

Redox Cycling Driven Transformation of Layered Manganese Oxides to Tunnel Structures

Haesung Jung¹, Martial Taillefert¹, Jingying Sun², Qian Wang¹, Olaf J. Borkiewicz³, Pan Liu¹,
Lufeng Yang⁴, Shuo Chen², Hailong Chen^{4*}, Yuanzhi Tang^{1*}

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States

²Department of Physics and Texas Center for Superconductivity, University of Houston,
Houston, TX 77204, United States

³Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, United States

⁴School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States

*Corresponding authors.

Yuanzhi Tang. E-mail: yuanzhi.tang@eas.gatech.edu; Phone: (404)894-3814

Hailong Chen. Email: hailong.chen@me.gatech.edu; Phone: (404)385-5598

17 **Abstract**

18 Mn oxides are among the most ubiquitous minerals on Earth and play critical roles in numerous
19 elemental cycles in biotic/abiotic loops as the key redox center. Yet it has long puzzled
20 geochemists why the laboratory synthesis of todorokite, a tunnel structured Mn oxide, is extremely
21 difficult while it is the dominant form over other tunneled phases in low temperature natural
22 environments. This study employs a novel electrochemical method to mimic the cyclic redox
23 reactions occurring over long geological timescales in accelerated manner. The results revealed
24 that the kinetics and electron flux of the cyclic redox reaction are key to the layer-to-tunnel
25 structure transformation of Mn oxides, provided new insights for natural biotic and abiotic redox
26 reactions and explained the dominance of todorokite in nature.

27 **Introduction**

28 Mn(III,IV) (oxyhydr)oxides (hereafter Mn oxides) are a group of minerals that exist
29 ubiquitously in terrestrial and aquatic environments. They are among the most reactive minerals
30 in nature and mediate the fate and transport of numerous contaminants and nutrients via adsorption,
31 coprecipitation, and redox reactions. They are also highly impactful in the evolution of biotic
32 systems on Earth over geological time scales, as their formation and structure dictate the
33 bioavailability of the critical micronutrient Mn, an important constitute or activator of multiple
34 enzymes for a number of physiologic processes such as photosynthesis.¹ As one of the most
35 powerful group of natural oxidants, Mn oxides contribute significantly to the oxidation of
36 recalcitrant organic carbon, such as the degradation of lignin/litter to bioavailable substrates that
37 feed into the microbial food web.² They also play key roles in a range of critical redox processes
38 such as microbial respiration and photochemical reactions, and significantly impact the flow of
39 electrons and energy in natural systems,³⁻⁶ functioning as Nature's Battery.

40 In natural systems, the formation of Mn oxide solid phases commonly starts with the
41 oxidation of Mn(II) species (e.g., dissolved Mn²⁺) through a range of biotic and abiotic processes,
42 such as those catalyzed by microbial enzymatic activities, reactive oxygen species, and mineral
43 surfaces.^{3, 7-10} The newly formed oxides typically occur as poorly crystalline, highly disordered,
44 and highly reactive layered phases that are structurally similar to δ -MnO₂ (vernadite) or
45 birnessite.¹⁰ These fresh oxides can subsequently undergo diagenesis and transformation at oxic-
46 anoxic interfaces such as those in ocean sediments, which can induce a gradient of reduction
47 potential within a few centimeters in the sediments and result in continuous redox cycles between
48 Mn(II) and Mn(IV).^{6, 11-12} Through complex biogeochemical processes such as precipitation,
49 dissolution, ripening, and transformation, natural Mn oxides occur in more than 30 species in

50 current environments and are commonly classified as layer (i.e., phyllosmanganates) and tunnel
51 structures (i.e., tectomanganates).¹³

52 Although both composed of MnO₆ octahedra as the main building blocks, layer and tunnel
53 structured Mn oxides exhibit distinctively different redox, sorption, electrochemical, and
54 photochemical reactivities.¹⁴⁻¹⁵ Such differences can give rise to large uncertainties in geochemical
55 models involving Mn oxides as critical components, as demonstrated in several newly emerged
56 powerful paleoproxy systems (e.g. the Cr, Mo, and Tl isotope systems) for tracing Earth's oxygen
57 evolution history.¹⁶⁻²⁰ Although extensive research efforts have improved our understanding of
58 biotic/abiotic formation mechanisms of layered Mn oxides in the past decades,^{8,21} and some recent
59 studies are providing new insights on the formation mechanism and structure of todorokite in
60 synthetic/engineered systems,²²⁻²⁴ the formation, pathway, and kinetics of tunneled Mn oxides in
61 natural biogeochemical systems still remain elusive.^{13,25} Besides layer structured birnessite, tunnel
62 structured todorokite (3 × 3 tunnel size) is the other most commonly observed phase in natural
63 systems.²⁶ Yet, laboratory efforts attempting to produce todorokite under low temperature
64 circumneutral environmental conditions have been surprisingly difficult. To date, it appears that
65 laboratory syntheses of todorokite from layered Mn oxides require pH values far deviating from
66 natural circumneutral conditions and/or elevated, non-ambient temperatures (e.g. those under
67 hydrothermal or reflux settings).^{25, 27-28} Such observations are significantly inconsistent with the
68 dominant presence of todorokite in natural low temperature environments, which presents a
69 puzzling mystery for geoscientists. Moreover, the phase selection mechanism(s)/pathway(s)
70 during layer to tunnel structure transformation is even less explored and is elusive as well. The
71 predominant occurrence of todorokite in natural environments over other tunnel structured Mn
72 oxides, such as pyrolusite (β -MnO₂, 1 × 1 tunnel size), is also not supported by thermodynamics,

73 as pyrolusite (not todorokite) is the most thermodynamically stable Mn(VI) oxide with a formation
74 energy of -465.1 kJ/mol.²⁹⁻³⁰

75 Recent studies suggested the important roles of Mn(II) adsorption and interlayer Mn(III)
76 for the transformation from layer structured $\delta\text{-MnO}_2$ to tunnel structured Mn oxides.²⁴⁻²⁵ These
77 studies, though still conducted under pH or temperature conditions deviating from low temperature
78 circumneutral conditions, motivated us to investigate the roles of Mn(III) supplies in natural
79 environments in inducing the layer-to-tunnel phase transformation. It should be noted that many
80 natural geochemical reactions more commonly do not occur in one-pot and finish in one run as in
81 designated laboratory syntheses. The varying, sometimes cyclic fluctuations of elemental
82 concentration and electron flux in natural environments (e.g. those caused by day-night cycles,
83 tidal cycles, oxic-anoxic interfaces, and microbially induced micro-environments, etc.) means that
84 reaction kinetics can play very important roles in addition to the thermodynamic driving forces.
85 We hypothesize that redox fluctuation (such as those commonly observed at natural oxic-anoxic
86 interfaces) is a key driving factor for the layer-to-tunnel phase transformation of Mn oxides in
87 nature. Such transformation overall involves the formation of Mn oxides, biotic/abiotic reduction
88 of Mn oxides, production and adsorption of dissolved $\text{Mn}^{2+}(\text{aq})$, and formation of interlayer Mn(III)
89 under the fluctuated redox environments. Investigation of such redox fluctuating/cyclic processes
90 is very challenging as they may spread over very long geological timescales. Here we report our
91 novel approach of using an electrochemical method to mimic and simulate such processes in an
92 accelerated manner and to testify our hypothesis. The phase transformation mechanism of $\delta\text{-MnO}_2$
93 (the most common structural analog for the freshly precipitated layered Mn oxides) was
94 investigated using cyclic voltammetry (CV), which can mimic repeated redox cycles such as those
95 occurring at the oxic-anoxic interfaces in natural systems (e.g. sediments),^{6, 12} as well as

96 complementary structural characterizations. The results reveal that repeated redox cycling indeed
97 is key for triggering δ -MnO₂ transformation to tunneled Mn oxides (e.g. todorokite) at room
98 temperature and circumneutral pH conditions. Further analyses also elucidated the factors
99 controlling the phase selection among different tunnel structured Mn oxides in natural settings.

100

101 **Results and Discussion**

102 **Redox cycling induced phase transformation from δ -MnO₂ to todorokite**

103 Cyclic Voltammetry (CV) as a popular electrochemical method is widely used to
104 investigate redox reactions. It can be used as a good simulator for the fluctuating/cyclic long-time-
105 scale geochemical reactions, where the reactions can be reasonably accelerated with facile
106 controlled current density and voltage scanning rate. In this study, the investigation on Mn oxide
107 formation was conducted with CV scanning on a δ -MnO₂ electrode/Pt electrochemical cell
108 between -1 and 1 V (vs Ag/AgCl reference electrode). This voltage range simulates natural redox
109 interfaces such as the oxic-anoxic interface within ocean sediments and enables the redox cycling
110 of δ -MnO₂.³¹ Upon continuous redox cycling, we observed the transformation from layer
111 structured δ -MnO₂ to tunnel structured phase as revealed by X-ray diffraction (XRD) (Figure 1).
112 Despite the strong diffraction peaks from graphite in the carbon paste (as conductive additive) in
113 the δ -MnO₂ electrode, low intensity and broad diffraction peaks of δ -MnO₂ at \sim 11.2° and 37° 2θ
114 can be clearly observed, consistent with its poorly crystalline nature and the few-layer stacking
115 structure (4–6 layers) (Figure 1A).³² After 300 redox cycles at 100 mV/s rate, no noticeable shifts
116 in the *hk* bands at 37° of δ -MnO₂ were observed, but a shift of the (001) basal plane of δ -MnO₂
117 from \sim 11.2° to \sim 8–9° 2θ (Figure 1A) was observed, corresponding to a change in d-spacing from
118 \sim 7.8 to \sim 9–12 Å (Figure 1B and C). With increasing number of cycles, this peak showed dynamic

119 changes in its width and position between ~8.5 and 12 Å (Figure 1B), suggesting a dynamic change
120 in the mineral structure. Among more than 30 species of naturally-occurring Mn oxides,¹³ the
121 observed diffraction peak at ~7.5–9.5° 2θ only occurs in buserite and todorokite. Buserite is an
122 unstable hydrated form of layer structured birnessite, and its structure readily collapses to
123 birnessite upon dehydration in desiccator or vacuum.³³ As our samples were freeze-dried before
124 XRD measurements, the formation of buserite can be ruled out. Therefore, todorokite, which
125 ideally has a 3 × 3 tunnel structure but can also occur in varied tunnel sizes such as 3 × 2 (7.3 Å),
126 3 × 4 (12.3 Å), 3 × 5 (14.6 Å), etc.,^{26, 34-35} represents the only possible phase that explains the
127 observed diffraction peak. The formation of todorokite was also confirmed by synchrotron XRD
128 (SXRD) analyses (Figure S1). With increasing numbers of redox cycles, both *in situ* (Fig. S1A)
129 and *ex situ* SXRD (Figure S1B and C) showed emerging diffraction peaks from todorokite at ~9–
130 12 Å. Even though all samples display a hump at ~18° (from the mineral oil in carbon paste), the
131 redox-cycled samples show slight shift in diffraction angle, making the peak asymmetric. The
132 asymmetric peak is obvious for the 300-cycled sample (Figure S1B).

133 To clearly confirm the formation of poorly crystalline todorokite through redox cycles, the
134 formation of todorokite was further confirmed by fast Fourier transform (FFT) of high resolution
135 transmission electron microscopy (HRTEM) images (Figure 1D). Consistent with the better
136 crystallinity after 300 redox cycles as compared to the pristine δ-MnO₂ (Figure 1D and S2), FFT
137 showed distinctive diffraction rings at 4.8 and 3 Å d-spacing, which were not observed in the FFT
138 of pristine δ-MnO₂ (Figure S2A).^{27-28, 34} While the poorly crystalline nature of the samples (as
139 shown in *in situ* / *ex situ* XRD analyses) and the presence of carbon paste made it very difficult to
140 obtain atomic resolution HRTEM images as those in recent studies on synthetic todorokite,^{24, 36}
141 our HRTEM and FFT analyses showed poorly crystalline todorokite at the direction perpendicular

142 to the tunnels and associated diffuse scattering rings at around 7–12 Å d-spacing (Figure 1E and
143 F). Thus, XRD and HRTEM both point to the transformation of δ -MnO₂ to todorokite upon
144 repeated redox cycling. To the best of our knowledge, this is the first time that the transformation
145 of layered Mn oxide phases (e.g. δ -MnO₂) to todorokite under low temperature and circumneutral
146 pH conditions is achieved in laboratory settings.

147 While structural changes occurred during redox cycling, no significant change was
148 observed in the average oxidation state of the solid phases. During the 300 redox cycles, Mn(IV)
149 was the most dominant oxidation state as revealed by Mn K-edge X-ray absorption near edge
150 structure (XANES) spectroscopy and related linear combination fitting (LCF) results (Figure S3
151 and Table S1). LCF only showed slight fluctuation of the average oxidation state between 3.72
152 and 3.76 during redox cycles. Compared to pristine δ -MnO₂, 300 redox cycles led to an increase
153 in Mn(III) fraction from 15.4 to 17.2%, as well as a decrease in Mn(II) fraction from 5.7 to 4.7%.
154 Mn K-edge extended X-ray absorption fine structure (EXAFS) spectra showed substantial changes
155 in local structure from redox cycling (Figure 2A and Table S2). The change primarily occurred at
156 7.5–9.5 Å⁻¹ in k-space, the well-known “indicator region” for phyllo- and tectomanganate
157 structures.^{33, 37-39} δ -MnO₂ and birnessite with hexagonal symmetry typically show sharp peaks at
158 8–9.2 Å⁻¹. While these peaks can also occur for tunnel structured Mn oxides at lower intensity, due
159 to another peak at 8.5 Å⁻¹, this indicator region would also show a steady rising slope.^{33, 39} The
160 EXAFS spectrum of the reaction product after 300 cycles showed the emergence of the 8.5 Å⁻¹
161 peak and accompanied decrease in height for the peaks in the 8–9.2 Å⁻¹ region, resembling the
162 spectra of todorokite. Such trend was also reflected in the corresponding Fourier transforms of
163 EXAFS spectra (Figure 2B). As compared to pristine δ -MnO₂, the peak increase of the cycled
164 sample at 3.2 Å in R-space is characteristic of tunnel structured Mn oxides²⁵. In addition, Mn-Mn

165 multiple scattering at 5.2 Å is weaker than that of δ -MnO₂ due to the collapse of the layered
166 structure.⁴⁰

167 Taken together, XRD, HRTEM, and EXAFS results demonstrate the transformation of δ -
168 MnO₂ to todorokite. The redox-cycled sample, however, still contain a significant amount of δ -
169 MnO₂ along with todorokite. XRD and FFT of the redox-cycled sample show amorphous-like
170 diffraction at 2.4 Å, occurring from the *hk* band (20, 11) of δ -MnO₂ as shown in XRD and FFT in
171 the pristine sample of δ -MnO₂ (Figure 1A and S2A). In EXAFS and its Fourier transformed spectra,
172 the redox-cycled sample also showed less significant features of todorokite compared to well-
173 crystalline todorokite samples (Figure 2). The presence of residual δ -MnO₂ is possibly due to the
174 incomplete transformation caused by kinetics constraints or experimental set up and warrants
175 further investigation on the influencing factors on the degree of transformation and crystallinity of
176 todorokite products. Previous studies on the transformation of birnessite to todorokite used
177 hydrothermal or reflux setups, which are homogeneous reactions induced through thermal
178 energy.²⁷⁻²⁸ The mineral transformation in our study proceeded via interfacial electron transfer,
179 which likely only occurred at or near the δ -MnO₂ particle surface. The co-occurrence of
180 phyllosilicate (e.g. birnessite) and todorokite have been evidenced in a variety of naturally-
181 occurring Mn oxides such as Mn nodules and desert varnishes. It is plausible that natural redox
182 reactions, which occur as interfacial processes through electron transfers between microbes,
183 minerals, organics, and metals,³⁵ are at least partially responsible for such co-occurrence.

184

185 **Electron transfer mechanism**

186 After successfully obtained todorokite in ambient environment, the outstanding question is
187 why it only forms in such cyclic redox reactions but not in previous “one-pot” reactions. To

188 decipher this question, we explored the electron transfer mechanism between dissolved Mn²⁺(aq)
189 and Mn(IV) via another set of CV measurements (Text S3, Figure 3). Instead of the δ-MnO₂ and
190 carbon paste mixture used for previous experiments, in this set of experiments only carbon paste
191 was used as the working electrode, with 100 μM dissolved Mn²⁺(aq) (a representative
192 concentration in ocean sediment pore water⁶) in the reaction solution. This experiment is designed
193 to assign the redox peaks observed in previous δ-MnO₂ voltammograms (Figure S4), and the
194 results revealed that the transformation between Mn(II) and Mn(IV) is through an overall two-step,
195 one-electron transfer mechanism, and that Mn(III) formed during the cyclic redox reactions plays
196 a key role, elaborated as follows.

197 To avoid the formation of Mn oxides before cycling, which typically occurs anodically at
198 0.8 V in the presence of dissolved Mn²⁺(aq) at pH 7 (Figure S4), the voltage was swept from -1 to
199 1 V (anodic scan), then returned to -1 V (cathodic scan). During the first cycle, only the well-
200 known oxidation peak of dissolved Mn²⁺(aq) to solid Mn(III/IV)⁴¹ was detected at 0.8 V in the
201 anodic scan (red line in Figure 3). Interestingly, the returning cathodic scan of the first cycle
202 showed two distinctive reduction peaks at -0.05 and 0.6 V (Figure 3). In the second anodic scan,
203 however, a new oxidation peak occurred at 0.43 V. The difference between the first and second
204 cycles suggest the occurrence of two different redox reactions. The first reaction proceeds between
205 dissolved Mn²⁺(aq) and solid Mn(III/IV) oxide phase(s). The other reaction takes place between
206 Mn(II) and Mn(IV) in solid Mn oxide phase(s), as evidenced from the oxidation peak produced
207 during the second anodic scan.

208 The redox peaks produced by the Mn oxide surface also provide crucial information on the
209 electron transfer mechanism during redox cycling (Figure 3). With increasing number of cycles,
210 the cathodic peak at -0.05 V shifted slightly to lower voltage and became asymmetric in shape as

211 a result of the emergence of a new cathodic peak at around -0.25 V. Previous studies assigned
212 these two peaks to the two-step reduction of Mn(IV) oxide to Mn(II) oxide.⁴¹ Thus, the first and
213 second peaks at -0.05 and -0.25 V in our cathodic scan likely resulted from the successive reduction
214 of Mn(IV) to Mn(III) and Mn(III) to Mn(II). On the other hand, although the oxidation peak at
215 0.43 V in the second cycle (navy line in Figure 3) is rarely observed previously, it can be assigned
216 based on the simultaneous evolution of shapes of the reduction and oxidation peaks. With
217 increasing number of cycles, the oxidation peak at 0.2 V became stronger than that initially
218 appeared at 0.43 V, while at the same time, the reduction peak initially occurring at -0.05 V
219 gradually shifted to lower voltage with more pronounced asymmetry. Based on these
220 corresponding gradual changes of the reduction and oxidation peaks during redox cycles, we infer
221 that the voltammetric peaks at 0.2 and 0.43 V result from the oxidation of Mn(II) to Mn(III) and
222 Mn(III) to Mn(IV), respectively, and that the peaks at -0.05 and -0.25 V are from the reduction of
223 Mn(IV) to Mn(III) and Mn(III) to Mn(II), respectively. We therefore propose that redox cycles
224 promote a two-step, one-electron transfer mechanism between Mn(II) and Mn(IV) in the structure
225 with a solid Mn(III) intermediate (i.e., Mn(IV) → Mn(III) and Mn(III) → Mn(II)), which facilitates
226 the formation of the tunnel structure. In addition, it is worth noting that with CV experiment under
227 different pH conditions, electron transfer in solid Mn oxide via H⁺ participation is excluded (Figure
228 S5).

229

230 **Roles of interlayer Mn(III) in the phase transformation**

231 We further validate that interlayer Mn(III), occurring during the reduction from Mn(IV) to
232 Mn(II), is a key factor in inducing the layer-to-tunnel structure transformation. When Mn(III) is
233 produced from the reduction of layer Mn(IV) in δ -MnO₂, Mn(III) may migrate to interlayer sites

234 to reduce steric layer strain due to the Jahn-Teller distortion of Mn(III) atoms,⁴²⁻⁴³ leaving a vacant
235 site at its original position. Previous studies highlighted the importance of interlayer Mn(III) for
236 the transformation of layered Mn oxide to todorokite, which is based on the condensation of
237 interlayer Mn(III) to form tunnel walls^{24-25, 28}. To elucidate the role of interlayer Mn(III) in this
238 transformation, we use Zn-coprecipitated δ -MnO₂ samples instead of pure δ -MnO₂ as starting
239 material for the electrode. The reason for choosing Zn-coprecipitated δ -MnO₂ is because Zn
240 coprecipitation with δ -MnO₂ strongly repels interlayer Mn(III) and decreases interlayer Mn(III)
241 content, due to the stronger affinity of Zn(II) for interlayer sites compared to Mn(III).³² We tested
242 two Zn-coprecipitated δ -MnO₂ samples named Zn5 and Zn20 based on the Zn:Mn molar ratio
243 during synthesis (details in Text S1 and Table S3). After CV redox cycling, sample Zn5 displayed
244 a broader diffraction at 6–12 Å d-spacing, due to the emerging peak at ~10 Å, as compared to Zn5
245 before cycle (Figure 4A). Interestingly, no obvious structure change was observed by XRD for
246 sample Zn20 (Figure 4B), which contains ~5 times higher Zn concentration than Zn5 (Table S3).
247 These results demonstrate that the repelling effect of Zn (due to its stronger affinity for interlayer
248 sites than Mn(III)) prevented the migration of Mn(III) (produced from Mn(IV) reduction) into the
249 interlayer sites and the subsequent transformation to todorokite.

250 Besides the direct generation of Mn(III) via CV-induced redox cycles, comproportionation
251 of Mn²⁺(aq) and Mn(IV) may represent an alternative source of Mn(III). This reaction may occur
252 if the reduction of structural Mn(IV) releases Mn²⁺(aq) into the solution, which can subsequently
253 adsorb on δ -MnO₂.²⁵ However, based on the negligible concentration of dissolved Mn²⁺(aq)
254 measured in our system (Table S4), such Mn²⁺(aq)-driven transformation process can be ruled out
255 in our current set up. Thus, taken together, our findings provide further direct evidence that
256 interlayer Mn(III) is critical for the induction of layer-to-tunnel structure transformation of Mn

257 oxides.

258

259 **Factors governing phase selection and implications for natural systems**

260 Although tunnel structured Mn(IV) oxides has a number of polymorphs, such as those with
261 1×1 or 2×2 tunnel sizes (Figure S7), we only observed the transformation to todorokite (3×3
262 tunnel size) through redox cycles at a scan rate of 100 mV/s between -1 and 1 V. Interestingly,
263 todorokite is not the thermodynamically stable phase of tunnel structured Mn oxides. This implies
264 that kinetics plays a critical role in phase selection. To further elucidate the impact of kinetics, we
265 conducted CV experiments at different scan rates. Strikingly, with increased scan rate,
266 transformation from δ -MnO₂ to smaller tunnel sized Mn oxide, e.g. hollandite (α -MnO₂; 2×2
267 tunnel) (Figure 5D), was triggered and significantly facilitated. The currents of CV scans at
268 different rates are shown in Figure 5A. The integration of reduction peak area from current vs.
269 time and current vs. voltage plots are calculated, respectively (Figure S6 and Table S5 and S6). By
270 taking into account the active surface area of the electrode, the reduction kinetics from Mn(IV) to
271 Mn(II) and the transferred power per active surface area are shown in Figure 5B and Figure 5C,
272 respectively. It appears that higher scan rate results in faster redox kinetics and greater power per
273 surface area of Mn oxides (also see Tables S5 and S6). Figure 5D shows XRD patterns of the
274 reaction products obtained at different rates; it is clear that the peaks shifted toward lower d-
275 spacing values with increasing scan rate (Figure 5D). Specifically, when scanned at 2 V/s rate,
276 new peaks occurred at 7.3 and 5.1 Å with smaller peak width and higher peak intensity, indicating
277 the formation of 2×2 tunnel structured hollandite, which is also confirmed by HRTEM and FFT
278 analyses (Figure S8). It appears that the higher current flow at faster scan facilitates transformation
279 to smaller tunnel size, which has a higher energy barrier of layer-to-tunnel transition.²²

280 This new finding on the kinetics-dependent phase selection prompted us to think about the
281 reaction rates and electron flux of biotic/abiotic oxidation and reduction processes in the nature.
282 In order to compare the reduction rates obtained from literature (under different experimental
283 conditions) and the rate of electrochemical reduction of δ -MnO₂ in this study, pseudo-first order
284 rate constants (k_{obs}) are used by dividing reaction rate by effective surface area (Figure 6 and Table
285 S7). The rate of δ -MnO₂/birnessite reduction induced by common environmental reductants (e.g.
286 organics, biotic species, and transition metals) and the redox rates of Mn observed in ocean
287 sediments may be similar to or slower than that obtained from our 100 mV/s CV scans (Figure 6
288 and Table S7). Direct comparison of Mn²⁺(aq) oxidation rates using pseudo-first order reaction
289 constants (k_{obs}) is limited because homogeneous oxidation rates in aqueous solution by biotic and
290 photochemical processes cannot be normalized by surface area. However, reduction rates without
291 surface area normalization are comparable to or faster than oxidation rates, suggesting that the
292 rates for natural oxidation processes are likely to be similar to or slower than that obtained from
293 our 100 mV/s CV scans (Figure S9). Thus, our findings suggest that the natural abundance of
294 todorokite over other tunnel structured Mn oxides is plausibly due to kinetics and electron flux
295 limitations posed by natural oxidation and reduction processes. Using previously reported redox
296 rates of Mn in ocean sediments⁶ and assuming 300 times of redox cycles as used in this study, we
297 were able to preliminarily estimate the time required for the transformation of δ -MnO₂ to
298 todorokite in sediments. We used the redox rates between Mn²⁺(aq) and Mn(III) in the pore water
299 of ocean sediments⁶ because there were no previously studies on for the redox rates between
300 structured Mn(II) and Mn(IV) in MnO₂ (diagenetic process) in natural system. The estimated time
301 for the transformation of δ -MnO₂ to todorokite ranges from ~0.1 to ~10 years with 300 times redox
302 cycles (Text S5 and Table S8). We note that the estimated time has a large range due to the

303 limitation of available data and the reaction time in natural systems may also vary significantly
304 depending on the environment factors. Nonetheless, this study and the calculated estimation
305 provides an initial step for future studies to explain the formation of todorokite and contribution
306 of diagenesis processes on the diversity of Mn oxides in the presence of repeated redox cycles in
307 nature.

308

309 **Conclusion**

310 Overall, our case study on the transformation of layer to tunnel structure in Mn oxides
311 further emphasized the complex processes that can be involved in the formation of natural minerals.
312 In this case, the occurrence of tunnel structured natural Mn oxides may not always be due to single
313 one-run reactions, but rather more likely due to repeated redox reactions and structural evolution
314 cycles. In this study we used electrochemical methods to reasonably simulate and accelerate the
315 reactions involving Mn oxides in the nature. The results not only revealed the transformation
316 mechanisms in great details, but also disclosed the significant role of kinetics and electron flux in
317 the phase selection among different polymorphs of tunnel structured Mn oxides, which explains
318 the predominance of certain tunnel structured Mn oxides in natural environments. The new insights
319 revealed in this study may also provide new angles for interpreting the existence, evolution, and
320 weathering of minerals and their relationships within the geological environments of planetary
321 bodies such as the Earth and beyond.

322

323 **Associated Content**

324 **Supporting Information**

325 The Supporting Information is available free of charge at <http://pubs.acs.org>.

326 Materials and Methods (Texts S1–S5), XRD (Figures S1 and S8), HRTEM (Figures S2 and S8),
327 XAS (Figure S3), electrochemical tests (Figures S4–S6), structure of MnO₂ (Figure S7), summary
328 of redox rates (Figure S9), and thermodynamics and kinetics data in comparison with data
329 surveyed from literature (Tables S1–S7)

330

331 **Author Information**

332 **Corresponding Author**

333 *yuanzhi.tang@eas.gatech.edu

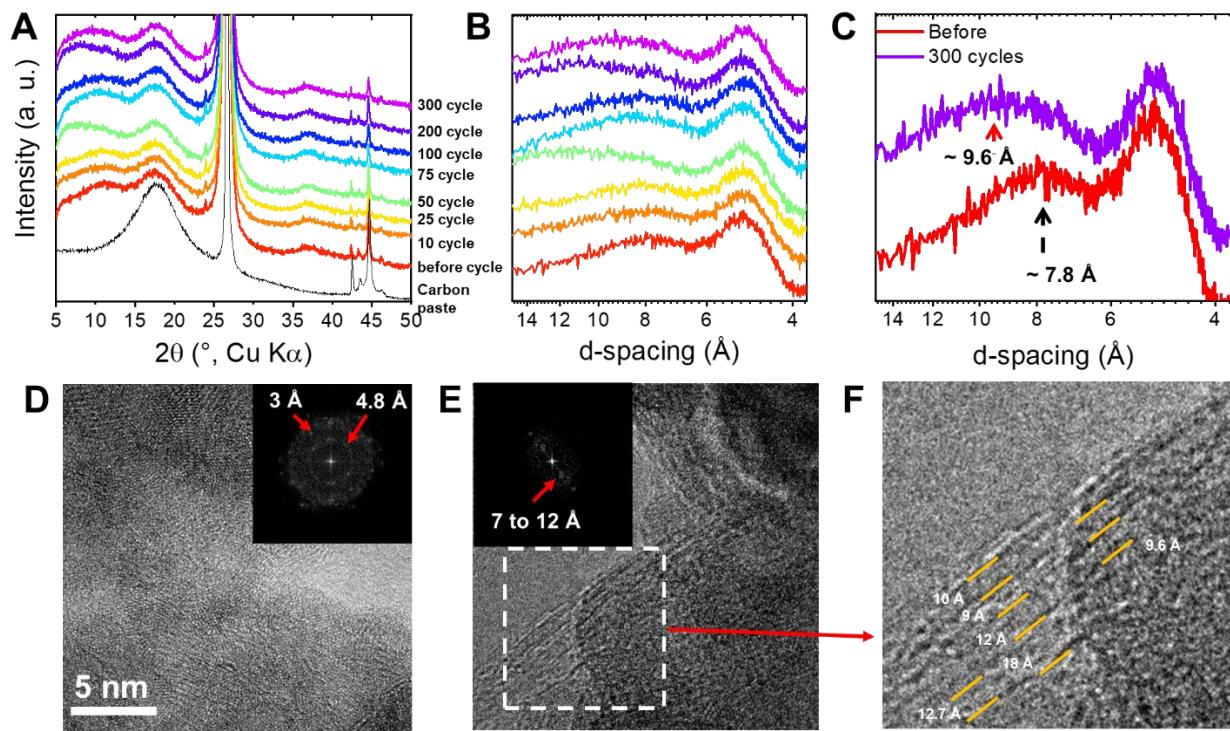
334 *hailong.chen@me.gatech.edu

335

336 **Acknowledgments**

337 This work is supported by US National Science Foundation under Grants No. 1710285, 1605692,
338 and 1739884 to YT and 1438648 to MT. The use of APS, SSRL, and NSLS-II is supported by the
339 US Department of Energy Office of Basic Energy Sciences under Contract No. DE-AC02-
340 06CH11357, DE-AC02-76SF00515, and DE-SC0012704, respectively.

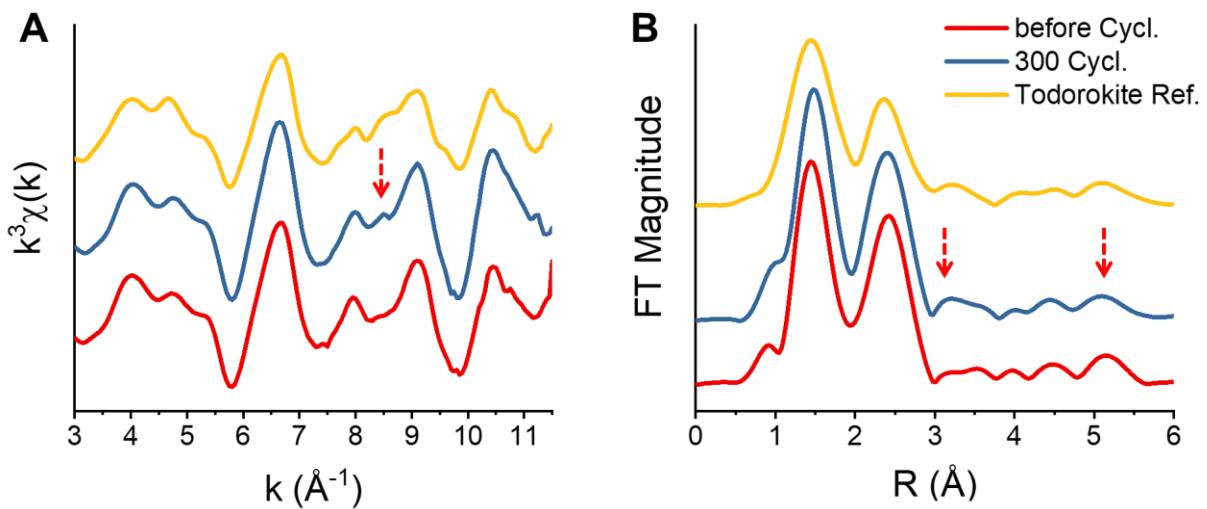
341 **References and Notes**


- 342 1. Yano, J.; Yachandra, V., Mn4Ca Cluster in Photosynthesis: Where and How Water is
343 Oxidized to Dioxygen. *Chem. Rev.* **2014**, *114* (8), 4175-4205.
- 344 2. Keiluweit, M.; Nico, P.; Harmon, M. E.; Mao, J.; Pett-Ridge, J.; Kleber, M., Long-term litter
345 decomposition controlled by manganese redox cycling. *Proc. Natl. Acad. Sci.* **2015**, *112*
346 (38), E5253-E5260.
- 347 3. Butterfield, C. N.; Soldatova, A. V.; Lee, S.-W.; Spiro, T. G.; Tebo, B. M., Mn (II, III)
348 oxidation and MnO₂ mineralization by an expressed bacterial multicopper oxidase. *Proc.*
349 *Natl. Acad. Sci.* **2013**, *110* (29), 11731-11735.
- 350 4. Lu, A.; Li, Y.; Ding, H.; Xu, X.; Li, Y.; Ren, G.; Liang, J.; Liu, Y.; Hong, H.; Chen, N.;
351 Chu, S.; Liu, F.; Li, Y.; Wang, H.; Ding, C.; Wang, C.; Lai, Y.; Liu, J.; Dick, J.; Liu, K.;
352 Hochella, M. F., Photoelectric conversion on Earth's surface via widespread Fe- and Mn-
353 mineral coatings. *Proc. Natl. Acad. Sci.* **2019**, *116* (20), 9741-9746.
- 354 5. Lovley, D. R.; Holmes, D. E.; Nevin, K. P., Dissimilatory Fe(III) and Mn(IV) reduction. In
355 *Advances in Microbial Physiology*, Vol. 49, Poole, R. K., Ed. 2004; Vol. 49, pp 219-286.
- 356 6. Madison, A. S.; Tebo, B. M.; Mucci, A.; Sundby, B.; Luther, G. W., Abundant porewater
357 Mn (III) is a major component of the sedimentary redox system. *Science* **2013**, *341* (6148),
358 875-878.
- 359 7. Nico, P. S.; Anastasio, C.; Zasoski, R. J., Rapid photo-oxidation of Mn (II) mediated by
360 humic substances. *Geochim. Cosmochim. Acta* **2002**, *66* (23), 4047-4056.
- 361 8. Jung, H.; Chadha, T.; Kim, D.; Biswas, P.; Jun, Y.-S., Photochemically-assisted Fast Abiotic
362 Oxidation of Manganese and Formation of δ-MnO₂ Nanosheets in Nitrate Solution. *Chem.*
363 *Commun.* **2017**, *53*, 4445-4448.
- 364 9. Learman, D.; Voelker, B.; Vazquez-Rodriguez, A.; Hansel, C., Formation of manganese
365 oxides by bacterially generated superoxide. *Nat. Geosci.* **2011**, *4* (2), 95-98.
- 366 10. Spiro, T. G.; Bargar, J. R.; Sposito, G.; Tebo, B. M., Bacteriogenic manganese oxides. *Acc.*
367 *Chem. Res.* **2009**, *43* (1), 2-9.
- 368 11. Canfield, D. E.; Thamdrup, B.; Hansen, J. W., The anaerobic degradation of organic matter
369 in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction.
370 *Geochim. Cosmochim. Acta* **1993**, *57* (16), 3867-3883.
- 371 12. Trouwborst, R. E.; Clement, B. G.; Tebo, B. M.; Glazer, B. T.; Luther, G. W., Soluble Mn
372 (III) in suboxic zones. *Science* **2006**, *313* (5795), 1955-1957.
- 373 13. Post, J. E., Manganese oxide minerals: Crystal structures and economic and environmental
374 significance. *Proc. Natl. Acad. Sci.* **1999**, *96* (7), 3447-3454.
- 375 14. Huang, J.; Zhong, S.; Dai, Y.; Liu, C.-C.; Zhang, H. J., Effect of MnO₂ phase structure on
376 the oxidative reactivity toward contaminant degradation. *Environ. Sci. Technol.* **2018**, *52*,
377 11309-11318.
- 378 15. Remucal, C. K.; Ginder-Vogel, M., A critical review of the reactivity of manganese oxides
379 with organic contaminants. *Environ. Sci. Process. Impact* **2014**, *16* (6), 1247-1266.
- 380 16. Johnson, J. E.; Webb, S. M.; Thomas, K.; Ono, S.; Kirschvink, J. L.; Fischer, W. W.,
381 Manganese-oxidizing photosynthesis before the rise of cyanobacteria. *Proc. Natl. Acad. Sci.*
382 **2013**, *110* (28), 11238-11243.
- 383 17. Kurzweil, F.; Wille, M.; Gantert, N.; Beukes, N. J.; Schoenberg, R., Manganese oxide
384 shuttling in pre-GOE oceans—evidence from molybdenum and iron isotopes. *Earth Planet.*
385 *Sci. Lett.* **2016**, *452*, 69-78.

- 386 18. Frei, R.; Gaucher, C.; Poulton, S. W.; Canfield, D. E., Fluctuations in Precambrian
387 atmospheric oxygenation recorded by chromium isotopes. *Nature* **2009**, *461* (7261), 250-
388 253.
- 389 19. Planavsky, N. J.; Reinhard, C. T.; Wang, X.; Thomson, D.; McGoldrick, P.; Rainbird, R. H.;
390 Johnson, T.; Fischer, W. W.; Lyons, T. W., Low Mid-Proterozoic atmospheric oxygen levels
391 and the delayed rise of animals. *Science* **2014**, *346* (6209), 635-638.
- 392 20. Owens, J. D.; Nielsen, S. G.; Horner, T. J.; Ostrander, C. M.; Peterson, L. C., Thallium-
393 isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial.
394 *Geochim. Cosmochim. Acta* **2017**, *213*, 291-307.
- 395 21. Romano, C. A.; Zhou, M.; Song, Y.; Wysocki, V. H.; Dohnalkova, A. C.; Kovarik, L.; Paša-
396 Tolić, L.; Tebo, B. M., Biogenic manganese oxide nanoparticle formation by a multimeric
397 multicopper oxidase Mn_x. *Nat. commun.* **2017**, *8*, 746-753.
- 398 22. Li, Y.-F.; Zhu, S.-C.; Liu, Z.-P., Reaction network of layer-to-tunnel transition of MnO₂. *J.*
399 *Am. Chem. Soc.* **2016**, *138* (16), 5371-5379.
- 400 23. Xiao, Y.; Zhu, Y.-F.; Xiang, W.; Wu, Z.-G.; Li, Y.-C.; Lai, J.; Li, S.; Wang, E.; Yang, Z.-
401 G.; Xu, C.-L.; Zhong, B.-H.; Guo, X.-D., Deciphering an Abnormal Layered-Tunnel
402 Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. *Angew.*
403 *Chem. Int. Ed.* 10.1002/anie.201912101.
- 404 24. Yuan, Y.; He, K.; Byles, B. W.; Liu, C.; Amine, K.; Lu, J.; Pomerantseva, E.; Shahbazian-
405 Yassar, R., Deciphering the Atomic Patterns Leading to MnO₂ Polymorphism. *Chem* **2019**,
406 *5* (7), 1793-1805.
- 407 25. Yang, P.; Lee, S.; Post, J. E.; Xu, H.; Wang, Q.; Xu, W.; Zhu, M., Trivalent manganese on
408 vacancies triggers rapid transformation of layered to tunneled manganese oxides (TMOs):
409 Implications for occurrence of TMOs in low-temperature environment. *Geochim.*
410 *Cosmochim. Acta* **2018**, *240*, 173-190.
- 411 26. Chukhrov, F. V.; Gorshkov, A. I.; Sivtsov, A. V.; Beresovskaya, V. V., New data on natural
412 todorokites. *Nature* **1979**, *278*, 631-632.
- 413 27. Feng, X. H.; Zhu, M.; Ginder-Vogel, M.; Ni, C.; Parikh, S. J.; Sparks, D. L., Formation of
414 nano-crystalline todorokite from biogenic Mn oxides. *Geochim. Cosmochim. Acta* **2010**, *74*
415 (11), 3232-3245.
- 416 28. Zhao, H.; Liang, X.; Yin, H.; Liu, F.; Tan, W.; Qiu, G.; Feng, X., Formation of todorokite
417 from “c-disordered” H⁺-birnessites: the roles of average manganese oxidation state and
418 interlayer cations. *Geochim. Trans.* **2015**, *16* (1), 8.
- 419 29. Bricker, O., Some stability relations in system Mn-O₂-H₂O at 25 degrees and 1 atmosphere
420 total pressure. *Am. Mineral.* **1965**, *50* (9), 1296-1354.
- 421 30. Chen, B.-R.; Sun, W.; Kitchev, D. A.; Mangum, J. S.; Thampy, V.; Garten, L. M.; Ginley,
422 D. S.; Gorman, B. P.; Stone, K. H.; Ceder, G.; Toney, M. F.; Schelhas, L. T., Understanding
423 crystallization pathways leading to manganese oxide polymorph formation. *Nat. Commun.*
424 **2018**, *9* (1), 2553-2561.
- 425 31. Borch, T.; Kretzschmar, R.; Kappler, A.; Cappellen, P. V.; Ginder-Vogel, M.; Voegelin, A.;
426 Campbell, K., Biogeochemical redox processes and their impact on contaminant dynamics.
427 *Environ. Sci. Technol.* **2009**, *44* (1), 15-23.
- 428 32. Zhao, S.; Wang, Q.; Sun, J.; Borkiewicz, O. J.; Huang, R.; Saad, E. M.; Fields, B.; Chen, S.;
429 Zhu, M.; Tang, Y., Effect of Zn coprecipitation on the structure of layered Mn oxides.
430 *Chem. Geol.* **2018**, *493* (20), 234-245.

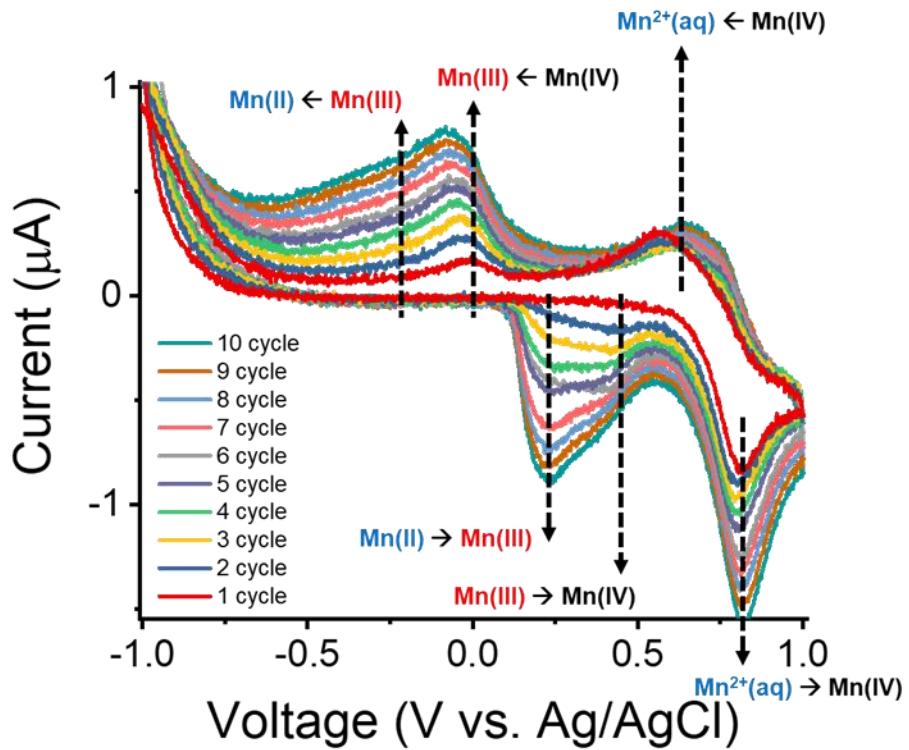
- 431 33. Webb, S.; Fuller, C.; Tebo, B.; Bargar, J., Determination of uranyl incorporation into
432 biogenic manganese oxides using X-ray absorption spectroscopy and scattering. *Environ.*
433 *Sci. Technol.* **2006**, *40* (3), 771-777.
- 434 34. Golden, D.; Chen, C.; Dixon, J., Synthesis of todorokite. *Science* **1986**, *231* (4739), 717-719.
- 435 35. Bodeï, S.; Manceau, A.; Geoffroy, N.; Baronnet, A.; Bautier, M., Formation of todorokite
436 from vernadite in Ni-rich hemipelagic sediments. *Geochim. Cosmochim. Acta* **2007**, *71* (23),
437 5698-5716.
- 438 36. Yuan, Y.; Liu, C.; Byles, B. W.; Yao, W.; Song, B.; Cheng, M.; Huang, Z.; Amine, K.;
439 Pomerantseva, E.; Shahbazian-Yassar, R.; Lu, J., Ordering Heterogeneity of [MnO₆]
440 Octahedra in Tunnel-Structured MnO₂ and Its Influence on Ion Storage. *Joule* **2019**, *3* (2),
441 471-484.
- 442 37. McKeown, D. A.; Post, J. E., Characterization of manganese oxide mineralogy in rock
443 varnish and dendrites using X-ray absorption spectroscopy. *Am. Mineral.* **2001**, *86* (5-6),
444 701-713.
- 445 38. Saratovsky, I.; Gurr, S. J.; Hayward, M. A., The structure of manganese oxide formed by the
446 fungus *Acremonium* sp. strain KR21-2. *Geochim. Cosmochim. Acta* **2009**, *73* (11), 3291-
447 3300.
- 448 39. Santelli, C. M.; Webb, S. M.; Dohnalkova, A. C.; Hansel, C. M., Diversity of Mn oxides
449 produced by Mn (II)-oxidizing fungi. *Geochim. Cosmochim. Acta* **2011**, *75* (10), 2762-2776.
- 450 40. Grangeon, S.; Lanson, B.; Miyata, N.; Tani, Y.; Manceau, A., Structure of nanocrystalline
451 phyllo-manganates produced by freshwater fungi. *Am. Mineral.* **2010**, *95* (11-12), 1608-1616.
- 452 41. Larabi-Gruet, N.; Peulon, S.; Lacroix, A.; Chausse, A., Studies of electrodeposition from
453 Mn (II) species of thin layers of birnessite onto transparent semiconductor. *Electrochim.*
454 *Acta* **2008**, *53* (24), 7281-7287.
- 455 42. Jung, H.; Chadha, T. S.; Min, Y.; Biswas, P.; Jun, Y.-S., Photochemically-assisted Synthesis
456 of Birnessite Nanosheets and Their Structural Alteration in the Presence of Pyrophosphate.
457 *ACS Sustain. Chem. Eng.* **2017**, *5* (11), 10624-10632.
- 458 43. Lanson, B.; Drits, V. A.; Silvester, E.; Manceau, A., Structure of H-exchanged hexagonal
459 birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. *Am.*
460 *Mineral.* **2000**, *85* (5-6), 826-838.

461


462

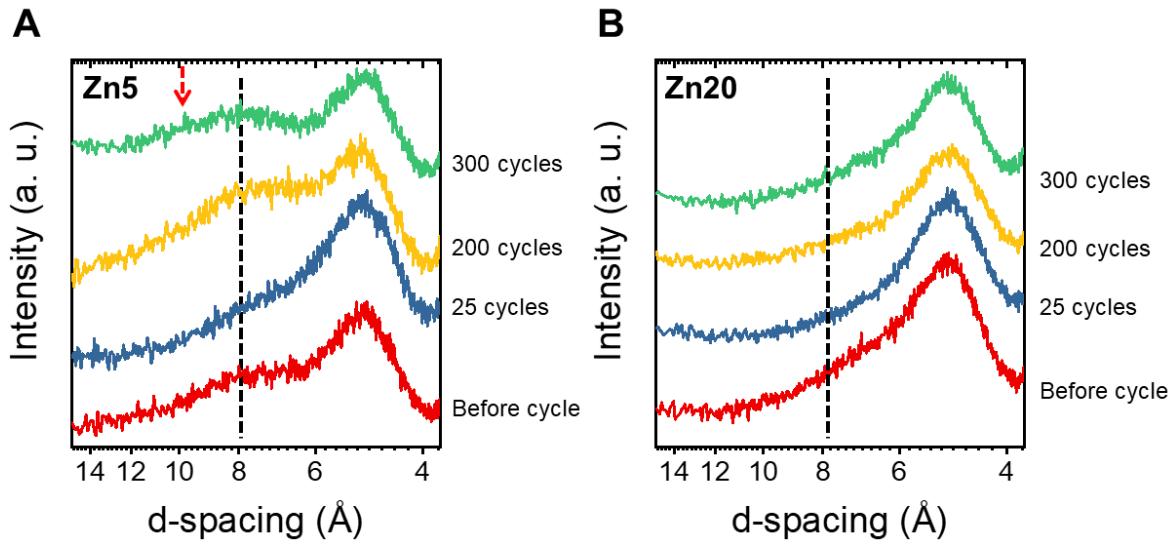
463

464


465 **Figure 1. Transformation of δ -MnO₂ nanosheets to tunnel structured todorokite driven by**
 466 **repeated redox cycling. (A and B)** From bottom to top, XRD patterns of carbon paste, unreacted
 467 δ -MnO₂ (0 cycle), and δ -MnO₂ after 10–300 cycles at 100 mV/s. **(C)** Shift of the δ -MnO₂ (001)
 468 basal plane diffraction peak to the (100,001) peak of todorokite after 300 redox cycles. **(D, E, and**
 469 **F)** HRTEM images and fast Fourier transform of selected areas showing atomic distances, ranging
 470 from ~9–18 Å, occurring from the direction perpendicular to tunnels, typical of todorokite after
 471 300 cycles.

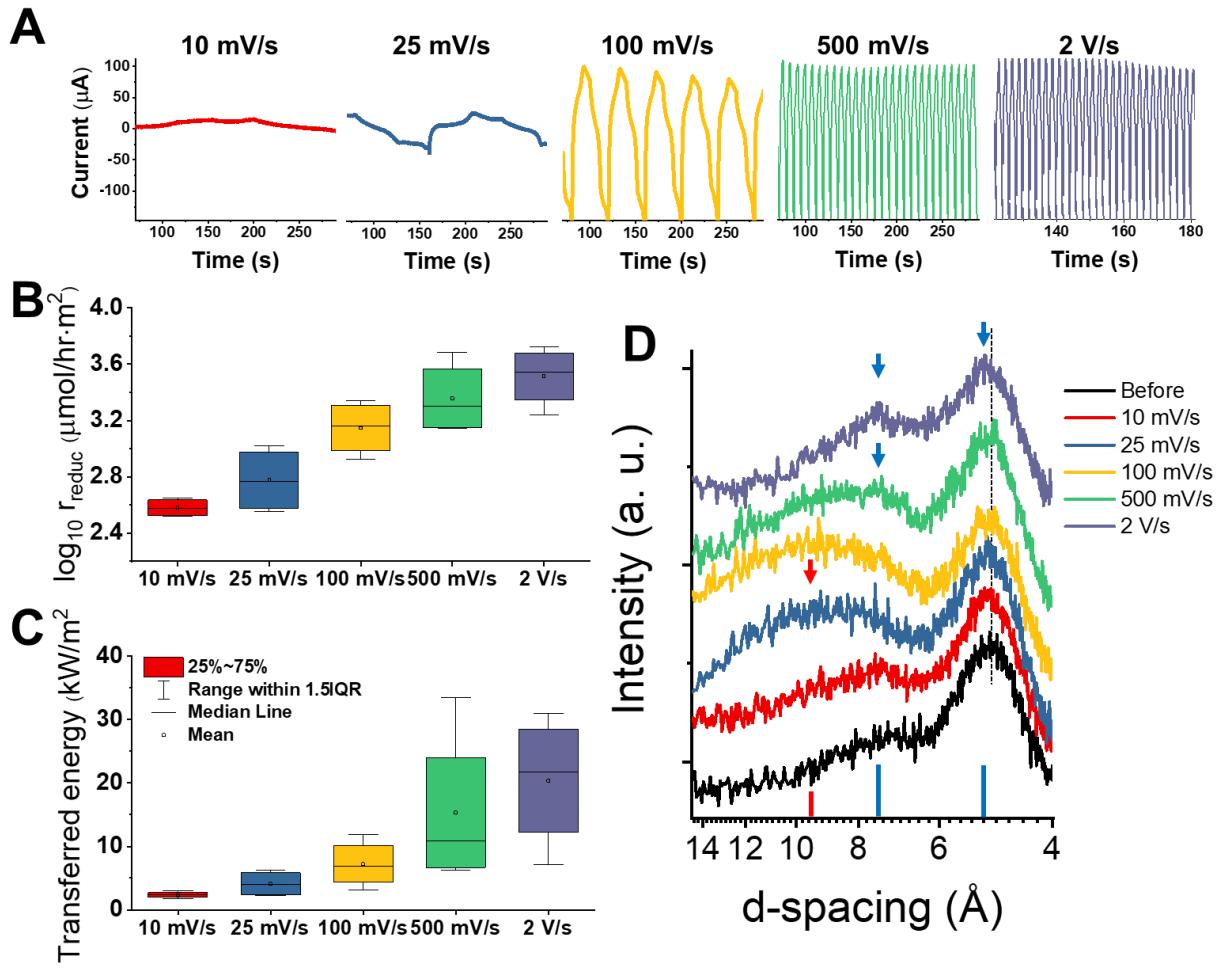
472

473


474 **Figure 2. EXAFS analysis of $\delta\text{-MnO}_2$ reaction products.** (A) Mn K-edge EXAFS spectra and
 475 (B) Fourier transform of $\delta\text{-MnO}_2$ before and after 300 cycles, compared to a todorokite reference
 476 compound.

477

478

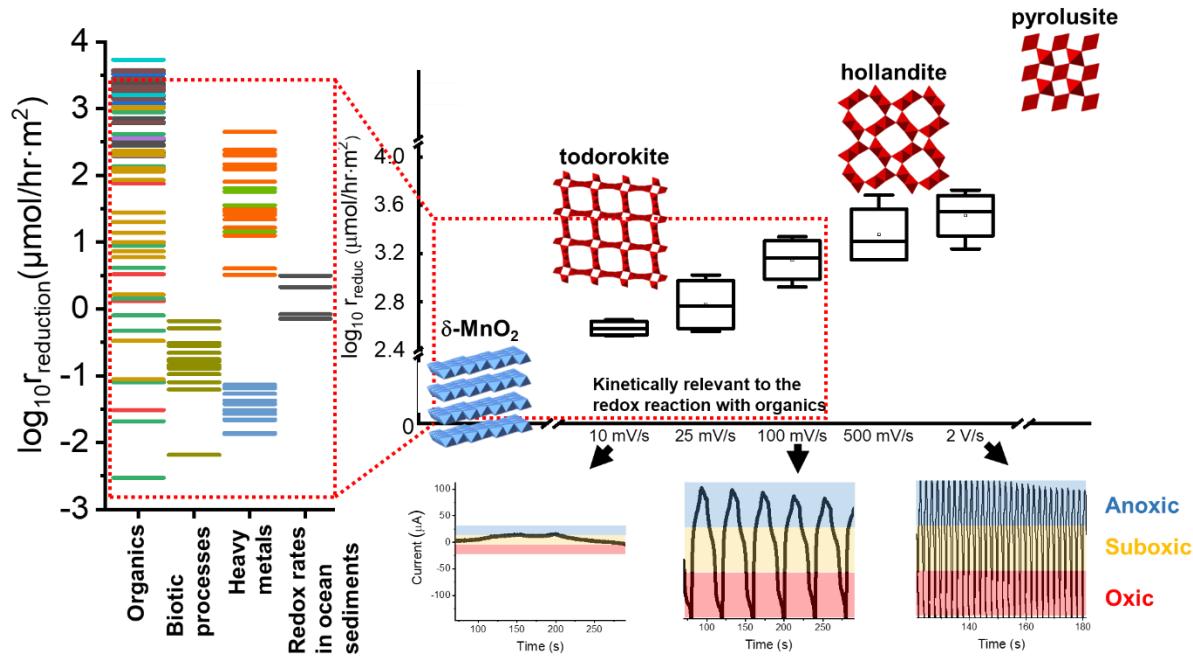

479 **Figure 3. Cyclic voltammetry curves of a 100 μ M Mn^{2+} solution cycled 10 times between -1
480 and 1 V at pH 7.** The voltammetric peaks, resulting from redox reactions between $Mn(II)$ and
481 $Mn(IV)$ in solid Mn oxide, changed asymmetrically with increasing numbers of cycles. This result
482 suggests a two-step one-electron transfer mechanism between structural $Mn(II)$ and structural
483 $Mn(IV)$, with the formation of intermediate $Mn(III)$.

484

485

486 **Figure 4. Suppressed transformation of Zn-coprecipitated δ -MnO₂ to todorokite.** XRD
 487 patterns of Zn-coprecipitated δ -MnO₂ samples (A) Zn5 and (B) Zn20 before and after 25–300
 488 redox cycles. Black dashed line indicates d-spacing of (001) basal plane of Zn-coprecipitated δ -
 489 MnO₂ samples as shown in the broad and weak sample diffraction before cycle. Red arrow points
 490 to a diffraction shoulder at \sim 10 Å after 300 cycles in Zn5 that emerged from the formation of
 491 todorokite through redox cycling.

Figure 5. Effect of the frequency and amplitude of repeated redox cycles on the tunnel size of $\delta\text{-MnO}_2$ transformation products. (A) Current flow as a function of time under varied scan rates. **(B)** Reduction rates obtained from the varied voltage scan rates. **(C)** Applied power resulting from electron flux during redox reaction under varied voltage scan rates. The average and error range were obtained by analyzing and averaging CV curves at 10, 100, 200, and 300 redox cycles. **(D)** XRD showing the change of tunnel size depending on voltage scan rates. Bottom red vertical line represents the (100,001) diffraction peak of todorokite (3×3 tunnel structure). Red arrow indicates the emerged diffraction peak of todorokite. Bottom blue vertical lines indicate the (-101,10-1) and (200,002) diffraction peaks of hollandite (2×2 tunnel structure). Blue arrows

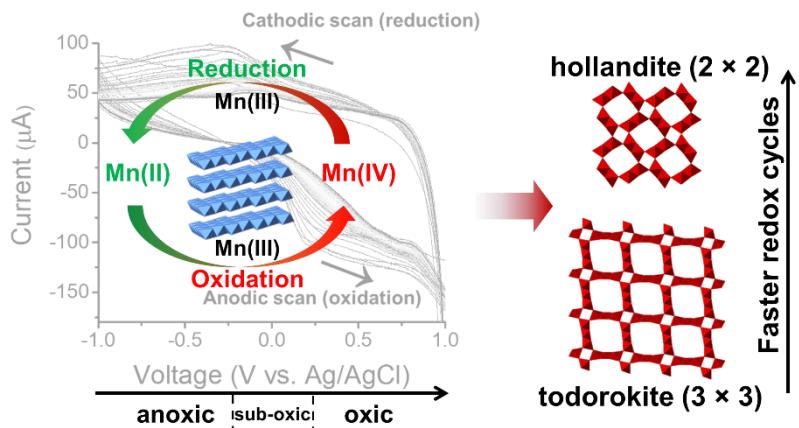

503 indicate the emerged diffraction peaks of hollandite. Black dashed line is a visual guideline of the
504 change in peak symmetry due to emerged diffraction from hollandite at 2 V/s.

505

506

507

508



509

510

511 **Figure 6. Correlation between the abundance of different tunnel sized Mn oxides and**
 512 **environmentally relevant redox kinetics.** The reduction rates of layered Mn oxides (birnessite
 513 and δ -MnO₂) under environmentally relevant conditions are within the regime observed for the
 514 transformation of δ -MnO₂ to todorokite by repeated redox cycling, which explains the abundance
 515 of todorokite (3 \times 3 tunnel size) over other tunnel structured Mn oxides with smaller tunnel sizes
 516 (e.g. 2 \times 2 or 1 \times 1 tunnel sizes) in natural environments.

517

518

519

520

TOC Abstract