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ABSTRACT: We present a supercomputer-driven pipeline for in silico drug discovery using
enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking
makes use of MD results by docking compound databases into representative protein
binding-site conformations, thus taking into account the dynamic properties of the binding
sites. We also describe preliminary results obtained for 24 systems involving eight proteins of
the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced
sampling, making use of massively parallel supercomputing to quickly sample the
configurational space of protein drug targets. Using the Summit supercomputer at the Oak
Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per
day. We have ensemble docked repurposing databases to 10 configurations of each of the 24
SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates
remarkably high hit rates for the top scoring tranches of compounds identified by our
ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is
possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we
discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine
learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.

■ INTRODUCTION

The need for rapid time-to-solution in drug discovery has
become accentuated by the Covid-19 pandemic. Given the
urgency of the pandemic, in parallel with vaccine development,
both repurposing established antivirals and discovering new
drugs are needed. Among the present candidates, apart from
antibody treatments the antiviral remdesivir, a nucleoside analog
that acts by interfering with RNA synthesis, it is active against
SARS-CoV-2,1−5 shortening recovery from Covid-19 in
hospitalized patients.6 Other promising candidates, such as
dexamethasone, may modulate the host response.7

When surveying clinical trials for Covid-19, one is struck by
the number of trials that are not based on knowledge of the drug
interacting with a known target. There are several examples. As
one illustration, baloxavir is a specific inhibitor of the cap-
snatching endonuclease of influenza virus, which is a member of
the PD-(D/E)xK two-metal nuclease superfamily.8 Coronavi-
ruses have an endonuclease but of a completely different fold
(NendoU) and different active site residues.9 NendoU also
oligomerizes into a hexamer. Although it would seem unlikely

that baloxavir would bind to NendoU, has nevertheless been in
clinical trials. Similarly, lopinavir and ritonavir are also
undergoing testing, even though they target proteases of the
unrelated HIV.4 Although in principle, enzyme active sites with
similar chemical functions may bind similar ligands, the steric
and physicochemical substrates of drug−protein binding are
nuanced. The frequent trial of drugs specific for targets known to
be absent in SARS-CoV-2 seems to us to be symptomatic of a
lack of precision in combating this pandemic. For further
information on other ongoing trials on small molecule drugs,
biologics, passive immunization with antibodies, and vaccines,
the reader is referred to the comprehensive review by Liu et al.10

The aforementioned challenges, taken together, demonstrate
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that there exists an unequivocal need for de novo drug discovery
campaigns as well as repurposing studies.11

There are a number of events in the SARS-CoV-2 viral
replication cycle12 to target for antiviral therapeutic develop-
ment; from viral entry to membrane fusion, travel to the host
endoplasmic reticulum where translation of the viral genome
occurs, to formation of the viral replication complex and
formation from host membranes of double-membrane vesicles
(DMVs),13,14 the passage of the replicon through the Golgi and
the release of the virion from the cell. Each of these steps
involves key viral proteins and occurs in a different compartment
of the host cell. For example, the binding of the virus to the
ACE2 receptor involves the receptor-binding domain (RBD) of
the virus S (spike) protein, prefusion cleavage involves the
binding of host TMPRSS and furin proteases to the S1/S2
dibasic domain15 formation of the replication complex and the
DMVs involves the nonstructural proteins (NSPs), and the N
protein is required for packaging of the viral genome into the
newly assembled virion.16 The replication complex is made up of
15mature NSPs, which are encoded by orf1ab and orf1a genes as
the pp1ab and pp1a polyproteins.17 Currently, many efforts are
targeting the main protease, MPro,18 which is required for
cleavage of the large viral polypeptide into its functional
proteins, the RNA-dependent RNA polymerase (RdRp)19

responsible for the production of new viral RNA, and some
efforts target prevention of S cleavage.20 In addition, viral
proteins also function to impede the host’s defense mechanisms:
both proteases have been shown to inhibit the human immune
response by interacting with immune proteins in SARS-CoV.21

It is, therefore, important to understand regions on these
proteins that act as binding sites for both substrates (as in the
case of the proteases) and for protein−protein interaction.
In previous work, very early in the pandemic, we combined

restrained temperature replica-exchange molecular dynamics
(restrained T-REMD) simulations with virtual high-throughput
screening in a supercomputer-based ensemble docking
campaign to identify well-characterized drugs, metabolites, or
natural products that bind to either the S-protein: ACE2
receptor interface or the RBD of the S-protein.22 From this
ensemble docking campaign, we provided a ranking of the
predicted binding affinities of over 8000 drugs, metabolites, and
natural products (and their isomers) with regards to the SARS-
CoV-2 S-protein and the S-protein: ACE2 receptor complex.
The ranked list has been incorporated into experimental testing
using a high throughput screen that was implemented in the
SARS-CoV outbreak, and new compounds will be added as
discovered. Three of the top compounds, hypericin (a
component of St. John’s Wort), imatinib, and quercetin,
identified in the initial S-Protein: ACE2 receptor screen are
now in clinical trials.
Here, we report on an optimized supercomputing pipeline for

early stage drug discovery together with results on 24 systems
involving 8 SARS-CoV-2 proteins. The computational approach
mimics what happens in nature, using “structure-based” drug
discovery. Generally speaking, the availability of many
experimental protein structures combined with massive
increases in computational power and methodological advances
have led to a resurgence of computational studies in which trial
compounds are docked into binding sites in three-dimensional
models of the protein targets and then ranked according to their
strength of binding. Computational docking has been
particularly useful in early stages of molecular discovery in

order to identify initial hits to be prioritized for experimental
validation.
Early docking studies were performed with static target crystal

structures and rigid ligands. These were quite successful in some
cases, such as in the discovery of antivirals for HIV and
influenza.23,24 Unfortunately, though, at that time, structures for
few targets existed, and the process was relatively inefficient:
calculations were relatively inaccurate, and computers could
dock only ∼100 compounds in a reasonable time frame. Since
the 1990s, the power of supercomputers has increased by a
factor of a million or so. Rigid docking of over a billion
compounds has been performed in a few days. Thus, virtual
high-throughput screening has outperformed equivalent ex-
perimental high-throughput screening and has been shown to
rapidly identify very tightly binding compounds.25

Strictly rigid docking does not often take place in protein:
ligand interactions, as both ligands and proteins, undergo
thermally driven internal motions, which lead to fluctuating
binding site conformations.26 Therefore, a particularly impor-
tant development has been the recognition that incorporating
target flexibility into drug discovery protocols can improve the
drug discovery process.27 Ensemble docking uses different
conformations of the protein targets of interest, and
combinatorially performs the docking of databases of com-
pounds against each of the protein target conformations. This
process models the conformational selection binding mecha-
nism, as opposed to a more limited induced-fit mechanism. The
method requires the generation of an ensemble of protein
conformations to be used in the docking calculations.
Ensemble docking of small probe molecules for flexible

pharmacophore modeling was introduced in 1999. It was shown
that consensus pharmacophore models, based on multiple MD
structures or on multiple crystallographic structures, were more
successful than models based on single conformations in
yielding successful predictions of binding.28 In our own
laboratories, ensemble docking has produced experimentally
validated hits against each of the 16 protein targets presented to
us over the past few years. Our groups have increasingly used an
ensemble approach to perform docking.22,29−46 In addition, we
have shown that the clustering of protein target MD trajectories
usually brings a large improvement in the quality of ensemble
docking compared to what is obtained using single structure
docking.47

Ensemble generation using MD and docking both require
significant computational power: to perform MD simulations of
sufficient duration and to dock large databases of compounds.
This combinatorially large computational time requirement
essentially limits this approach to high-performance computing
(HPC) architectures for large database screenings, even when
only a subset of protein conformations is used in docking, for
example, following clustering of the target’s MD configurations.
HPC involves the use of specialized, large supercomputing
systems to perform large calculations that are parallelized over
many compute nodes, each consisting of dozens of cores.
Traditionally, the use of a high-speed interconnect allows rapid
communication between separate compute units and clever
parallelization schemes to enable rapid calculations on problems
too large to fit on a single compute unit. These schemes have
historically involved specialized programs that focus efforts to
optimize communication overlap. The use of graphics
processing units (GPUs) has helped to accelerate many types
of calculations. The Summit supercomputer, housed at the Oak
Ridge Leadership Computing Facility (OLCF), is currently the
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fastest supercomputer in the United States. Summit is an IBM
AC922 system consisting of 4608 large nodes, each with six
NVIDIA Volta V100 GPUs per node. Each node also contains
two POWER9 CPU sockets for a total of 42 cores per node. The
GROMACSMD program48−50 is able to make use of all aspects
of the Summit supercomputer’s HPC utilities, including the
GPUs and the interconnect, providing for both strong and weak
scaling, which dramatically decreases time per MD step and
increases the size of the system that can be simulated efficiently.
The temperature replica exchange molecular dynamics (T-
REMD) routine51−54 which was chosen here for the MD
calculations (see below) uses the interconnect not only to allow
for parallelization of a single simulated biomolecule, but also to
communicate between separate replicas of the system, each
carried out at a different temperature, and performs exchanges
between replicas to accelerate the conformational sampling of
the biomolecule.55

Protein−ligand docking has hitherto not been considered a
traditional HPC task, as each docking calculation is short and
does not require multiple nodes to complete. In fact, many
docking programs can run on a single CPU core. However, the
number of cores on a supercomputer or cluster can provide a
resource to perform many simultaneous docking calculations
that greatly decrease the time-to-solution for screening a large
data set of ligands. Cloud and distributed computing resources
also provide this type of completely parallel solution for high-
throughput screening.56,57 The use of GPUs has recently been
made possible for the widely used program AutoDock458,59

resulting in the program AutoDock-GPU, which provides up to
50× speedup over AutoDock4 (available at https://github.
com/ccsb-scripts/AutoDock-GPU).60−64 Thus, the use of
leadership HPC facilities for ensemble docking can provide
the ability to screen billions of ligands to a full set of
conformations generated with HPC-based MD simulations.
Quantum mechanical refinement of classical docking ranking
based on fragment molecular orbital (FMO) techniques also
naturally benefits greatly from massively parallel supercomputer
capabilities.65

In this work, we describe our efforts establishing a
supercomputing-based pipeline for ensemble docking and
preliminary results on its application to discovering therapeutics
that target viral proteins of SARS-CoV-2. The pipeline and
results presented here represent our contribution to date to the
work of the USA HPC Covid-19 Consortium that was created
on March 29th, 2020. We describe the choice of eight targets
and the preparation of protein models from experimental data.
We report on T-REMD simulations performed for the targets
totaling about half a millisecond of simulation time. We have
docked repurposing databases to ten configurations of each
protein simulated using the popular docking program Autodock
Vina. We also describe efforts deploying Autodock-GPU60−62 at
scale on Summit that demonstrate the docking of over a billion
compounds in 24 h with full structural optimization of the
ligand. Future developments involving the use of AI and
quantum chemistry in rescoring and clustering are also outlined.
The pipeline described here can also be used in future work to
target human proteins66,67 known to interact with viral proteins,
or in disease-causing responses in Covid-19 and more generally
in computational structure-based drug discovery.

■ METHODS
Computational methods in drug discovery narrow a vast
chemical search space to a tractable set of compounds suitable

for experimental testing. Experimental work can involve a variety
of tests, including live virus testing as well as target engagement
studies, and will not be considered further here. Rather, we
discuss the procedures of structural modeling, MD simulation,
and docking.

Choice of Target Proteins and Generation of Struc-
tural Models from Experimental Work. Multiple groups
have been using structural biology techniques, including X-ray
crystallography, small-angle scattering (SAS), and cryogenic
electron microscopy (cryoEM), to investigate the structure of
proteins and protein complexes from SARS-CoV-2.68−71

However, obtaining a structure from the Protein Data Bank
(PDB) or perhaps a revised model from another resource is only
the starting point. Often structures obtained from the PDB do
not fully resolve all residues, and a determination must be made
whether and how to model them. Also, as structural models are
rapidly being released to aid in the fight against COVID-19, the
potential inclusion of a few structural errors is an unfortunate
reality. In particular, the identification of metal cations in protein
structures requires careful thought and examination of its local
coordination environment.
Even with perfectly assigned and complete experimental

structures, it may not be enough to consider viral protein targets
as chemically invariant structures for modeling and binding
calculations. Large differences in pH in various cell compart-
ments as the virus travels through the host cell72−74 can
qualitatively change the protein’s structure and function.
Differences in pH also affect the protonation states of the
proteins and the small molecules being tested as drugs, altering
drug binding preferences. Finally, the oligomerization states of
the target proteins are important to consider as the interactions
between protein monomers may influence the shapes of the
active sites. Another important factor to consider when
performing in silico screens using ensemble docking is the
ability to construct a useful model of a particular protein for MD
simulation. For instance, certain metal-containing regions of a
protein may not have an existing classical mechanics model
(force field parameters), or existing models may be inadequate.
In addition, highly charged, disordered, and ion-dependent
biomolecules have been known to have less accurate force fields
and may perform poorly in an MD simulation.75−78

Proteins chosen for ensemble docking in this study were those
that had a crystal structure available with a reasonable resolution,
were amenable to accurate simulation with classical MD force
fields, and were also known to be important for viral
pathogenicity based on either recent studies or those on
SARS-CoV. The 24 systems studied comprise nine protein
domains. Two of these, RBD of the S (spike) protein and the N-
terminal region of the N (nucleocapsid) protein, are domains in
structural proteins found attached/within the virion. The N
protein is used for packaging the viral genome and is essential for
the assembly of the virion.79 The remaining seven domains
come from nonstructural proteins (NSPs) 3, 5, 9, 10, 15, and 16,
which form the replication complex and are involved in a
number of key tasks leading to the creation of new virus
particles.80 Two domains come from NSP3,81 the ADP ribose
phosphatase (ADRP, also known as macro- or “X”) domain, and
the papain-like protease domain (PLPro).82 The ADRP seems
to be involved in ADP-ribosylation, which is used in cell
signaling and thus may act to inhibit the host immune
response.83 PLPro cleaves regions of the polyprotein to release
nonstructural proteins and also is involved in the mechanisms
the virus uses to counteract the host immune response, for

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01010
J. Chem. Inf. Model. 2020, 60, 5832−5852

5834

https://github.com/ccsb-scripts/AutoDock-GPU
https://github.com/ccsb-scripts/AutoDock-GPU
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01010?ref=pdf


instance by interaction with host immune proteins80,84 NSP5 is
the main protease (MPro), which self-cleaves and also cleaves
other regions along the polyprotein, releasing essential proteins
to perform their tasks in the assembly of the replication complex,
and is also involved in interacting with and preventing the action
of host immune proteins.84,85 The exact function of NSP9 is
unclear, but has been found in SARS-CoV to be required for viral
replication and has been shown to bind to RNA oligonucleo-
tides,86 NSP15 is an endoribonuclease specific for uridine whose
exact function is also unknown, but has been implicated in
interfering with host immune response both through direct
interaction and by cleaving viral RNA to prevent detection by
the host.87 NSP16 is thought to be a methyltransferase that
requires NSP10 as a cofactor, and acts to disguise viral mRNA
from the host immune response by adding a methylation onto
the RNA cap which host cells use to mark RNA as belonging to
“self” versus “pathogen”.88−90

The explosion in research and literature fueled by the Covid-
19 pandemic, together with the need for searching through
related literature on other coronaviruses, has created a challenge
for researchers needing to understand the structural details and
cellular contexts of the SARS-CoV-2 proteins. To help navigate
this challenging landscape, we have been developing new tools
based on natural language processing and machine learning for
enabling a more robust search for specific questions required for
our modeling, simulation, and ligand docking work91−93

featuring targeted filtering and exploiting external resources
(e.g., Wikidata, ChEBI, PubChem) to expand our search
capability. For example, after we generate a set of related
keywords, the service will screen for the terms referring to a
chemical substance and fetch the chemical information (e.g.,
SMILES string) from the PubChem automatically. In addition,
using this keyword search enables the ontologies (e.g., Wikidata,
ChEBI) to be used to link related chemicals and their properties
for document annotations in query results. The main data
resource of the system is a collection of scientific papers, which
are collated from major publications. The full-text article access
and download from the publishers’ archives are performed
under the publishers’ agreements, and the internal article corpus
in our system is updated on a weekly basis.
To provide a diverse survey of the conformational ensembles

of the SARS CoV-2 viral proteome, we performed T-REMD
simulations of 24 different model systems listed in Table 1.
Additionally, Supporting Information (SI) Table S1 is also
provided, which summarizes the PDB entry simulated, complete

protonation state choices (where applicable), and the number of
replicas used for the T-REMD.

Simulation Model Preparation. To engage in the use of
MD for the rapid generation of conformational ensembles for
drug discovery one requires that the input for MD be generated
in a semiautomated fashion by which the atomic coordinates,
obtained from experimental or in silico protein structure
prediction methods, can be quickly processed into MD input
files. To facilitate this semiautomated approach, CHARMM-
GUI was used for most model building.94 The general system
building method used here involves the direct retrieval of
structures from the PDB and processing to model missing
residues, assign protonation states, add disulfide bonds (where
noted in the PDB annotation), add glycosylation (where
resolved in the crystal structures of the S-protein receptor
binding domain and ACE2), neutralize the charge of the system
(using Na+ and Cl− ions), and solvate (with TIP3P water).
Many proteins have coordinated ions that serve structural roles,
such as the Zn2+ cations in Nsp10, or catalytic roles. Thus, the
treatment of Zn-complexes in fixed-charged classical MD force-
fields is a challenge, and for some systems, it may result in the
failure to maintain Zn-protein coordination95−97 and when
found necessary (as noted below and also summarized in SI
Table S1) an explicit bond representation was used. All of these
considerations mandate an abundance of care when preparing a
biologically accurate model for simulation. Below we discuss
considerations taken into account when modeling some of the
proteins simulated.

S (Spike) Protein (PDB: 6W41). Presently available structures
of the S protein have nine gaps totaling approximately 150
residues, in addition to over 20 and over 100 missing residues at
the N- and C-termini, respectively. Current models also lack
post-translational modifications, including glycosylation and
formation of disulfide bonds. The S protein is heavily
glycosylated, with roughly 20% of its mass in glycan chains,
yet at most, a few mono or disaccharides are present in the
structure.
In our preliminary study,22 we made use of a homology model

of the entire spike with restraints applied such that only the
human ACE2-Spike interface was unconstrained. Here, using
crystal structures of the ACE2-S protein complex, simulations of
the receptor-binding domain of the S Protein (Spike) both in
complex with the human ACE2 receptor and on its own
(referred to within the text as the “Apo” RBD) were performed.
The viral spike receptor-binding domain was chosen to provide

Table 1. Model Systems Simulated

Protein/System Notes

S (Spike) Protein Receptor Binding Domain
(RBD)/“Apo” (PDB:6W41)

S Protein RBD/Complexed with ACE2 (PDB:6W41) MPro/monomer, CHARMM-GUI default protonation
(PDB:6Y2E)

MPro/dimer, CHARMM-GUI default
protonation (PDB:6Y2E)

MPro/dimer, “charged” protonation variant
(PDB:6WQF)

MPro monomer/HIE41 protonation variant (PDB:6WQF)

MPro dimer/HIE protonation variant
(PDB:6WQF)

MPro monomer/HID41 protonation variant
(PDB:6WQF)

MPro dimer/HID41 protonation variant (PDB:6WQF)

NSP15 (endoribonuclease)/hexamer
(PDB:6VWW)

NSP15 (Endoribonuclease)/monomer (PDB:6VWW) NSP10:NSP16 Complex (Methyltransferase)
(PDB:6W4H)

NSP10/monomer (PDB:6W4H) NSP16/monomer (PDB:6W4H) N (nucleocapsid) N-terminus phosphoprotein/monomer
(PDB:6M3M)

N (nucleocapsid) N-terminus
phosphoprotein/tetramer (PDB:6M3M)

N (nucleocapsid) N-terminus phosphoprotein/
tetramer complexed with Zn (PDB:6YVO)

N (nucleocapsid) N-terminus phosphoprotein/monomer
alternate crystal structure (PDB:6YVO)

NSP9/monomer (PDB:6W4B) NSP9/dimer (PDB:6W4B) NSP3 ADP ribose phosphatase/asymmetric unit
(PDB:6W02)

PLPro/monomer “charged” protonation
variant (PDB:6W9C)

PLPro/monomer “neutral” variant (PDB:6WRH) NSP3 ADP ribose phosphatase (PDB:6W02)
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insight into the details of the initial viral-host recognition
process. Glycosylation resolved from crystallographic imaging
was used, and an annotated disulfide bond was also included.
Main Protease. (PDB: 6Y2E and 6WQF). The main protease,

MPro, is an attractive target for the development of antiviral
drugs. There is compelling evidence that the enzymatically
active species is the dimeric assembly of MPro. A dimer is
observed in most crystal structures of CoV MPro, as well as in
solution at sufficiently high concentrations. In addition, a linear
increase in the enzyme activity at increasing concentration
suggests catalytic incompetence of the monomer.98 Therefore,
the full dimer was considered in the present MD simulations for
MPro, using as starting coordinates the apo-homodimer in the
crystal structures 6Y2E and 6WQF.99,100

The crystal structures show that SARS-CoV-2MPro, similarly
to other MPros,85,99,101,102 is composed of three domains:
Domains I (residues 8−101) and II (residues 102−184) are
arranged in an antiparallel β-barrel structure, and domain III
(residues 201−303) contains five α-helices arranged in a
globular cluster. Domain III is a specific feature of CoV MPro
proteins and was suggested to be essential in the proteolytic
activity by keeping domain II and the long loop connecting
domains II and III (residues 185−200) in the proper
orientation, and/or by orienting the N-terminal residues that
are essential for the dimerization.101 Dimerization occurs
through interactions between the helical domains of the two
monomers and through hydrogen bonding interactions between
the N-terminal residues of one monomer and key residues in the
other monomer. In particular, the salt bridge between the N-
terminal Ser1 of one monomer and Glu166 of the other
monomer has been suggested to be essential to maintaining the
catalytically competent conformation.101,103 The substrate-
binding site is located in a cleft between domains I and II and
contains a highly conserved catalytic dyad formed by Cys145
and His41. Comparison among the two apo crystal structures
and the crystal structure obtained in the presence of an inhibitor
reveals85 only minor structural differences in the position of a
few side-chains and no relevant changes in the substrate-binding
site, except for the rotation of the side chain of Met165, which is
in the proximity of His41.
Although the catalytic mechanism is not fully understood,

there is a general agreement in considering that the proteolytic
activity of CoV MPros is initiated by activation of the enzyme
through a proton transfer reaction in the catalytic dyad, leading
to a charge-separated state with a highly reactive thiolate. It has
also been suggested that such a proton transfer reaction is
induced by the presence of the native substrate.104,105 Therefore,
in the present MD simulations of the apoenzyme, Cys145, and
His41 were simulated in their neutral state, with His41
protonated at Nδ (i.e., HSD). This choice is based on the
observation that the His41-Nε appears to be the best candidate
as proton acceptor fromCys145 because in the crystal structures
the His41-Nε is closer than the His41-Nδ to the Cys145-S and
the His41-Nδ is already involved in a hydrogen bond to a highly
conserved water molecule, which is considered the third element
of the catalytic site. A recent QM/MM study106 also supports
this proton transfer mode and the role of water in catalysis.
However, the ε-nitrogen protonation state for His41 (HIE)
cannot be decisively ruled out, and MD simulations were
performed also considering this alternative, although less
probable, protonation state.
The protonation states of two additional His residues, namely

His163 andHis172, were also highlighted as being crucial for the

enzymatic activity of CoV MPro. In particular, the doubly
protonated (cationic) state of His163 at pH 6.0 was suggested to
modulate relevant conformational variations involving Glu166,
Phe140, and His172, leading to a catalytically inactive
conformation.101 At higher pH values, both His163 and
His172 should be uncharged, and, on the basis of the
hydrogen-bonding pattern that can be inferred from the crystal
structures, the HSE protonation state was used for both His163
and His172 in the present MD simulations. All other His
residues were also simulated in their neutral state, assigning the
Nδ or Nε protonation state on the basis of their chemical
environment and hydrogen-bonding patterns. The selected
protonation states are as follows: HSD64, HSD80, HSE164,
HSE246.

PLPro (PDB: 6W9C and 6WRH). For PLPro, the Zn cation
was coordinated to C189, C192, C224, and C226. Similar to
MPro, the protonation states of the His residues in PLPro were
not readily available. Here we pursued two potential protonation
state varients, a charged variant and a neutral variant. For the
charged variant the protonation states were obtained with the
use of the PropKa 3.0 server assuming pH ∼5, corresponding to
its presumed cellular (lysosome) environment,107 with 6W9C
being assigned to pH 5 based on its physiological role in acidic
environments. Protonation states for the neutral state were
manually assigned using 6WRH as the original coordinate file,
with C111S mutation reversed. For both variants, Zn-
coordination during temperature-replica exchange was enforced
by topological patches applied with CHARMM-compatible
tools. TopoGromacs108 was used to convert the system and
associated force field to GROMACS format.

NSP15 (PDB: 6VWW). Large (His) tags present during the
recombinant expression processes to purify NSP15 for
crystallization; however, these tags were not removed before
crystallization. Prior to simulating the monomeric and
hexameric forms, the artifactual His tags were removed from
NSP15 using MOE2019 and subjected to a “quick prep” with
the prepare proteinmodule of MOE to resolve potential issues in
the resulting structure. The resulting truncated PDBs were then
uploaded to CHARMM-GUI for neutralization and solvation.

NSP10 (PDB: 6W4H). For NSP10, both in its monomeric and
a complexed form with one Zn cation liganded to C4370,
C4373, C4381, and C4383, while the other bound Zn was
liganded to C4327, C4330, H4336, and C4343. For 6VYO, H59
and H145 were liganded.

Molecular Mechanics and Molecular Dynamics Sys-
tem Preparation (Force Fields, Counterions, Energy
Minimization, and Equilibration). All simulations were
performed using the GROMACS48,109 software suite, and the
CHARMM36m force field,110 which is the default of choice
using the CHARMM-GUI. For all systems, the protein was
solvated in water-boxes with edge-distances of 1 nm, and only
neutralizing Na+ and Cl− ions were used. Short-range
interactions were treated with a smooth force-switch cutoff of
1.2 nm, and long-range electrostatics were treated using the
particle-mesh Ewald (PME) formalism, as implemented in
GROMACS.111 To facilitate the use of a 2 fs MD time step, all
covalent bonds to hydrogen were restrained with the LINCS
algorithm112 in all simulations. Following system preparation, all
solvated models generated were subject to steepest-descent
energy minimization with a stopping condition of either
reaching the force-convergence criteria of 1000 kJ mol−1 nm−1

or a maximum of 5000 iterations. Energy minimization was
performed primarily to remove potential clashes between the
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solvent, ions, and the protein (or protein complex) of interest.
Postclash removal minimization, short (250 ps) NPT relaxation
simulations (with default positions restrains generated from
CHARMM-GUI) were performed to relax the simulation box
dimensions for each replica (at different temperatures)
independently (see T-REMD Protocol). For these relaxation
simulations, the Berendsen baro/thermostats113 (as imple-
mented in GROMACS) and an integration time step of 1 fs were
used.
T-REMD Protocol. MD simulations provide a means to

study the conformational dynamics of proteins. However,
frequently MD becomes ‘trapped,’ resulting in the need for
many long simulations to effectively sample a protein’s
conformational landscape.114 To overcome this sampling
challenge, enhanced sampling techniques can be used. For the
present work, temperature replica-exchangemolecular dynamics
(T-REMD) was employed, whereby multiple copies of a target
system are simulated simultaneously with each copy (replica) at
a different temperature, with periodic coordinate swapping
(performed in such a manner as that preserves detailed balance)
between the copies.52−54 By running at multiple temperatures,
with exchanges, the dynamics of the system avoids “kinetic
traps” and provides a robust sampling of the protein free-energy
landscape, and thus the protein conformational diversity.115 T-
REMD was chosen for several reasons:

(1) it guarantees an increase in sampling efficiency over
straightforward MD,116

(2) it does not require the assignment of reaction coordinates
(or collective-variables) a priori to accelerate conforma-
tional sampling

(3) it does not require direct modification to the system
Hamiltonian.117

T-REMD simulations for each system were performed with
theGROMACS simulation suite. A limited temperature range of
310 K to ∼350 K was chosen to maintain physiological
configuration space. For each protein system, the number of
replicas and temperatures for each replica was chosen using the
temperature predictor server by Patriksson and van der Spoel118

with a target exchange probability set at 0.2 though the actual
exchange was found to be ∼0.3 for all systems. All simulations
were performed for a total of 750 ns per replicate.
After relaxation, production T-REMD simulations were

performed with a frame saving rate of 10 ps and an integration
time step of 2 fs. Production simulations were performed, similar
to the relaxation simulations, in the NPT ensemble. Unlike the
relaxation simulations, the V-rescale (Bussi) thermostat119 and
the Parrinello−Rahman barostat,120,121 were used. Regardless of
the temperature window, the target pressure for each replicate
was set to 1 bar.
Trajectory Analysis. For all systems, the measures of the

gyration tensor (from which shape anisotropies are derived),
solvent-accessible surface area (SASA), and pairwise simulation
frame versus simulation frame RMSD matrices, and RMSD
based clusters, were obtained using a combination in-house
VMD122 scripts, NumPy, and SciPy.123 The RMSD clustering
specifically only considered the lowest temperature replica (310
K), and rapidly generated the pairwise RMSDmatrices using the
QCP algorithm.124 Clustering was performed using hierarchical
clustering with a complete linkage method, as implemented
within SciPy. For generality in evaluating structural diversity,
clustering was initially performed based on the RMSD of all
heavy protein atoms, and where additional diversity of active

sites was of interest for subsequent docking, a second round of
clustering was performed based on binding site residues and
protein−protein interfaces. VMD atom selections for the
docking specific clustering are summarized in SI Table S2.
Although T-REMD is an efficient simulation method, and the

310 K data do correspond to a formal statistical mechanical
ensemble generated at this temperature, as with other enhanced
sampling methods the risk is always present that the enhance-
ment of the sampling takes the system to regions of
configurational space beyond that that would be significantly
sampled by the protein physiologically; for example, to partially
or wholly unfolded states. We, therefore, take care to identify
these and to not perform docking screens on such config-
urations.

Docking. Two different docking databases were used.

(1) A smaller database of potential ligands was built merging
together the content of the SWEETLEADS125,126

repurposing database SuperDRUG2,127,128 and the
NCI-diversity database,129 yielding 13 757 unique com-
pounds. This database has been ensemble docked to all
systems, as listed in Table 2, with noted targeted binding
sites. This database was docked using local HPC clusters
using Autodock Vina.

(2) Supercomputing docking runs were performed involving
billion-plus compound screens of the Enamine database
using an accelerated version of Autodock: Autodock-
GPU. To date, these runs have been performed on two
crystal structures of MPro.

Smaller Database Docking. Data and Protocols. Docking
to the target structures obtained from the MD simulations (as
listed in Table 1) was performed on various HPC clusters using
Vina MPI130 and MOE. Two sets of structures were used in the
ensemble docking. In the first series of docking calculations, only
the first 100 ns of the T-REMD trajectories were used, and the
results of the docking simulations were passed on to
collaborators for experimental testing. In the second series of
docking, as the MD trajectories were expanded beyond their
initial first 100 ns, the clustering was performed on the entire 750
ns trajectories, as described in the results section below.
For the VinaMPI130 calculations, the “Exhaustiveness”

parameter was kept at its default value of 10. Databases of
potential ligands were built merging together the content of the
SWEETLEADS,125,126 SuperDRUG2,127,128 and NCI-diversity
databases,129 yielding 13 757 unique compounds.

Table 2. List of Proteins and Binding Sites Used for “Smaller
Database” Docking. PPI Refers to a Protein−protein
Interfacea

receptor/binding site receptor/binding site

MPro monomer/catalytic pocket NSP15 monomer/catalytic pocket
MPro dimer/PPI NSP15 dimer/PPI
NSP9 dimer/FTMap sites NSP10 monomer/PPI to NSP16
nucleocapsid phosphoprotein/
RNA binding site

NSP16 monomer/PPI to NSP10

nucleocapsid phosphoprotein/PPI NSP10:NSP16/PPI
nucleocapsid tetramer/FTMap
sites

NSP3 ADRP domain (asymmetric unit,
dimer)/active site

NSP3 ADRP domain (monomer)
active site

NSP9 monomer/PPI

aIn some cases, FTMap was used to identify potential binding sites
(see SI Table S2).
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Using the program MOE, compounds with more than 49
rotatable bonds were deleted from the database, and only one
stereoisomer was included for each compound. Very low
molecular weight (<58) compounds (single atoms, ions, very
small functional groups). The resulting database included ∼9K
uniquemolecules. The compounds were protonated at pH 7 and
energy-minimized using theMOE software to obtain low energy
3D structures. The compounds were saved on disk in sdf format
and then converted to PDBQT format using AutoDock
Tools.131,132

The ligands were docked to 10 clusters per receptor, each
cluster corresponding to a different configuration of the binding
pocket. The clusters corresponding to the first 100 ns of the MD
simulations have been uploaded on the publicly available
structure repository https://cmbcovid19.flywheelsites.com/
data/ additional data, including the complete trajectories from
the 750 ns T-REMD simulations is forthcoming. The residues
used to determine the clusters fall into one of three categories:
the protein active site, residues at the protein−protein interfaces
(for complexes), and all the protein non-hydrogen atoms.
Tables 2 and list the receptors and binding sites we have
screened so far.
Binding Sites for Docking. In general, we have two classes of

potential binding sites: (1) catalytic pocket or substrate-binding
site and (2) PPI. The first aims at identifying potential
competitive inhibitors of the viral proteins, and the second
aims at finding compounds potentially disrupting a viral
protein−protein complex. Binding site definition requires
manual intervention and cannot be easily automated. Examples
of definitions are listed below for three viral proteins.

(a) In the main protease dimer (PDB: 6WQF), the docking
box contains catalytic sites of chain A and PPI residues.
The docking box was constructed to align with the
peptide-binding groove on either side of the catalytic dyad
of chain A, which extends outward to include the S3, S2,
S1, S1′, and S2’ substrate binding pockets.

(b) In the NSP10-NSP16 complex (PDB: 6W4H), the S-
adenosyl methionine (SAM) binding site Asp6928 in
NSP16 was considered.89 In addition, PPI residues such
as Tyr4349, Val4295 to Leu4298 in NSP10, and Gln6885
in NSP16 were included. Tyr4349 and Gln6885 interact
with each other in SARS-CoV virus,89 and Val4295 to
Leu4298 are hot spot residues in the SARS-CoV-2 virus
computationally predicted using the crystal structure
along with the KFC2 method,133 which is based on a
machine learning predictive model (https://kfc.mitchell-
lab.org). Hot spot residues are the fraction of PPI residues
that account significantly for the overall protein−protein
binding affinity, and they are typically determined
experimentally using alanine scanning mutagenesis.134

(c) In the N-terminal domain of nucleocapsid protein
tetramer (PDB: 6VYO), three critical RNA-binding
residues on the beta-sheet core were included in docking:
Arg88, Arg92, and Arg10771,135.136

Billion-Compound Supercomputer Docking with Enamine
Real Database. A major aim of this exercise was to see whether
it would be possible to dock a billion compounds with full ligand
optimization on the OLCF Summit supercomputer in 24 h of
wall-clock time. To perform efficient ensemble docking, we
modified AutoDock-GPU,60,62 to enable it to run at peak
efficiency on the Summit system. For compatibility, OpenCL
kernels were rewritten in CUDA, and file input and output were

streamlined to enable it to keep up with the GPU’s speed. These
modifications, together with the size of the Summit super-
computer, indeed allow over 1 billion compounds to be docked
within 24 h. This capability will enable giga-compound docking
for a number of proteins in the viral proteome and beyond.
We performed initial docking tests using this framework on

NSP15 (NendoU) and the main protease (MPro). For NSP15
we used a 9000 compound data set composed of the
SWEETLEADS125 database with additional ligands, and also a
trimmed version of this data set containing only ligands
containing less than 11 rotatable bonds, consisting of about
5000 ligands. For tests with MPro, we used a 90 000 ligand
subset of the Enamine REAL database.137 All ligands were
prepared with AutoDockTools,132,138 and the receptor grids
were generated with the program autogrid with a grid spacing of
0.375 Å.We tested a set of search box sizes: 40, 25, 20, and 15 Å3,
and different settings for the number of runs, nruns, which
defines howmany separate instances of the genetic algorithm are
executed. For the trimmed data set, we also performed docking
with AutoDock Vina with exhaustiveness of 10 to compare
results. These results provided us with the confidence to dock
over 1 billion compounds from the Enamine real database to two
different MPro crystal structures, 5R84 and 6WQF,100 with a
search space 25 Å large on each side, centered on the active site.
The analysis of this data set is ongoing. Due to the documented
inaccuracies of force field-based scoring functions in the task of
screening and affinity prediction of compounds,139 rescoring of
at least 1% of the billion compounds is being performed using
the accurate, yet highly computationally efficient machine
learning-based rescoring method known as RF-Score-3.140 Also,
at least 50% of those compounds rescored with RF-Score-3 will
be further filtered using recently developed rescoring described
below in Future Directions and Preliminary Results from New
Methodologies, subsection Protein−Ligand Rescoring Using
Machine Learning.

Sequence Analysis and Mutational Entropy Calculations.
We performed an analysis of available sequences of the SAR-
CoV-2 virus to look for numbers of mutations and map these
locations on the proteins we were using as drug discovery
targets. All complete, high-coverage genomes labeled as human
host SARS-CoV-2 were downloaded from GISIAID141,142 on
May 5, 2020, yielding a total of 16 252 genomes. Sequences were
filtered to remove any genomes with greater than 3% ambiguous
(N) nucleotides or were less than 29,000 nucleotides in length,
resulting in 14 284 genomes.Multiple sequence alignment of the
14 284 genomes was performed using MAFFT143 v.7.464 with
the --addfragments method using NC_045512.2 (EPI_-
ISL_402125) as the reference genome and removing insertions
relative to the reference. Mature protein-coding sequences for
each protein were extracted from the alignment using
coordinates from the reference genome and translated using
FAST144 v1.6, with protein sequences containing internal stop
codons discarded from further analyses. Shannon entropy145

was calculated for every column of each protein alignment using
a custom script, disregarding ambiguous and gap characters
using a custom script. Additionally, the frequency and types of
substitutions with respect to the reference were recorded. For
visualization of the mutation entropy per residue of the proteins
studied in this paper, entropy values were color-coded in protein
PDB structures. Known SARS-CoV and SARS-CoV-2 structures
were downloaded from the Protein Data Bank, their sequences
were aligned with the SARS-CoV-2 reference genome
(NC_045512.2) using BLASTP, and the calculated entropy of

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01010
J. Chem. Inf. Model. 2020, 60, 5832−5852

5838

https://cmbcovid19.flywheelsites.com/data/
https://cmbcovid19.flywheelsites.com/data/
https://kfc.mitchell-lab.org
https://kfc.mitchell-lab.org
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01010?ref=pdf


the sequences was embedded in the PDB file in the place of the B
factor column using a custom Python script.
Preliminary QMRefinement Protocol.Along withML-based

approaches, quantum mechanics (QM)-based refinement of
classical docking results is being developed here as a tool to
narrow down the list of promising inhibitor candidates.146 Until
recently, the inclusion of QM electronic structure in high-
throughput drug screening was deemed computationally
intractable due to the enormous computational resources
required even for density functional theory (DFT) calculations.
The poor scaling of most quantum chemical methods further
exacerbates the situation. A viable emergent alternative is the
recently developed linear-scaling version of an approximate, yet
remarkably accurate DFT method called “fragment molecular
orbital density-functional tight-binding (FMO−DFTB).147 This
method is implemented in the widely-utilized GAMESS
quantum chemistry code.148 We here report preliminary
calculations of FMO−DFTB with the so-called polarizable
continuum model (PCM) of the solvent149 for quantum
mechanics-based evaluation of potential COVID-19 spike
protein inhibitor drugs identified by re-clustering and re-
docking to an extended simulation of the S protein, similar to the
initial work by Smith & Smith.22 For the PCM calculations, the
cavity was calculated using simplified united atomic (SUAHF)
radii150 which are available for all the chemical elements
contained in all ligand compounds. Because the binding side is
widely open, the dielectric constant of water ε = 78.39 was used.
In addition, to improve the accuracy in describing non-covalent
interactions, the D3 dispersion correction was employed. To
obtain the refined binding energy of a given candidate, its
unbound geometry, the unbound protein, and its corresponding
complex were optimized using FMO−DFTB/PCM. While the
unbound ligands were completely optimized, only selective
residues in the binding pocket of the unbound protein, and in
the protein−ligand complexes were locally optimized. The QM-
refined binding energy is defined here as the difference between
FMO−DFTB/PCM total energy of the complex and the sum of
the total energy of unbound protein plus total energy of
unbound ligand. In preliminary work, the QM-refinement was
carried out for the Vina top-10 best binders of each spike protein
cluster. In total, 15 spike protein clusters were investigated, and
the binding energies of 150 protein-ligands complexes were
refined.

■ RESULTS

We present here preliminary results obtained for members of the
SARS-CoV-2 proteome. Naturally, ongoing refinements of the
results are continually being undertaken, and the results are
incomplete. However, they give a snapshot report on the state of
delivery of the pipeline. At the moment of submission, 24 T-
REMD simulations have been performed on nine members of
the proteome, in various oligomerization and protonation states,
for a total of 0.612 ms of MD aggregated over all replicas and
∼17.25 μs aggregated overall lowest temperature windows. At
present ∼2.07 M physical docking calculations have been
performed with the smaller database and on Summit 2.4 billion
docking calculations with the Enamine REAL database. The
preliminary results presented are general trends observed in the
MD and docking runs and do not describe details of the
candidate compounds or dynamical properties of individual
proteins, which will be reserved for future publications. Results
of MD and docking are available at the Web site https://

coronavirus-hpc.ornl.gov and will be updated as new simulations
and docking results become available.

T-REMD Scaling Performance. Figure 1 shows the
performance per replica on Summit of T-REMD simulations

for the majority of the simulations performed in this work using
GROMACS version 2020.1. A few simulations were run with
GROMACS 2018 and/or with different scheduling parameters
and achieved only 20−50% of the performance shown above
and are not included in the figure. We found that performance
was maximized when running all bonded and nonbonded
calculations on the GPUs (interatomic and both particle-mesh
Ewald and pairwise Lennard-Jones). With the noted choices,
performance saturates at around 100 ns/day for 250 000 atoms
and above, even if more nodes are allocated per replica, for two
reasons. First, the GPU-based fast Fourier transform is limited to
a single GPU, and communication latencies between nodes slow
down the calculation. However, throughput around 100 ns/day
can still be achieved for simulations above 250,000 atoms if
nodes are increased proportionately to system size.

T-REMD: Conformational Sampling of SARS-CoV-2
Proteins. T-REMD simulations were performed with the
number of replicas ranging from 20 to 60 for 750 ns each for an
aggregate sampling of over 0.6 ms (Table 1 and SI Table S1).
Given the scaling data noted above, for the total 816 replicas
simulated, the calculations (if performed simultaneously) used
the equivalent of∼18% of the entire Summit supercomputer for
∼3 days. The performance, if the entire machine were used to
simulate all of the different protein systems at the same time,
would thus scales up to∼1 ms/day. For all systems, the replicate
temperatures range from 310 K to ∼350 K, and the average
exchange probabilities were near 0.3.
From the simulations, structural diversity was quantified by

calculating, when a binding site is known, the gyration tensor of
the binding site residues, the solvent-accessible surface area
(SASA) of the binding sites, and the construction of pairwise
snapshot-snapshot root-mean-squared deviation (RMSD) ma-
trices for the target temperature replica, that is, the replica with
the temperature set to 310 K (see Methods for calculation
details). Additionally, using the gyration tensor, the shape
anisotropy of the pockets was also obtained.

Figure 1. Simulation throughput per replica. Each point represents the
performance achieved by replica-exchange MD simulations on a single
protein/water system. Run parameters were one replica per node (each
node has six GPUs), using between 24 and 40 replicas in a given system.
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Linkage-based RMSD clustering, using the pairwise RMSD
matrices was performed to gauge the overall structural diversity
of the proteins. Figure 2 provides example conformations and
calculated quantities for one example target, the neutral variant
of the PL-Protease (PLPro). Similar plots for the other
simulated systems are provided as Supporting Information and
on https://coronavirus-hpc.ornl.gov.
From Figure 2A (and subfigure A of the SI Figures S1−S23),

it is clear that the simulations generate a diverse ensemble of
states with varied loop structures. For the case of the neutral
variant PL-Protease, Figure 3C,E indicate the existence of a

number of dominant conformational states. Figure 3D,C further
suggest that, although six dominant states exist, these states
could be grouped into two “superstates”, which may indicate a
switching like behavior or the potential existence of a “hinge”.
Finally, subfigure B shows a significant amount of sampling of
rod-like geometries (anisotropies near 1); however, there are
states that have a correlated reduction in SASA and shape
anisotropy, which would correspond with a nearly continuous
transition between rod-like structures and spheroid-like
structures.
The general conformation variation highlighted by Figure 2

and SI Figures S1−S22, to some degree, masks the conforma-
tional variation within binding sites; however, when for docking
to the individual binding sites, clusters within the T-REMD
trajectory are identified and demonstrate significant variability
within the active site region (Figure 4). While not specifically
active site residues, residue variability at the tip of the loop
centered on Y266 and the charged residue pair R164-E165 near
the active site imply that accounting for the protein conforma-

Figure 2. Configurational variability of PLPro (PDB: 6WRH) with neutral HIS protonation states. (A) Overlay of 26 RMSD aligned structures from
the lowest temperature replicate spanning the 750 ns of sampling. (B) Population distribution for shape anisotropy (κ) and solvent accessible surface
area (SASA), with redder colors indicating greater occupancy of these kappa-SASA combinations. The distributions are also reflected by one-
dimensional histograms above and to the right of the plot, and black dots within the population distribution, which represent position information for
10% of the total snapshots considered. (C) Pairwise RMSD clustering for the lowest temperature replica, with the snapshots ordered according to their
cluster. The clusters in this instance were defined using a cutoff of half the maximum RMSD observed within the simulation and are labeled according
to color with a color-bar for reference located above the plot. (D) Pairwise RMSD distribution across all snapshots. (E) Population statistics for the
clusters introduced in (C).

Figure 3. Configurational variability of the PLPro (PDB: 6WRH)
active site region generally bounded by the black dashed lines and the
next step in analysis after Figure 3. Each of the differently colored
aligned protein models represents the center of a populous cluster, as
defined by active site conformation RMSD. Residues such as R164,
E165, Y266, Q267, and F302 vary in conformation substantially and
highlight the conformational variation within the ensemble created
through T-REMD. For clearer visualization, only residues 91 and
onward for PLPro are shown, as this selection was used for active site
alignment. Within the VMD122 rendering, side chains are displayed
without their hydrogens.

Figure 4. Distribution of the number of identical compounds being
found in n-number of target top 500-compounds selection out of 9014
compounds.
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tional ensemble is essential. Otherwise, the docking calculations
would be strongly biased by the rotameric states present in the
single static structure used in typical single-structure docking
calculations.
Smaller Database Docking. A preliminary analysis was

performed of general trends seen in docking the smaller database
to the 24 SARS-CoV-2 protein systems. For each protein target,
all the docking results from each of the 10 cluster configurations
were combined, and the top 500 scoring compounds extracted.
The selectivity of the compounds for any given target varies
considerably (Table 3) with the number of compounds present
on any two different top 500 lists as low as 132 or as high as 283.
In comparison, from two random selections of 500 items out of
9014 items (see SI Figure S24, 5% percentile = 19 compounds,
95% percentile = 36 compounds), 27 identical compounds
would be expected on average. Thus, the high number of
identical top-scoring compounds observed between any two
targets indicates a nonrandom selection of these duplicate
compounds.
For any particular target, the number of nonduplicate

compounds is relatively low, ranging from 8 to 50 (Table 3).
The majority the compounds selected bind to a single target
(Figure 4). However, of all the compounds that are found in the
top 500 lists, over half are calculated to bind to 3 or more targets.
Molecular weight was found to be only weakly related to the
number of protein targets a compound is calculated to bind to
(see SI Figures S25 and S26). Therefore, the overlap in the top-
scoring compounds is not an artifact of the size of the ligand. In
the absence of a systematic experimental assay on each of these
compounds, it is difficult to assess the significance of the overlap
in the top 500 compounds. It is important to note that the “top
compounds” are assembled based on relative docking scores

between compounds against the same target, and not based on
their absolute docking scores, which could artifactually inflate the
number of duplicates. A high number of duplicates between the
lists obtained on two different proteins could also indicate a
computational bias of some compounds based on other criteria
than their good fit to the targets. On the other hand, such high
numbers could correctly identify promiscuous binding sites that
do not display marked structural specificity and hence could be
indeed targeted by similar compounds. It is outside of the scope
of the present work to assertively differentiate between these two
possibilities. However, the number of duplicates varies greatly
across several pairs of targets, which renders unlikely a
systematic bias in the docking (because of, say, molecular
weight or other ligand properties independent of the target’s
binding site).
Only ∼55% of the top 500 compounds were the same in the

docking results from the 100 and 750 ns clusters. Thus,
extending the T-REMD simulation time by a factor of 7.5 nearly
doubled the chemical diversity. Future analysis will be needed to
indicate if the compounds that are identical in both sets of
docking calculations are promiscuous compounds that would
bind to many protein structures or if many of the clusters from
the MD trajectories end up being selected by the same
compounds.

Comparison of Docking with Experimental Screening
Results. The chemical databases used in the ensemble docking
contained compounds from a variety of sources (i.e., Sweet-
Leads, NCI, and Enamine). In a separate experimental screening
campaign, 2900 chemicals have been tested by the National
Institutes of Health, National Center for Advancing Transla-
tional Sciences (NCATS) and listed on https://opendata.ncats.
nih.gov/covid19/databrowser (accessed 2020/11/02). Many of

Table 3. Number of Duplicate Compounds Found in the top 500 lists in specific pairs of proteinsa

aIn grey/diagonal: the number of compounds unique to the corresponding target/site in the respective top 500 lists.
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these chemicals are included in our docking databases.
Therefore, the computational predictions from docking were
compared to positives experimentally identified by by NCATS.
NCATS report results for spike protein (Spike-ACE2

protein−protein interaction (AlphaLISA) and MPro (3CL
Enzymatic Activity) assays, which are equivalent to a subset of
the docking calculations described here. We determined how
many of the experimentally tested NCATS compounds were in
our smaller docking database and identified how many of the
experimental positives were in the top ranked lists for each
protein (Table 4). We also report the corresponding percentage

of true positives, that is, how many of the top computational-
scoring compounds were identified by NCATS as active as a
percentage of how many of the top computational-scoring
compounds were experimentally tested by NCATS.
We found that computational prediction is systematically

enriched compared to a random selection of compounds. The
experimental hit rate for NCATS compounds active in the spike
protein is 6.1% for “strong actives” (NCATS definition) and
28.3% for strong andmoderately active compounds (the value of
28.3% being unusually high). In contrast, the computational
enrichment is between about twice to four times as high (Table 4
and Figure 5). Out of the 673 unique compounds in the union of
our top 500 lists for each spike protein simulation variant, 235
have been tested experimentally by NCATS. Of these 235
compounds, 33 (14%) are experimentally strong actives and 125
(53%) are strongly or moderately active. Narrowing the ranked
lists from docking to the top 10 resulted in 17 unique
compounds for which 4 have experimental activity (0.14% of
the total NCATS screen). Interestingly, all four of the
experimentally tested compounds (i.e., 100% of the tested
compounds in our top 10 lists) are strongly active.
For the MPro assay, NCATS identifies only 1 strongly active

out of 2675 compounds in the approved drugs collection that
were tested experimentally. Therefore, we considered the

overlap in our database with both the strong and moderately
active compounds. Although the enrichment rates obtained
through computational docking was not as high as the rates
obtained for the spike protein, the computationally obtained
MPro enrichments ranged from 7% to 14% and are still
systematically better than the rates obtained exeprientally
(5.7%).
Interestingly, for both targets, as the number of ranked

compounds considered is decreased, the computational enrich-
ment improves. As expected, the very top screening compounds
with the best docking score are often the most likely to have
experimental activity and the further we go down the ranked list
the lower the computational enrichment. Thus, docking
performs better as a tool for identifying a small number of
active compounds in a very small subset of a database, rather
than a tool to identify many active compounds in a large subset
of a database. This result is important when considering the
prioritization of compounds from the billion-plus compound
screen described below. A threshold of 10% or even 5% of a
billion compounds database would still likely be too large a
number to screen experimentally, but less than 1% would be
more amenable to experimental validation. The present results
suggest that the best enrichments are indeed obtained for a small
or very small subset of the chemical databases used in docking.

Billion-Compound Supercomputing Screens. We
found that for the ligands with fewer numbers of rotatable
bonds, such as found in the Enamine data set, a docking
calculation using 20 repeated runs could be performed in 0.5−
2.5 s when using the Summit GPU (Figure 6). The same set of
ligands docked with Vina on Summit’s CPUs showed a large
spread of timings, with some ligands requiring nearly five
minutes to complete (Figure 6). In practice, this means that with
GPU-enabled docking, it is feasible to flexibly dock a billion
compounds in about a day on modern supercomputers, whereas
with Vina, a similar calculation would require a multiyear effort
on a university cluster. We confirmed that for ligands with less
than 11 rotations, the Solis-Wets algorithm in AD-GPUprovides
equivalent results to the new ADADELTA algorithm.61 For the
trimmed data set, the top 5% of scores obtained with AD-GPU
using the Solis-Wets algorithm formed an intersection with the
top 5% of scores from Vina consisting of 18% of each top 5% set.
Analysis of the full billion ligand sets is currently ongoing.

Mutation Analysis.The mutation frequency of the proteins
simulated in this study is generally low. It should be noted,
however, that it is as yet early in the history of SAR-CoV-2, and
thus increased relative variability of residues along the proteome

Table 4. Number of Top-Scoring Computationally Predicted
Compoundsa, Corresponding NCATS-Tested Compounds
As a Subset from First Column, Percentage of Strong and
Strong+Moderately Active Compounds for the Spike Protein
(Top) and MPro (Bottom) Targets

no. of top
compounds
(docking)a

no. of corresponding
compounds tested

(NCATS)

percentage of
NCATS actives

(strong)

percentage of
NCATS actives

(strong+moderate)

Spike
673 235 14.0% 53.2%
420 158 17.1% 57.0%
292 108 20.4% 61.1%
149 55 25.5% 67.3%
81 27 33.3% 77.8%
17 4 100.0% 100.0%
MPro
968 359 - 7.0%
648 221 - 6.8%
459 156 - 7.7%
248 86 - 9.3%
136 45 - 8.9%
32 7 - 14.3%

aTop compounds from docking were obtained from the top 500, 300,
200, 100, and 50 ranked lists that correspond to each of the spike and
MPro targets. For both systems multiple docking runs were
considered and only unique compounds are reported.

Figure 5. Comparison of S-protein (Spike) true-positive rates for
strong-actives. Plot shows percentage of experimental NCATS positives
in top computational-predicted chemicals as solid line. Dashed-line
represents constant NCATS positive rate for comparison.
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may indicate the propensity of those residues for future
mutations. We did find higher variability, given by the entropy
values, in other SARS-CoV-2 proteins not included in this study;
in particular, the Spike mutation D614G noted in other reports
continues to be seen with high frequency since being described
in a recent preprint that performed an analysis on GISAID
through April 13.151 We counted 9107 D614G mutations (up
from 3577 found April 13) and calculated entropy of 0.94 for
this residue. The NSP12 RdRp protein also shows a large
mutation entropy at residue 323, with a mutation entropy of
0.95. This residue, P, has mutated to L 9078 times (and F 3
times). Note that not every protein was represented in all
sequences used for entropy calculations. Other regions of the
genome with higher entropy values (greater than 0.5) are
residues 203 and 204 of orf9 (entropy 0.70 and 0.69,
respectively), residue 85 of NSP2 (0.74), 37 of NSP6 (0.57),
57 of orf3a (0.81), and 84 of orf8 (0.56).
The highest entropy found among the structures in this study

was in the main protease, with an entropy of 0.13 for residue 15,
a glycine. We found 261 G15S mutations and one G15D
mutation in our data set. The MPro also has a number of other
residues with relatively high entropies, including residue 90, with
entropy 0.07 and 117 K90R mutations, and 266 with entropy
0.04 and 64 A266 V mutations. After this, the next highest
entropy was 0.06 for the N-terminal region of the N protein and
also for NSP15. These are displayed in Figure 7. An entropy of
0.04 was also found for domain X of NSP3 (glycine 76). A lower
mutation entropy was found in PLPro, compared to MPro, with
the highest value being 0.03. These mutations are important to

consider when choosing targets for drug discovery, in that a
protein that seems to be more rapidly mutating could potentially
lead to an ineffective therapeutic if mutations alter the shape of
the drug-binding site. In the case of MPro, the highest entropy
mutations were not found in the active site; however, it is
possible that they may still affect its conformation indirectly.
The reduced mutation entropy for PLPro may indicate that an
effort to target a protease could meet with fewer mutation-
related problems if targeting PLPro rather than MPro.

■ FUTURE DIRECTIONS AND PRELIMINARY RESULTS
FROM NEW METHODOLOGIES

As emphasized above, this article is a progress report on an
ongoing project. The development of the pipeline is continuing
with advances being made in several directions. Notably, we are
incorporating artificial intelligence and machine learning into
rescoring ligand ranking and clustering the MD trajectories.
Further, we are developing methods to rescore docking using
quantum chemical approaches. Although these developments
have not been incorporated into the pipeline at the time of
writing and were not applied to generate the results described
above, we report on progress with them here.

Clustering MD Trajectories Using Deep Learning and
AI.The deluge of data generated from simulations such as the T-
REMD runs reported here can make traditional approaches of
machine learning and clustering approaches (based on measures
of similarity in the RMSD-space, or other metrics) quite
challenging. Often, practical aspects of computing dictate the
use of subsample tracts of the MD data itself or use of prior

Figure 6. General benchmarking of Autodock-GPU and Autodock Vina performance against subset of Enamine database.

Figure 7. Example mutational entropy analysis. Residues are colored by entropy, with redder colors corresponding to greater entropy.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01010
J. Chem. Inf. Model. 2020, 60, 5832−5852

5843

https://pubs.acs.org/doi/10.1021/acs.jcim.0c01010?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01010?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01010?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01010?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01010?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01010?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01010?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01010?fig=fig7&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01010?ref=pdf


knowledge about these data sets (e.g., knowing that the ligand
binds only in a certain orientation) to filter such data sets. Deep
learning techniques can be particularly valuable in “sifting”
through large data sets and can be powerful for clustering T-
REMD simulations. We are investigating the use of a variational
autoencoder with convolutional filters (CVAE), previously
developed to cluster protein folding trajectories,152,153 to cluster
the T-REMD simulations of NSP15. As shown in Figure 8 we
find that the latent dimensions learned from the simulations
indeed cluster the simulation data into a small number of
conformational states. These states correspond to transitions
observed in the simulations, as seen from various measured
observables from the data such as the binding site RMSD, SASA,
and the radius of gyration.
The outcomes from the clustering provide insights into

aspects of how the T-REMD simulations have sampled the
conformational landscape - for example, in the case of this
protein, as observed in Panel C, there is only one conformational
state which has sampled a large SASA, indicating a potentially
open state (which has only a minor change in the overall RMSD,
Panel B). This information can be particularly helpful for
selecting conformations and identifying metastable states for
docking simulations.154

Protein−ligand Rescoring Using Machine-Learning.
The computational identification of drug compounds, and small
molecules in general, that bind to a protein consists of three
distinct tasks: (1) identifying a putative conformation of the
protein−ligand complex (the docking problem); (2) given a

docked conformation, determining whether or not the ligand is a
true binder (the screening problem); and (3) is determined to
be a true binder, ascertaining a relative, or better yet, absolute
binding affinity (the affinity, or scoring, problem). In principle,
one could perform the screening and affinity prediction
problems using molecular dynamics techniques such as free
energy perturbation, thermodynamic integration, or more
approximate methods such as MM/PB(GB)SA (molecular
mechanics/Poisson-Boltzmann[generalized Born]-surface
area). However, this is computationally intractable for large
numbers of compounds, even with supercomputers, and the
accuracy can often be poor. Furthermore, these rigorous first-
principles-based methods assume a putative binding site, and
cannot be applied to cases where the binding site is unknown.
While the score or energy given by computational docking
programs such as AutoDock Vina is reasonably well-suited for
docking pose prediction, improvements are possible on the
screening and affinity problems, and for this, we use here
machine learning.
There is an ongoing need for the development of computa-

tionally tractable models that can be easily validated on
benchmark docking data sets. To this end, accurate, physics-
based, machine-learned models for the docking and affinity have
been trained using the PDBbind database, a data set consisting
of experimentally determined protein−ligand complex struc-
tures with accurate experimental binding affinities.155−158 On an
independent data set, the CASF-2013 benchmark,158,159 affinity
prediction (random forest-based) models achieve, at best, a

Figure 8. Deep learning clusters T-REMD simulations of the NSP15 hexameric complex into conformational states that are potentially relevant for
docking studies. (A) A 3D-representation of the CVAE learned from the T-REMD simulations shows the presence of multiple conformational states.
Each conformation from the simulation is painted using the RMSD to the starting structure and shows the presence of distinct directions in the
conformational landscape where low- and high-RMSD structures are distributed. To understand this representation better, we use an at-stochastic
neighbor embedding (t-SNE) algorithm to embed the data into a low-dimensional space, where we can clearly visualize how the conformational
landscape is organized. In this two-dimensional space, we visualize various observables from the simulations, including (B) RMSD to the native
structure, (C) SASA, and (D) radius of gyration. In each of these cases, we can observe the presence of at least three dominant substates with distinct
structural characteristics, which can be further used for docking simulations.
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Pearson correlation (R2) of 0.86, and docking pose prediction
classifiers achieve an area under the curve of the receiver
operator characteristic (AUC of ROC) of 0.91 using support
vector machines (Demerdash et al., in review). While the
random forest model trained on unnormalized features achieved
the best R2 at 0.86, a range of additional models (trained with
random forest, gradient boosted trees, or support-vector
machines using normalized or unnormalized features) achieved
R2 of 0.81−0.85. Regarding the docking pose prediction, the
model used here achieves greater enrichment for native-like
structures (78%) than AutoDock Vina (63%) (Demerdash et al.,
in preparation).
Amodel dedicated to virtual screening as a first step in triaging

candidate molecules was developed. Once again, as with affinity
and pose prediction, this model requires docked structures as
input. This model is trained to discriminate between active and
inactive compounds, and affinity ranking is performed as a
second step only on the true active compounds. To this end, a
support-vector machine-based model using the Data set of
Useful Decoys-Enhanced, a database of 102 proteins with
experimentally verified active and inactive compounds, has been
trained.160,161 Preliminary performance on an independent
validation set is encouraging, achieving AUC of ROC of 0.80
and recall of 0.76; that is, 76% of experimentally validated true
positives were predicted positively by the model. This model is
currently being subjected to further optimized, primarily
through the calculation of additional physicochemical descrip-
tors (features) and the optimization of hyperparameters.
Due to the urgent nature of the Covid-19 drug discovery

campaign, computational expediency precluded calculating
features on all docked structures for a given compound and, in
turn, precluded running the docking pose classifier on the output
of AutoDock Vina. Therefore, we relied on AutoDock Vina’s
ranking and not the machine-learned docking pose classifier,
thereby reducing the number of feature calculations that must be
performed and increasing the throughput. (Parallelization
efforts and code optimization are underway, so that feature
calculation on all docked poses and subsequent application of
the docking pose classifier becomes less onerous.) The virtual
screening model was applied to these top-scoring structures
from AutoDock Vina, generating a “binder” vs “non-binder”
classification. Subsequently, affinity prediction models were
applied to just those complex structures classified as “binder.”
The affinity prediction was performed using the range of high-
performing models on docked structures corresponding to each
MD cluster representative used in ensemble docking (see:
Methods). This results in affinity predictions on typically 10
cluster representatives, each with affinity predictions from 5
machine-learned models (1 SVM, 2 boosted tree, and two
random forest approaches), resulting in 50 “cases”. For each
case, the top-500 ligands in terms of predicted affinity, were
obtained. Molecules that appeared in the top 500 in at least 25 of
the 50 cases were deemed hits and are presently undergoing
experimental testing.
QM Analysis of S-Protein Docking Results. In a preliminary

evaluation of the accuracy of FMO−DFTB/PCM in describing
the interactions between ligands and the S-protein, we compare
FMO−DFTB/PCM pair interaction energy (PIE) to that of the
higher-level, but more expensive FMO-MP2/PCM method.
The PIEs were calculated for ligands binding to the S-protein in
the binding pocket. Figure 9 shows that FMO−DFTB/PCM
interaction energies agree very well with high-level ab initio
FMO-MP2/PCM data with the R correlation coefficient; in this

case, it is 0.984. The high correlation between FMO−DFTB/
PCM PIE and FMO-MP2/PCM PIE indicates that FMO−
DFTB/PCM may be a fast and reliable QM-based method for
interaction energy calculations.
An updated preliminary homology model and T-REMD

simulation similar to that reported by Smith & Smith of the S-
protein RBD and redocking to new clusters from followed by a
re-evaluation of the top scoring 150 complexes with FMO−
DFTB/PCM was performed as follows: 15 protein conforma-
tions and their ten strongest binding ligands predicted by
AutoDock Vina were selected, and geometry optimizations were
performed at the FMO−DFTB3-D3(BJ)/3ob/PCM level of
theory. The binding energies of the top-3 best binders ranked by
FMO−DFTB/PCM are listed in Table 5. According to our

preliminary results, although FMO−DFTB/PCM agrees well
with Vina in categorizing the strong binders, with all Vina, top-
10 ligands have considerably stronger FMO−DFTB/PCM
binding energies (ΔEbind < −12 kcal/mol) and the QM-based
ranking is significantly different from the Vina ranking.
It is important to note that the current FMO−DFTB/PCM

energy, which is based on solvent-corrected binding interaction
energies is not the binding free energy. Various additional
contributions to the binding free energy can be separately
evaluated, and work is underway in this regard. For example, an
entropic contribution can be estimated from vibrational
frequencies once the requisite Hessian matrix is available.

■ CONCLUSIONS
The present manuscript reports on the establishment of a
supercomputer-based virtual high-throughput screening ensem-
ble-docking pipeline that takes into account the dynamic
properties of protein targets, as well as preliminary results on

Figure 9. Pair interaction energy (PIE) decomposition analysis for
FMO−DFTB/PCM plotted against FMO-MP2/3-21G/PCM data.

Table 5. Binding Energy of the top-3 Best Ranked by FMO−
DFTB/PCM and Their Binding Free Energy Predicted by
Autodock Vina

ligand
SWEETLEAD

ID
protein

cluster ID
FMO−DFTB/PCM
ΔEbind(kcal/mol)

Vina ΔGbind

(kcal/mol)

4752 7 −67.75 −5.40
7055 11 −66.78 −7.60
4698 12 −66.41 −7.60
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simulations and docking screens to a number of protein targets
from SARS-CoV-2.
The speed at which structural data have been derived

experimentally for the SARS-CoV-2 proteome means that
several of the simulations reported above were “out of date”
almost immediately. By this, we mean that the simulations were
performed using models derived from experiments that had
been superseded by higher-resolution or more complete data.
Examples of these are the S-protein, MPro, N Protein, and
NSP9. Clearly, as information on structures increases in quality,
simulations will be further repeated. Furthermore, the complex-
ity of the structural models derived is expected to increase. For
example, models of the S protein interacting with the viral
envelope or extending up to the complete virion can be
envisaged and, in principle at least, incorporated into drug
screening protocols.
The present results provide comprehensive simulation

models for eight of the viral proteins in 24 molecular systems.
T-REMD is well suited for massively parallel supercomputing
because many replicas are run simultaneously, and they need to
communicate with each other. In the present tests, 350 ns/day/
replica was obtained for the smallest (NSP3 phophatase/
ADRP) system, and this, therefore, scales up to about 1.5 ms/
day of aggregate MD time, given the hypothetical situation that
one had about 100 different proteins to run of roughly the same
size. For bigger systems, with 105 atoms, the throughput is lower,
about 1.0 ms/day. Nevertheless, it is clear that extensive
simulation data can be obtained on many proteins with a short
time-to-solution on this machine. As one possible future
direction, one might envisage running T-REMD on the 44
drug targets that have been suggested as a minimal screen for the
toxicity effects in human drug trials.162

The ensemble docking performed so far mostly involves
repurposing databases and therefore is limited to about 10k
compounds. Many of these compounds are predicted to be quite
promiscuous in binding to the targets. Two of the compounds
identified in the top 1% of our preliminary S-protein screen have
been reported to be in two registered clinical trials (quercetin
and hypericin). Further, several compounds from the screens
reported above show activity in reducing live viral infectivity:
these results will be reported elsewhere.
The docking results using the smaller database were not run

on Summit, because of the fact that for Summit code running on
GPUs is preferred. However, as COVID-19 therapeutic research
moves beyond repurposing to the discovery of novel
compounds, there is a need to quickly screen many more
compounds. Therefore, we have installed Autodock-GPU and
demonstrated that it is capable of screening 1 billion compounds
on Summit in 12 h when scaled to the whole machine. Although
several other groups have reported billion-compound screens,
these have been using AI approaches or rigid docking without
pose optimization.163,164 The present billion-compound screen
calculations, therefore, represent a potential supercomputer-
driven paradigm shift in computational drug discovery and can
be envisaged to be performed on dozens of proteins in a single
day when the exascale era of supercomputing arrives, as planned
for 2021.
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in the development of workflow management solutions for
deploying giga-docking calculations on Summit. D.B. assisted in
development of preliminary AI-based clustering analysis tools.
K.G.B. performed ensemble docking calculations and assisted in
docking analysis. S.Y.C. assisted in the development and
deployment of NLP tools for rapid literature review. L.C.
directed production of room temperature crystal structures for
MPro and assisted in MPro protonation decisions. C.J.C.
performed ensemble docking calculations and assisted in target
assessment. O.D. assisted in preliminary rescoring of docked
ligands. I.D. assisted in MPro protonation state selection. J.D.E.
performed ensemble docking calculations. S.E. performed
ensemble docking calculations. S.F. assisted in development of
AD-GPU for Summit for Summit. J.G. assisted in the
development of giga-docking workflow and giga-docking
analysis techniques. J.C.G. assisted in MPro protonation state
selection and spike target discussion. J.G. assisted in drafting the
manuscript and suggested architecture-specific acceleration
plans. O.H. led and facilitated the development of AD-GPU
for Summit. S.I. co-lead QM Analysis of S-Protein Docking
Results. D.W.K. produced the room temperature protein
structure of the Main Protease from SARS-CoV-2 (6WQF).
A.K. produced the room temperature protein structure of the
Main Protease from SARS-CoV-2 (6WQF). J.L. assisted in
development of AD-GPU for Summit for Summit. T.J.L. led
evolutionary entropy analysis. S.L. assisted in development of
AD-GPU for Summit. S.H.L. performed ensemble docking and
hot-spot analysis. J.C.M. assisted in hot-spot analysis and
provided feedback on protein-protein interface targeting. G.P.
assisted in development and deployment of NLP tools for rapid
literature review. J.M.P. assisted in target selection and MPro
protonation state selection. A.P. assisted in MPro protonation
state selection. L.P. performed ensemble docking calculations
and assisted in clustering. D.P. assisted in development of AD-
GPU for Summit. L.P. assisted in development and deployment
of NLP tools for rapid literature review. A.R. led preliminary AI-
based clustering efforts. D.M.R assisted in molecular dynamics
analysis and development of AD-GPU for Summit workflow.
D.S.-M. assisted in development of AD-GPU for Summit. A.S.
assisted in AD-GPU for Summit. A.S. led literature review,
assisted in AD-GPU for Summit testing and development, and
assisted in mutational entropy calculations. Y.S. assisted in
ligand library management and entropy calculations. J.C.S.*
conceived project idea and coordinated collaborative efforts.
M.D.S. initiated preliminary study, led T-REMD simulation
efforts, assisted in clustering, co-designed molecular dynamics
analysis, and prepared systems for simulation. C.S. assisted in
development and deployment of NLP tools. A.T. assisted in
development of AI-based clustering tools. M.T. assisted in
testing and development of AD-GPU for Summit. A.F.T.
assisted in development of AD-GPU for Summit. J.V.V. assisted
in the development of AD-GPU for Summit, performed three T-
REMD simulations, generated figures assisted in analysis of MD
trajectories, and benchmarked AD-GPU performance. V.Q.V.
performed QM refinement and rescoring of ligand-spike
docking results. J.Y. assisted in development and deployment
of preliminary AI-based clustering. S.Y. led NLP tool develop-
ment and deployment. M.Z. performed ensemble docking
calculations and assisted in clustering analysis. L.Z.-P. assisted in
MPro model assessment and protonation state selection.
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Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1−2, 19−25.
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