

1 Article

2 **Structural Assessment of Fluorine, Chlorine,
3 Bromine, Iodine, and Hydroxide Substitutions in
4 Lead Arsenate Apatites (Mimetites)- $Pb_5(AsO_4)_3X$** 5 **Julia Sordyl ^{1,*}, Bartosz Puzio ¹, Maciej Manecki ¹, Olaf Borkiewicz ², Justyna Topolska ¹ and
6 Sylwia Zelek-Pogudz ¹**7 ¹ Faculty of Geology, Geophysics and Environmental Protection, AGH-University of Science and
8 Technology, al. Mickiewicza 30, 30-059 Kraków, Poland; bpuzio@agh.edu.pl (B.P.);
9 gpmmanec@cyf-kr.edu.pl (M.M.); topolska@agh.edu.pl (J.T.); zelek@geol.agh.edu.pl (S.Z.-P.)10 ² X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439,
11 United States; borkiewicz@aps.anl.gov (O.B.)

12 * Correspondence: sordyljulia@gmail.com

13 Received: date; Accepted: date; Published: date

14 **Abstract:** Five lead-arsenate apatites (mimetites) - $Pb_5(AsO_4)_3X$, where X denotes fluorine (F),
15 chlorine (Cl), bromine (Br), iodine (I), and hydroxide (OH), were synthesized via precipitation from
16 aqueous solutions. The crystal structures were determined through Rietveld refinement of powder
17 synchrotron X-ray data. All the compounds crystallized in the hexagonal class symmetry (space
18 group $P6_3/m$). The Rietveld refinement indicated that mimetite-Cl, -Br, -I, and -OH had an anion
19 deficiency at position X. Substitution of halogens in a mimetite structure brought about systematic
20 changes in unit-cell parameters, interatomic distances, and metaprism twist angles φ , proportional
21 to the substituted halogen's ionic radius. Mimetite-OH did not follow the linear correlations
22 determined within the series. Twist angle φ , a useful device for monitoring changes in apatite
23 topology, ranged from 20.34° for mimetite-F to 11.42° for mimetite-I. The geometric method has
24 been proposed for determining the diameter of hexagonal channels hosting halogens in apatites. A
25 comparison of the results with halogenated pyromorphites showed similar systematic trends: the
26 substitutions in mimetites have comparable effect on the interatomic distances as in their
27 phosphorous analogues.28 **Keywords:** halogenated mimetites; Rietveld refinement; synchrotron; anionic substitution; twist
29 angle31 **1. Introduction**32 The crystal structure and crystal chemistry of apatites have been analyzed in detail in recent
33 reviews [1-5, and the literature cited therein]. Briefly, the generalized formula of apatite is written
34 as $[M(1)]_2[M(2)]_3(TO_4)_3X$. The basic apatite structure is predominantly hexagonal with space group
35 $P6_3/m$, although a few monoclinic forms have also been reported. Oxide ions occupy two special
36 positions O(1) and O(2) and one general position O(3) around the T site. Usually, the M(1) and M(2)
37 site cations are divalent (e.g. Ca^{2+} , Pb^{2+} , Sr^{2+} , Ba^{2+}), the T cation is pentavalent (e.g. P^{5+} , As^{5+} , V^{5+}), and
38 the X anion monovalent (e.g. OH^- , F^- , Cl^- , Br^- , I^-). However, the apatite lattice is very tolerant of
39 substitution. Hence, charge neutrality can also be maintained by other ions (CO_3^{2-} , REE^{3+} , S^{6+} , Si^{4+} ,
40 Na^+ , etc.) and by vacancies [6].41 In an apatite structure with a space group symmetry $P6_3/m$, a hexagonal atomic framework is
42 based on two distinct metal-cation sites -- M(1) and M(2), a tetrahedral-cation site (T), and an anion
43 column along four edges of the unit cell. The tetrahedral site is a TO_4 tetrahedron. The M(1) site is an
44 M(1) O_9 tricapped-trigonal prism, while the M(2) site is an irregular M(2) O_6X_1 polyhedron. The X

45 anions exist in (0,0,z) columns along the edges of the unit cell [7] (see also White et al., [3] for a
46 detailed description of apatite structures). The location of X anion with respect to the surrounding
47 M(2) cations has been thoroughly described in various research studies [8-11]. It has been shown
48 that in the case of $\text{Ca}_{10}(\text{PO}_4)_6\text{F}_2$, F fits within a Ca(2) triangle, while OH, Cl, and Br substitutions
49 subsequently lead to a greater displacement out of the triangular plane [3]. Kim et al., [11]
50 demonstrated that despite the larger size of the Pb(2) triangles as compared to Ca(2) triangles, Cl
51 and F are also displaced away from the triangular plane, whereas, for the F-, Cl-, and Br- lead
52 apatites, the anions were found to be at the (0,0,1/2) position.

53 Little is known about the apatite with I in position X, but the iodine vanadinite $\text{Pb}_5(\text{VO}_4)_3\text{I}$ is
54 well documented [12-15]. The iodine mimetite - $\text{Pb}_5(\text{AsO}_4)_3\text{I}$ was synthesized by Merker and
55 Wondratschek, [16]. The scientists have proposed that the large size of the I^- anion prevents the
56 creation of the iodine-phosphate apatite. Monovalent anions X occupy hexagonal channels, which
57 extend along the crystallographic axis c in the apatite structure. These channels have given the
58 apatite group the name -- mesoporous solids [17]. Some authors find that the larger size of a unit
59 cell enables the incorporation of a halogen with a larger ionic radius [4,18]. However, this
60 proposition seems to be speculative as the parameter c of both calcium and strontium apatites
61 decreases with the replacement of systematically larger halogen anions [11,17,19].

62 Several chemical analyses of natural apatite supergroup minerals formed in the oxidation zone
63 indicate that the elemental composition of apatites mirrors the composition of the aqueous solutions
64 from which they precipitate [18,20]. Several synthesis experiments have also shown that the
65 composition of products can be accurately controlled by the composition of the initial solutions
66 [11,17,21-28]. Hence, induced apatite precipitation can be used to immobilize pollutants in
67 contaminated soils, waste, or waters. Anthropogenic emissions of lead and arsenic from industrial
68 processes and the processing of mineral resources pose a threat to human health and the
69 environment. In the 1990s, the in-situ immobilization of lead technique was developed [29-34]. Over
70 time, this remediation technique has developed into the Phosphate Induced Metal Stabilization
71 technique [35-38]. Furthermore, catastrophic contamination of drinking water by arsenic in the
72 Indian subcontinent, Cambodia, and Bangladesh is well documented, and studies have been
73 conducted over the years to devise methods for removal of arsenic from drinking water using
74 hydroxylapatites and similar materials, including bone meal [39-42].

75 Minerals from the apatite group have also been proposed for use in the storage of nuclear
76 waste, containing I, Cs, Sr, rare earth elements and actinides [43-47]. However, isotope ^{129}I is
77 particularly challenging as it has a long half-life of 1.57×10^7 years, and iodine in reduced I^- form is
78 highly mobile in the environment. Materials with a crystalline apatite structure have a high
79 potential to bind ^{129}I due to their strength, durability, low solubility, and relatively high iodine
80 content, which lowers the rate of iodine release and minimizes the volume of waste. To optimize
81 the storage efficiency of such nuclear wastes, the properties of synthetic apatite compositions
82 containing I should be studied. To date, very few phases have been synthesized experimentally
83 [14,48-51]

84 Hence, the systematization of the chemistry and crystal structure of different apatites is
85 essential for functionally adapting it to specific technologies. This requires, among others, accurate
86 descriptions of the crystal structures. For this purpose, single-crystal analysis is preferred, however,
87 many apatites are easily synthesized in powder form and the Rietveld refinement procedure is very
88 widely used in such cases. Nevertheless, the least-squares method, used during the Rietveld
89 refinement, can result in false minima due to the propagation of errors [52]. In such cases, the
90 application of restraints on TO_4 tetrahedra or selected bond lengths or atomic positions is used
91 [53,54].

92 This paper presents the synthesis of several lead-arsenic apatites (mimetites) containing F, Cl,
93 Br, I, and OH ions on the anionic sites. The syntheses were made from aqueous solutions, which
94 provided both mineralogical and environmental significance to the results. For the first time,
95 systematic variations in mimetite structure brought about by anionic substitutions in X position in
96 such a wide range of substitutions have been thoroughly described. The analysis of the structure by

97 Rietveld refinement of synchrotron data, which is the state-of-the-art solution for fine crystalline
98 products of synthesis from aqueous solutions, is presented. The syntheses were performed based on
99 the unified procedure and under the same conditions. This ensured that the presented systematic
100 changes in the structures of the studied phases resulted solely from the substitutions on anionic sites
101 and were not affected by the method of crystallization. To our knowledge, no accurate structural
102 studies of the halogen-substituted lead-arsenate apatites have been reported to date.

103 2. Materials and Methods

104 2.1. Synthesis

105 The following five phases of arsenate-lead apatites (mimetites) were synthesized by
106 precipitation from aqueous solutions using a modified Baker, [55] method: $\text{Pb}_5(\text{AsO}_4)_3\text{F}$,
107 $\text{Pb}_5(\text{AsO}_4)_3\text{Cl}$, $\text{Pb}_5(\text{AsO}_4)_3\text{Br}$, $\text{Pb}_5(\text{AsO}_4)_3\text{I}$, and $\text{Pb}_5(\text{AsO}_4)_3\text{OH}$. The syntheses were carried out at 25°C,
108 by the dropwise addition (at a rate of 2 mL/min) of aqueous solutions of $\text{Pb}(\text{NO}_3)_2$, $\text{Na}_2\text{AsHO}_4 \cdot 7\text{H}_2\text{O}$,
109 and one of the following: NH_4F , NaCl , NH_4Br , or KI . The Pb/As and As/X (where $\text{X} = \text{F}, \text{Cl}, \text{Br}, \text{I}$, and
110 OH) molar ratios in the mixed solutions were maintained at 1.67 and 3.00, respectively.
111 All the samples were synthesized at $\text{pH} = 4.5$, open to the air and atmospheric carbon dioxide (CO_2).
112 The pH was maintained throughout the experiments using a 0.1 M solution of NH_4OH or HNO_3 . The
113 precipitates were aged in a suspension for 72 h, centrifuged, and washed with double-distilled
114 water.

115 2.2. Analytical methods

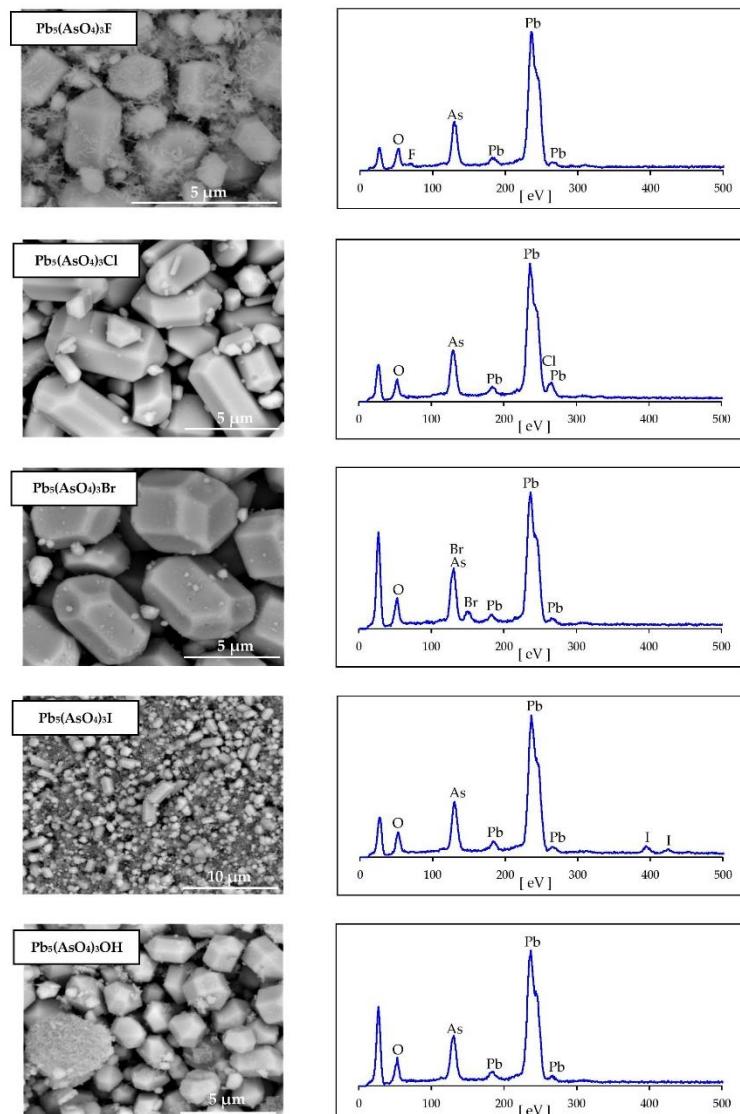
116 Solid characterization with scanning electron microscopy (SEM) was carried out at a low
117 vacuum for the uncoated samples using an FEI Quanta 200 FEG SEM (Hillsboro, OR, USA)
118 equipped with secondary-electron and back-scattered-electron detectors. Energy dispersive
119 spectrometry (EDS, FEI Quanta) was employed to monitor variations in the chemical composition.

120 Conventional powder X-ray diffraction patterns were recorded with the Rigaku SmartLab
121 diffractometer (Neu-Isenburg, Tokyo, Japan) using graphite-monochromatized $\text{CuK}\alpha$ radiation, an
122 operating voltage of 45 kV, a current of 200 mA in a 3° to $73^\circ 2\theta$ range, a step size of 0.02° , and a
123 counting time of 1 s/step. The samples were ground prior the measurements using a pestle and
124 mortar. The phases were identified using the ICCD database and XRAYAN software [56].
125 Preliminary unit-cell parameters were calculated from powder XRD patterns using UnitCell
126 software [57] for the hexagonal crystal system (space group $\text{P}6_3/\text{m}$) based on the position of up to 17
127 diffraction lines.

128 For synchrotron X-ray diffraction the powders were ground using a pestle and mortar and
129 sieved through a 20- μm sieve. High-resolution X-ray diffraction data were collected at beamline
130 11-BM of the Advanced Photon Source, Argonne National Laboratory. To decrease the absorption
131 coefficient of samples containing high-Z elements, effective packed density have been reduced by
132 limiting the amount of sample present in the X-ray beam; a fine layer of material has been spread on
133 the outside of a 0.8-mm Kapton capillary using low-density wax as “adhesive”, which in turn was
134 sleeved into a 1.1-mm capillary and mounted to a modified 11-BM bases. Bases have been mounted
135 onto beamline goniometer equipped with high-speed spinner, ensuring excellent powder averaging.
136 Samples were measured in transmission geometry using photon energy of 0.4128 \AA with the
137 scattered intensities recorded by multi-analyzer detector system consisting of 12 independent Si
138 (111) crystal analyzers and LaCl_3 scintillation detectors, spaced 2° apart. A pair of slits between the
139 sample and each crystal is used to separate and collimate the diffracted beam from the sample. This
140 multianalyzer/detector scheme enables simultaneous high-speed (~ 1 hour) and high-resolution
141 ($\Delta Q/Q \approx 2 \times 10^{-4}$) data collection. Discrete detectors covering an angular range from -6 to $16^\circ 2\theta$ were
142 scanned over a $34^\circ 2\theta$ range, with data points collected every $0.001^\circ 2\theta$ at a speed of $0.01^\circ \text{ s}^{-1}$ while
143 continually scanning the diffractometer 2θ arm. A mixture of NIST standard reference materials, Si
144 (SRM 640c) and Al_2O_3 (SRM 676) was used to calibrate the instrument. Corrections were applied for
145 detector sensitivity, 2θ offset, small differences in wavelength between detectors, and the source

146 intensity, as noted by the ion chamber before merging the data into a single set of intensities evenly
 147 spaced in 2θ . All the refinements were performed with the help of the General Structure Analysis
 148 System (GSAS) program of Larson and Von Dreele, [58] using the EXPGUI interface of Toby, [59].
 149 Molecular graphics was performed using VESTA software [60]. Structural refinement was
 150 performed using the Rietveld method [61]. The initial coordinates were taken from pyromorphite
 151 $\text{Pb}_5(\text{PO}_4)_3\text{Cl}$ determined by Dai and Hughes, [62]. The refinement parameters included the scale
 152 factor and 36 background terms in a Chebyshev first-order polynomial. Peak profiles were modelled
 153 using the pseudo-Voigt profile function which includes the Stephens model for anisotropic strain
 154 broadening (Type 4). Number of peaks equaled to: 2060, 2127, 2158, 2195, and 2122 for mimetite-F,
 155 -Cl, -Br, -I, and -OH, respectively. The initial unit-cell parameters were calculated using
 156 conventional X-ray powder diffraction data. The final unit-cell dimensions were refined after
 157 convergence for the aforementioned parameter was achieved. Soft constraints were imposed on the
 158 As – O bond lengths. The atomic position z for anion X was fixed at 1/2 except for OH. Then, the
 159 atomic positions, occupancy factors, and isotropic atomic displacement factors were modelled.

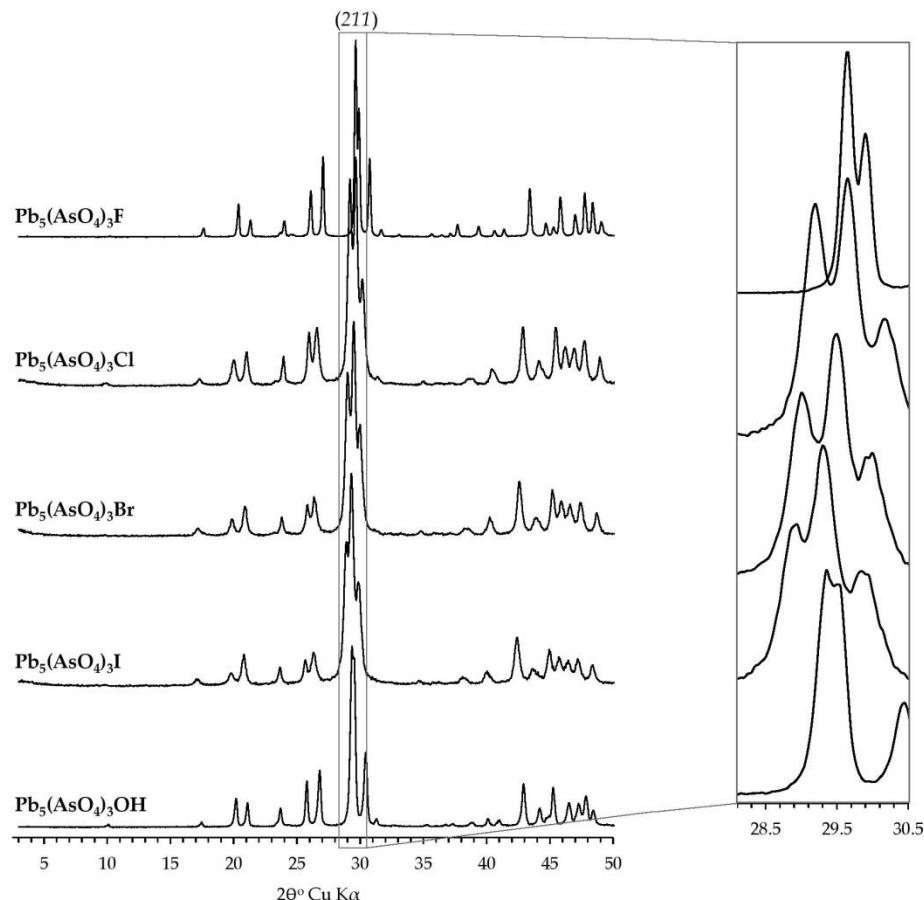
160 To evaluate the Pb and As molar ratio in the obtained materials, the full chemical composition
 161 was determined using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)
 162 method (Perkin Elmer Optima 7300DV instrument) following prior digestion of samples in
 163 concentrated HNO_3 mixed with 0.02M EDTA. The content of F, Br, and I was analyzed using
 164 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). For technical reasons, the content of Cl
 165 was determined using SEM/EDS. The OH content was assumed based on the stoichiometry of the
 166 ideal formula.


167 3. Results

168 3.1. Preliminary characteristics of the synthesized products

169 The syntheses produced homogeneous, white to cream, fine crystalline powders. The crystals
 170 were well developed with sizes between 2 μm and 5 μm (Figure 1). Their hexagonal morphology is
 171 typical for apatites. Even though the synthesized products were aged in suspension for 6 days, a
 172 smaller population of needle-shaped crystals ($<1 \mu\text{m}$) was still visible in mimetite-F precipitate
 173 (Figure 1). The finest crystals were observed for mimetite-I. Semi-quantitative EDS analysis
 174 (Figure 1) along with wet chemical analysis yielded the composition close to the ideal formula of
 175 each crystalline phase (Table 1).

176 **Table 1.** Chemical composition of synthetic mimetites.


Intended Chemical Formula	Empirical Chemical Formula	Sample Name
$\text{Pb}_5(\text{AsO}_4)_3\text{F}$	$\text{Pb}_{5.00}(\text{AsO}_4)_{2.99}\text{F}_{0.98}$	mimetite-F
$\text{Pb}_5(\text{AsO}_4)_3\text{Cl}$	$\text{Pb}_{5.00}(\text{AsO}_4)_{2.99}\text{Cl}_{1.00}$	mimetite-Cl
$\text{Pb}_5(\text{AsO}_4)_3\text{Br}$	$\text{Pb}_{5.00}(\text{AsO}_4)_{2.98}\text{Br}_{0.97}$	mimetite-Br
$\text{Pb}_5(\text{AsO}_4)_3\text{I}$	$\text{Pb}_{5.00}(\text{AsO}_4)_{3.03}\text{I}_{0.60}$	mimetite-I
$\text{Pb}_5(\text{AsO}_4)_3\text{OH}$	$\text{Pb}_{5.00}(\text{AsO}_4)_{3.01}\text{OH}_{1.00}$	mimetite-OH

177

178 **Figure 1.** Scanning electron micrographs and EDS elemental analysis of synthesized
 179 halogenated mimetites. Unlabeled peak at low eV on EDS spectra is an artifact of mounting (carbon tape).

180 X-ray diffraction patterns of synthesized phases indicated that the synthesized products were
 181 crystalline analogues of Pb-As apatites (Figure 2). No other phases were detected at the detection
 182 limit of the method, which is ca. 0.1 wt%. Based on the obtained diffraction patterns and by analogy
 183 with other apatites, it was assumed that all synthesized mimetites crystallized in the hexagonal
 184 system, in space group $P6_3/m$, ITC No. 176. The position of an intense reflection (211) shifted from
 185 $29.62^\circ 2\theta$ for mimetite-F to $29.41^\circ 2\theta$ for mimetite-I, as presented in Figure 2. Systematic shifts of
 186 diffraction peaks toward lower 2θ value were apparent with the increase in the halogen's ionic
 187 radius, excluding mimetite-OH, which did not follow the trend.

188

189 **Figure 2.** Laboratory X-ray diffraction patterns of synthesized halogenated mimetites. All phases
 190 exhibited good crystallinity. No contamination were detected within the detection limit of the
 191 method. A systematic shift of peak positions is visible in the inset.

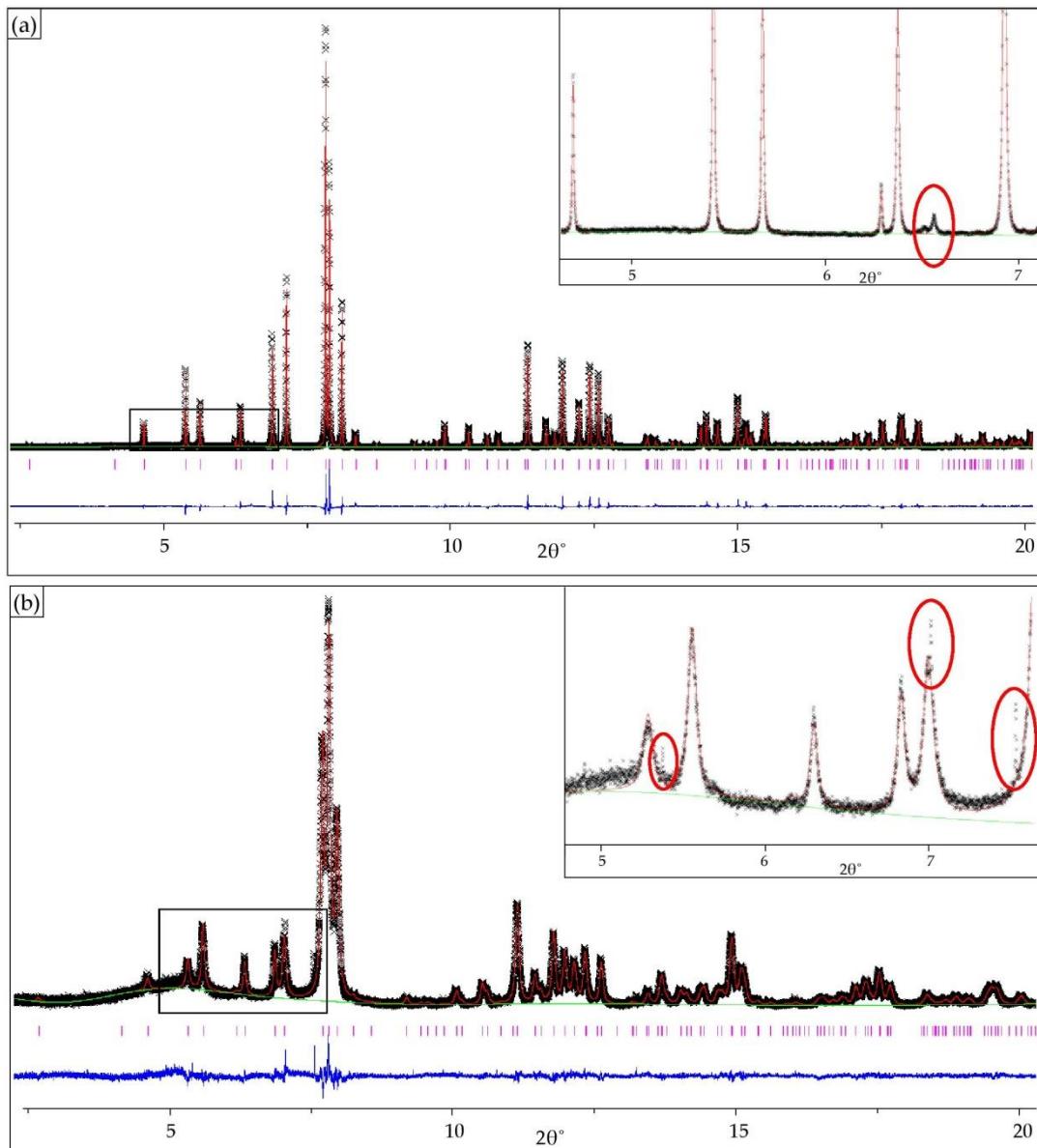
192 *3.2. Rietveld refinement from high-resolution synchrotron data*

193 Structural refinement was performed using the Rietveld method [61]. The initial coordinates
 194 were taken from pyromorphite $\text{Pb}_5(\text{PO}_4)_3\text{Cl}$ determined by Dai and Hughes, [62], while the initial
 195 unit-cell parameters were calculated using conventional X-ray powder diffraction data. The final
 196 refinement parameters are listed in Table 2. The Crystallographic Information Files can be found in
 197 the Supplementary Materials (File S1-S5). The atomic positions and atomic displacement parameters
 198 along with site occupancy and unit-cell parameters were refined to wR_{p} and R_{p} below 10% and
 199 convergence of the model.

200 Some authors suggest that in the structural refinements of apatites, TO_4 should be treated as a
 201 rigid body to prevent unrealistic bond lengths, and the constraints on the positions of the oxygen
 202 atoms should be employed. For instance, structural modelling of mimetite-Cl made by Henderson et
 203 al., [17] required restraints of As-O bond length to 1.69 Å in agreement with their EXAFS results. At
 204 the same time, Pb-O distances were restrained based on the literature data. Also, Baikie et al., [63]
 205 modelled mimetite-Cl structure with several additional manipulations with oxygen atoms to get
 206 realistic bond lengths and angles. In this study, although initial modelling without employing the
 207 constraints on the bond lengths gave satisfactory fit ($wR_{\text{p}} < 10\%$), the unrealistic As – O bond
 208 lengths disqualified these refinements. For this reason, all refinements were attempted whereby a
 209 soft constraints were imposed on the As – O bond lengths. They were restrained to be 1.70(1) Å for
 210 As – O(1), 1.71(1) Å for As – O(2), and 1.68(1) Å for As – O(3), according to those for mimetite-Cl
 211 reported by Dai et al., [64]. These models gave acceptable bond lengths and angles data. Moreover,
 212 the mimetite-Br structure refinement required manual fixing of the x and y positions of O(1) atom:

213 the positions were manipulated until the twist angle refined to $\sim 16^\circ$. This value was predicted from
214 the ideal linear correlation of the twist angle with halogen ionic radius (which is discussed further),
215 thus the refinement yielded a superior result ($wR_p = 8.38\%$ and $R_p = 7.1\%$).

216 In all the refinements, the position of halogens was set at (0,0,1/2). Kim et al., [11] reported that in
217 pyromorphite-F, -Cl, and -Br, which are isostructural with mimetites, halogens are positioned at
218 (0,0,1/2), outside the triangles delineated by Pb(2) atoms. It was assumed that the position of halogens
219 in mimetites is analogous. The position of the OH group was not constrained and was modelled: the
220 resulting value of $z = 0.397(8)$ indicated that it was positioned closer to the Pb(2) triangular plane.
221 Similar results were previously deduced for $\text{Pb}_5(\text{PO}_4)_3\text{OH}$ [11].


222 Rietveld refinement results showed that occupancy for Cl, Br, I, and OH ion is below 1,
223 resulting in an unbalanced charge and non-stoichiometric chemical formula of these minerals. This
224 indicated the presence of other ions in the structure. The results of independent spectroscopic
225 measurements using FTIR and Raman spectroscopy indicated the presence of CO_3^{2-} ions in the
226 structure of mimetite-Cl, -Br, and -OH, and the presence of OH⁻ ion in the structure of mimetite-I
227 (data not shown). Spectroscopic studies of these phases are in progress and the results will be
228 published separately. The substitutions were included in the modelled structures which resulted in
229 an improvement in refinements and almost complete charge balance of the structures. The
230 integration of these ions in the structures had negligible effect on final values of unit-cell parameters
231 and atomic coordinates. The chemical formulae of mimetites obtained from modelling were:
232 $\text{Pb}_5(\text{AsO}_4)_3\text{F}_{1.01}$ (charge imbalance +0.01), $\text{Pb}_5(\text{AsO}_4)_3\text{Cl}_{0.80}(\text{CO}_3)_{0.05}$ (charge imbalance -0.10),
233 $\text{Pb}_5(\text{AsO}_4)_3\text{Br}_{0.80}(\text{CO}_3)_{0.05}$ (charge imbalance -0.10), $\text{Pb}_5(\text{AsO}_4)_3\text{I}_{0.46}(\text{OH})_{0.62}$ (charge imbalance +0.08),
234 $\text{Pb}_5(\text{AsO}_4)_3\text{OH}_{0.87}(\text{CO}_3)_{0.04}$ (charge imbalance -0.05). The highest charge imbalance was observed for
235 mimetite-Cl and mimetite-Br. The attempts to include in the modelling procedure the occupancies of
236 other ions gave poor R_w and yielded results oscillating in the charge imbalance range from +0.10 to
237 -0.10. This means that due to the limited accuracy of the diffraction data and the limited capability of
238 the modelling procedure better stoichiometric compliance cannot be achieved for these structures.

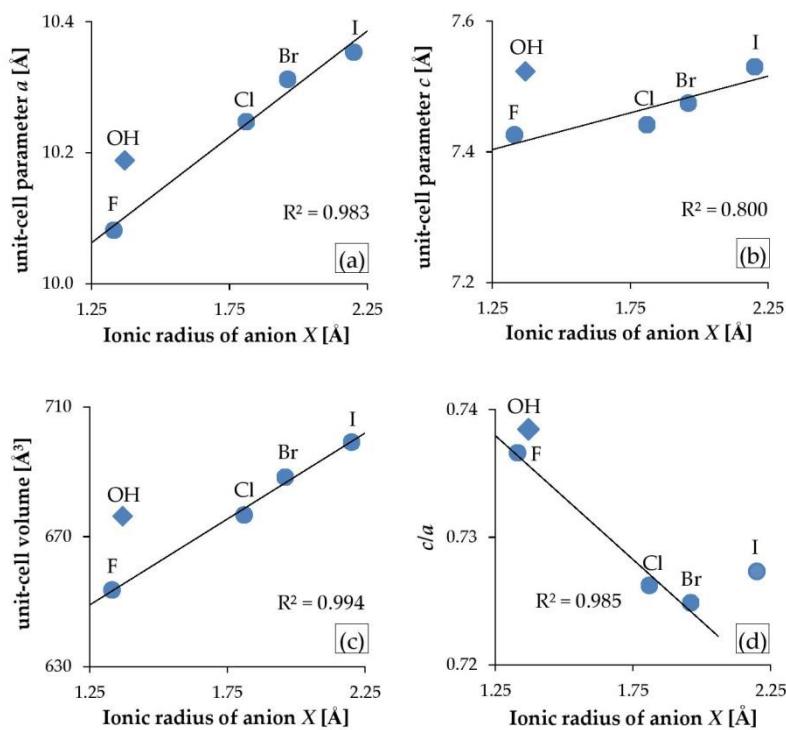
239 As presented in Figure 3, tiny, unidentified peaks in synchrotron X-ray diffraction patterns of
240 mimetite-F (Figure 3a) and mimetite-I (Figure 3b) occurred, revealing the presence of a small amount
241 of contamination, different in each of them. They were not detected with other methods. The
242 impurities might have appeared during the synthesis or were simply a contamination. The
243 interpretation of the impurities was not the objective of this study. To improve the refinement
244 parameters and address unidentified peaks on diffraction data of synthesized mimetites, we
245 implemented the approach applied by Baikie et al., [65]. The additional single-phase monoclinic
246 modelling of mimetite-Cl structure was performed (model in $P112_1/b$ [64]). However, the Rietveld
247 refinement did not converge for a monoclinic model. Examination of the peak profiles and
248 comparison with the reflections list of clinomimetite from [64] and [65] indicated, that the peaks
249 resulting from monoclinic structure are missing. Also, unrealistic U_{iso} values were obtained, and the
250 model did not attain convergence. This confirmed decisively that unidentified peaks of minor
251 intensities were negligible and the hexagonal system was an appropriate structural model for the
252 presented lead apatites, and the Rietveld refinement and structural interpretation were successfully
253 performed.

Table 2. Summary of structural Rietveld refinements of substituted mimetites $\text{Pb}_5(\text{AsO}_4)_3\text{X}$.

Atom	Parameters	$X = \text{F}$	$X = \text{Cl}$	$X = \text{Br}$	$X = \text{I}$	$X = \text{OH}$
	$a [\text{\AA}]$	10.081	10.249	10.312	10.353	10.187
	$c [\text{\AA}]$	7.426	7.443	7.474	7.530	7.523
	$V [\text{\AA}^3]$	653.619(8) ^a	677.00(4)	688.320(19)	699.125(24)	676.303(13)
	$r_{\text{X}} [\text{\AA}]^b$	1.33	1.81	1.96	2.20	1.37
	Av CR [\AA^c]	1.21	1.23	1.24	1.25	1.21
Pb(1)	x	1/3	1/3	1/3	1/3	1/3
	y	2/3	2/3	2/3	2/3	2/3
	z	0.00463(14)	0.00506	0.00577(34)	0.00706(27)	0.00357
	$U_{\text{iso}} [\text{\AA}^2]$	0.01415(10)	0.01967	0.02438	0.02871	0.02292
Pb(2)	x	0.23638(5)	0.25085	0.25530(12)	0.25888(12)	0.24762
	y	1.00391(9)	1.00362	1.00160(20)	0.99753(19)	0.99940
	z	1/4	1/4	1/4	1/4	1/4
	$U_{\text{iso}} [\text{\AA}^2]$	0.02296(10)	0.01971	0.02286	0.03552	0.03163
As	x	0.40395(11)	0.40714	0.40896(20)	0.40491(21)	0.40060
	y	0.38267(10)	0.38331	0.37815(17)	0.380001(17)	0.37689
	z	1/4	1/4	1/4	1/4	1/4
	$U_{\text{iso}} [\text{\AA}^2]$	0.00984(23)	0.00883	0.00838	0.01515	0.01508
O(1)	x	0.3208(6)	0.32833	0.34000 ^h	0.3567(18)	0.33388
	y	0.4936(5)	0.49474	0.49543 ^h	0.5111(14)	0.49738
	z	1/4	1/4	1/4	1/4	1/4
	$U_{\text{iso}} [\text{\AA}^2]$	0.0128(17)	0.04555	0.08219	0.09133	0.02269
O(2)	x	0.59886(15)	0.60045	0.60049(23)	0.5960(7)	0.59424
	y	0.4962(5)	0.48128	0.4738(12)	0.4827(12)	0.48179
	z	1/4	1/4	1/4	1/4	1/4
	$U_{\text{iso}} [\text{\AA}^2]$	0.0158(18)	0.02689	0.03885	0.07495	0.06533
O(3)	x	0.3518(4)	0.35298	0.3494(10)	0.3591(10)	0.35403
	y	0.2658(4)	0.27245	0.2733(9)	0.2650(9)	0.26182
	z	0.0689(5)	0.06819	0.0636(8)	0.0758(9)	0.07079
	$U_{\text{iso}} [\text{\AA}^2]$	0.0190(13)	0.04534	0.06731	0.11329	0.03906
X	x	0	0	0	0	0
	y	0	0	0	0	0
	z	1/2	1/2	1/2	1/2	0.37433
	$U_{\text{iso}} [\text{\AA}^2]$	0.138(7)	0.00555	0.01941	0.025 ^f	0.52451
	$Occ.^d$	1.012(19)	0.80446	0.797(5)	0.4629(29)	0.86556
	x	-	0 ^e	0 ^e	0 ⁱ	0 ^e
	y	-	0 ^e	0 ^e	0 ⁱ	0 ^e
	z	-	1/2 ^e	1/2 ^e	1/2 ⁱ	0.37182 ^e
	$U_{\text{iso}} [\text{\AA}^2]$	-	0.025 ^{e,f}	0.025 ^{e,f}	0.025 ^{f,i}	0.03003 ^{e,f}
	$Occ.$	-	0.0535 ^e	0.044(5) ^e	0.6150(29) ⁱ	0.04227 ^e
	x	-	0.74971 ^g	0.796(5) ^g	-	0.59585 ^g
	y	-	0.78630 ^g	0.828(5) ^g	-	1.10557 ^g
	z	-	0.12045 ^g	0.102(5) ^g	-	0.12728 ^g
	$U_{\text{iso}} [\text{\AA}^2]$	-	0.025 ^{f,g}	0.025 ^{f,g}	-	0.03003 ^{f,g}
	$Occ.$	-	0.18841 ^g	0.143(14) ^g	-	0.14682 ^g
	$wR_{\text{p}} [\%]$	9.64	7.64	8.38	7.46	9.53
	$R_{\text{p}} [\%]$	7.67	6.43	7.10	6.28	7.94
	χ^2	3.056	0.901	1.021	1.009	1.918

255 ^a Numbers in brackets are 1 standard deviation in last significant place(s). ^b Shannon's ionic radii of X-site ion
 256 [66]. ^c Average crystal radius = $[(r_{M(1)} \cdot 4) + (r_{M(2)} \cdot 6) + (r_T \cdot 6) + (r_O \cdot 24) + (r_X \cdot 2)]/42$ [5]. ^d Occ. = occupancy. ^e Carbon
 257 atom C of CO_3^{2-} . ^f U_{iso} not refined. ^g Oxygen atom O(4) of CO_3^{2-} . ^h Value fixed manually to the twist angle
 258 refined to 16.38° . ⁱ OH ion incorporated into mimetite-I structure.

259

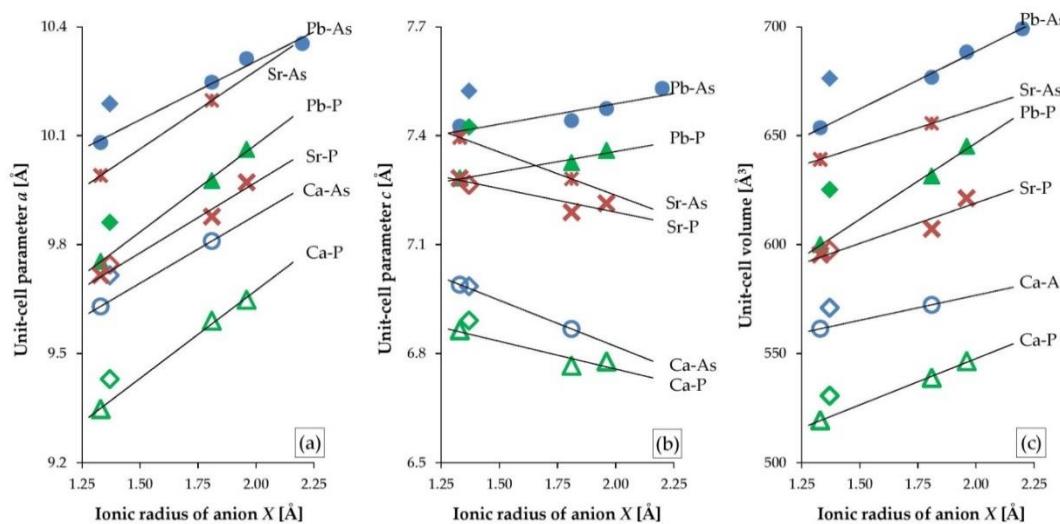

260 **Figure 3.** Final observed and calculated synchrotron X-ray powder diffraction patterns for the
 261 Rietveld refinements of: **(a)** mimetite-F, and **(b)** mimetite-I with insets displaying tiny peaks from
 262 unidentified contaminations (red circles).

263 4. Discussion

264 The unit-cell parameters refined for the halogenated mimetites in this study agreed with the
 265 references within 0.04 \AA (mimetite-F determined by Kreidler and Hummel, [67]; mimetite-Cl
 266 determined by Merker and Wondratschek, [16], Henderson et al., [17], Flis et al., [24], and Baikie et
 267 al., [63]; mimetite-Br and -I determined by Merker and Wondratschek, [16]; mimetite-OH
 268 determined by Kwaśnian-Kominek et al., [27]). Figure 4 presents the dependency between the
 269 unit-cell parameters and the halogen's ionic radius. The unit-cell parameters systematically
 270 increased with the increase in the substituted halogen's ionic radius (Figure 4a–c). However, the
 271 mimetite-OH did not follow the trend. i.e.: the dimensions of the crystalline lattice were higher than

272 the dimensions predicted based only on the size of the anion. The increase in parameter a and
 273 unit-cell volume was in line with the nearly ideal linear trend (Figure 4a,c). However, the increase in
 274 the width of the unit-cell was almost three times larger than the increase in its height, i.e.: parameter
 275 a increased by 0.27 Å while parameter c increased only by 0.1 Å. Also, mimetite-F did not follow the
 276 linear trend of changes in a parameter c : the measured value was much higher than the ideal value
 277 from the trend delineated by mimetites -Cl, -Br and -I (Figure 4b).
 278

279 In the hexagonal system, c/a is the only variable axial ratio. As axial ratios often correspond to
 280 the chemical and physical properties in a given structure type, c/a is one of the key parameters of the
 281 $P6_3/m$ apatite structure type. In a study by Mercier et al., [52], large sets of apatite data were
 282 compiled, and it was shown that c/a for apatites extended over a fairly large range from 0.67 to 0.76.
 283 The values derived in this study were within this range, and c/a decreased in the series F-Cl-Br,
 284 while the mimetite-I stood out from the linear trend (Figure 4d). The same trend in halogenated
 285 mimetites was reported by Merker and Wondratschek, [16]. Moreover, the c/a ratio for halogenated
 286 pyromorphites (calculated based on the unit-cell parameters reported by Kim et al., [11]) also
 287 decreased in the same order and displayed a linear trend against the ionic radius of X. However, in
 288 this study, the c/a varied very little in the mimetite series, from 0.736 for mimetite-F to 0.724 for
 289 mimetite-Br, so the significance of this value is minuscule and may have been overshadowed by the
 error of determination.



290

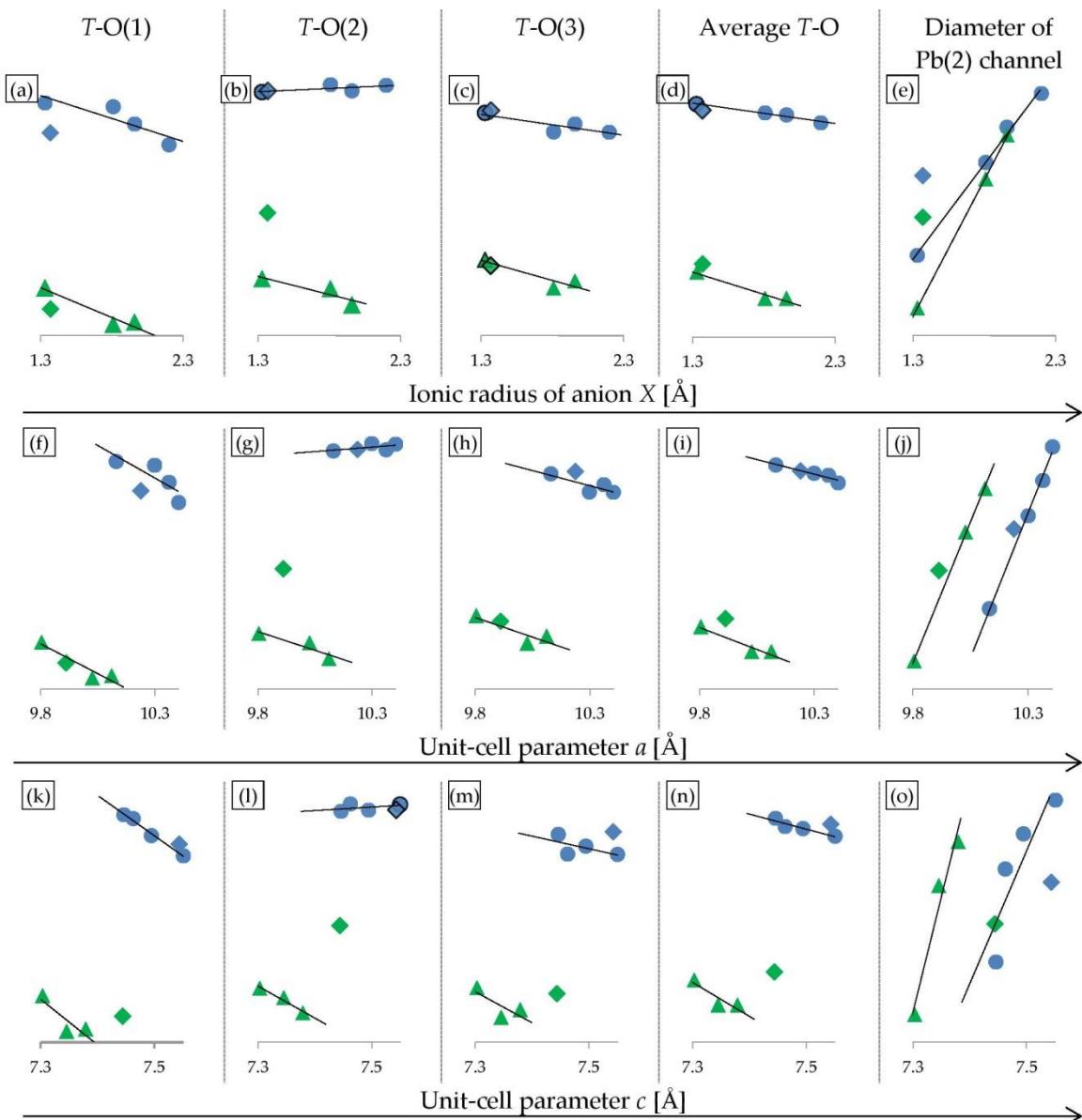
291 **Figure 4.** Variation in unit-cell parameters of substituted mimetites: (a) parameter a , (b) parameter c ,
 292 (c) unit-cell volume, and (d) c/a ratio, compared with a substituting anion's ionic radius, where ionic
 293 radius for F = 1.33 Å, OH = 1.37 Å, Cl = 1.81 Å, Br = 1.96 Å, and I = 2.20 Å. Mimetite-OH (diamonds)
 294 does not adhere to the trends.

295 With the use of pattern recognition and artificial neural networks techniques, Wu et al., [19]
 296 revealed that ionic radii predominantly regulate the unit-cell parameters of apatites. They also
 297 concluded that there was a strong nonlinear relationship between the unit-cell parameters and the
 298 ionic radii. However, our observations based not only on the results of this study but also on existing
 299 literature data of selected apatites negate the latter statement. Figure 5 presents the relationship
 300 between the unit-cell parameters a and c as well as the unit-cell volume of selected apatites, and the
 301 ionic radii of an anion at the position X (F, Cl, Br, I, and OH). Lead, calcium, and strontium
 302 phosphates and arsenates were selected: Pb-As apatites from this study; Pb-P and Ca-P apatites after

303 Kim et al., [11]; $\text{Ca}_5(\text{AsO}_4)_3\text{OH}$ after Lee et al., [68]; $\text{Ca}_5(\text{AsO}_4)_3\text{F}$ according to ICDD card No 23-0112;
 304 $\text{Ca}_5(\text{AsO}_4)_3\text{Cl}$ according to ICDD card No 38-0383; $\text{Sr}_5(\text{PO}_4)_3\text{OH}$ after Sudarsanan and Young, [69];
 305 $\text{Sr}_5(\text{PO}_4)_3\text{F}$ after Corker et al., [70]; $\text{Sr}_5(\text{PO}_4)_3\text{Cl}$ after Nötzold et al., [71]; $\text{Sr}_5(\text{PO}_4)_3\text{Br}$ after
 306 Alberius-Henning et al., [72]; $\text{Sr}_5(\text{AsO}_4)_3\text{F}$ and $\text{Sr}_5(\text{AsO}_4)_3\text{Cl}$ after Đorđević et al., [73]. For all
 307 presented series, halogen apatites form linear trends while hydroxyl apatites do not adhere to the
 308 pattern: their position is always above the regression line. The unit-cell parameter a increases with
 309 the increase in halogen's ionic radius (Figure 5a). In contrast, unit-cell parameter c decreases with the
 310 increase in the ionic radius of X except for lead apatites (both phosphates and arsenates), which
 311 show an increase in c as the size of halogen increases (Figure 5b). The variability of parameter a is
 312 much greater than parameter c . Hence, irrespective of the direction of change of a parameter c , in all
 313 the series, the volume of a unit-cell increases linearly with the halogen anion's radius (Figure 5c).
 314 The results of this study allowed to include the iodine apatite in the calculation for the first time. The
 315 phase follows the general linear trend as presented in Figure 5.

316

317 **Figure 5.** Variations in the unit-cell parameters of substituted apatites based on the results of this
 318 study and existing literature ([11,68-73] and ICDD cards No 23-0112 and No 38-0383): (a) unit-cell
 319 parameter a , (b) unit-cell parameter c , and (c) unit-cell volume, compared with a substituting anion's
 320 ionic radius, where ionic radius for $\text{F} = 1.33\text{\AA}$, $\text{OH} = 1.37\text{\AA}$, $\text{Cl} = 1.81\text{\AA}$, $\text{Br} = 1.96\text{\AA}$, and $\text{I} = 2.20\text{\AA}$.


321 Of all halogenated mimetites, only the structure of mimetite-Cl has been published
 322 [17,63-65,74,75]. Table 3 lists selected interatomic distances and metapism twist angles of the
 323 investigated phases calculated according to the procedure outlined by White and Dong, [2], and the
 324 results of the single-crystal X-ray diffraction measurements for mimetite-Cl reported by Dai et al.,
 325 [64]. For mimetite-Cl, all $\text{Pb}(1)\text{-O}$ and $\text{Pb}(2)\text{-O}$ distances, along with the $\text{Pb}(2)\text{-Cl}$ distance determined
 326 in this work agreed with these reported by Dai et al., [64] within 0.07 Å. The As-O bond lengths were
 327 restrained to be 1.70(1) Å, 1.71(1) Å, and 1.68(1) Å, respectively, according to those for mimetite-Cl
 328 reported by Dai et al., [64].

329 **Table 3.** Selected interatomic distances [Å] for substituted mimetites $\text{Pb}_5(\text{AsO}_4)_3\text{X}$. Previously
 330 published data for $\text{Pb}_5(\text{AsO}_4)_3\text{Cl}$ are included for comparison.

	This Study					Dai et al., [64]
	$X = \text{F}$	$X = \text{Cl}$	$X = \text{Br}$	$X = \text{I}$	$X = \text{OH}$	$X = \text{Cl}$
As-O(1)	1.700	1.696	1.681	1.664(6)	1.674	1.70
As-O(2)	1.709	1.715	1.710	1.715(6)	1.710	1.72
As-O(3)	1.689	1.673	1.679	1.673(4)	1.691	1.67
Average As-O	1.698(9)	1.689(20)	1.687(15)	1.68(1)	1.691(12)	1.69
Distortion index	0.004	0.009	0.006	0.010	0.005	
$\text{Pb}(1)\text{-O}(1)$	2.482	2.518	2.564	2.528(5)	2.534	2.52

Pb(1)-O(2)	2.803(4)	2.718	2.685(9)	2.793(9)	2.754	2.78
Pb(1)-O(3)	2.946(4)	3.002	3.054	2.963(9)	2.944	2.94
Pb(2)-O(1)	3.005(5)	3.063	3.137	3.264	3.058	3.07
Pb(2)-O(2)	2.362(4)	2.385	2.421(11)	2.322(10)	2.398	2.33
Pb(2)-O(3)	2.605	2.567	2.514(6)	2.643(7)	2.617	2.63
Pb(2)-O(3)	2.657(4)	2.762	2.831(10)	2.755(10)	2.691	2.73
Pb(2)-X	3.005	3.158	3.222	3.286	2.693	3.16
Twist angle (φ) °	20.34(20)	19.04(26)	16.38(05)	11.42(16)	18.60(26)	18

331 Systematic structural changes in the studied phases resulted in various linear relationships in the
 332 series from mimetite-F to -I. Similar dependencies were found in halogenated pyromorphites
 333 reported by Kim et al., [11]. A comparison of selected linear correlations of interatomic distances for
 334 halogenated mimetites (from this study) and halogenated pyromorphites [11] are shown in Figure 6.
 335 Strong linear correlations were with the anion's ionic radius (Figure 6a–e). Similar trends were also
 336 observed with the unit-cell parameter a (Figure 6f–j) and with the unit-cell parameter c (Figure 6k–o).
 337 Linear relations with the anion's ionic radius and with the average crystal radius were identical
 338 (data not shown). In most cases, apatites-OH did not follow the linear trends discovered in the series
 339 of apatites -F-Cl-Br-I. In mimetites, (As-O) distances within the TO_4 tetrahedra changed to a
 340 similar extent as in pyromorphites (P-O), although the As-O bond lengths are significantly greater
 341 than the P-O bond lengths (Figure 6a–d,f–i,k–n). Moreover, T -O(1) and T -O(3) distances decreased in
 342 both series. However, As-O(2) distances increased within the mimetite series, which is in contrast to
 343 pyromorphites (Figure 6b,g,l). Nevertheless, the average T -O distances changed in the same
 344 direction in mimetites (As-O) as in pyromorphites (P-O) (Figure 6d,i,n). No obvious relationships
 345 between the Pb-O bond distances and unit-cell parameters as well as anion's ionic radius were
 346 observed. The Pb(1)-O and Pb(2)-O bond distances in mimetites ranged from 2.321(7) Å to 3.264(0) Å
 347 (Table 3). Similar is found in pyromorphites, with the values ranging from 2.359(3) Å to 3.281(4) Å
 348 [11]. In overall terms, this indicates that halogen substitutions have similar effect on the structure of
 349 mimetites, as on pyromorphites.

350

351

Figure 6. Selected correlations of interatomic distances for halogenated mimetites from this study (blue dots) and halogenated pyromorphites reported by Kim et al., [11] (green triangles). All OH-phases are marked by diamonds: mimetite-OH from this study (blue), and pyromorphite-OH reported by Kim et al., [11] (green). Descriptions in each column head correspond to the vertical axes, and the values are intentionally omitted to highlight the trends within the series (interatomic distances for the mimetite series can be found in Table 3). The horizontal axes are: (a–e) ionic radius of anion X, (f–j) unit-cell parameter a , (k–o) unit-cell parameter c . Ionic radius of anion X as well as the unit-cell parameters a and c increase in the mimetite series F-Cl-Br-I and in the pyromorphite series F-Cl-Br from left to right.

352

353

354

355

356

357

358

359

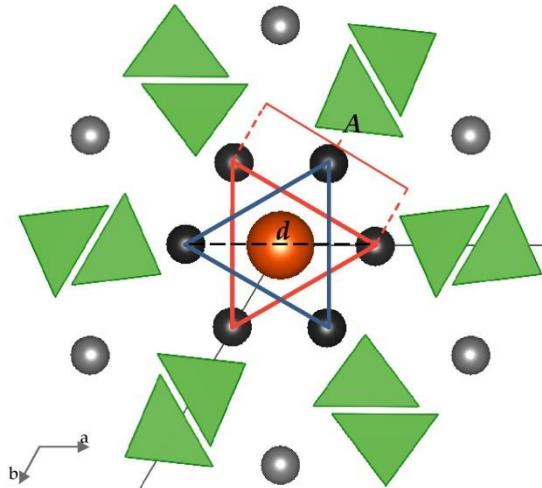
360

The anions X in apatite structures (F^- , Cl^- , Br^- , I^- , OH^- , and on rare occasion, other anions) are positioned within hexagonal channels delineated by rows of $M(2)$ cations along the c axis [3]. The relationship between the ionic radius of anion X and the diameter of the channel can be understood in the (001) projection (Figure 7). In this projection, the diameter of the channel was represented by the distance between opposite $M(2)$ cations. The $M(2)$ cations formed equilateral triangles perpendicular to the channels. The diameter of the channel was equivalent to the diameter of the circle drawn on such a triangle. Therefore, the diameter of a channel was denoted by the formula (1):

361

362

363

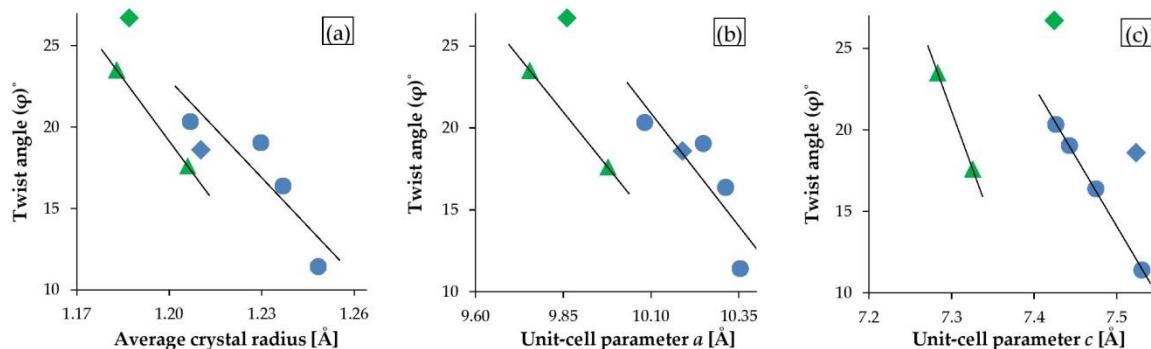

364

365

366

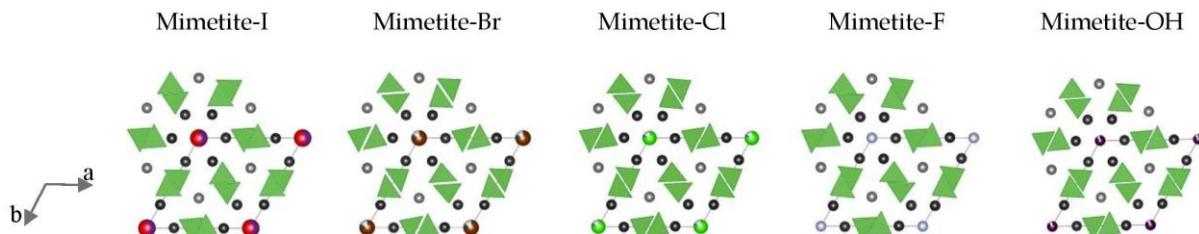
$$d = \frac{2A}{\sqrt{3}} \quad (1)$$

367 where A referred to a side of a triangle defined by $M(2)-M(2)$ distance which can be easily measured
 368 in the (001) projection with the use of VESTA or similar crystal structure software.



369

370 **Figure 7.** Projection of apatite structure on (001), enabling quantitative determination of the diameter
 371 of the channels accommodating X anions. Black atoms are $\text{Pb}(2)$, grey atoms are $\text{Pb}(1)$, an orange
 372 atom is X anion, and the green triangles are AsO_4 tetrahedra. For clarity, oxygen atoms are not
 373 shown, and the size of ions is not set to scale. Both blue and red triangles are formed by $\text{Pb}(2)$ cations
 374 positioned on the same plane. These triangles are located parallel to each other in the channel.


375 The hexagonal channel's diameter in the mimetite- F , - Cl , - Br , and - I series increased with an
 376 increase in the ionic radius of an anion X , although the increase was not proportional: the channel
 377 increased at a much slower rate than the ionic radius of anion X (Figure 6e). The growth of the
 378 channel's diameter was directly proportional to the increase in the unit-cell parameter a (Figure 6j).
 379 This indicates that the increase of the hexagonal channel's diameter is not directly caused by changes
 380 in the size of the ionic radius of the halogen. Halogenated pyromorphites show the same correlation:
 381 the diameter of the channel increases in proportion to the increase of the unit-cell parameter a and at
 382 a slower rate than the increase of the ionic radius of anion X , excluding apatites- OH which usually
 383 do not follow the trend (Figure 6e,j). This means that in the mimetite- F , - Cl , - Br , and - I series, the
 384 successive halogens have less space in the tunnel.

385 An extremely sensitive structural parameter in apatites is a twist angle φ between the bonds
 386 $\text{O}(1)-\text{M}(1)-\text{O}(2)$, which is a twist angle of the $\text{M}(1)\text{O}_6$ metaprism projected on (001). The value of the
 387 twist angle reported to date varies between 60° and 0° and decreases linearly as a function of
 388 increasing the average ionic radius of the formula unit [2]. For halogenated mimetites (from this
 389 study) and halogenated pyromorphites (reported by White and Dong, [2]), a robust linear
 390 relationship was observed not only with the average crystal radius (Figure 8a) but also with unit-cell
 391 parameters a , and in particular parameter c (Figure 8b,c). The latter trend was used as a criterion for
 392 the coordinate values of the $\text{O}(1)$ atom which were manually adjusted in the Rietveld refinement of
 393 the structure of mimetite- Br . The twist angle φ calculated for the halogenated mimetites varied from
 394 20.34° for mimetite- F to 11.42° for mimetite- I . The effect of a decreasing twist angle on the structure
 395 of mimetites is visually displayed in Figure 9.

396

397 **Figure 8.** Correlations between metaprism twist angle φ and: (a) average crystal radius, (b) unit-cell
 398 parameter a , and (c) unit-cell parameter c . Halogenated mimetites from this study are denoted by
 399 blue dots, and pyromorphites-F and -Cl reported by White and Dong, [2] are denoted by green
 400 triangles. All OH- phases are marked by diamonds: mimetite-OH from this study (blue), and
 401 pyromorphite-OH reported by White and Dong, [2] (green). Average crystal radius as well as the
 402 unit-cell parameters a and c increase in the mimetite series F-Cl-Br-I and in the pyromorphite series
 403 F-Cl from left to right.

404

405 **Figure 9.** Topological representation of halogenated mimetites projected on (001). Black atoms are
 406 Pb(2), grey atoms are Pb(1), and the atoms at the corners of the unit cell represent the (001) projection
 407 of the I-Br-Cl-F-OH anion columns. For clarity, oxygen atoms are not shown, and the size of ions is
 408 not set to scale. The AsO_4 tetrahedra are emphasized to highlight the effect of twist angle φ .

409 5. Conclusions

410 The synthesis of mimetites $\text{Pb}_5(\text{AsO}_4)_3X$ from aqueous solutions, substituted at the position X
 411 by F, Cl, Br, I, and OH provided a product with chemical composition consistent with that of the
 412 initial solution. This is particularly important for iodine apatites, which have not been studied very
 413 widely. Hence, it could be assumed that such apatites may be used in the future for encapsulation of
 414 radioactive waste containing ^{129}I .

415 Rietveld refinement of the synchrotron-based data indicated that all the synthetic mimetites
 416 crystallized in the hexagonal system (space group $P6_3/m$, space group number 176). Modelling of the
 417 structure in monoclinic space group produced unsatisfactory results. In order to get realistic bond
 418 lengths and angles in halogenated mimetite crystalline structures, soft constraints within the TO_4
 419 tetrahedra had to be applied. The systematic structural changes brought about by substitutions of
 420 anion X determined for the studied mimetite series are similar to the variabilities in the Pb-P- apatite
 421 series, and slightly different from the changes observed in the Ca- and Sr- apatites (both arsenates
 422 and phosphates). Nevertheless, the significant difference occurs in the inverse trend of the variation
 423 of the unit-cell parameter c . For most apatites, as the substituted halogen's size increases, the size of
 424 the parameter a linearly increases and the size of parameter c slightly decreases. Since the change in
 425 parameter a is greater than the change in parameter c , a linear increase in the volume of the unit-cell
 426 is observed with an increase in the ionic radius of X. This variability is different for Pb- apatites: both
 427 parameter a and parameter c increases when a halogen ion with larger radius is substituted. Hence,
 428 the linear increase in the unit-cell volume is much sharper for Pb- apatites than for any other
 429 apatites. For the first time, iodine mimetite has been included in the calculation, and structural

430 changes were found to align with the general linear trend. Just like in other apatites series, the
431 structural properties of the hydroxyl phase differed significantly from its halogen counterparts, and
432 the parameters for mimetite-OH did not adhere to the linear correlations determined within the
433 series.

434 A thorough analysis of the variability of interatomic distances in Pb- apatites considering such a
435 broad range of monovalent anion substitutions was carried out for the first time. An important
436 finding resulting from this analysis is that these substitutions have a similar effect on changes in
437 interatomic distances in mimetites and in pyromorphites. Both, in mimetites and pyromorphites,
438 halogen substitutions caused a small but systematic shortening of the T-O distance in the
439 tetrahedron. The increase of the hexagonal channel diameter along with the decrease of the TO_4
440 tetrahedron size was observed for the successively larger ion placed in the center of the channel: F,
441 OH, Cl, Br, and I, respectively. For the first time, in such a wide range of anionic substitutions, the
442 variability of the metaprism twist angle φ was determined, which is an important structural
443 parameter and a useful device for reviewing changes in apatite topology with changing
444 composition. The φ angle decreased as the substituted halogens's ionic radius increased and the
445 change was almost ideally linear with the unit-cell parameter c .

446 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1; File S1:
447 Crystallographic Information File of mimetite-F, File S2: Crystallographic Information File of mimetite-Cl, File
448 S3: Crystallographic Information File of mimetite-Br, File S4: Crystallographic Information File of mimetite-I,
449 File S5: Crystallographic Information File of mimetite-OH.

450 **Author Contributions:** M.M. designed and supervised this project; J.S. and B.P. performed the experiments; J.S.
451 and M.M. carried out data analysis and calculations; J.S., B.P., M.M., J.T., S.Z.-P., and O.B. wrote the paper. All
452 authors have read and agreed to the published version of the manuscript.

453 **Funding:** Financial support for the research was provided to B.P. by the Polish National Science Centre (NCN)
454 grant No. 2017/27/N/ST10/00776.

455 **Acknowledgments:** This research used resources of the Advanced Photon Source, a U.S. Department of Energy
456 (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory
457 under Contract No. DE-AC02-06CH11357. We thank two anonymous experts for their detailed reviews that
458 helped us to improve the manuscript.

459 **Conflicts of Interest:** The authors declare no conflict of interests.

460 References

1. Elliott, J. C.; Wilson, R. M.; Dowker, S. E. P. Apatite structures. *Adv. in X-ray Anal.* **2002**, *45*, 172-181.
2. White, T. J.; Dong, Z. Structural derivation and crystal chemistry of apatites. *Acta Crystallogr. B* **2003**, *59*, 1-16. <https://doi.org/10.1107/S0108768102019894>
3. White, T.; Ferraris, C.; Kim, J.; Madhavi, S. Apatite—an adaptive framework structure. *Rev. Mineral. Geochem.* **2005**, *57*, 307-401. <https://doi.org/10.2138/rmg.2005.57.10>
4. Pasero, M.; Kampf, A.R.; Ferraris, C.; Pekov, I.V.; Rakovan, J.; White, T.J. Nomenclature of the apatite supergroup minerals. *Eur. J. Mineral.* **2010**, *22*, 163-179. <https://doi.org/10.1127/0935-1221/2010/0022-2022>
5. Ptáček, P. *Apatites and their synthetic analogues—synthesis, structure, properties and applications*; InTech: Rijeka, Croatia, 2016. <http://dx.doi.org/10.5772/59882>
6. Elliott, J.C. *Structure and Chemistry of the Apatites and Other Calcium Phosphates*; Elsevier: Amsterdam, The Netherlands, 1994; ISBN 0-444-81582-1.
7. Hughes, J.M.; Rakovan, J.F. Structurally robust, chemically diverse: apatite and apatite supergroup minerals. *Elements* **2015**, *11*, 165-170. <https://doi.org/10.2113/gselements.11.3.165>
8. Mackie, P.E.; Elliot, J.C.; Young, R.A. Monoclinic structure of synthetic $Ca_5(PO_4)_3Cl$, chlorapatite. *Acta Crystallogr. B* **1972**, *28*, 1840-1848. <https://doi.org/10.1107/S0567740872005114>
9. Hata, M.; Marumo, F.; Iwai, S.; Aoki, H. Structure of barium chlorapatite. *Acta Crystallogr. B* **1979**, *35*, 2382-2384. <https://doi.org/10.1107/S0567740879009377>
10. Hashimoto H.; Matsumoto T. Structure refinements of two natural pyromorphites, $Pb_5(PO_4)_3Cl$, and crystal chemistry of chlorapatite group, $M_5(PO_4)_3Cl$. *Z. Kristallogr.* **1998**, *213*, 585-590. <https://doi.org/10.1524/zkri.1998.213.11.585>

481 11. Kim, J.Y.; Fenton, R.R.; Hunter, B.A.; Kennedy, B.J. Powder diffraction studies of synthetic calcium and
482 lead apatites. *Aust. J. Chem.* **2000**, *53*, 679–686. <https://doi.org/10.1071/CH00060>

483 12. Audubert, F.; Savariault, J.M.; Lacout, J.L. Pentalead tris (vanadate) iodide, a defect vanadinite-type
484 compound. *Acta Crystallogr. C* **1999**, *55*, 271–273. <https://doi.org/10.1107/S0108270198005034>

485 13. Zhang, M.; Maddrell, E.R.; Abraitis, P.K.; Salje, E.K.H. Impact of leach on lead vanado-iodoapatite
486 $[Pb_5(VO_4)_3I]$: An infrared and Raman spectroscopic study. *Mat. Sci. Eng. B-Adv.* **2007**, *137*, 149–155.
487 <https://doi.org/10.1016/j.mseb.2006.11.003>

488 14. Stennett, M.C.; Pinnock, I.J.; Hyatt, N.C. Rapid synthesis of $Pb_5(VO_4)_3I$, for the immobilisation of iodine
489 radioisotopes, by microwave dielectric heating. *J. Nucl. Mater.* **2011**, *414*, 352–359.
490 <https://doi.org/10.1016/j.jnucmat.2011.04.041>

491 15. Suetsugu, Y. Synthesis of lead vanadate iodoapatite utilizing dry mechanochemical process. *J. Nucl.* **2014**,
492 *454*, 223–229. <https://doi.org/10.1016/j.jnucmat.2014.07.073>

493 16. Merker, L.; Wondratschek, H. Bleiverbindungen mit Apatitstruktur, insbesondere Blei–Jod- und Blei–
494 Brom-Apatite. *Z. Anorg. Allg. Chem.* **1959**, *300*, 41–50. <https://doi.org/10.1002/zaac.19593000104>

495 17. Henderson, C.M.B.; Bell, A.M.T.; Charnock, J.M.; Knight, K.S.; Wendlandt, R.F.; Plant, D.A.; Harrison, W.J.
496 Synchrotron X-ray absorption spectroscopy and X-ray powder diffraction studies of the structure of
497 johnbaumite $[Ca_{10}(AsO_4)_6(OH,F)_2]$ and synthetic Pb-, Sr- and Ba-arsenate apatites and some comments on
498 the crystal chemistry of the apatite structure type in general. *Mineral. Mag.* **2009**, *73*, 433–455.
499 <https://doi.org/10.1180/minmag.2009.073.3.433>

500 18. Epp, T.; Marks, M.A.; Ludwig, T.; Kendrick, M.A.; Eby, N.; Neidhardt, H.; Oelmann, Y.; Markl, G.
501 Crystallographic and fluid compositional effects on the halogen (Cl, F, Br, I) incorporation in
502 pyromorphite-group minerals. *Am. Mineral.* **2019**, *104*, 1673–1688. <https://doi.org/10.2138/am-2019-7068>

503 19. Wu, P.; Zeng, Y.Z.; Wang, C.M. Prediction of apatite lattice constants from their constituent elemental
504 radii and artificial intelligence methods. *Biomaterials* **2004**, *25*, 1123–1130.
505 [https://doi.org/10.1016/S0142-9612\(03\)00617-3](https://doi.org/10.1016/S0142-9612(03)00617-3)

506 20. Markl, G.; Marks, M.A.; Holzapfel, J.; Wenzel, T. Major, minor, and trace element composition of
507 pyromorphite-group minerals as recorder of supergene weathering processes from the Schwarzwald
508 mining district, SW Germany. *Am. Mineral.* **2014**, *99*, 1133–1146. <https://doi.org/10.2138/am.2014.4789>

509 21. Manecki, M.; Maurice, P.A.; Traina, S.J. Uptake of aqueous Pb by Cl[−], F[−], and OH[−] apatites: mineralogic
510 evidence for nucleation mechanisms. *Am. Mineral.* **2000**, *85*, 932–942. <https://doi.org/10.2138/am-2000-0707>

511 22. Bajda, T. Solubility of mimetite $Pb_5(AsO_4)_3Cl$ at 5–55°C. *Environ. Chem.* **2010**, *7*, 268–78.
512 <https://doi.org/10.1071/EN10021>

513 23. Borkiewicz, O.; Rakovan, J.; Cahill, C.L. Time-resolved in situ studies of apatite formation in aqueous
514 solutions. *Am. Mineral.* **2010**, *95*, 1224–1236. <https://doi.org/10.2138/am.2010.3168>

515 24. Flis, J.; Borkiewicz, O.; Bajda, T.; Manecki, M.; Klasa, J. Synchrotron-based X-ray diffraction of the lead
516 apatite series $Pb_{10}(PO_4)_6Cl_2$ – $Pb_{10}(AsO_4)_6Cl_2$. *J. Synchrotron Radiat.* **2010**, *17*, 207–214.
517 <https://doi.org/10.1107/S0909049509048705>

518 25. Bajda, T.; Mozgawa, W.; Manecki, M.; Flis, J. Vibrational spectroscopic study of mimetite–pyromorphite
519 solid solutions. *Polyhedron* **2011**, *30*, 2479–2485. <https://doi.org/10.1016/j.poly.2011.06.034>

520 26. Janicka, U.; Bajda, T.; Manecki, M. Synthesis and solubility of bromopyromorphite $Pb_5(PO_4)_3Br$. *Mineral.*
521 *Polonica* **2012**, *43*, 129–135. <https://doi.org/10.2478/v10002-012-0004-4>

522 27. Kwaśniak-Kominek, M.; Matusik, J.; Bajda, T.; Manecki, M.; Rakovan, J.; Marchlewski, T.; Szala, B. Fourier
523 transform infrared spectroscopic study of hydroxylpyromorphite $Pb_{10}(PO_4)_6OH_2$ –hydroxylmimetite
524 $Pb_{10}(AsO_4)_6(OH)_2$ solid solution series. *Polyhedron* **2015**, *99*, 103–111.
525 <https://doi.org/10.1016/j.poly.2015.07.002>

526 28. Puzio, B.; Manecki, M.; Kwaśniak-Kominek, M. Transition from Endothermic to Exothermic Dissolution of
527 Hydroxyapatite $Ca_5(PO_4)_3OH$ –Johnbaumite $Ca_5(AsO_4)_3OH$ Solid Solution Series at Temperatures Ranging
528 from 5 to 65°C. *Minerals* **2018**, *8*, 281. <https://doi.org/10.3390/min8070281>

529 29. Ma, Q.Y.; Traina, S.J.; Logan, T.J.; Ryan, J.A. In situ lead immobilization by apatite. *Environ. Sci.*
530 *Technol.* **1993**, *27*, 1803–1810. <https://doi.org/10.1021/es00046a007>

531 30. Xu, Y.; Schwartz, F.W. Lead immobilization by hydroxyapatite in aqueous solutions. *J. Contam.*
532 *Hydrol.* **1994**, *15*, 187–206. [https://doi.org/10.1016/0169-7722\(94\)90024-8](https://doi.org/10.1016/0169-7722(94)90024-8)

533 31. Ma, Q.Y.; Logan, T.J.; Traina, S.J. Lead immobilization from aqueous solutions and contaminated soils
534 using phosphate rocks. *Environ. Sci. Technol.* **1995**, *29*, 1118–1126. <https://doi.org/10.1021/es00004a034>

535 32. Ma, L.Q. Factors influencing the effectiveness and stability of aqueous lead immobilization by
536 hydroxyapatite. *J. Environ. Qual.* **1996**, *25*, 1420-1429.
537 <https://doi.org/10.2134/jeq1996.00472425002500060036x>

538 33. Laperche, V.; Traina, S.J.; Gaddam, P.; Logan, T.J. Chemical and mineralogical characterizations of Pb in a
539 contaminated soil: reactions with synthetic apatite. *Environ. Sci. Technol.* **1996**, *30*, 3321-3326.
540 <https://doi.org/10.1021/es960141u>

541 34. Laperche, V.; Logan, T.J.; Gaddam, P.; Traina, S.J. Effect of apatite amendments on plant uptake of lead
542 from contaminated soil. *Environ. Sci. Technol.* **1997**, *31*, 2745-2753. <https://doi.org/10.1021/es961011o>

543 35. Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—
544 a review. *Waste Manag.* **2008**, *28*, 215-225. <https://doi.org/10.1016/j.wasman.2006.12.012>

545 36. Liang, Y.; Cao, X.; Zhao, L.; Arellano, E. Biochar- and phosphate-induced immobilization of heavy metals
546 in contaminated soil and water: implication on simultaneous remediation of contaminated soil and
547 groundwater. *Environ. Sci. Pollut.* **2014**, *21*, 4665-4674. <https://doi.org/10.1007/s11356-013-2423-1>

548 37. Zeng, G.; Wan, J.; Huang, D.; Hu, L.; Huang, C.; Cheng, M.; Xue, W.; Gong, X.; Wang, R.; Jiang, D.
549 Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb
550 immobilization in soils—a review. *J. Hazard. Mater.* **2017**, *339*, 354-367.
551 <https://doi.org/10.1016/j.jhazmat.2017.05.038>

552 38. Manecki, M. Lead in Water and Soil: Speciation, Toxicity, and Treatment Technologies. In *Encyclopedia of
553 Water: Science, Technology, and Society*; Maurice, P.A.; Willey, 2020; pp. 1713-1727 ISBN: 978-1-119-30075-5.

554 39. Harrison, W.J.; Wendlandt, R.F.; Wendlandt, A.E. Low temperature aqueous solubility and stability of
555 apatite-structure arsenates of lead, barium, and strontium and uptake of arsenic by hydroxylapatite.
556 International Mineralogical Association, 18th General Meeting, Edinburgh, Scotland, September 1-6, 2002;
557 Abstract A18-10, pp.185.

558 40. Wendlandt, A.E.; Harrison, W.J.; Wendlandt, R.F. Investigation of hydroxylapatite as a means of removing
559 dissolved arsenic from potable water. Geological Society of America Annual Meeting, Denver, Colorado,
560 USA, October 27-31, 2002.

561 41. Harrison, W.J.; Wendlandt, R.F.; Charnock, J.M.; Henderson, C.M.B. Spectroscopic investigations of the
562 adsorption of As onto bovine bone. In *Geochimica et Cosmochimica Acta*, *69*, 15th Annual Goldschmidt
563 Conference, Idaho, USA, May 21-25, 2005; pp. A65.

564 42. Bundschuh, J.; Holländer, H.M.; Ma, Q. *In-situ remediation of arsenic-contaminated sites*; CRC Press: Boca
565 Raton, USA, 2017; pp. 208. ISBN 9781138747753

566 43. Rakovan, J.F.; Hughes, J.M. Strontium in the apatite structure: strontian fluorapatite and
567 belovite-(Ce). *Can. Mineral.* **2000**, *38*, 839-845. <https://doi.org/10.2113/gscanmin.38.4.839>

568 44. Ewing, R.C. The design and evaluation of nuclear-waste forms: clues from mineralogy. *Can. Mineral.*
569 **2001**, *39*, 697-715. <https://doi.org/10.2113/gscanmin.39.3.697>

570 45. Pan, Y.; Fleet, M.E. Compositions of the apatite-group minerals: substitution mechanisms and controlling
571 factors. *Rev. Mineral. Geochem.* **2002**, *48*, 13-49 <https://doi.org/10.2138/rmg.2002.48.2>

572 46. Rakovan, J.; Reeder, R.J.; Elzinga, E.J.; Cherniak, D.J.; Tait, C.D.; Morris, D.E. Structural characterization of
573 U(VI) in apatite by X-ray absorption spectroscopy. *Environ. Sci. Technol.* **2002**, *36*, 3114-3117.
574 <https://doi.org/10.1021/es015874f>

575 47. Luo, Y.; Hughes, J.M.; Rakovan, J.; Pan, Y. Site preference of U and Th in Cl, F, and Sr apatites. *Am.
576 Mineral.* **2009**, *94*, 345-351. <https://doi.org/10.2138/am.2009.3026>

577 48. Audubert, F.; Carpena, J.; Lacout, J.L.; Tetard, F. Elaboration of an iodine-bearing apatite iodine diffusion
578 into a Pb₃(VO₄)₂ matrix. *Solid State Ionics* **1997**, *95*, 113-119. [https://doi.org/10.1016/S0167-2738\(96\)00570-X](https://doi.org/10.1016/S0167-2738(96)00570-X)

579 49. Uno, M.; Kosuga, A.; Masuo, S.; Imamura, M.; Yamanaka, S. Thermal and mechanical properties of
580 AgPb₉(VO₄)₆I and AgBa₉(VO₄)₆I. *J. Alloys Compd.* **2004**, *384*, 300-302.
581 <https://doi.org/10.1016/j.jallcom.2004.04.094>

582 50. Campayo, L.; Grandjean, A.; Coulon, A.; Delorme, R.; Vantelon, D.; Laurencin, D. Incorporation of iodates
583 into hydroxyapatites: a new approach for the confinement of radioactive iodine. *J. Mater. Chem.* **2011**, *21*,
584 17609-17611. <https://doi.org/10.1039/C1JM14157K>

585 51. Yao, T.; Lu, F.; Sun, H.; Wang, J.; Ewing, R.C.; Lian, J. Bulk iodoapatite ceramic densified by spark plasma
586 sintering with exceptional thermal stability. *J. Am. Ceramic Soc.* **2014**, *97*, 2409-2412.
587 <https://doi.org/10.1111/jace.13101>

588 52. Mercier, P.H.; Le Page, Y.; Whitfield, P.S.; Mitchell, L.D.; Davidson, I.J.; White, T.J. Geometrical
589 parameterization of the crystal chemistry of $P6_3/m$ apatites: comparison with experimental data and *ab*
590 *initio* results. *Acta Crystallogr. B* **2005**, *61*, 635–655. <https://doi.org/10.1107/S0108768105031125>

591 53. Vegas, A.; Jansen, M. Structural relationships between cations and alloys; an equivalence between
592 oxidation and pressure. *Acta Crystallogr. B* **2002**, *58*, 38–51. <https://doi.org/10.1107/S0108768101019310>

593 54. Mercier, P.H.; Le Page, Y.; Whitfield, P.S.; Mitchell, L.D. Geometrical parameterization of the crystal
594 chemistry of $P6_3/m$ apatite. II. Precision, accuracy and numerical stability of the crystal-chemical Rietveld
595 refinement. *J. Appl. Cryst.* **2006**, *39*, 369–375. <https://doi.org/10.1107/S0021889806009903>

596 55. Baker, W.E. An X-ray diffraction study of synthetic members of the pyromorphite series. *Am. Mineral.*
597 **1966**, *51*, 1712–1721

598 56. Marciniak, H.; Diduszko, R.; Kozak, M. XRAYAN. *Program do Rentgenowskiej Analizy Fazowej, Wersja 4.0.1;*
599 Koma: Warszawa, Poland, 2006. (In Polish)

600 57. Holland, T.J.B.; Redfern, S.A.T. UNITCELL: a nonlinear least-squares program for cell-parameter
601 refinement and implementing regression and deletion diagnostics. *J. App. Cryst.* **1997**, *30*, 84.
602 <https://doi.org/10.1107/S0021889896011673>

603 58. Larson, A.C.; Von Dreele, R.B. *General structure analysis system*. Report LAUR 86-748; Los Alamos National
604 Laboratory, NM, USA, 1994.

605 59. Toby, B.H. EXPGUI, a graphical user interface for GSAS. *J. Appl. Cryst.* **2001**, *34*, 210–213.
606 <https://doi.org/10.1107/S0021889801002242>

607 60. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology
608 data. *J. Appl. Cryst.* **2011**, *44*, 1272–1276.

609 61. Young, R.A. *The Rietveld method*; Oxford University Press: New York, NY, USA, 1993; pp. 298

610 62. Dai, Y.; Hughes, J.M. Crystal structure refinements of vanadinite and pyromorphite. *Can. Mineral.*
611 **1989**, *27*, 189–192.

612 63. Baikie, T.; Ferraris, C.; Klooster, W.T.; Madhavi, S.; Pramana, S.S.; Pring, A.; Schmidt, G.; White, T.J.
613 Crystal chemistry of mimetite, $Pb_{10}(AsO_4)_6Cl_{1.48}O_{0.26}$, and finnemanite, $Pb_{10}(AsO_3)_6Cl_2$. *Acta Crystallogr. B*
614 **2008**, *64*, 34–41. <https://doi.org/10.1107/S0108768107066402>

615 64. Dai, Y.; Hughes, J.M.; Moore, P.B. The crystal structure of mimetite and clinomimetite, $Pb_5(AsO_4)_3Cl$. *Can.*
616 *Mineral.* **1991**, *29*, 369–376.

617 65. Baikie, T.; Schreyer, M.; Wei, F.; Herrin, J.S.; Ferraris, C.; Brink, F.; Topolska, J.; Piltz, R.O.; Price, J.; White,
618 T.J. The influence of stereochemically active lone-pair electrons on crystal symmetry and twist angles in
619 lead apatite-2H type structures. *Mineral. Mag.* **2014**, *78*, 325–345.
620 <https://doi.org/10.1180/minmag.2014.078.2.07>

621 66. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and
622 chalcogenides. *Acta crystallogr. A* **1976**, *32*, 751–767. <https://doi.org/10.1107/S0567739476001551>

623 67. Kreidler, E.R.; Hummel, F.A. The crystal chemistry of apatite: structure fields of fluor- and
624 chlorapatite. *Am. Mineral.* **1970**, *55*, 170–184.

625 68. Lee, Y.J.; Stephens, P.W.; Tang, Y.; Li, W.; Phillips, B.L.; Parise, J.B.; Reeder, R.J. Arsenate substitution in
626 hydroxylapatite: structural characterization of the $Ca_5(PxAs_1-xO_4)_3OH$ solid solution. *Am. Mineral.* **2009**,
627 *94*, 666–675. <https://doi.org/10.2138/am.2009.3120>

628 69. Sudarsanan, K.; Young, R.A. Structure of strontium hydroxide phosphate, $Sr_5(PO_4)_3OH$. *Acta Crystallogr.*
629 *B* **1972**, *28*, 3668–3670. <https://doi.org/10.1107/S0567740872008544>

630 70. Corker, D.L.; Chai, B.H.T.; Nicholls, J.O.H.N.; Loutts, G.B. Neodymium-Doped $Sr_5(PO_4)_3F$ and
631 $Sr_5(VO_4)_3F$. *Acta Crystallogr. C* **1995**, *51*, 549–551. <https://doi.org/10.1107/S0108270194006906>

632 71. Nötzold, D.; Wulff, H.; Herzog, G. Differenzthermoanalyse der Bildung des
633 Pentastrontiumchloridphosphats und röntgenographische Untersuchung seiner Struktur. *J. Alloys
634 Compd.*, **1994**, *215*, 281–288. [https://doi.org/10.1016/0925-8388\(94\)90855-9](https://doi.org/10.1016/0925-8388(94)90855-9)

635 72. Alberius-Henning, P.; Mattsson, C.; Lidin, S. Crystal structure of pentastrontium tris(phosphate) bromide,
636 $Sr_5(PO_4)_3Br$ and of pentabarrium tris(phosphate) bromide $Ba_5(PO_4)_3Br$, two bromoapatites. *Z. Kristallogr.
637 NCS* **2000**, *215*, 345–346. <https://doi.org/10.1515/ncls-2000-0319>

638 73. Đorđević, T.; Šutović, S.; Stojanović, J.; Karanović, L. Sr, Ba and Cd arsenates with the apatite-type
639 structure. *Acta Crystallogr. C* **2008**, *64*, i82–i86. <https://doi.org/10.1107/S0108270108023457>

640 74. Calos, N.J.; Kennard, C.H.; Davis, R.L. Crystal structure of mimetite, $Pb_5(AsO_4)_3Cl$. *Z. Kristallogr. Cryst.
641 Mater.* **1990**, *191*, 125–130. <https://doi.org/10.1524/zkri.1990.191.14.125>

642 75. Okudera, H. Relationships among channel topology and atomic displacements in the structures of
643 Pb₅(BO₄)₃Cl with B = P (pyromorphite), V (vanadinite), and As (mimetite). *Am. Mineral.* **2013**, *98*,
644 1573–1579. <https://doi.org/10.2138/am.2013.4417>

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

645