140 million or ~7% of the world's automotive fleet.¹ Central to the design of EVs is a mechanism for energy storage: a role that is increasingly being filled by Li-ion batteries (LIBs). Given LIBs' high charge-to-weight ratio, significant technical maturity, and rapidly decreasing production costs, LIBs are the predominant technology of choice for EVs and are predicted to remain so for at least another decade.¹ In fact, by 2030, transportation applications are predicted to account for 85% of the LIB production market.²

Along with the proliferation of LIBs in EVs will inevitably come the end-of-life of these units. The exponential increase in EVs will be mirrored by an exponential increase in spent LIBs—delayed by the lifetime of the battery (approximately 10 years).³ It is estimated that, by 2030, the combined

capacity of spent batteries from EVs will be comparable to current production volumes (~100–120 GW h).¹ According to economic models, these LIBs should then be either refurbished or repurposed to maximize the product value and minimize life cycle impact.⁴ However, these LIBs will eventually reach a true end-of-life and thus the development of effective LIB recycling protocols are crucial to maintain circularity of both economic value and resources.⁴ The concept of direct recycling, or the recovery and rejuvenation of LIB components in maximally intact form, has gained traction in recent years.⁵ Direct recycling of the cathode material is highly attractive from both a cost and resource perspective, as this approach retains the original engineered

Received: September 14, 2020

Accepted: November 17, 2020

59 value of the cathode while avoiding the use of energy-
60 intensive smelters and environmentally problematic extractive
61 solvents. To date, direct recycling methods have been
62 demonstrated at the laboratory and pilot scales,^{6,7} with a
63 recent report by Sloop et al., suggesting the significant
64 promise for the application of direct recycling methods to
65 industrial LIB feedstocks.⁷

66 To achieve successful direct recycling, the cathode must be
67 "rejuvenated" or returned to a condition enabling electro-
68 chemical performance equivalent to that of the pristine
69 cathode material. Among the remediation techniques,
70 relithiation—the reintroduction of Li into the cathode lattice
71 to replenish the Li irreversibly lost to solid–electrolyte
72 interface (SEI) formation and other side reactions—has
73 perhaps garnered the greatest research focus. While
74 mechanistic specifics vary, relithiation techniques generally
75 aim to restore both the structure and stoichiometry of
76 pristine cathode material through the re-intercalation of
77 cyclable Li into the NMC matrix. Ideally, such techniques
78 would render recycled materials indistinguishable from their
79 virgin counterparts.

80 In relithiation studies to date, the material undergoing
81 remediation treatment has largely been degraded under
82 idealized conditions. There are relatively few studies reporting
83 the relithiation of commercial cells that were recovered after
84 "real world" use scenarios.⁷ Notably, the electrolyte employed
85 in the preparation of aged samples at the laboratory scale
86 typically consists of Li salt in a standard blend of organic
87 carbonates. While such an approach greatly simplifies the
88 system of study, it does not accurately reflect the chemistry of
89 commercial Li-ion cells, which regularly contain dozens of
90 additives to enhance the performance or address specific
91 electrolyte deficiencies.

92 With a growing focus on the rejuvenation of the spent
93 cathode material, there has been relatively little emphasis on
94 addressing the changes to cathode surface chemistry known
95 to occur during a cell's lifetime and how this may impact
96 subsequent capacity recovery. In particular, across numerous
97 cathode chemistries, the growth of a resistive surface layer,
98 analogous to the anode's solid electrolyte interface (SEI), has
99 been reported.⁸ This cathode–electrolyte interface (CEI) has
100 been identified as the source of cathode interfacial resistance,
101 which is the dominant contributor to cell impedance rise
102 during both the cycling⁸ and calendar-aging⁹ of high-power
103 Li-ion cells. Conclusive identification of CEI species is
104 challenging because of the chemical complexity and
105 irregularity of degradation products; however, numerous
106 reports have identified common functional groups appearing
107 in the CEI. These include Li_2CO_3 ,¹⁰ hydrocarbons (C–C
108 and C–H moieties),¹¹ polycarbonate-type compounds,^{11,12}
109 $\text{P}=\text{O}$ moieties,¹² $\text{C}=\text{O}$ moieties,¹³ C–O–C moieties,¹³
110 ROCO_2Li ,^{12,13} $(\text{CH}_2\text{OCO}_2\text{Li})_2$,¹³ Li_2O_2 ,¹³ and LiF .^{10,11} The
111 additives in the commercial electrolyte and their associated
112 degradation products compound this already-complex blend
113 of surface species. Renfrew et al. have tested the reactivity of
114 $\text{LiNi}_{0.6}\text{Mn}_{0.2}\text{Co}_{0.2}\text{O}_2$ with several electrolyte chemistries and
115 two common additives (fluoroethylene carbonate and vinyl-
116 ene carbonate) and have reported the formation of a peroxy-
117 like surface layer, particularly at higher voltages.¹⁴ The effect
118 of other commercial additives, and their associated degrada-
119 tion and reaction products, on the chemistry of the cathode
120 surface has not broadly been studied.

121 Given the adverse impact of the CEI on the cathode 121
122 performance during the cell's lifetime, it is anticipated that 122
123 the presence of CEI may also inhibit cathode remediation 123
124 strategies. Thus, establishing an optimal protocol for the 124
125 removal of resistive surface species from commercial end-of- 125
126 life cathodes is crucial to downstream cathode rejuvenation. 126
127 Because of the relative novelty of Li-ion battery recycling, it is 127
128 perhaps unsurprising that few studies to date have examined 128
129 the process of removing CEI species and the subsequent 129
130 impact on cathode performance. Waldmann et al. note that 130
131 most experimentalists include a rinse in typical electrolyte 131
132 solvents as part of postprocessing during cell disassembly and 132
133 postmortem analysis.¹⁵ This is typically performed with a 133
134 carbonate (electrolyte) solvent—most commonly diethyl 134
135 methyl carbonate (EMC)¹⁵—and aims to remove residual 136
137 crystallized LiPF_6 or nonvolatile solvents. Thus, solvent 137
138 washing is typically approached as an intermediate step to 138
139 remove products that may inhibit other analyses, rather than 139
140 an analytical approach in itself.¹⁶ Because of this, solvent- 140
141 washing parameters are largely arbitrary, and in fact, most 141
142 authors omit details regarding their washing procedure (time, 142
143 temperature, solvent choice, volume of solvent).¹⁵ Only a few 143
144 known studies have specifically explored the effects of solvent 144
145 washing procedures on the chemistry of end-of-life electrodes, 145
146 and these reports have focused on the targeted removal of 146
147 SEI components from the anode.^{17,18} Notably, Fang et al. 147
148 have recently reported the use of gradient polarity wash to 148
149 achieve selective and sequential extraction of SEI and near- 149
150 SEI components on Cu and Si anodes. The authors suggest 150
151 that the removal of electrolyte species from the anode is 151
152 polarity-controlled and that the targeted removal of electro- 152
153 lyte species can be achieved via gradient washing.¹⁸ An 153
154 analogous systematic study of solvent effects on the efficacy 154
155 of CEI removal—and, importantly, the effects of cathode 155
156 washing on subsequent rejuvenation and performance—is 156
157 lacking.

158 As has been noted, existing reports of cathode rinsing 158
159 involve solvents whose chemistry is consistent with the native 159
160 electrolyte system, that is, to remove reactive residual LiPF_6 160
161 without otherwise altering the surface chemistry.¹⁵ However, 161
162 in the context of preprocessing for cathode recycling, such 162
163 surface alteration may be desired, and thus, the scope of 163
164 solvent choice should be expanded beyond typical electrolyte 164
165 solvents. Fang et al.'s study suggests the importance of 165
166 solvent polarity on the removal of anode surface species.¹⁸ 166
167 While solvent polarity is undoubtedly a crucial parameter to 167
168 consider, Dutkiewicz has proposed a more complex model for 168
169 solvent classification.¹⁹ Based on correlations between 169
170 dielectric (β) and empirical solvent polarity (E_T) parameters, 170
171 Dutkiewicz suggests that solvents can be categorized into 171
172 several classes; notably for this study, class 1 contains weakly 172
173 dipolar non-hydrogen-bonding donors (including ethers and 173
174 carboxylic esters), class 2 contains dipolar non-hydrogen- 174
175 bonding donors (including ketones), and class 3 contains 175
176 hydrogen-bonding donors (including alcohols).¹⁹ Further, the 176
177 chemical structure and associated reactivity of the solvent 177
178 must be considered. Fingerle et al. have outlined the primary 178
179 modes of molecular interaction with the cathode surface, 179
180 including physisorption; chemisorption; dissociation; ion 180
181 transfer; and charge transfer.²⁰ Residual electrolyte solvents 181
182 and intact LiPF_6 are weakly physisorbed on the cathode 182
183 surface and thus may easily be removed via rinsing with an 183

184 electrolyte solvent. However, end-of-life degradation spe-
185 cies—particularly the complex products derived from the
186 reaction of electrolyte and additives—are anticipated to
187 experience multiple modes molecular interaction with the
188 cathode surface and thus may require more reactive solvents.
189 To this end, in the present work, we have chosen to study
190 solvents across both polarity classes and anticipated
191 reactivities, based on chemical structure. In particular, diethyl
192 carbonate—a common solvent used for electrode rinsing—
193 has been selected to represent class 1 compounds; acetone—
194 a cheap and readily available solvent—is a highly reactive
195 class 2 solvent with moderate β and $E_T(30)$ values;¹⁹
196 propylene carbonate—an electrolyte solvent—is a class 2
197 solvent with high β and $E_T(30)$ values;¹⁹ and isopropyl
198 alcohol—another inexpensive and common solvent—rep-
199 sents class 3 compounds. Study of these four solvents is
200 intended to direct the future optimization of solvent
201 parameters for electrode washing applications.

202 Thus, we herein present a systematic study of the effects of
203 solvent washing on the surface chemistry and interfacial
204 structure of cathodes recovered from heavily aged commercial
205 cells. We demonstrate a simple and cost-effective washing
206 protocol for aged cathode black mass, which may be
207 implemented as a preprocessing step to relithiation in a
208 direct recycling process design. We employ four common
209 solvents representing a range of polarity and chemical
210 reactivity: acetone, diethyl carbonate, isopropyl alcohol, and
211 propylene carbonate. Effects are characterized using electro-
212 chemical analysis (capacity, dQ/dV , EIS), structural analysis
213 X-ray diffraction (XRD), and chemical analysis gas
214 chromatography–mass spectrometry (GC–MS). Further, we
215 utilize the established washing protocol in conjunction with a
216 simulated rejuvenation technique (electrochemical relithia-
217 tion) to assess the impact of washing on subsequent capacity
218 recovery in a model recycling process. The combination of
219 solvent washing and electrochemical relithiation is found to
220 enable capacity improvements of up to 174% relative to
221 unwashed samples.

2. EXPERIMENTAL METHODS

222 **2.1. Electrode Preparation.** All electrode material used in the
223 present study was obtained from commercial 40 A h pouch cells
224 containing 34 pairs of electrodes and 68 layers of separator. In-
225 house characterization via inductively coupled plasma atomic
226 absorption spectroscopy (ICP-AAS) has suggested an approximate
227 transition-metal stoichiometry of $\text{Ni}_{0.41}\text{Mn}_{0.36}\text{Co}_{0.23}$ in the as-
228 received cathode material, with 92% active material (4.5%
229 conductive carbon, 3.5% binder); as-received anodes contained
230 93% graphite active material (7% binder). “Fresh” electrodes were
231 stored under inert conditions for approximately 1 year and under
232 atmospheric conditions for a subsequent 1 year. “Cycle-aged”
233 electrodes were recovered from cells that were first cycled at room
234 temperature ($\sim 25^\circ\text{C}$) within a voltage window of 3.0–4.1 V (2C
235 charging rate; 1C discharging rate) for 5600 cycles and then stored
236 under argon for approximately 1 year and under atmospheric
237 conditions for a subsequent one year.

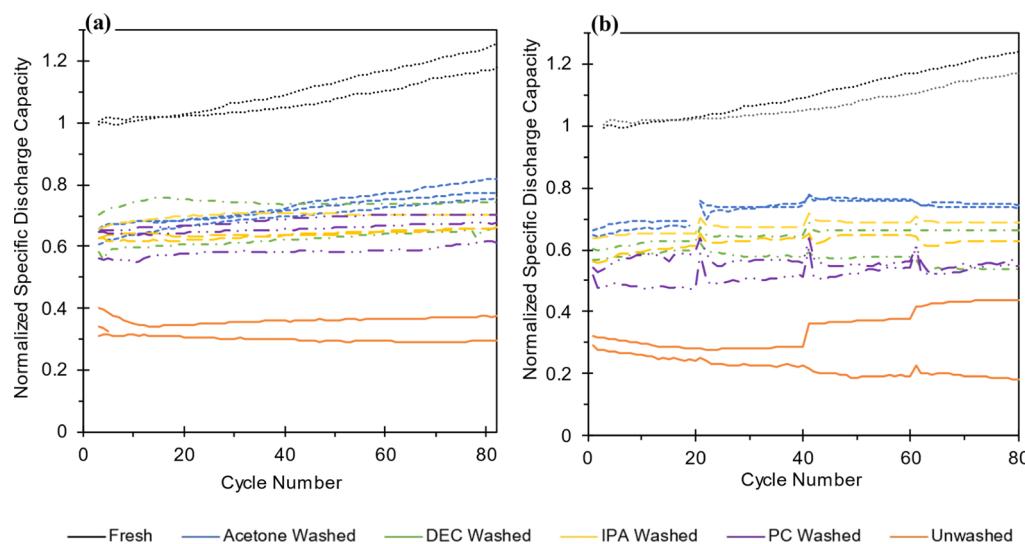
238 Black mass was removed from “cycle-aged” cathodes using a razor
239 blade. For aged-unwashed samples, the black mass was directly
240 processed in slurry format [97% black mass, 3% polyvinylidene
241 difluoride (PVDF) binder in N-methyl pyrrolidone (NMP) solvent]
242 and recast onto a fresh Al current collector foil. For aged-washed
243 samples, ~ 0.5 g of black mass was added to 25 mL of each of four
244 solvents [acetone, diethyl carbonate (DEC), isopropyl alcohol
245 (IPA), and propylene carbonate (PC)]. The suspensions were
246 sonicated for 30 min, followed by centrifugation (1440 rpm; 22 °C;

247 10 min). Supernatants were decanted, and the remaining solvent 248 was dried under atmospheric conditions for ~ 10 h. To achieve full 249 solvent removal, samples were then dried at low temperature (60 249 °C) for 24 h. Aged-washed samples were then processed in slurry 250 format (97% black mass, 3% PVDF binder in NMP solvent) and 251 recast onto fresh Al current collector foils.

252 **2.2. Cell Assembly and Electrochemical Cycling.** **2.2.1. Full- 253 Cell Preparation and Cycling.** Two-electrode (i.e., full cell) coin 254 cells were prepared from fresh, aged-unwashed, and aged-washed 255 cathodes, each paired with a fresh anode. Cell assembly was 256 conducted at room temperature in a glovebox, following overnight 257 electrode drying at 105 °C. In all full cells, 50 μL of Gen 2 258 electrolyte (1.2 M LiPF₆ in EC/EMC = 3:7 by weight) and Celgard 259 separator were used.

260 Following 6 h of rest at room temperature, full cells were cycled 261 between 4.2 and 2.8 V at 25 °C using a multichannel cycler 262 (Maccor). A constant-current/constant-voltage (CC/CV) protocol 263 was utilized, with a charge/discharge rate of C/20 (~ 0.15 mA) for 264 two initial formation cycles and a charge/discharge rate of C/10 265 (~ 0.3 mA) for a subsequent 100 cycles.

266 Discharge capacity is typically reported on a per-gram basis, with 267 grams of electrochemically active NMC as the basis of normal- 268 ization. However, the heavily aged samples utilized in this analysis 269 were believed to contain significant levels of degradation products. 270 Thus, capacity normalization for washed samples is calculated in two 271 ways in this report: (i) specific discharge capacity (mA h/g) is 272 calculated assuming the same proportion of NMC (92%) as in the 273 pristine material, adjusted by the proportion of black mass (97%) in 274 the recast slurry; (ii) normalized discharge capacity is reported as 275 the ratio of the specific discharge capacity for each cell [as calculated 276 in (i)] to the average specific discharge capacity of the fresh samples 277 at the beginning of life (first cycle post-formation).


278 **2.2.2. Simulated Electrochemical Relithiation.** To simulate an 279 electrochemical relithiation process, half coin cells were prepared 280 from fresh, aged-unwashed, and aged-washed cathodes, each paired 281 with a Li foil. Cell assembly was conducted at room temperature in 282 a glovebox following overnight cathode drying at 105 °C. In all half 283 cells, 50 μL of Gen 2 electrolyte (1.2 M LiPF₆ in EC/EMC = 3:7 284 by weight) and Celgard separator were used.

285 Half cells were rested for 6 h at room temperature and were then 286 cycled at 25 °C using a multichannel cycler (Maccor). Four cycles 287 were conducted at a constant C/10 current (~ 3 mA) between 4.3 288 and 3.0 V, with a 2 min rest period after each charge and discharge.

289 Following relithiation, half cells were disassembled in a glovebox, 290 and the cathode was nondestructively recovered. Relithiated full cells 291 were then constructed using the relithiated cathodes and fresh 292 anode, as described in (a) above. CC/CV cycling at C/10 was 293 conducted as described in (a) above, with cycling paused after every 294 20 cycles for intermediary electrochemical analysis. Discharge 295 capacity is reported as described in (a) above.

296 **2.3. Electrochemical Impedance Spectroscopy.** Electro- 297 chemical impedance spectroscopy (EIS) was conducted on 298 relithiated full cells after every 20 cycles. Prior to EIS analysis, all 299 cells were charged at C/20 to 4.0 V and were held at a constant 4.0 300 V for 6 h. Cells were then rested for a minimum of 2 h to ensure 301 that steady-state potential was achieved. Electrochemical impedance 302 data were collected using a VersaSTAT 4 Potentiostat/Galvanostat 303 (Princeton Applied Research) from 0.1 MHz to 1 mHz, with data 304 recorded at 10 points per decade using an AC magnitude of 20 mV. 305 Impedance was normalized by cathode active mass.

306 EIS data were analyzed by complex nonlinear least-squares 307 (CNLLS) fitting of an equivalent circuit model. Before fitting EIS 308 data, a linear Kramers–Kronig (lin-KK) test was performed to 309 ensure that each EIS measurement was sound. The lin-KK test was 310 performed using the open source analysis tool impedance.py.^{21,22} 311 Residual errors from lin-KK tests for all cells are shown in Figure 312 S1, displaying no systematic measurement error across the data set. 313 Data points at frequencies lower than the low-frequency turning 314 point, identified as the first minima in the imaginary component of 315 cell impedance when searching from low-to-high frequencies, were 316

Figure 1. Electrochemical cycling performance of fresh and cycle-aged cathode material, with and without washing in various solvents: (a) washing condition only; (b) washing followed by electrochemical relithiation. In both cases, cycling data are shown for full cells (vs graphite anode) at C/10 CC/CV and two initial formation cycles (C/20 CC/CV) are omitted. Lines of the same color and linestyle represent replicate cells. Capacity is reported as a normalization by the average 3rd (1st post-formation) cycle specific discharge capacity (mA h/g) of the fresh sample replicates.

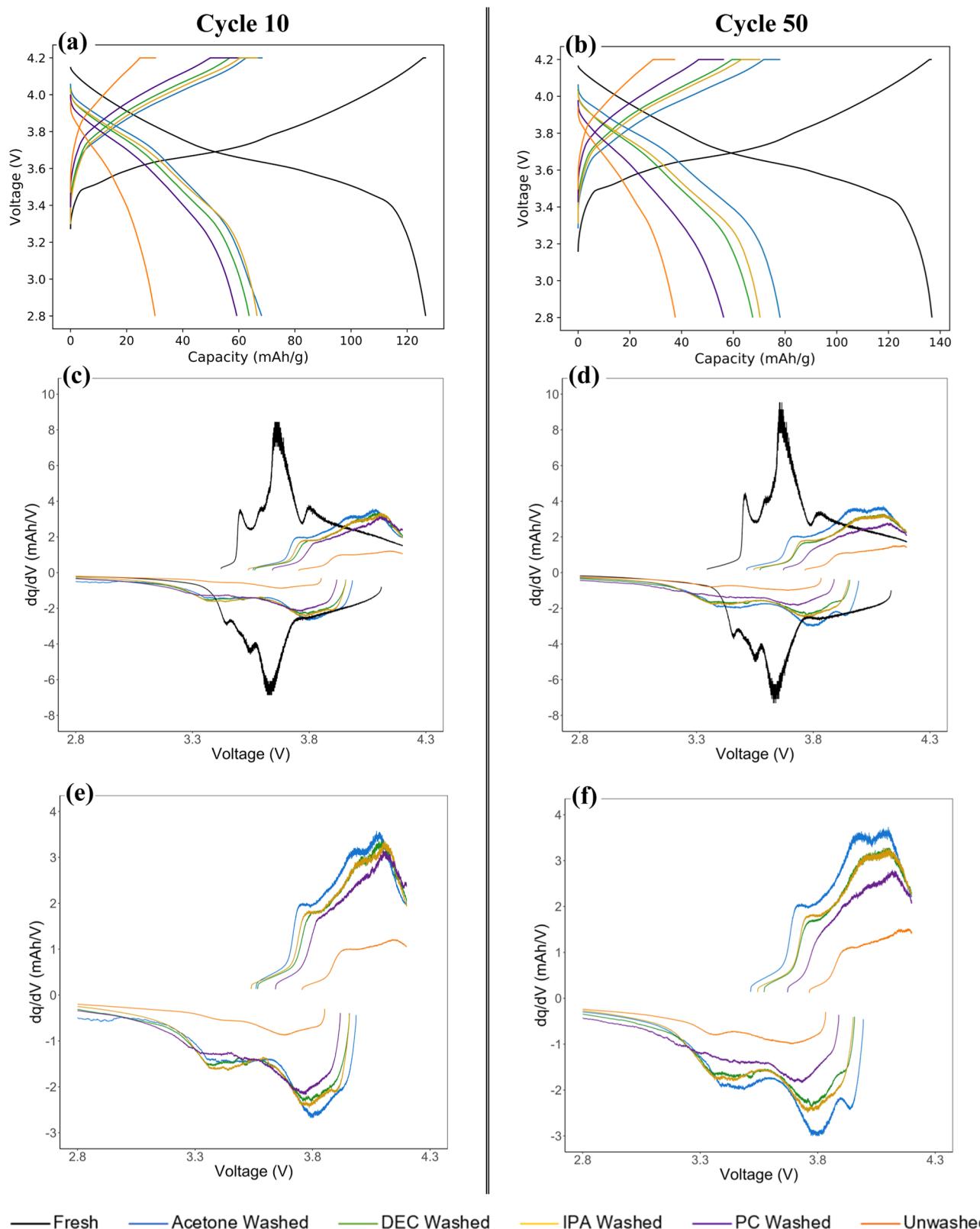
Table 1. Full-Cell Discharge Capacity of Cathodes under Washing Condition Only (Top) and Washing Followed by Subsequent Relithiation^a

	sample	cycle 10		cycle 50		cycle 80	
		dischg. capacity (mA h/g)	% recovery (vs unwashed) (%)	dischg. capacity (mA h/g)	% recovery (vs unwashed) (%)	dischg. capacity (mA h/g)	% recovery (vs unwashed) (%)
washing condition only	U	33.61		33.46		34.16	
	Ac-W	68.32	103	75.05	124	79.85	134
	DEC-W	68.55	104	69.85	109	71.23	109
	IPA-W	66.09	97	67.68	102	68.70	101
	PC-W	63.25	88	65.95	97	67.71	98
washing plus relithiation	U-W-R	28.48		28.41		31.58	
	Ac-W-R	69.29	143	77.71	174	75.37	139
	DEC-W-R	61.59	116	63.09	122	61.03	93
	IPA-W-R	63.30	122	68.22	140	67.09	112
	PC-W-R	54.07	90	54.91	93	57.33	82

^aData are reported for cycles 10, 50, and 80 following formation. Capacity recovery for each washed sample is reported on a mA h/g-discharge basis as compared to the unwashed sample in that washing condition. All reported values reflect an average of cell replicates.

317 removed before fitting. Remaining data were then fit with an
 318 equivalent circuit model (ECM; Figure S2). To fit pseudo-
 319 semicircular features of the EIS data, three sets of parallel resistor-
 320 constant phase elements (ZARC elements) were used in series with
 321 a single resistor; this model has been shown to be accurate through
 322 both traditional impedance analysis and machine learning
 323 approaches.²³ Fits conducted with only two ZARC elements
 324 displayed systematic errors at high frequencies (Figure S2), and
 325 Nyquist and Bode phase plots of experimental data clearly displayed
 326 contributions from three distinct processes.

327 The ECM was fit to each data series using CNLLS via the SciPy
 328 function curve-fit, as implemented by impedance.py.²¹ The shape
 329 factor of CPE elements was constrained between 0.8 and 1, ensuring
 330 that each ZARC element displayed relatively semicircular
 331 impedance.


332 **2.4. X-ray Diffraction.** Diffraction patterns of cast electrodes
 333 (composed of fresh, aged-unwashed, or aged-solvent-washed
 334 cathode) were obtained using a Rigaku Ultima IV diffractometer
 335 with CuK α radiation (40 kV, 40 mA) with a scintillation counter
 336 detector and 5 mm divergence slit. High-resolution scans were

337 conducted from 10 to 90° 2 θ (0.04° step size; 10 s dwell time).³³⁷
 338 Reitveld refinement was conducted using Profex software.²⁴³³⁸
 339 Refinement details are discussed further in the text.³³⁹

340 **2.5. Gas Chromatography–Mass Spectrometry.** To obtain a
 341 highly concentrated analyte suitable for chemical analysis, wash
 342 solutions were prepared using ~0.5 g of black mass in 5 mL of each
 343 of the four solvents analyzed (acetone, DEC, IPA, PC). The
 344 suspensions were sonicated for 30 min, followed by centrifugation
 345 (1440 rpm; 22 °C, 10 min). Supernatants were decanted and
 346 retained for analysis.³⁴⁶

347 Direct-immersion solid-phase microextraction (SPME) sampling
 348 was employed to further concentrate the analyte. A polyacrylate
 349 (PA) SPME fiber (85 μ m coating thickness) was exposed to 4 mL
 350 of each wash supernatant for 15 min under magnetic stirring (100
 351 rpm). The PA fiber was desorbed in the injection port at 270 °C for
 352 1.5 min. The fiber was rinsed with methanol (2 min, 100 rpm) and
 353 conditioned for 5 min (260 °C) between samples to avoid sample
 354 carryover.

355 Analysis was conducted using an Agilent 7890B gas chromato-
 356 graph (GC) coupled with an Agilent 5977B mass spectrometer
 357

Figure 2. Discharge profiles (a,b) and corresponding differential capacity (dQ/dV) plots (c–f) for fresh and cycle-aged cathode material, with and without washing in various solvents, after 10 (a,c,e) and 50 (b,d,f) cycles following electrochemical relithiation. Plots (e,f) are insets of (c,d), respectively, with only cycle-aged samples shown to highlight distinctions between washing conditions.

357 (MS). A column optimized for the separation of electrolyte
358 components (Wasson-ECE Instrumentation) was utilized. The
359 system was run with He as carrier gas at a column flow of 1
360 mL/min in splitless mode, and the following column oven program,

361 adapted from Horsthemke et al.²⁵ a starting temperature of 40 °C 361
362 was held for 2 min; the temperature was increased at a rate of 3 °C/ 362
363 min to 60 °C and then at 30 °C/min to 260 °C; and the final 363
364 temperature of 260 °C was held for 2 min. MS was conducted using 364

365 electron ionization (EI) with an ion source temperature of 230 °C
366 and a detector voltage of 1.02 kV in the range $m/z = 10$ –300.
367 Spectra were analyzed using Enhanced ChemStation software
368 (Agilent) and compounds were identified through MS spectral
369 matching using the NIST MS Search Program v.2.3.

3. RESULTS AND DISCUSSION

370 **3.1. Electrochemical Analysis.** Electrochemical full-cell
371 cycling data for fresh, aged-unwashed, and aged-solvent-
372 washed cathodes are shown in **Figure 1**, and selected capacity
373 values and statistics are tabulated in **Table 1**. As
374 demonstrated in **Figure 1a** and **Table 1**, washing alone
375 (without subsequent relithiation) is found to significantly
376 increase discharge capacity. All washed samples show an 88%
377 or greater capacity improvement (mA h/g) over unwashed
378 samples under full-cell CC/CV cycling by cycle 10.
379 Interestingly, the capacity is found to continuously increase
380 for acetone-washed samples over 100 cycles, with these
381 samples showing a 134% improvement over unwashed
382 samples at cycle 80. This trend is also observed for fresh
383 samples but does not appear to occur significantly for
384 unwashed samples or samples subject to the other three
385 washing conditions. By cycle 80, the performance of the aged
386 cathode material is generally found to increase as unwashed
387 (U) \ll PC-washed (PC-W) < IPA-washed (IPA-W) < DEC-
388 washed (DEC-W) < acetone-washed (Ac-W).

389 **Figure 1b** and **Table 1** show the effect of washing, followed
390 by electrochemical relithiation on full-cell discharge capacity.
391 Cells were removed after each 20 cycles and charged to 4.0 V
392 at a slower rate (C/20 followed by a trickle-charge voltage
393 hold) for EIS analysis, resulting in a single-cycle elevated
394 capacity value after formation and each subsequent 20 cycles.
395 For all relithiated cells, capacity values were found to be
396 slightly reduced on an absolute basis (mA h/g) as compared
397 to their equivalent counterparts tested without relithiation.
398 This is likely the result of the fabrication method, which
399 involved cell disassembly from the half-cell (relithiation)
400 condition and reassembly into a full cell. Electrode mass used
401 for normalization was calculated prior to half-cell assembly
402 and thus did not reflect any potential mass loss because of
403 inadvertent mechanical damage during disassembly. However,
404 the electrochemical performance of all relithiated cells is
405 directly comparable, as methods were maintained consistently
406 between samples.

407 By cycle 10, acetone-washed-relithiated (Ac-W-R) samples
408 show a 143% capacity improvement over unwashed-
409 relithiated (U-R) samples. Discharge capacity of Ac-W-R
410 samples is again found to increase with full-cell cycling up to
411 ~60 cycles, with capacity reaching 174% of U-R samples by
412 cycle 50. Capacity declines slightly on the subsequent cycles,
413 with Ac-W-R sample capacity around 139% of U-R samples
414 by cycle 80. Similar to the initial (nonrelithiated) condition,
415 the performance is generally found to increase as U-R \ll PC-
416 washed-relithiated (PC-R) < IPA-washed-relithiated (IPA-W-
417 R) \sim DEC-washed-relithiated (DEC-W-R) < Ac-W-R.

418 Notably, the U-R cell replicates show significant variability
419 in measured capacity, particularly after relithiation. This
420 suggests heterogeneity in the degraded material, leading to
421 variable efficacy of lithium reinsertion during relithiation. In
422 contrast, all washed-relithiated samples show greater con-
423 sistency between replicates than unwashed-relithiated sam-
424 ples, with Ac-W-R samples showing the tightest reproduc-
425 bility. This behavior implies that solvent washing prior to

426 relithiation may serve to homogenize material surface
427 properties, enabling more uniform relithiation. The precise
428 nature of these solvent–cathode interactions leading to the
429 observed capacity performance will be taken up in more
430 detail in the following sections.

431 Even for the best-performing Ac-W-R sample, electro-
432 chemical capacity is still greatly reduced (~35%) relative to
433 the fresh material. However, the contribution of solvent
434 washing to both direct capacity recovery and the facilitation
435 of subsequent electrochemical relithiation is remarkable.
436 Additionally, the commercial cathode material used in this
437 study was very heavily degraded, showing ~70% capacity loss
438 compared to the fresh material and demonstrating visible
439 surface damage (pitting, deposits). This material represents a
440 true worst-case for recycling, as electric vehicle batteries are
441 typically considered to reach their end of life at 20–30%
442 capacity loss (70–80% state-of-health).²⁶ Capacity recovery is
443 anticipated to be significantly improved in less-degraded
444 material.

445 The electrochemistry of the relithiated samples, with and
446 without solvent washing, is further explored in **Figure 2**.
447 Voltage profiles corresponding to cycles 10 and 50 following
448 relithiation are shown in **Figure 2a,b**; a voltage profile for the
449 fresh material is included for comparison. For consistency,
450 the best-performing (i.e., highest discharge capacity) replicate
451 for each condition is shown. At both cycle 10 and cycle 50,
452 voltage plateaus are evident for the aged material, most
453 notably for the Ac-W-R, DEC-W-R, and IPA-W-R samples.
454 This profile shape indicates the presence of the spinel phase²⁷
455 and has previously been reported for this commercial
456 material.²⁸ Structural analysis will be taken up in greater
457 detail in the subsequent section.

458 **Figure 2c–f** presents the corresponding dQ/dV plots for
459 cycles 10 and 50. The fresh material shows a dominant redox
460 peak at ~3.65 V, with smaller redox peaks at ~3.5 V and
461 ~3.8 V. The dominant peak is attributed to $\text{Co}^{3+/4+}$ and
462 $\text{Ni}^{2+/3+/4+}$ redox, which occurs at similar potentials and is thus
463 typically indistinguishable in dQ/dV analysis.²⁹ The peak at
464 ~3.8 V is attributed to anionic redox,²⁹ and the peak at ~3.5
464 V has been attributed to the minor activity of the reversible
465 $\text{Mn}^{3+/4+}$ couple and additional anionic redox, which also
466 typically overlap.^{29,30} For the fresh material, minimal
467 hysteresis is observed between charge and discharge.

468 For all aged samples, hysteresis is found to significantly
469 increase relative to the fresh material, and voltage fade is
470 observed for both charge and discharge profiles (**Figure 2c,d**).
471 Gallagher et al. have proposed a physical model connecting
472 these two phenomena, suggesting that the changes in the
473 energy of Li-site occupancies lead to asymmetric transition-
474 metal migration behavior upon discharge. Specifically, as
475 voltage decreases, transition metals that have migrated into
476 the tetrahedral sites of the Li layer may return to their
477 original vacant octahedral site, which has shifted in energy
478 (hysteresis), or may occupy another cubic site (voltage
479 fade).³¹ The loss of the dominant transition-metal redox peak
480 in the aged material, in conjunction with both hysteresis and
481 voltage fade, suggests significant transition-metal migration in
482 this material, coupled with a structural rearrangement
483 observed in both electrochemical and XRD measurements.
484

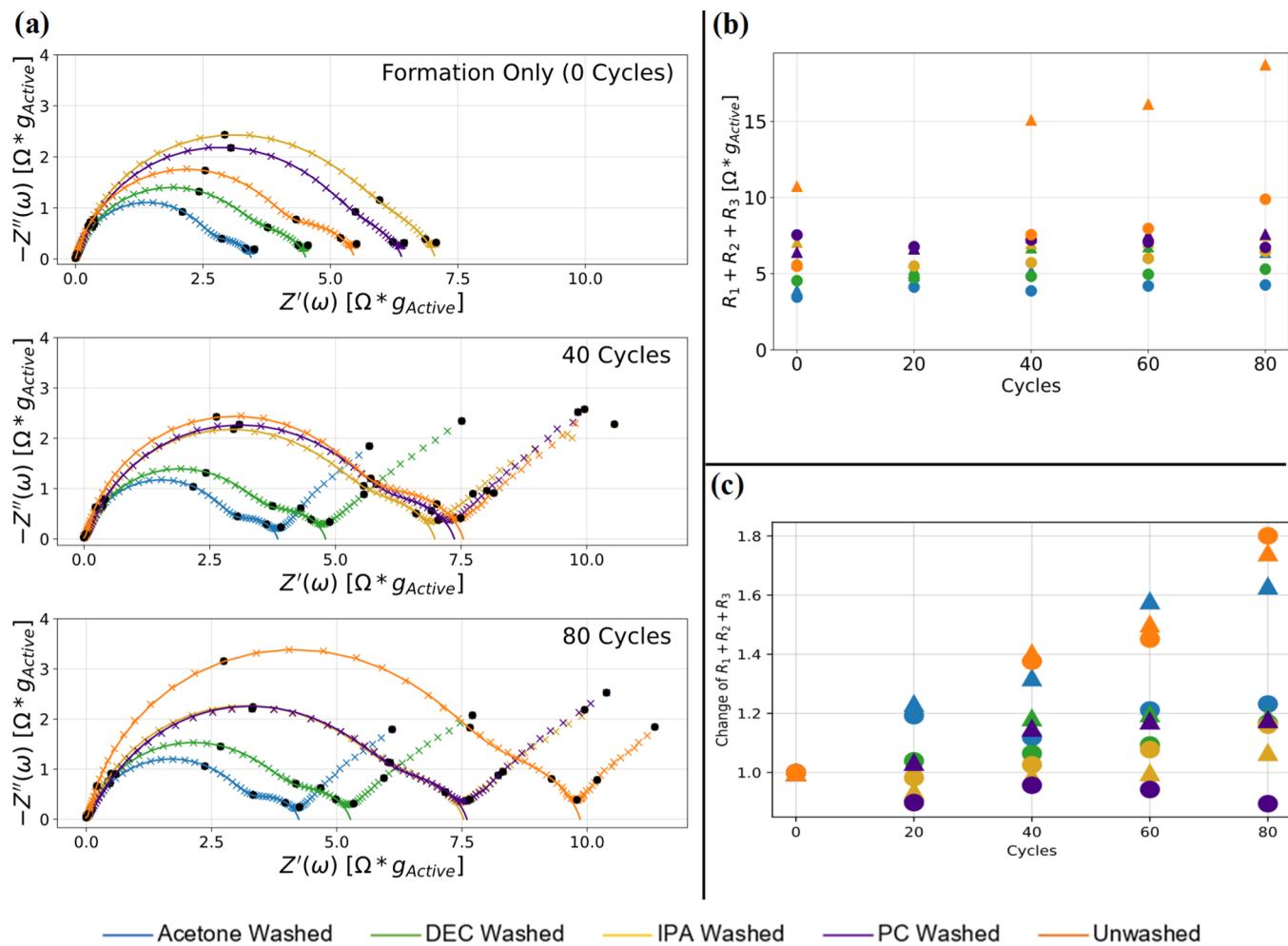
485 The reduction in electrochemical activity for the aged
486 material can readily be explained via the above-described
486 mechanism. More interesting, however, is the recovery in
487 electrochemical redox for solvent-washed-relithiated material
488

Table 2. Characteristic Time Constants and the Physical Processes Attributed to Each Frequency Range of the Impedance Response from Graphitic Anodes, Intercalation Cathodes, and Full Cells of Lithium-Ion Batteries using Ethylene-Carbonate-Based Electrolytes Near Room Temperature at High States-Of-Charge^a

	frequency range (Hz)	physical process	ref. #s
graphitic anodes	10^4	contact impedance (minor)	23,38,39
	10^3	interfacial charge transfer	
	10^1	interfacial charge transfer and ion/electron diffusion through porous electrodes	
intercalation cathodes	10^4 to 10^3	contact impedance	23,29,30,39
	10^1 to 10^0	interfacial charge transfer and ion/electron diffusion through porous electrodes	
full cells	10^4	contact impedance (anode and cathode; anode-dominated)	23,38,39
	10^4 to 10^3	contact impedance (anode and cathode; cathode-dominated); interfacial charge transfer (anode)	
	10^1 to 10^0	interfacial charge transfer; ion/electron diffusion through porous electrodes (anode and cathode)	

^aProcesses describing the diffusive/capacity tail at low frequencies have been omitted.

489 and the disparity observed between solvent conditions on
490 electrochemical behavior. Previous work suggests that electro-
491 chemical relithiation alone restores aged cathodes to a
492 structurally and electrochemically pristine state, by reinserting
493 Li^+ into the NMC matrix to replenish depleted stores of
494 cyclable Li^+ .³² If solvent washing were simply enabling more
495 effective relithiation (i.e., by removal of resistive species
496 preventing Li reinsertion), the electrochemical signature of
497 rejuvenated materials would be expected to resemble pristine
498 materials. However, Figure 2c,d demonstrates a drastic shift
499 in the mechanism of electroactivity between fresh samples
500 and relithiated samples in which capacity has been recovered.
501 Nearly identical dQ/dV profiles between washed-relithiated
502 and washed-only (without relithiation) samples (*not shown*)
503 imply that the washing step itself, rather than the subsequent
504 relithiation, is driving this behavior.

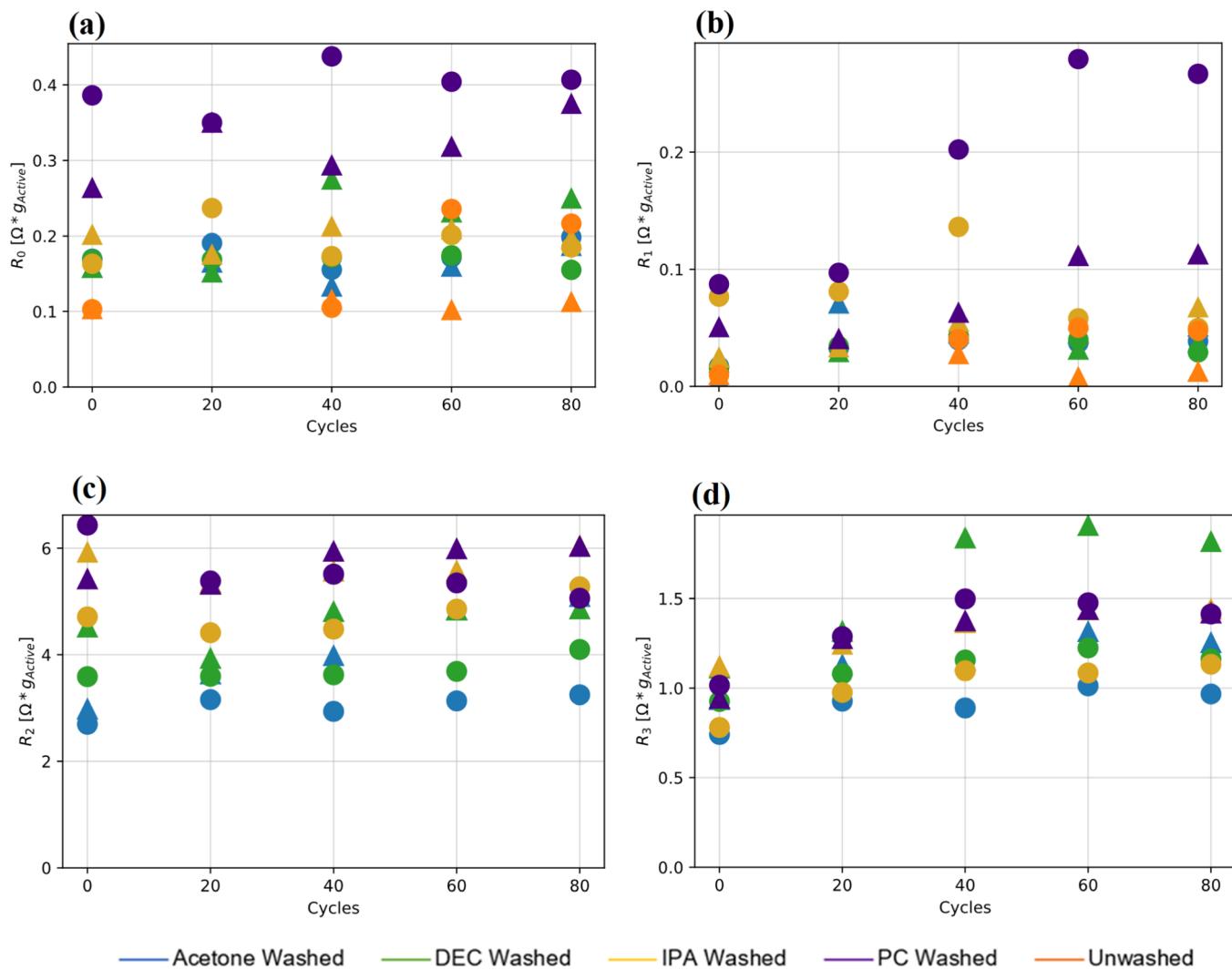

505 As shown in Figure 2e,f, the U-R sample shows virtually no
506 electrochemical activity, with one minor redox peak at ~ 3.9
507 V/ ~ 3.7 V (charge/discharge). In contrast, each of the
508 washed samples shows 2–3 redox peaks for both charge
509 and discharge. It is probable that the central peaks for each of
510 the washed samples (~ 4.0 V/ ~ 3.8 V charge/discharge) are
511 attributable to Ni and Co redox, which has been recovered
512 because of the removal of insulating surface species by
513 solvent washing. These peaks show both significant voltage
514 shift and hysteresis as compared to the fresh material, again
515 attributable to asymmetric transition-metal migration.³¹ The
516 decrease in intensity of the dominant transition-metal redox
517 peak has been previously observed for $\text{LiNi}_x\text{Co}_y\text{Mn}_{(1-x-y)}$
518 (hereafter "NMC") materials following extended cycling, and
519 the reduction in Ni/Co contribution to overall redox has
520 been tied to incomplete cationic redox—particularly incom-
521 plete Ni-oxidation—in cycled materials.³⁰

522 The growth in the redox peaks above and below the
523 transition-metal peak for washed-relithiated materials implies
524 a significant increase in bulk anionic redox and suggests that
525 anionic redox may be dominating electrochemical activity in
526 these refurbished cathodes. Anionic redox—the reversible
527 electrochemical activity of bulk lattice oxygen ($\text{O}^{2-}/\text{O}^{n-}$)—
528 has only recently gained traction as a mechanistic framework
529 for understanding the electrochemistry of NMC materi-
530 als.^{29,30,33} By this mechanism, Co and Ni are the main
531 cationic redox couples,²⁹ with a gradual increase in $\text{Mn}^{3+/4+}$
532 activity also contributing to low-voltage redox after extended
533 cycling.³⁰ At voltages above and below the Co/Ni (over-
534 lapping) dQ/dV peak, bulk anionic redox is found to
535 contribute to charge compensation²⁹ and thus drive electro-
536 chemical activity.^{29,30,33} Assat et al. have reported that

537 reversible redox of bulk lattice oxygen may account for
538 nearly half of observed capacity in NMC materials and
539 remains active over extended cycling.³⁰ While the oxygen
540 redox capacity has previously been found to decrease with
541 cycling through the irreversible loss of lattice oxygen, either
542 as O_2 or through the formation of degradation products,³⁰
543 the present analysis suggests that this anionic redox may be
544 recoverable, and perhaps even enhanced, through solvent
545 washing.

546 It has been suggested that solvent washing with polar
547 solvents (alcohol,^{14,34} water¹⁴) as a post-synthetic step
548 induces surface reconstruction by the removal of certain
549 surface defects, including carbonates and hydroxides.^{14,34} We
550 hypothesize that reaction with the four solvents, particularly
551 under mechanically aggressive washing conditions (i.e.,
552 sonication), may similarly reconstruct the surface of the
553 NMC particles. The strong nucleophilicity of acetone and the
554 moderate nucleophilicity of DEC, PC, and IPA imply
555 probable reduction at the NMC surface.^{35,36} Specifically, a
556 catalytic study on hydrotalcite-derived oxides (MnAlO,
557 CoAlO, NiAlO, FeAlO) has suggested a mechanism whereby
558 acetone adsorbs to weak acid sites on transition-metal oxide
559 surfaces and is subsequently oxidized by reactive surface
560 (lattice) oxygen.³⁵ This process is accelerated by the presence
561 of oxygen vacancies in the lattice,³⁵ which is anticipated in
562 our end-of-life cathode material. It is feasible that reduction
563 by acetone—most strongly—or carbonates/alcohols—more
564 weakly—could reintroduce oxygen back into the bulk lattice.
565 This oxygen may be derived from either the solvent itself or
566 adsorbed electrolyte/degradation products. Such a trans-
567 formation of adsorbed oxygen species at the surface of p-type
568 transition-metal oxides to lattice oxygen is thermodynamically
569 favorable and has been proposed to proceed as
570 $\text{O}^{2-}(\text{adsorbed}) \rightarrow \text{O}^-(\text{adsorbed}) \rightarrow \text{O}^{2-}(\text{lattice})$.³⁷ For the
571 Ac-W-R sample in particular, the increase in anionic redox
572 between cycles 10–50—observed as the growth of the dQ/dV
573 discharge peak ~ 4.0 V—provides evidence for lattice
574 oxygen reintroduction, and this mechanism may be driving
575 the observed increase in capacity during full-cell cycling.
576 Structural studies provide additional evidence for this
577 hypothesis, as will be discussed in the subsequent section.
577

578 EIS was performed after each 20 cycles for all relithiated
579 full-cell samples to track impedance growth during cycling.
580 Solvent washing is anticipated to reduce both contact
581 resistance and interfacial charge-transfer resistance because
582 of the removal of resistive degradation species, while
583 relithiation is expected to impact the bulk structure of the
584 cathode material, impacting ionic diffusion through the
584

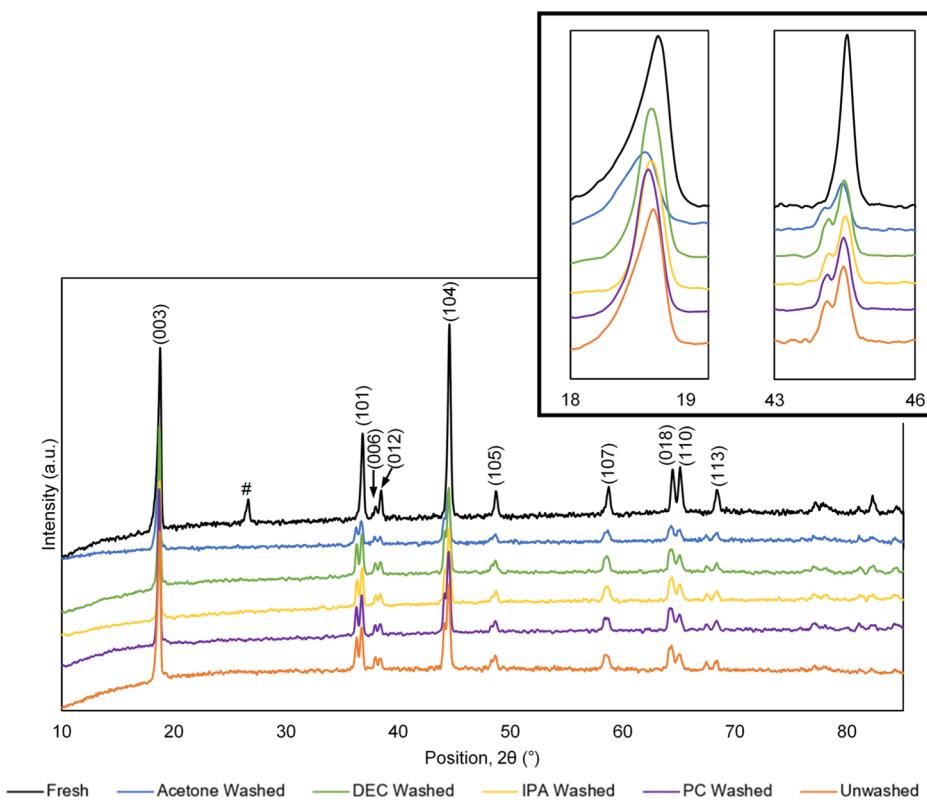

Figure 3. (a) Nyquist plots for one replicate of each condition (unwashed-reliothiated or washed-reliothiated) after formation (0 cycles; top); 40 cycles (middle); and 80 cycles (bottom) post-reliothiation. Ohmic contributions are subtracted to aid comparison of the polarization impedance between cells. “X” indicates experimental data; solid line indicates ECM fit; black markers denote each frequency decade, starting at 10^5 Hz; (b) sum of deconvoluted resistances ($R_1 + R_2 + R_3$) for all reliothiated cells after each 20 cycles; (c) change in the sum of the deconvoluted resistances for each cell, calculated via normalization by the initial value of impedance for each cell replicate. For (b,c), sample replicates for each washing condition are indicated using circular and triangular markers of the indicated color.

885 porous electrode as well as charge storage processes. These
 886 processes occur around different characteristic frequencies
 887 and are thus separable by deconvolution of the impedance
 888 spectra.

889 Equivalent circuit modeling was used to deconvolute the
 890 impedance response within the semicircular regime of the EIS
 891 measurements into three process, each modeling a distinct
 892 range of the frequency spectrum: high (10^5 Hz), middle (10^2
 893 to 10^4 Hz), and low (10^0 to 10^1). An example of the
 894 separated contributions from each process to the overall
 895 impedance is shown in Figure S2. Residual errors from all fits
 896 show sinusoidal errors at frequencies from 10^0 to 10^3 Hz
 897 (Figure S3), suggesting that the equivalent circuit model may
 898 not be fully describing the features of the EIS spectra.
 899 However, error in this region does not impact the present
 900 analysis. More detailed studies have used transmission line
 901 models to model impedance behavior in this frequency
 902 range,³⁸ but such analysis is beyond the scope of this work.
 903 In this study, only the contribution of the cathode to
 904 overall impedance is of interest. While the separate
 905 contributions from the anode and the cathode cannot be
 906 rigorously distinguished here, the impedance of each ZARC

can be loosely attributed to physical processes using detailed
 607 studies of similar cells. The characteristic behaviors of the
 608 impedance response from each electrode and overall cell
 609 impedance are reported in Table 2. High frequencies ($>10^3$ Hz)
 610 are dominated by contact resistances (i.e., resistance to
 611 conduction of charged species on surfaces and across
 612 interfaces) and lower frequencies are dominated by interfacial
 613 charge-transfer processes and charged species transport
 614 through porous electrodes. While both electrodes contribute
 615 significant impedance across the entire frequency range, cell
 616 impedance is typically reported to be dominated by cathodic
 617 contributions.^{23,39} Further, because all cells analyzed use
 618 identical anodes, differences between cells may reasonably be
 619 attributed to the disparate cathode washing treatments.
 620

EIS spectra for unwashed-reliothiated and washed-reliothiated samples with Ohmic contributions subtracted are shown after formation, 40 cycles, and 80 cycles (Figure 3a). Consistent with discharge capacity performance, the impedance response from Ac-W-R and DEC-W-R samples is substantially lower than that of the IPA-W-R, PC-W-R, and U-R samples. IPA-W-R samples show slightly lower impedance than PC-W-R samples. Notably, the use of any solvent treatment before


Figure 4. Deconvolutions of contributions to cell impedance: Ohmic resistance and three ZARC elements, tracked during electrochemical cycling of relithiated cells. (a) R_0 : Ohmic resistance; (b) R_1 : high-frequency ($>10^4$ Hz) contact resistance; (c) R_2 : the dominant contribution to impedance near 10^3 Hz, primarily attributable to cathodic contact resistance; (d) R_3 : the dominant contribution to impedance near 10^1 Hz, attributable to interfacial charge transfer and diffusion of charged species through the porous electrodes. For (c,d), data from U-R samples have been omitted for clarity of distinction between washing conditions (plots including U-R samples are shown in Figure S4).

relithiation appears to stabilize the cathode material, both in terms of overall polarization impedance (Figure 3b) and impedance stability with subsequent cycling (Figure 3c). This highlights the importance of solvent washing as a remediation procedure during direct recycling of end-of-life cathode materials. Of the washed and relithiated samples, Ac-W-R and PC-W-R samples show the most variability between replicates. Additionally, one Ac-W-R cell experienced substantial impedance growth during cycling, unique among all washed-relithiated cells. However, the impedance of this cell was still lower than those of the IPA-W-R and PC-W-R cells after 80 cycles.

The evolution of the ZARC elements R_0 , R_1 , R_2 , and R_3 during cycling for each of the washed-relithiated samples is shown in Figure 4a-d, respectively. The Ohmic resistance (R_0 ; Figure 4a) is not expected to be influenced by washing, and this is observed for most cells. However, PC-W-R samples display significantly higher Ohmic resistance than any other cells. This suggests that the PC wash may leave a residue on the cathode surface, increasing the electronic resistance. This is verified by analysis of the high-frequency

($>10^4$ Hz) contact resistance (R_1 ; Figure 4b). PC-W-R cells—and, to some extent, IPA-W-R cells—display much larger R_1 values than all other samples, including unwashed samples, and these R_1 values continue to grow during cycling of the PC-W-R cells. In fact, one of the unwashed cells is found to have a lower impedance than either the IPA-W-R or PC-W-R samples (Figure 3b). Thus, while PC and IPA washing is beneficial for the overall stability of cell impedance, these solvents may also have deleterious impacts on the cathode materials.

Cell polarization is found to be dominated by the contributions of ZARC elements R_2 and R_3 (96.5% of the overall cell polarization resistance). R_2 dominates the impedance response near 10^3 Hz and is attributed to contact resistance. While washing does not necessarily reduce the contact impedance of the cathode materials, all washes improve the stability of contact resistance during cycling. This can be observed in the relatively stable R_2 during cycling of washed cells. Acetone and DEC are the most effective among the studied solvents in terms of reducing contact resistance compared to the unwashed case. The contact

Figure 5. X-ray diffraction patterns of fresh and cycle-aged cathodes (cast electrodes), with and without solvent washing. Peak assignments are for trigonal ($R3m$ space group) phase; # symbol indicates peak attributed to graphitic carbon.⁴⁰ Inset shows detail for (003) and (103) peaks.

Table 3. Lattice Parameters and Phase Distributions for Pristine, Aged-Unwashed, and Aged-Washed Samples^a

sample	<i>a</i> (Å)	<i>c</i> (Å)	$\alpha\text{-NaFeO}_2$ ($R3m$) (% \pm ESD)	% Co_3O_4 ($Fd3m$) (% \pm ESD)	NiO ($Fm3m$) (% \pm ESD)
fresh	2.866(4)	14.23(9)	96.96 \pm 0.70	2.38 \pm 0.57	0.66 \pm 0.46
unwashed	2.871(6)	14.27(6)	93.60 \pm 1.30	4.10 \pm 1.10	2.28 \pm 0.71
acetone washed	2.867(7)	14.25(8)	92.50 \pm 1.00	5.97 \pm 0.87	1.54 \pm 0.59
DEC washed	2.870(7)	14.27(1)	92.20 \pm 1.30	7.30 \pm 1.10	0.53 \pm 0.75
IPA washed	2.869(1)	14.27(1)	90.60 \pm 1.00	9.40 \pm 1.00	0.0
PC washed	2.870(0)	14.27(0)	91.80 \pm 1.10	8.20 \pm 1.10	0.0

^aLattice parameters are reported for the trigonal ($R3m$ space group) phase, with estimated standard deviation (ESD) < 0.004 Å for all samples. ESD for phase quantities is reported as a percentage. NMC reference pattern from Shinova et al.;⁴³ spinel (Co_3O_4) and rock salt (NiO) reference patterns from Profex structure database.²⁴

671 resistance of Ac-W-R and DEC-W-R samples is lower than
 672 that of U-R samples immediately following formation and
 673 remains consistently lower than both PC-W-R and IPA-W-R
 674 samples during cycling.

675 Washing with any solvent also reduces the impedance
 676 contribution of R_3 (Figure S4), which dominates the overall
 677 impedance near 10¹ Hz and is attributed to interfacial charge
 678 transfer and charged species diffusion through the porous
 679 electrodes. Unlike R_2 values, which remain stable for all
 680 washed samples during cycling, R_3 values exhibit a slight
 681 increase during the first 40 cycles. As the low-frequency R_3
 682 contribution is associated with bulk properties, such as
 683 interfacial charge transfer and ionic diffusion processes, the
 684 observed increase in R_3 upon initial cycling of relithiated
 685 samples may suggest changes to the crystal structure or
 686 internal stoichiometry as the relithiated particles redistribute
 687 lithium. This further supports the notion that washing may
 688 impact the mechanism of relithiation, rather than just
 689 improving the efficiency of relithiation.

690 Generally, the coefficient of variance for R_3 is found to be
 691 much less than the coefficient of variance of R_2 (0.136 for R_3 691
 692 after formation, *c.f.* 0.282 for R_2 after formation). This implies 693
 694 that variations in solvent treatment have the greatest effect on 695
 695 high-frequency (surface-dependent) properties, such as 696
 696 contact resistance. Ac-W-R and DEC-W-R samples show 697
 697 the greatest reduction in overall impedance compared to U- 698
 698 W samples, consistent with electrochemical cycling results. 699
 699 Between these two conditions, DEC-W-R samples show a 699
 700 higher overall impedance but exhibit improved impedance 699
 700 stability throughout subsequent cycling. 700

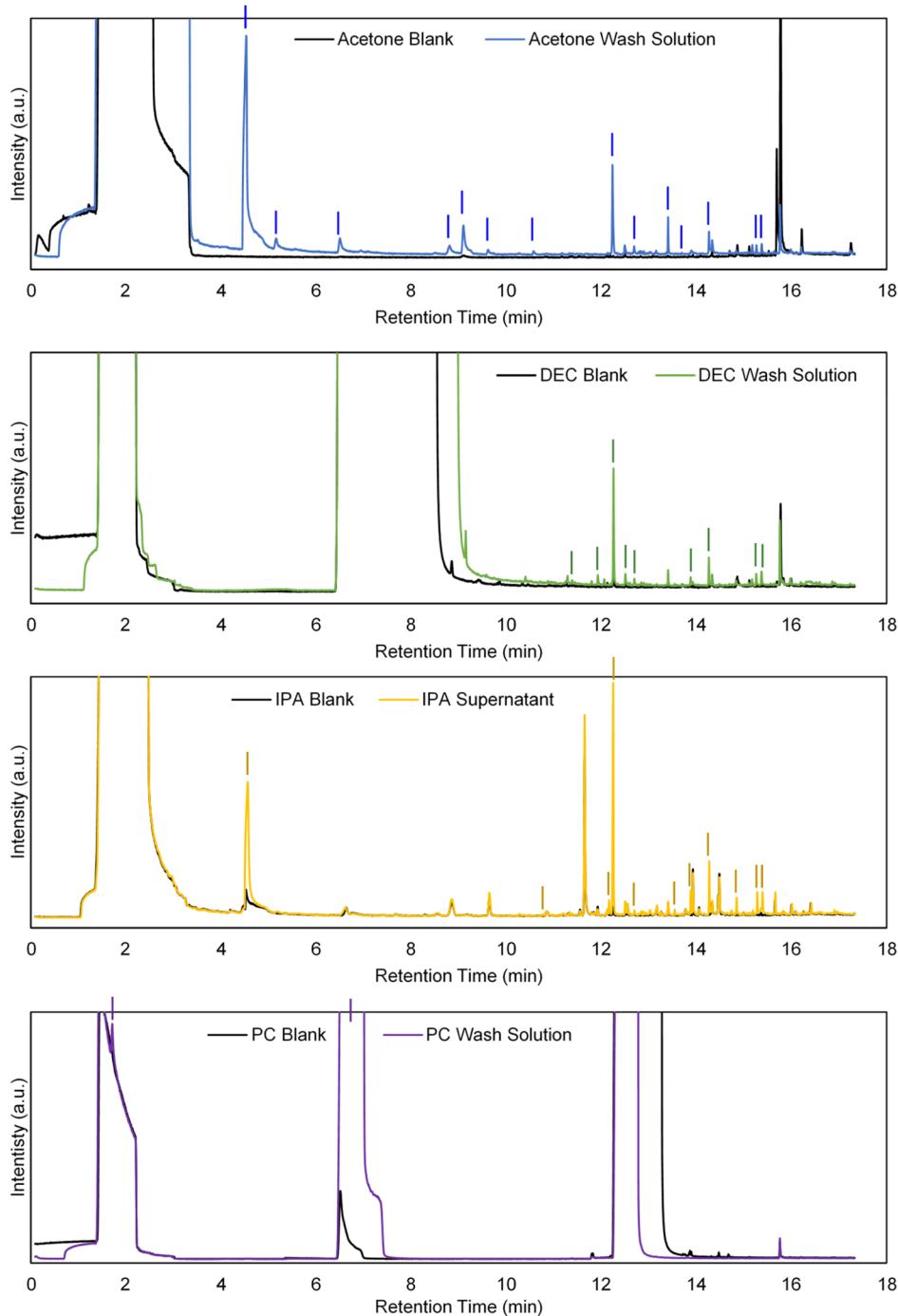
3.2. Structural Analysis. Structural effects of both aging 701 and subsequent solvent washing were assessed via XRD. XRD 702 patterns for fresh, unwashed, and solvent-washed samples, 703 prior to relithiation, are shown in Figure 5; selected 704 f₃ parameters from Rietveld refinement are given in Table 3. 705 t₃ Refinement was conducted using layered (trigonal $\alpha\text{-NaFeO}_2$ - 706 type $R3m$), spinel (cubic Co_3O_4 -type $Fd3m$), and rock salt 707 (cubic NiO -type $Fm3m$) phases. A representative XRD 708 diffractogram is given in Figure S5. The pristine material 709

710 shows a strong layered composition, with clear peak splitting
711 between (006)/(012) peaks and (018)/(110) peaks indicating
712 hexagonal ordering. Rietveld refinement suggests a
713 composition of 97% layered $R3m$ structure, with $\sim 3\%$
714 phase impurities. The peak at $\sim 26.8^\circ$ has previously been
715 reported in composite cathode electrodes and has been
716 attributed to graphitic conductive carbon.⁴⁰ For the fresh
717 material, the a and c lattice parameters obtained for the
718 trigonal phase are consistent with previous reports.^{41,42}

719 For all aged samples, peak splitting is observed in several
720 dominant peaks [(101), (104), (105), (113)], implying phase
721 transformation. In particular, refinement suggests the growth
722 of cubic spinel and rock salt phases, at the expense of the
723 trigonal layered phase. It has been suggested that the phase
724 change behavior of NMC materials is more complex than for
725 other lithium-oxides, such as $LiCoO_2$ (LCO).⁴² LCO
726 materials are known to form cubic spinel phases, such as
727 Co_3O_4 and $LiCo_2O_4$, upon extended cycling.⁴⁴ In addition,
728 NMC materials may also form rock salt phases because of Li^+
729 deficiency and transition-metal (Ni^{2+}) migration.^{42,45,46} Rock
730 salt phase is found to be dominant under oxidative high-
731 voltage environments.^{45,46} The formation of both spinel and
732 rock salt phases is observed for the present material,
733 consistent with previous reports on NMC materials^{42,45,46}
734 and isostructural layered oxides.⁴⁷

735 Quantified refinement results suggest that phase composition
736 may be slightly dependent on washing condition,
737 implying that washing may play a role in structural
738 rearrangement, as well as impacting surface/lattice chemistry.
739 All washed samples show a lower percentage of layered phase
740 than unwashed samples but vary in the relative percentages of
741 spinel and rock salt phases. In particular, Ac-W, DEC-W, and
742 PC-W samples all show ~ 92 –92.5% layered phase, with the
743 percentage of spinel phase increasing (rock salt phase
744 decreasing) as Ac-W < DEC-W < PC-W. Interestingly, this
745 is in precise inverse proportion to the electrochemical
746 capacity of these samples. The IPA-W sample shows the
747 lowest percentage of layered phase (90%) and the highest
748 percentage of spinel phase and has the next-to-lowest
749 electrochemical performance among the wash conditions.

750 The association of increased electrochemical performance
751 (washed samples) with a reduced percentage of layered
752 structure (as compared to the unwashed sample) appears to
753 run counter to previous reports. Both spinel and rock salt
754 phases are reported to lead to increased charge-transfer
755 resistance, and thus decreased performance relative to the
756 layered phase.⁴⁶ However, this apparently anomalous
757 behavior may be explained by the emergence of an additional
758 phase, manifest as the lower-angle split of the (101) peak and
759 a lower-angle shoulder of the (104) peak. Rietveld refinement
760 using the three phases commonly reported for degraded
761 NMC materials (layered, spinel, rock salt) does not capture
762 the emergence of these peaks. Notably, this phase is present
763 for both unwashed and washed samples, implying that the
764 material degradation, rather than the washing procedure, is
765 responsible for the evolution of this additional phase. The
766 nature of this phase will be further probed in future studies.


767 Analysis of a and c lattice parameters, shown in Table 3,
768 provides additional information regarding the physical
769 mechanism of structural change between fresh, unwashed,
770 and washed samples. Specifically, an increase in c lattice
771 parameter, corresponding to a shift of the (003) peak to
772 lower angles, is observed for all aged samples, as compared to

773 the fresh material. This is consistent with previous reports on
774 cycled NMC material^{41,42} and suggests increased electrostatic
775 repulsion between MO_2 ($M = Ni, Co, Mn$) layers along the
776 c -axis induced by lithium deficiency.^{41,48} Nearly identical c
777 lattice parameter values are observed for all aged cells, with
778 the exception of the Ac-W sample, which shows a lower
779 value. Ideally, in a remediated cathode, the (003) peak should
780 shift back to a higher angle (lower c lattice parameter
781 value);⁴² this would indicate reduced oxygen repulsion,
782 ostensibly because of restoring Li stores. However, the Ac-
783 W sample analyzed had not yet been relithiated, further
784 supporting the notion of reduction-induced structural
785 rearrangement during the acetone-washing process.
785

786 Further, the a lattice parameter is anticipated to decrease
787 following electrochemical cycling and resulting delithiation.^{42,48} This has been attributed to the oxidation of Ni^{2+}
788 to Ni^{3+} to achieve charge compensation in the delithiated
789 state, leading to a contraction of the a plane because of the
790 smaller ionic radius of Ni^{3+} .⁴⁸ In the present analysis, though,
791 all aged samples show an *increase* in a lattice parameter
792 relative to the fresh sample, with the a lattice parameter value
793 increasing in relative inverse to electrochemical performance.
794 This phenomenon may again be explained by changes to the
795 lattice oxygen framework. In the aged cathode material under
796 study, it is anticipated that lattice oxygen has been lost
797 through conversion to electrolyte degradation species^{14,20,30}
798 and phase transformation. Charge compensation for the
799 resulting oxygen vacancies may be achieved via the reduction
800 of Ni^{3+} to Ni^{2+} ,¹⁴ in direct opposition to the oxidation
801 process anticipated in the delithiated state. It is probable that
802 both processes are occurring simultaneously, with the
803 reductive pathway apparently outweighing the oxidative one.
804 It is possible that the reintroduction of lattice oxygen via
805 solvent washing induces some oxidation of Ni^{2+} back to Ni^{3+} ,
806 resulting in a lower a lattice parameter for washed, versus
807 unwashed, samples.
808

809 Taken together, the observed trends in lattice parameter
810 values could also suggest the presence of positively charged
811 electrolyte/additive degradation products within the Li layer,
812 which are removed to various extents by the four solvent
813 washing conditions. These products may both sterically and
814 electrostatically increase repulsion between the oxygen layers
815 (c lattice expansion), while causing transition-metal reduction
816 to achieve charge compensation (a lattice expansion). The
817 acetone-washing condition is found to restore these lattice
818 parameters to values closest to that of the fresh material,
819 corresponding with the greatest improvement in electro-
820 chemical capacity. Future studies will attempt to deconvolute
821 these proposed mechanisms.
821

822 **3.3. Chemical Analysis.** In addition to changes to the
823 bulk lattice oxygen network, it is anticipated that solvent
824 washing will alter the surface chemistry of end-of-life
825 cathodes by removing electrolyte degradation species, residual
826 electrolyte additives, and reaction products evolving from
827 both electrolyte and additives during the functional lifetime
828 of the battery (i.e., CEI components). In addition to reducing
829 surface resistance, this CEI removal would enable more
830 effective relithiation by removing physical barriers to lithium
831 intercalation. Thus, the four solvents have been assessed for
832 their differential capabilities to dissolve CEI components
833 present on the aged material under study. The species
834 liberated by each solvent were assessed through the
835 preparation of highly concentrated wash solutions, which
835

Figure 6. SPME GC-MS spectra of wash solutions for each of the four analyzed solvents, along with a corresponding solvent blank. Chemical species removed from the aged NMC (i.e., only appearing in the wash solution or appearing with significantly elevated intensity in the wash solution) are indicated with vertical lines and are listed in Table 4.

were then further concentrated using solid-phase micro-extraction (SPME).

Several previous studies have utilized GC-based methods to assess the chemical composition of end-of-life degradation products occurring in the liquid-phase electrolyte^{25,49,50} or the gas phase following cycling and/or cell abuse.^{49–51} However, this is the first known report investigating the selectivity of various solvents for electrolyte and CEI components on commercially relevant NMC cathode materials. GC-MS spectra for each of the wash solutions are shown in Figure 6, along with a corresponding blank for

each solvent. Comparison with a solvent blank is crucial to eliminate background signals evolved from both solvent impurities and inherent SPME fiber signals, as well as any species that may evolve from fiber–solvent interactions. Species unique to the wash solution (i.e., not present in the blank) are indicated with vertical bars and a compiled tabulation of all species removed, above the instrument detection limit, is found in Table 4. Table 4 also includes an assignment of the presumed origin of each chemical species.⁵²

The species removed by solvent washing may be grouped into three broad categories: electrolyte degradation products,

Table 4. Chemical Compounds Removed from End-Of-Life NMC via Sonication in Each of Four Solvents, Arranged with Increasing Retention Time^a

#	Compound	Source	RT (min)	Acetone	DEC	IPA	PC
1	Diisopropyl carbonate	Elec. Deg.	1.71	X	X	X	✓
2	Ethylene glycol	Elec. Deg.	4.53	✓	X	✓	X
3	1-[(4-bromo-2,5-dimethoxyphenyl)methyl]-piperazine	Elec.-Add. Reac.	5.15	✓	X	X	X
4	Diethyl carbonate	Elec. Deg.	6.60	✓	---	X	✓
5	5-(1-methylethylidene)-1,3-cyclopentadiene	Elec.-Add. Reac.	8.80	✓	---	X	X
6	Diacetone alcohol	Solvent Reac.	9.10	✓	---	X	X
7	Bicyclo[2.1.1]hex-2-ene, 2-ethenyl	Elec.-Add. Reac.	9.62	✓	X	X	X
8	Cyclohexanone	Elec.-Add. Reac.	10.57	✓	X	X	X
9	2,3-heptadien-5-yne, 2,4-dimethyl	Elec. Deg.	10.84	X	X	✓	X
10	2,5,6-trimethyl decane	Elec. Deg.	11.38	X	✓	X	X
11	Hydrazine-carboxylic acid, ethyl ester	Elec.-Add. Reac.	11.93	X	✓	X	X
12	Propyl nitrite	Additive Deg.	12.16	X	X	✓	X
13	Ethylene carbonate	Elec. Deg.	12.23	✓	✓	✓	X
14	Diethyl butyl phosphate or diethyl pentyl phosphate	Elec. Deg.	12.69	✓	✓	✓	X
15	1-hexadecanol or 1-tetradecene	Elec.-Add. Reac.	13.40	✓	*	✓	X
16	Diethyl 2,5-Dioxahexanedioate	Elec. Deg.	13.88	✓	✓	✓	X
17	Biphenyl	Additive	14.26	✓	✓	✓	X
18	Ethyl 4-ethoxybenzoate	Elec.-Add. Reac.	14.85	✓	✓	✓	X
19	Diethyl phthalate	Elec.-Add. Reac.	15.17	✓	✓	✓	X
20	Diethyl terephthalate	Elec.-Add. Reac.	15.26	✓	✓	✓	X

^aCheck mark (green shading) indicates that the given compound was detected in the wash solution of the given solvent; dashed line (orange shading) indicates no detection of the given compound in the wash solution of the given solvent but potential confounding because of coelution with another chemical species; "X" (red shading) indicates no detection of the given compound, with no potential confounding. Star symbol (★, green shading) indicates a species that was observed in both blank and wash solution.

888 additives, and electrolyte–additive reaction products. Electro-
 889 lyte degradation products are primarily carbonate derivatives
 890 and are the typically reported components of the CEI.^{10–14}
 891 Two notable studies have developed a physical model for the
 892 evolution of carbonate degradation products on LCO,^{20,53}
 893 which is presumed to progress similarly on NMC. This
 894 process includes initial adsorption of carbonate solvent onto
 895 the oxide surface, followed by a nucleophilic reaction of
 896 surface oxygen with the carbonate's carbonyl carbon.⁵³
 897 Deintercalated Li ions transfer to the surface and are
 898 dissolved in the carbonate adsorbate phase, leading to the
 899 formation of lithiated reaction products.^{20,53} The authors of
 900 these two studies reported similar mechanisms for both
 901 ethylene carbonate and diethyl carbonate electrolytes, and in
 902 fact, a more recent report studying the reactions of NMC-622
 903 with several electrolyte mixtures concluded that the reactivity
 904 was remarkably similar across NMC materials and all
 905 carbonate electrolytes.¹⁴ In particular, nucleophilic attack by
 906 oxygen (surface^{14,20,53} and bulk lattice^{14,53,54}) and migration
 907 and solvation of Li at the surface are believed to be the
 908 dominant mechanisms resulting in the formation of electro-
 909 lyte degradation products.^{14,20,30,53,54} Several of the compo-
 910 nents detected in the wash solution (Table 4) are known
 911 electrolyte components and may have been adsorbed on the
 912 surface [ethylene carbonate (EC; #11), diethyl carbonate
 913 (DEC; #4)]; others contain structural moieties (carbonate,
 914 hydrocarbon, P=O) suggesting electrolyte degradation
 915 products that may have been covalently bound to the
 916 NMC surface. These compounds include diisopropyl
 917 carbonate (#1); 2,4-dimethyl-2,3-heptadien-5-yne (#9);
 918 2,5,6-trimethyl decane (#10); butyl diethyl phosphate/diethyl
 919 pentyl phosphate (indistinguishable in the present analysis;

#14); and diethyl 2,5-dioxahexanedioate (#16). Ethylene 890
 glycol (EG; #2) is a reported hydrolysis product of EC,⁸⁹¹
 formed in conjunction with CO₂ in the presence of 892
 water.^{55,56} The room-temperature hydrolysis of EC to EG 893
 is a thermodynamically slow process at room temperature,⁵⁵ 894
 but this reaction may be anticipated for the present cathode 895
 material, given the long storage period under atmospheric 896
 conditions. Additionally, it is plausible that EG may have 897
 evolved through the solvent washing process itself, as basic 898
 moieties have been shown to catalyze EC ring opening,⁸⁹⁹
 leading to EG and poly-EG formation at room temper- 900
 ature.^{55,57}

In commercial cells, additives are typically included to 902
 address specific deficiencies in the standard carbonate 903
 solution or to provide performance enhancement or safety 904
 protection under specific operating conditions. It is probable 905
 that the commercial cell from which the present cathode 906
 material was harvested contained several to dozens of 907
 additives, and the chemistry of the species recovered from 908
 the wash solutions supports this notion. Propyl nitrite (#12) 909
 is the probable reduced product of propyl nitrate, an additive 910
 used for SEI formation.⁵⁸ Biphenyl (#17) is an additive 911
 intended to form the CEI⁵⁹ or form the SEI in cases of 912
 overcharge (a so-called "shutdown molecule").^{60–62}

Finally, several of the compounds recovered from the wash 914
 solutions appear to be reaction products between additives 915
 and electrolyte components, based on their chemical 916
 composition. The combination of Li and F species in the 917
 electrolyte and transition-metal species such as Co, which is 918
 frequently used in catalysis, serves as a highly reactive 919
 environment for the evolution of complex chemical species. 920
 In the present analysis, we have identified seven such species. 921

922 While we have attempted to identify these species based on
923 mass fragment reconstruction, NIST database matching, and
924 reaction chemistry rationale, it should be noted that such
925 reaction products tend to be structurally complex and often
926 lack appropriate standards for identification. In Table 4, these
927 reaction products have been identified according to the
928 highest-percentage mass spectrum NIST match, with the
929 recognition that precise stoichiometry and isomeric structure
930 may vary slightly from these assignments. Thus, we aim to
931 emphasize the reactive pathways capable of producing species
932 with the observed mass fragment moieties, rather than the
933 definitive identity of specific reaction products.

934 Piperazine, 1-[(4-bromo-2,5-dimethoxyphenyl)methyl]-
935 (#3) is a Br-containing, bicyclic, aromatic compound that
936 may have formed from the reaction of a Br-containing
937 additive (e.g., 4-bromobenzyl isocyanate or 3-bromothio-
938 phene, both intended to polymerize at the cathode^{60,63} or α -
939 bromo- γ -butyrolactone, intended to form the SEI⁶⁴ or reduce
940 corrosion⁶⁵) with another aromatic additive. 1,3-Cyclo-
941 pentadiene, 5-(1-methylethylidene)- (#5) may have evolved
942 from cyclohexylbenzene, an additive used for overcharge
943 protection that unstable in the presence of oxidizing agents.⁶¹
944 Bicyclo[2.1.1]hex-2-ene, 2-ethenyl (#7) is a bicyclic alkene,
945 perhaps evolved from aromatic additives such as cyclo-
946 hexylbenzene. Cyclohexanone (#8) was likely evolved from
947 the oxidation of cyclohexane in air, which typically proceeds
948 in the presence of Co catalysts. Cyclohexane has been used
949 to improve the first cycle efficiency by increasing the elasticity
950 of the PVDF binder⁶⁶ and improving the wettability of the
951 separator.⁶⁷ Hydrazine-carboxylic acid, ethyl ester (#11)
952 could form from the reaction of carbonate species with
953 amine-containing compounds. Amines are typically added to
954 react with residual H₂O and thereby prevent HF formation
955 (so-called HF scavengers).^{68,69} Compound #15 is a long-
956 chain hydrocarbon (mass spectra corresponding to either 1-
957 hexadecanol or 1-tetradecene, with equal NIST matching
958 confidence), suggesting an origin as an electrolyte degra-
959 dation product but also contains alcohol or alkene moieties,
960 implying further reaction, perhaps with additives. Ethyl 4-
961 ethoxybenzoate (#18) contains carbonate and ester moi-
962 eties—likely evolved from electrolyte—but also aromaticity,
963 ostensibly from a benzene derivative additive such as
964 biphenyl or cyclohexylbenzene. Diethyl phthalate (#19) and
965 1,4-diethyl terephthalate (#20) are both phthalate esters,
966 which may also have evolved from the reaction of a carbonate
967 degradation product and a benzene derivative. Finally,
968 diacetone alcohol (#6) appears to be an aldol condensation
969 product of acetone, implying that this species may have been
970 formed via catalysis during the washing process, rather than
971 being removed from the aged black mass.

972 With the exception of electrolyte solvent residues (DEC,
973 EC) and possibly unreacted additives (ethylene glycol,
974 biphenyl), which may have been adsorbed on the NMC
975 surface, we anticipate that the species removed via solvent
976 washing had been ionically or covalently bound within the
977 NMC lattice. This would be consistent with their mechanism
978 of their evolution, involving the covalent interactions with
979 surface oxygen described for electrolyte degradation products
980 and/or catalytic reactions with the transition metals. Thus,
981 effective removal of these products may involve chemical
982 reaction in addition to a pure solvation mechanism.

983 The adage “like-dissolves-like” offers an initial rationale for
984 the nature of the products removed by each solvent. Acetone,

985 a polar ketone, is found to dissolve polar, non-H-bonding 986
compounds, but is less effective in solvating nonpolar 986
compounds. Diethyl carbonate, a carbonate ester, effectively 987
removes weakly polar, non-H-bonding compounds, but is 988
unable to solvate more highly polar compounds. Isopropyl 989
alcohol is an alkyl alcohol, and as such dissolves polar, H- 990
bonding compounds, but is ineffective at dissolving nonpolar 991
species. Finally, propylene carbonate is a cyclic carbonate 992
ester, anticipated to dissolve polar, non-H-bonding com- 993
pounds—similar to acetone. However, PC is found to be 994
largely ineffective at removing any species whatsoever, under 995
the present analysis conditions. This is somewhat surprising, 996
as PC has previously been employed as a solvent for GC-MS 997
analysis of electrolyte and electrolyte degradation products.⁵⁰ 998
The lack of solvation activity may be explained by a 999
significant increase in DEC between the blank and the 1000
wash solution, suggesting a potential reactive conversion from 1001
PC to DEC. Such a process has been reported for the 1002
synthesis of DEC in the presence of an alcohol and 1003
transition-metal catalysts, an environment quite similar to 1004
the present system.⁷⁰ PC is also expected to have greater 1005
steric hindrance because of its cyclic structure, as compared 1006
to the smaller molecular form of the other solvents. 1007

1008 In addition to polarity, structural reactivity must be 1008
considered in the assessment of the various solvents’ efficacy 1009
in the context of CEI removal. The structure of each of the 1010
four solvents, which has briefly been discussed, may affect 1011
both the ability to induce surface transformation (i.e., 1012
reintroduction of lattice oxygen) and the removal of 1013
passivating or electrochemically interfering degradation 1014
species. As a ketone, acetone is the most strongly 1015
nucleophilic of the solvents in this study due to lone-pair 1016
electrons on the carbonyl carbon with no additional 1017
resonance-stabilizing moieties. This makes acetone broadly 1018
reactive to both electrolyte degradation products and a 1019
variety of organic additives. Carbonate esters, such as diethyl 1020
carbonate and propylene carbonate, are more weakly 1021
nucleophilic because of the stabilizing resonance of the 1022
ester oxygen. This may be beneficial in the removal of certain 1023
electrolyte degradation products but is unlikely to be effective 1024
across a broad and chemically diverse class of additives. 1025
Alcohols, such as isopropyl alcohol, are amphoteric, 1026
suggesting both nucleophilic and electrophilic reactivity; 1027
however, H-bonding properties cause high intramolecular 1028
interactions between solvent molecules, reducing reactivity. 1029

1030 Thus, the ability of each solvent to liberate various CEI 1030
species is suggested to depend on both solvent polarity and 1031
underlying structure, including sterics. Acetone is found to 1032
successfully remove all three classes of end-of-life compounds 1033
identified: electrolyte degradation products, additives, and 1034
electrolyte-additive reaction products. DEC is able to 1035
remove electrolyte degradation products and certain electro- 1036
lyte-additive reaction products but is unable to remove polar 1037
additives—notably, ethylene glycol, an insulating hydrocarbon 1038
that appears at high intensities in acetone and IPA washes in 1039
this study. IPA removes polar additives and moderately polar 1040
or polarizable electrolyte degradation products but is 1041
ineffective at removing nonpolar electrolyte degradation 1042
products and several weakly polar or nonpolar electrolyte— 1043
additive reaction products. Finally, PC is found to be a 1044
relatively ineffectual solvent in the present analysis. This may 1045
be the result of steric hindrance and reactivity in the presence 1046
of alcohol-containing additives and transition-metal catalysts 1047

1048 to form DEC. However, given previous successful reports
1049 utilizing this solvent for end-of-life electrode analysis,⁵⁰
1050 additional studies should be undertaken to verify the present
1051 results and rule out compatibility issues with the PA SPME
1052 fiber as a cause of the poor solvent performance.

1053 While the specific impact of CEI removal on lithium
1054 reuptake is not quantified in the present report, there is a
1055 strong correlation between the number and breadth of
1056 components liberated and the electrochemical performance of
1057 the rejuvenated cells. In particular, acetone is found to most
1058 effectively remove a chemically diverse range of CEI
1059 components, and Ac-W-R samples show the highest capacity
1060 of the remediated samples; similar trends are observed for the
1061 other washing conditions. It is anticipated that the removal of
1062 surface- and pore-blocking species enables enhanced Li
1063 intercalation during electrochemical relithiation, thereby
1064 contributing to the observed increase in capacity. Quantifi-
1065 cation of Li stores following each solvent treatment will help
1066 to more clearly delineate the synergistic effects of direct
1067 solvent interactions (i.e., surface reconstruction) and CEI
1068 removal (enabling increased Li uptake) on NMC rejuven-
1069 nation. Such work is the focus of ongoing studies.

4. CONCLUSIONS

1070 Heavily degraded commercial cathode material, cycled and
1071 calendar aged to ~30% state-of-health, has been significantly
1072 rejuvenated through a combination of solvent washing and
1073 electrochemical relithiation. In particular, sonication of spent
1074 black mass in acetone followed by relithiation enables
1075 capacity recovery of up to 174% relative to unwashed/
1076 relithiated black mass. The capacity is stable for remediated
1077 cathodes over at least 80 cycles post-relithiation. The present
1078 analysis implies a complex role of solvent washing in the
1079 performance of aged cathode materials and offers a promising
1080 path toward the integration of washing techniques in a
1081 broader cathode recycling protocol.

1082 Electrochemical, structural, and chemical analysis of
1083 materials washed in four different solvents (acetone, diethyl
1084 carbonate, isopropyl alcohol, and propylene carbonate)
1085 suggest a multifold role of the organic solvent in the
1086 observed capacity performance. Differential capacity analysis
1087 implies a shift in the mechanism of electroactivity between
1088 fresh and aged samples, with capacity recovery for washed
1089 samples largely attributable to increased anionic redox, rather
1090 than recovery of transition-metal redox. This indicates that
1091 anionic redox may be recovered by solvent interactions. We
1092 propose that use of nucleophilic solvents, in conjunction with
1093 mechanically aggressive washing conditions (sonication), can
1094 reduce the NMC surface and allow for reintroduction of
1095 oxygen back into the bulk lattice.

1096 Structural analysis provides further evidence for this
1097 mechanism. An increase in *c* lattice parameter is observed
1098 for aged materials as compared to the pristine material,
1099 consistent with transition metal–oxygen repulsion induced by
1100 delithiation. However, acetone-washed samples show a lower
1101 *c* parameter prior to relithiation, suggesting that bulk
1102 structural rearrangement may be achieved during the solvent
1103 washing process. Further, reduced *a* lattice parameter values
1104 for washed samples as compared to unwashed samples may
1105 be attributed to Ni-oxidation, ostensibly because of lattice
1106 oxygen reintroduction during solvent washing. Additionally,
1107 we hypothesize that positively charged electrolyte/additive
1108 degradation products may accumulate within the Li layer

1109 during cycling/aging, inducing steric and electrostatic
1110 repulsion between the oxygen layers (*c* lattice expansion)
1111 and transition-metal reduction (*a* lattice expansion). Selective
1112 removal of these degradation products may account for the
1113 observed lattice parameter shifts between washing conditions.

1114 Finally, both impedance and chemical analysis suggest the
1115 role of surface chemistry on electrode performance. While
1116 any form of solvent washing is found to decrease overall
1117 impedance and reduce impedance growth during subsequent
1118 cycling, the nature of the solvent is found to most
1119 dramatically impact charge-transfer resistance. Specifically,
1120 acetone- and DEC-washed samples show reduced charge-
1121 transfer resistance, suggesting the removal of insulating
1122 surface species. Analysis of highly concentrated wash
1123 solutions reveals three categories of species removed from
1124 commercial black mass by solvent washing: electrolyte
1125 degradation products, additives, and electrolyte–additive
1126 reaction products. The solvent structure is found to impact
1127 selectivity for various species, and the removal of passivating
1128 surface species via washing is believed to contribute to the
1129 observed capacity recovery for washed samples. Acetone, a
1130 ketone with moderate polarity and the highest nucleophilicity
1131 of the solvents studied, appears to enable most effective
1132 removal of a broad scope of degradation products covalently
1133 bound within the NMC lattice.

1134 The simple and cost-effective solvent-washing technique
1135 presented in this study, applied in conjunction with cathode
1136 rejuvenation techniques, is intended to inform direct
1137 recycling process design. However, significant work remains
1138 to optimize this solvent-washing protocol at scale. Analysis
1139 should be expanded to multiple commercial end-of-life
1140 materials to verify the breadth of these findings. Further,
1141 the solvent properties we have identified as impactful to
1142 capacity recovery (nucleophilicity, polarity, steric hindrance)
1143 should be applied to the tailored solvent design, and studies
1144 of solvent mixtures and gradient washing are warranted.
1145 Finally, in moving toward practical scale-up of a direct
1146 recycling process, techno-economic factors and safety
1147 considerations (e.g., solvent flammability) will be crucial to
1148 informing an optimal solvent choice.

ASSOCIATED CONTENT

Supporting Information

1149 The Supporting Information is available free of charge at
1150 <https://pubs.acs.org/doi/10.1021/acsaem.0c02260>.
1151

1152 Lin-KK test residual errors; ECM fits; ECM residual
1153 errors; reproduction of Figure 4c,d, including unwashed
1154 samples; and representative refined XRD diffractogram
1155 (PDF)
1156

AUTHOR INFORMATION

Corresponding Author

1157 Kae Fink – National Renewable Energy Laboratory, Golden,
1158 Colorado 80401, United States; orcid.org/0000-0001-9363-4632; Email: Kae.Fink@nrel.gov
1159

Authors

1160 Paul Gasper – National Renewable Energy Laboratory,
1161 Golden, Colorado 80401, United States; orcid.org/0000-0001-8834-9458
1162

1166 **Jaclyn E. Coyle** – National Renewable Energy Laboratory,
1167 Golden, Colorado 80401, United States; orcid.org/0000-0002-4679-6556
1168
1169 **Nathaniel Sunderlin** – National Renewable Energy
1170 Laboratory, Golden, Colorado 80401, United States
1171
1172 **Shriram Santhanagopalan** – National Renewable Energy
1173 Laboratory, Golden, Colorado 80401, United States;
 orcid.org/0000-0003-4703-1341

1174 Complete contact information is available at:
1175 <https://pubs.acs.org/10.1021/acsaem.0c02260>

1176 Author Contributions

1177 Conceptualization, K.F.; methodology, K.F., J.E.C., and N.S.;
1178 investigation, K.F.; formal analysis, K.F. and P.G.; writing,
1179 K.F. and P.G.; funding acquisition, S.S. All authors have given
1180 approval to the final version of the manuscript.

1181 Funding

1182 Funding for this work was provided by the U.S. Department
1183 of Energy (DOE) under Contract DE-AC36-08GO28308
1184 through the ReCell Center for Advanced Battery Recycling.

1185 Notes

1186 The authors declare no competing financial interest.

1187 ■ ACKNOWLEDGMENTS

1188 This work was authored by the Alliance for Sustainable
1189 Energy, LLC, the manager and operator of the National
1190 Renewable Energy Laboratory for the US DOE. This work
1191 was performed through the ReCell Center, which gratefully
1192 acknowledges support from the DOE, Office of Energy
1193 Efficiency and Renewable Energy, and the Vehicle Tech-
1194 nologies Office. The views expressed in the article do not
1195 necessarily represent the views of the DOE or the US
1196 government. The US government and the publisher, by
1197 accepting the article for publication, acknowledge that the US
1198 government retains a nonexclusive, paid-up, irrevocable,
1199 worldwide license to publish or reproduce the published
1200 form of this work, or allow others to do so, for US
1201 government purposes.

1202 ■ REFERENCES

1203 (1) *Global EV Outlook 2020*; International Energy Agency, 2020.
1204 (2) Pillot, C. *The Rechargeable Battery Market and Main Trends*
1205 2018–2030; BMW i Berlin E-Prix: Berlin, Germany, 2019.
1206 (3) Marano, V.; Onori, S.; Guezennec, Y.; Rizzoni, G.; Madella, N.
1207 Lithium-ion batteries life estimation for plug-in hybrid electric
1208 vehicles. *Proceedings of the 2009 IEEE Vehicle Power and Propulsion*
1209 Conference; IEEE: Dearborn, MI, 2009; pp 536–543.
1210 (4) Olsson, L.; Fallahi, S.; Schnurr, M.; Diener, D.; van Loon, P.
1211 Circular business models for extended EV battery life. *Batteries*
1212 **2018**, *4*, 57.
1213 (5) Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon,
1214 N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion
1215 Batteries. *Joule* **2019**, *3*, 2622–2646.
1216 (6) Sloop, S. E.; Trevey, J. E.; Gaines, L.; Lerner, M. M.; Xu, W.
1217 Advances in Direct Recycling of Lithium-Ion Electrode Materials.
1218 *ECS Trans.* **2018**, *85*, 397–403.
1219 (7) Sloop, S.; Crandon, L.; Allen, M.; Koetje, K.; Reed, L.; Gaines,
1220 L.; Sirisaksoontorn, W.; Lerner, M. A direct recycling case study
1221 from a lithium-ion battery recall. *Sustainable Mater. Technol.* **2020**,
1222 *25*, No. e00152.
1223 (8) Amine, K.; Chen, C. H.; Liu, J.; Hammond, M.; Jansen, A.;
1224 Dees, D.; Bloom, I.; Vissers, D.; Henriksen, G. Factors responsible
1225 for impedance rise in high power lithium ion batteries. *J. Power*
1226 *Sources* **2001**, *97–98*, 684–687.

1227 (9) Chen, C. H.; Liu, J.; Amine, K. Symmetric cell approach and
1228 impedance spectroscopy of high power lithium-ion batteries. *J. Power*
1229 *Sources* **2001**, *96*, 321–328.
1230 (10) Andersson, A. M.; Abraham, D. P.; Haasch, R.; MacLaren, S.;
1231 Liu, J.; Amine, K. Surface Characterization of Electrodes from High
1232 Power Lithium-Ion Batteries. *J. Electrochem. Soc.* **2002**, *149*, A1358–
1233 A1369.
1234 (11) Shikano, M.; Kobayashi, H.; Koike, S.; Sakaebe, H.; Ikenaga,
1235 E.; Kobayashi, K.; Tatsumi, K. Investigation of positive electrodes
1236 after cycle testing of high-power Li-ion battery cells II. *J. Power*
1237 *Sources* **2007**, *174*, 795–799.
1238 (12) Rahman, M. K.; Saito, Y. Investigation of positive electrodes
1239 after cycle testing of high-power Li-ion battery cells. *J. Power Sources*
1240 **2007**, *174*, 889–894.
1241 (13) Buchner, F.; Fingerle, M.; Kim, J.; Spath, T.; Hausbrand, R.;
1242 Behm, R. J. Interaction of Ultrathin Films of Ethylene Carbonate
1243 with Oxidized and Reduced Lithium Cobalt Oxide-A Model Study
1244 of the Cathode/Electrolyte Interface in Li-Ion Batteries. *Adv. Mater.*
1245 *Interfaces* **2019**, *6*, 1801650.
1246 (14) Renfrew, S. E.; Kaufman, L. A.; McCloskey, B. D. Altering
1247 Surface Contaminants and Defects Influences the First-Cycle
1248 Outgassing and Irreversible Transformations of LiNi0.6Mn0.2–
1249 Co0.2O2. *ACS Appl. Mater. Interfaces* **2019**, *11*, 34913–34921.
1250 (15) Waldmann, T.; Iturrondobeitia, A.; Kasper, M.; Ghanbari, N.;
1251 Aguesse, F.; Bekaert, E.; Daniel, L.; Genies, S.; Gordon, I. J.; Loble,
1252 M. W.; De Vito, E.; Wohlfahrt-Mehrens, M. Review-Post-Mortem
1253 Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology
1254 and Physico-Chemical Analysis Techniques. *J. Electrochem. Soc.*
1255 **2016**, *163*, A2149–A2164.
1256 (16) Williard, N.; Sood, B.; Osterman, M.; Pecht, M. Disassembly
1257 methodology for conducting failure analysis on lithium-ion
1258 batteries. *J. Mater. Sci.: Mater. Electron.* **2011**, *22*, 1616–1630.
1259 (17) Somerville, L.; Barenco, J.; Jennings, P.; McGordon, A.;
1260 Lyness, C.; Bloom, I. The Effect of Pre-Analysis Washing on the
1261 Surface Film of Graphite Electrodes. *Electrochim. Acta* **2016**, *206*,
1262 70–76.
1263 (18) Fang, C.; Liu, Z.; Lau, J.; Elzouka, M.; Zhang, G.; Khomein,
1264 P.; Lubner, S.; Ross, P. N.; Liu, G. Gradient Polarity Solvent Wash
1265 for Separation and Analysis of Electrolyte Decomposition Products
1266 on Electrode Surfaces. *J. Electrochem. Soc.* **2020**, *167*, 020506.
1267 (19) Dutkiewicz, M. Classification of organic solvents based on
1268 correlation between dielectric δ parameter and empirical solvent
1269 polarity parameter E N T. *J. Chem. Soc., Faraday Trans.* **1990**, *86*,
12237–2241.
1270 (20) Fingerle, M.; Spath, T.; Schulz, N.; Hausbrand, R. Adsorption
1271 of ethylene carbonate on lithium cobalt oxide thin films: A
1272 synchrotron-based spectroscopic study of the surface chemistry.
1273 *Chem. Phys.* **2017**, *498–499*, 19–24.
1274 (21) Murbach, M.; Gerwe, B.; Dawson-elli, N.; Tsui, L.-k.
1275 impedance.py: A Python package for electrochemical impedance
1276 analysis. *J. Open Source Software* **2020**, *5*, 2349.
1277 (22) Schonleber, M.; Klotz, D.; Ivers-Tiffée, E. A Method for
1278 Improving the Robustness of linear Kramers-Kronig Validity Tests.
1279 *Electrochim. Acta* **2014**, *131*, 20–27.
1280 (23) Osaka, T.; Mukoyama, D.; Nara, H. Review-Development of
1281 Diagnostic Process for Commercially Available Batteries, Especially
1282 Lithium Ion Battery, by Electrochemical Impedance Spectroscopy. *J.*
1283 *Electrochim. Soc.* **2015**, *162*, A2529–A2537.
1284 (24) Dobelin, N.; Kleeberg, R. Profex: a graphical user interface for
1285 the Rietveld refinement program BGMIN. *J. Appl. Crystallogr.* **2015**,
1286 *48*, 1573–1580.
1287 (25) Horsthemke, F.; Friesen, A.; Monnighoff, X.; Stenzel, Y. P.;
1288 Grutzke, M.; Andersson, J. T.; Winter, M.; Nowak, S. Fast screening
1289 method to characterize lithium ion battery electrolytes by means of
1290 solid phase microextraction - gas chromatography - mass
1291 spectrometry. *RSC Adv.* **2017**, *7*, 46989–46998.
1292 (26) Podias, A.; Pfrang, A.; Di Persio, F.; Kriston, A.; Bobba, S.;
1293 Mathieu, F.; Messagie, M.; Boon-Brett, L. Sustainability Assessment
1294 of Second Use Applications of Automotive Batteries: Ageing of Li-

1296 Ion Battery Cells in Automotive and Grid-Scale Applications. *World*
1297 *Electr. Veh. J.* **2018**, *9*, 24.

1298 (27) Wang, J.; Purewal, J.; Liu, P.; Hicks-Garner, J.; Soukazian, S.;
1299 Sherman, E.; Sorenson, A.; Vu, L.; Tataria, H.; Verbrugge, M. W.
1300 Degradation of lithium ion batteries employing graphite negatives
1301 and nickel-cobalt-manganese oxide + spinel manganese oxide
1302 positives: Part 1, aging mechanisms and life estimation. *J. Power*
1303 *Sources* **2014**, *269*, 937–948.

1304 (28) Fink, K.; Santhanagopalan, S.; Hartig, J.; Cao, L. Character-
1305 ization of Aged Li-Ion Battery Components for Direct Recycling
1306 Process Design. *J. Electrochem. Soc.* **2019**, *166*, A3775–A3783.

1307 (29) Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvere, R.;
1308 Tarascon, J.-M. Fundamental interplay between anionic/cationic
1309 redox governing the kinetics and thermodynamics of lithium-rich
1310 cathodes. *Nat. Commun.* **2017**, *8*, 2219.

1311 (30) Assat, G.; Iadecola, A.; Foix, D.; Dedryvere, R.; Tarascon, J.-
1312 M. Direct Quantification of Anionic Redox over Long Cycling of Li-
1313 Rich NMC via Hard X-ray Photoemission Spectroscopy. *ACS Energy*
1314 *Lett.* **2018**, *3*, 2721–2728.

1315 (31) Gallagher, K. G.; Croy, J. R.; Balasubramanian, M.; Bettge,
1316 M.; Abraham, D. P.; Burrell, A. K.; Thackeray, M. M. Correlating
1317 hysteresis and voltage fade in lithium- and manganese-rich layered
1318 transition-metal oxide electrodes. *Electrochem. Commun.* **2013**, *33*,
1319 96–98.

1320 (32) Zhang, L.; Xu, Z.; He, Z. Electrochemical Relithiation for
1321 Direct Regeneration of LiCoO₂ Materials from Spent Lithium-Ion
1322 Battery Electrodes. *ACS Sustainable Chem. Eng.* **2020**, *8*, 11596–
1323 11605.

1324 (33) Assat, G.; Tarascon, J.-M. Fundamental understanding and
1325 practical challenges of anionic redox activity in Li-ion batteries. *Nat.*
1326 *Energy* **2018**, *3*, 373–386.

1327 (34) Zheng, X.; Li, X.; Wang, Z.; Guo, H.; Huang, Z.; Yan, G.;
1328 Wang, D. Investigation and improvement on the electrochemical
1329 performance and storage characteristics of LiNiO₂-based materials
1330 for lithium ion battery. *Electrochim. Acta* **2016**, *191*, 832–840.

1331 (35) Sun, Y.; Li, N.; Xing, X.; Zhang, X.; Zhang, Z.; Wang, G.;
1332 Cheng, J.; Hao, Z. Catalytic oxidation performances of typical
1333 oxygenated volatile organic compounds (acetone and acetaldehyde)
1334 over MAIO (M = Mn, Co, Ni, Fe) hydrotalcite-derived oxides.
1335 *Catal. Today* **2019**, *327*, 389–397.

1336 (36) Golodets, G. I.; Pavlenko, N. V.; Gun'ko, V. M.; Tel'biz, G.
1337 M. Investigation of the reaction of acetone and acetonitrile
1338 molecules with the surfaces of metallic catalysts by IR-spectroscopic
1339 and quantum chemical methods. *Theor. Exp. Chem.* **1989**, *24*, 526–
1340 533.

1341 (37) Bielanski, A.; Haber, J. Oxygen in Catalysis on Transition
1342 Metal Oxides. *Catal. Rev.: Sci. Eng.* **1979**, *19*, 1.

1343 (38) Pritzl, D.; Landesfeind, J.; Solchenbach, S.; Gasteiger, H. A.
1344 An Analysis Protocol for Three-Electrode Li-Ion Battery Impedance
1345 Spectra: Part II. Analysis of a Graphite Anode Cycled vs. LNMO. *J.*
1346 *Electrochem. Soc.* **2018**, *165*, A2145–A2153.

1347 (39) Gantenbein, S.; Weiss, M.; Ivers-Tiffee, E. Impedance based
1348 time-domain modeling of lithium-ion batteries: Part I. *J. Power*
1349 *Sources* **2018**, *379*, 317–327.

1350 (40) Mohanty, D.; Sefat, A. S.; Li, J.; Meisner, R. A.; Rondinone,
1351 A. J.; Payzant, E. A.; Abraham, D. P.; Wood, D. L., III; Daniel, C.
1352 Correlating cation ordering and voltage fade in a lithium-manganese-
1353 rich lithium-ion battery cathode oxide: a joint magnetic susceptibility
1354 and TEM study. *Phys. Chem. Chem. Phys.* **2013**, *15*, 19496–19509.

1355 (41) Mohanty, D.; Kalnaus, S.; Meisner, R. A.; Rhodes, K. J.; Li, J.;
1356 Payzant, E. A.; Wood, D. L., III; Daniel, C. Structural transformation
1357 of a lithium-rich Li_{1.2}Co_{0.1}Mn_{0.55}Ni_{0.15}O₂ cathode during high
1358 voltage cycling resolved by in situ X-ray diffraction. *J. Power Sources*
1359 **2013**, *229*, 239–248.

1360 (42) Shi, Y.; Chen, G.; Liu, F.; Yue, X.; Chen, Z. Resolving the
1361 compositional and structural defects of degraded LiNi_xCoyMn₂O₂
1362 particles to directly regenerate high-performance lithium-ion battery
1363 cathodes. *ACS Energy Lett.* **2018**, *3*, 1683–1692.

1364 (43) Shinova, E.; Stoyanova, R.; Zhecheva, E.; Ortiz, G.; Lavela, P.; Tirado, J. Cationic distribution and electrochemical performance of LiCo_{1/3}Ni_{1/3}Mn_{1/3}O₂ electrodes for lithium-ion batteries. *Solid State Ionics* **2008**, *179*, 2198–2208.

1365 (44) Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Grotting, M.; Albe, K.; Hess, C.; Jaegermann, W. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. *Mater. Sci. Eng. B* **2015**, *192*, 3–25.

1366 (45) Zheng, J.; Yan, P.; Zhang, J.; Engelhard, M. H.; Zhu, Z.; Polzin, B. J.; Trask, S.; Xiao, J.; Wang, C.; Zhang, J. Suppressed oxygen extraction and degradation of LiNi_xMn_yCo_zO₂ cathodes at high charge cut-off voltages. *Nano Res.* **2017**, *10*, 4221–4231.

1367 (46) Jung, S.-K.; Gwon, H.; Hong, J.; Park, K.-Y.; Seo, D.-H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K. Understanding the Degradation Mechanisms of LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ Cathode Material in Lithium Ion Batteries. *Adv. Energy Mater.* **2018**, *4*, 1300787.

1368 (47) Hu, E.; Wang, X.; Yu, X.; Yang, X.-Q. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating. *Acc. Chem. Res.* **2018**, *51*, 290–298.

1369 (48) Mohanty, D.; Gabrisch, H. Microstructural investigation of Li_xNi_{1/3}Mn_{1/3}Co_{1/3}O₂ (x ≤ 1) and its aged products via magnetic and diffraction study. *J. Power Sources* **2012**, *220*, 405–412.

1370 (49) Grutzke, M.; Kraft, V.; Weber, W.; Wendt, C.; Friesen, A.; Klamor, S.; Winter, M.; Nowak, S. Supercritical carbon dioxide extraction of lithium-ion battery electrolytes. *J. Supercrit. Fluids* **2014**, *94*, 216–222.

1371 (50) Terborg, L.; Weber, S.; Passerini, S.; Winter, M.; Karst, U.; Nowak, S. Development of Gas Chromatographic Methods for the Analyses of Organic Carbonate-Based Electrolytes. *J. Power Sources* **2014**, *245*, 836–840.

1372 (51) Gachot, G.; Grugeon, S.; Jimenez-Gordon, I.; Eshetu, G. G.; Boyanov, S.; Lecocq, A.; Marlair, G.; Pilard, S.; Laruelle, S. Gas Chromatography/Fourier Transform Infrared/Mass Spectrometry Coupling: A Tool for Li-Ion Battery Safety Field Investigation. *Anal. Methods* **2014**, *6*, 6120–6124.

1373 (52) Nedjalkov, A.; Meyer, J.; Kohring, M.; Doering, A.; Angelmahr, M.; Dahle, S.; Sander, A.; Fischer, A.; Schade, W. Toxic Gas Emissions from Damaged Lithium Ion Batteries-Analysis and Safety Enhancement Solution. *Batteries* **2016**, *2*, S.

1374 (53) Spath, T.; Becker, D.; Schulz, N.; Hausbrand, R.; Jaegermann, W. Understanding the SEI Formation at Pristine Li-Ion Cathodes: Chemisorption and Reaction of DEC on LiCoO₂ Surfaces Studied by a Combined SXPS/HREELS Approach. *Adv. Mater. Interfaces* **2017**, *4*, 1700567.

1375 (54) Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. *Mater. Today* **2018**, *21*, 825–833.

1376 (55) Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A. Hydrolysis of Ethylene Carbonate with Water and Hydroxide under Battery Operating Conditions. *J. Electrochem. Soc.* **2016**, *163*, A1219–A1225.

1377 (56) Yang, Y.-L.; Ramaswamy, S. G.; Jakoby, W. B. Enzymatic Hydrolysis of Organic Cyclic Carbonates. *J. Biol. Chem.* **1998**, *273*, 7814–7817.

1378 (57) Lee, J.-C.; Litt, M. H. Ring-Opening Polymerization of Ethylene Carbonate and Depolymerization of Poly(ethylene oxide-co-ethylene carbonate). *Macromolecules* **2000**, *33*, 1618–1627.

1379 (58) Gan, H.; Takeuchi, E. S. Nitrate Additives for Nonaqueous Electrolyte Rechargeable Cells. U.S. Patent 6,136,477 A, 2000.

1380 (59) Abe, K.; Takaya, T.; Yoshitake, H.; Ushigoe, Y.; Yoshio, M.; Wang, H. Functional Electrolyte: Additives for Improving the Cyclability of Cathode Materials. *Electrochim. Solid-State Lett.* **2004**, *7*, A462–A465.

1432 (60) Mao, H.; Von Sacken, U. Aromatic Monomer Gassing Agents
1433 for Protecting Non-Aqueous Lithium Batteries against Overcharge.
1434 Canada Patent CA2163187A1, 1997.

1435 (61) Lee, H.; Lee, J. H.; Ahn, S.; Kim, H.-J.; Cho, J.-J. Co-Use of
1436 Cyclohexyl Benzene and Biphenyl for Overcharge Protection of
1437 Lithium-Ion Batteries. *Electrochem. Solid-State Lett.* **2006**, *9*, A307–
1438 A310.

1439 (62) Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Electrochemical Behavior
1440 of Biphenyl as Polymerizable Additive for Overcharge Protection of
1441 Lithium Ion Batteries. *Electrochim. Acta* **2004**, *49*, 4189–4196.

1442 (63) Korepp, C.; Kern, W.; Lanzer, E. A.; Raimann, P. R.;
1443 Besenhard, J. O.; Yang, M.; Moller, K.-C.; Shieh, D.-T.; Winter, M.
1444 4-Bromobenzyl isocyanate versus benzyl isocyanate-New film-
1445 forming electrolyte additives and overcharge protection additives
1446 for lithium ion batteries. *J. Power Sources* **2007**, *174*, 637–642.

1447 (64) Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D. New
1448 Halogenated Additives to Propylene Carbonate-Based Electrolytes
1449 for Lithium-Ion Batteries. *Electrochim. Acta* **2000**, *45*, 1893–1899.

1450 (65) Tsujioka, S.; Takase, H.; Takahashi, M.; Sugimoto, H.; Koide,
1451 M. Electrolyte for Electrochemical Device. U.S. Patent 0,081,496 A1,
1452 2002.

1453 (66) Wang, X.; Naito, H.; Sone, Y.; Segami, G.; Kuwajima, S. New
1454 Additives to Improve the First-Cycle Charge-Discharge Performance
1455 of a Graphite Anode for Lithium-Ion Cells. *J. Electrochem. Soc.* **2005**,
1456 *152*, A1996–A2001.

1457 (67) Zhang, S. S. A Review on Electrolyte Additives for Lithium-
1458 Ion Batteries. *J. Power Sources* **2006**, *162*, 1379–1394.

1459 (68) Saidi, M. Y.; Gao, F.; Barker, J.; Scordilis-Kelley, C. Additive
1460 to Stabilize Electrochemical Cell. U.S. Patent 5,846,673 A, 1998.

1461 (69) Zhang, Z.; Xu, X.; Zuo, X.-X.; Li, W.-S. Stabilizing Effect of
1462 Amine on Small Molecules in Electrolyte of Lithium Batteries. *Acta*
1463 *Phys.-Chim. Sin.* **2007**, *23*, 526.

1464 (70) Shukla, K.; Srivastava, V. C. Efficient Synthesis of Diethyl
1465 Carbonate from Propylene Carbonate and Ethanol Using Mg-La
1466 Catalysts: Characterization, Parametric, and Thermodynamic Anal-
1467 ysis. *Ind. Eng. Chem. Res.* **2018**, *57*, 12726–12735.