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Resonance energy flow dynamics
of coherently delocalized excitons
in biological and macromolecular
systems: Recent theoretical
advances and open issues
Seogjoo Jang1∗ and Yuan-Chung Cheng2

Recent experimental and theoretical studies suggest that biological photosyn-
thetic complexes utilize the quantum coherence in a positive manner for efficient
and robust flow of electronic excitation energy. Clear and quantitative under-
standing of such suggestion is important for identifying the design principles be-
hind efficient flow of excitons coherently delocalized over multiple chromophores
in condensed environments. Adaptation of such principles for synthetic macro-
molecular systems has also significant implication for the development of novel
photovoltaic systems. Advanced theories of resonance energy transfer are pre-
sented, which can address these issues. Applications to photosynthetic light har-
vesting complex systems and organic materials demonstrate the capabilities of
new theoretical approaches and future challenges. C© 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

I n molecular crystals,1–6 biological photosyn-
thetic complexes,7–10 and aggregates of organic

chromophores,11–18 excitons provide practical means
to understand the energetics and the dynamics of col-
lective electronic processes that go beyond one molec-
ular unit. A common form of excitons found in these
systems is so-called Frenkel exciton,1,19 which can
be defined in the direct product space of individual
molecular excitations. Here, single exciton refers to
the coherent superposition of states where only one
molecule is excited while others are in the ground elec-
tronic state, double exciton refers to the one formed
by the states with only two molecules excited, and
so on. Thus, the excitation of each molecule corre-
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sponds to the limit of single exciton fully localized at
one molecule.

Because of exchange and Coulomb interac-
tions, excitons are easily delocalized among different
molecules with varying degrees of time and length
scales. The manner of such delocalization reflects
the relative arrangement, dynamics, and energetics of
molecules at nanometer length scale. Thus, the fre-
quency and time domain properties of excitons may
serve as sensitive probes of such structural and dy-
namical information, and vice versa. With the ad-
vances in selectivity and time resolution of spectro-
scopic techniques, steady advances have been made
in real-time description of exciton dynamics at differ-
ent timescales and environments.

At the simplest level, the dynamics of exciton
(excitation) between two weakly coupled molecules
can be described as a Fermi golden rule (FGR)
rate process. Förster’s theory,20 the earliest and the
most successful theory, is an application of the
FGR between two localized excitons with transition
dipole coupling. This was soon followed by Dexter’s
extension21 for multipolar and exchange interactions.
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In practice, Förster’s or Dexter’s theory can be ap-
plied to more than two molecular excitations as long
as the electronic couplings are so small that the ex-
citons are virtually localized at each molecule. This
is the case for the so-called host–guest systems where
low concentration of chromophores (guest molecules)
is embedded in the media of optically inactive host
molecules. The dynamics of exciton can be described
in terms of hopping processes, with each rate given
by the Förster’s or Dexter’s theory. Owing to the dis-
order in the distribution of the guest molecules, the
global dynamics of exciton even in this limit poses
challenging problems. Great amount of theoretical
and experimental efforts were made to address these
issues.22–29

In the other limit of strong electronic coupling
between two molecules, excitons are fully delocal-
ized. Traditionally, these systems were studied by fre-
quency domain spectroscopy where clear signature
of exciton formation can be seen. For larger aggre-
gates such as molecular crystals or self-assemblies,
the band theory can describe major features of spec-
tral lineshapes and the exciton dynamics. In practice,
because of the disorder and the electron–phonon cou-
pling, excitons have finite coherence lengths and the
band theory breaks down at some level. Grover and
Silbey30 developed a unified formal framework appli-
cable to such general situation. In this theory, the ex-
citon diffusion constant can be expressed as the sum
of hopping and band contributions. An alternative
approach of generalized master equation formalism
was also developed by Kenkre and Knox.31

With the discovery of intricate structures of pho-
tosynthetic light harvesting complexes10,32 and the
progress in the capability to synthesize new macro-
molecules or nanometer-scale assemblies, it has be-
come an important issue to understand the dynamics
of excitons among tens or hundreds of chromophores
arranged in a nontrivial manner.13,33–39 If the cou-
plings between chromophores are weak, the dynam-
ics of exciton can be described by rate processes as in
the case of porphyrin arrays.40 However, in general,
excitons are delocalized and their behavior depends
sensitively on electronic couplings, electron–phonon
interactions, and the disorder. The exciton dynamics
in these systems are complex and may not be fully
specified by simple rate or transport coefficients.

Despite the complexity, theoretical studies sug-
gest that photosynthetic light harvesting complexes
utilize the delicate nature of excitons for efficient and
robust collection/transfer of excitons.41–44 Whether
such utilization is possible in synthetic systems is
a question that has great implications for solar en-
ergy conversion,45,46 optical sensor development, and

imaging. For clear understanding of the design prin-
ciples, detailed spatio-temporal information on exci-
tons related to certain optoelectronic functionality is
needed. Single molecule spectroscopy47,48 and nonlin-
ear spectroscopy can provide much more information
than linear ensemble spectroscopy in this regard.49–52

In particular, recent two-dimensional electronic spec-
troscopy (2DES) experiments observed coherent beat-
ing of third-order response functions in photosyn-
thetic complexes53–56 and conjugated polymers,16

which have been attributed as evidences for exci-
tonic quantum coherence. These discoveries moti-
vated new or renewed theoretical and computational
studies,57–61 which by themselves have generated in-
triguing conceptual and theoretical issues.

The objective of this review is to expose some
theoretical issues to be resolved for quantitative un-
derstanding of the resonance energy transfer (RET)
dynamics involving coherently delocalized excitons
as in macromolecules or nanoscale assemblies. A
few theoretical advances have already been made to
this end, but much more are needed and expected.
While comprehensive and objective review of all re-
cent works is highly desirable, it goes beyond the
scope of present review. Rather, we here focus mainly
on our theories and computational studies, and refer
to other works when relevant.

REVIEW OF FÖRSTER’S RESONANCE
ENERGY TRANSFER
The theory of Förster’s resonance energy trans-
fer (FRET)20 has had profound impact in all
the fields of chemistry, physics, and biology in-
volving luminescence properties.62–65 While recent
progress in experimental66,67 and computational
techniques15,68–70 opened up ways to probe the en-
ergy transfer process directly, Förster’s theory still
enjoys a critical role in modeling and understand-
ing experimental results.13,38,39,71–81 Another impor-
tant application of Förster’s theory is for the deter-
mination of nanometer-scale distances through de-
tection of fluorescence signals. This is now a well-
established biophysical technique and is also referred
to as FRET66,67,82–87 (fluorescence resonance energy
transfera), which is not the major subject of the
present work.

Although Förster’s theory was reviewed by
himself2 and other experts,62,64 a derivation of
Förster’s spectral overlap expression employing mod-
ern terminology is not easily available. Such a deriva-
tion is contained in a recent work,88 which is briefly
reviewed below.
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Consider the following transfer of exciton from
D∗ to A:

D∗ + A → D + A∗, (1)

where D∗ (D) is the excited (ground) state donor and
A (A∗) is the ground (excited) state acceptor. The
ground electronic state consisting of D and A is de-
noted as |g〉, the donor exciton state consisting of D∗

and A as |D〉, and the acceptor exciton state consist-
ing of D and A∗ as |A〉. All other degrees of freedom
are defined as the bath. The bath Hamiltonian corre-
sponding to |g〉 is Hb.

Let us assume that an impulsive and selective
creation of |D〉 is possible while the bath remains in
the canonical ensemble for |g〉. The corresponding ini-
tial condition of the total density operator ρ(t) is

ρ(0) = |D〉〈D|e−βHb/Zb, (2)

where β = 1/kBT and Zb = Trb{e−βHb}. Neglecting
the spontaneous decay and assuming that the exciton
stays in the excited space spanned by |D〉 and |A〉 long
enough, the effective total Hamiltonian governing the
exciton and bath can be expressed as

H = (ED + BD)|D〉〈D| + (EA + BA)|A〉〈A|
+J (|D〉〈A| + |A〉〈D|) + Hb, (3)

where ED is the energy of |D〉, EA is the energy of |A〉,
and J is the electronic coupling. BD is a bath operator
representing the displacement of bath modes upon the
creation of |D〉 and BA is that for |A〉. Note that off-
diagonal coupling to the bath is ignored in the model.

At time t > 0, the probability to find the exciton
state |A〉 is

PA(t) = Trb
{
〈A|e−i Ht/h̄ρ(0) ei Ht/h̄|A〉

}
. (4)

For short enough time compared to h̄/J , a perturba-
tion expansion of the above expression with respect
to HDA = J(|D〉〈A| + |A〉〈D|) can be made. Expanding
PA(t) up to the second order of t and taking its time
derivative, we obtain the following time dependent
rate of energy transfer:

k(t) = 2J 2

h̄2 Re
[∫ t

0
d t′ei(ED−EA)t′/h̄

× 1
Zb

Trb

{
ei(Hb+BD)t/h̄ e−i(Hb+BA)t′/h̄

× e−i(Hb+BD)(t−t′)/h̄ e−βHb

}]
. (5)

Assume that the bath Hamiltonian is an independent
sum of donor and acceptor baths as follows:

Hb = HbD + HbA. (6)

Then e−βHb/Zb = ρ
g
bD

ρ
g
bA

, where ρ
g
bD

= e−βHbD/ZbD

and ρ
g
bA

= e−βHbA/ZbA with ZbD = TrbD{e−βHbD } and
ZbA = TrbA{e−βHbA}. In addition, let us assume that
BD commutes with HbA and that BA commutes with
HbD. Then, the trace over the bath in Eq. (5) can be
decoupled into those for the donor and the acceptor
baths as follows:

k(t) = 2J 2

h̄2 Re
[∫ t

0
d t′ ei(ED−EA)t′/h̄

× 1
ZbA

TrbA

{
ei HbAt/h̄ e−i(HbA+BA)t′/h̄

× e−i HbA(t−t′)/h̄ e−βHbA

}

× 1
ZbD

TrbD

{
ei(HbD+BD)t/h̄ e−i HbDt′/h̄

× e−i(HbD+BD)(t−t′)/h̄ e−βHbD

}]
. (7)

If the bath becomes equilibrated with the excited
donor before the transfer of excitation occurs, the
following approximation can be made:

e−i(HbD+BD)(t−t′)/h̄ρ
g
bD

ei(HbD+BD)(t−t′)/h̄

≈ e−β(HbD+BD)

Z′
bD

≡ ρe
bD

, (8)

where Z′
bD

= TrbD{e−β(HbD+BD)}. Inserting the above
approximation into Eq. (7) and going to the limit of
t = ∞, we obtain the following FGR expression:

kF = 2J 2

h̄2 Re
[∫ ∞

0
d t′ ei(εD−εA)t′/h̄

× 1
ZbA

TrbA

{
ei HbAt′/h̄ e−i(HbA+BA)t′/h̄ e−βHbA

}

× 1
Z′

bD
TrbD

{
ei(HbD+BD)t′/h̄ e−i HbDt′/h̄ e−β(HbD+BD)

}]

(9)

This can be expressed in the frequency domain in
terms of the following lineshape functions of the
donor emission and acceptor absorption:

LD(ω) =
∫ ∞

−∞
d t e−iωt+iεDt/h̄ (10)

× 1
Z′

bD
TrbD

{
ei(HbD+BD)t/h̄ e−i HbDt/h̄ e−β(HbD+BD)},

IA(ω) =
∫ ∞

−∞
d t eiωt−iεAt/h̄

× 1
ZbA

TrbA
{
ei HbAt/h̄ e−i(HbA+BA)t/h̄ e−βHbA

}
.

(11)
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Inserting inverse Fourier transforms of the above
equations into Eq. (9), we obtain

kF = J 2

2πh̄2

∫ ∞

−∞
d ωLD(ω)IA(ω). (12)

Equation (12) is equivalent to Förster’s spectral
overlap expression as will be shown below. First, the
integration over ω in Eq. (12) can be converted into
that over ν̃ = ω/(2πc) as follows:

kF = c
h̄2 J 2

∫ ∞

−∞
d ν̃LD(2πcν̃)IA(2πcν̃). (13)

Employing the standard theory of emission and ab-
sorption, LD(ω) can be expressed in terms of the nor-
malized emission lineshape fD(ν̃), and IA(ω) in terms
of the molar extinction coefficient εA(ν̃). As detailed
in the Appendix of Ref 88, one can establish the fol-
lowing identities:

fD(ν̃) = ν̃3LD(2πcν̃)∫
d ν̃ν̃3LD(2πcν̃)

= τD
25π3nrµ

2
Dc

3h̄
ν̃3LD(2πcν̃), (14)

IA(2πcν̃) = 3000(ln 10)nrh̄
(2π )2NAµ2

Aν̃
εA(ν̃), (15)

where τD is the lifetime of the spontaneous decay of
|D〉 state, nr is the refractive index of the medium, µD
is the transition dipole for |D〉 → |g〉 transition, µA is
the transition dipole for |g〉 → |A〉 transition, NA is the
Avogadro’s number. Inserting the above expressions
into Eq. (13), we find the following general expression
for the rate of RET:

kF = 9000(ln 10)
128π5 NAτD

J 2

µ2
Dµ2

A

∫ ∞

−∞
d ν̃

fD(ν̃)εA(ν̃)
ν̃4 . (16)

If the distance between D and A is much larger
than the length scales characteristic of their transition
dipoles, the following dipole approximation can be
made:

J = µD · µA − 3(µD · R̂)(µA · R̂)
n2

r R3 , (17)

where R is the distance between the donor and the ac-
ceptor and R̂ is the corresponding unit vector. Then

J 2

µ2
Dµ2

A
= κ2

n4
r R6 , (18)

where

κ = µD · µA − 3(µD · R̂)(µA · R̂)
µDµA

. (19)

Inserting this into Eq. (16), we find the following cel-
ebrated expression derived by Förster20:

kF = 9000(ln10)κ2

128π5 NAτDn4
r R6

(∫
d ν̃

fD(ν̃)εA(ν̃)
ν̃4

)
. (20)

RECENT THEORETICAL
DEVELOPMENTS
The success of Förster’s rate expression, Eq. (20), lies
in its apparent generality needing only experimen-
tally measurable parameters and spectral functions.
However, this also makes it easy to overlook the as-
sumptions implicit in the theory. As was stated in
the preceding section, it is based on four major as-
sumptions, let alone the perturbation theory. These
are as follows: (i) It assumes that the donor and ac-
ceptor are coupled to independent bath modes. (ii)
The excited donor molecule is assumed to have been
equilibrated with its environments before the energy
transfer occurs. (iii) It is based on the so-called Con-
don approximation that the electronic coupling con-
stant J is assumed to be independent of any nuclear
motion. (iv) The donor and the acceptor consist of
single chromophores. Among these, the issue (i) has
been discussed in detail in previous works. Correc-
tion of this assumption89–91 is not difficult given that
detailed information on the nature of exciton–bath
coupling is known (which can be non-trivial). The-
ories addressing (ii)–(iv) and the quantum coherence
will be discussed in detail below.

Nonequilibrium FRET
If the energy transfer dynamics is fast, it can occur
before the equilibration in the excited state becomes
complete. In this case, the assumption of Eq. (8) can-
not be justified and more general rate expression, Eq.
(7), needs to be used. Inserting the inverse Fourier
transform of IA(ω) defined by Eq. (11) directly into
Eq. (7), we obtain the following expression90:

k(t) = J 2

πh̄2

∫ ∞

−∞
d ω IA(ω)Re

[∫ t

0
dt′e−iωt′+i EDt′/h̄

× 1
ZbD

TrbD

{
ei(HbD+BD)t/h̄e−i HbDt′/h̄

× e−i(HbD+BD)(t−t′)/h̄e−βHbD

}]
. (21)

In the above expression, the time-integration involv-
ing the dynamics of the donor molecule can be ex-
pressed as the time-dependent emission profile of D∗

in the absence of the acceptor.
Assume that the system only consists of the

donor and its own bath. The Hamiltonian for D∗
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and the bath is HD = (ED + BD)|D〉〈D| + HbD. If the
donor is excited at time zero by a delta pulse, the
initial density operator at t = 0 is ρ(0) = |D〉〈D|ρg

bD
.

Then, employing the same time-dependent perturba-
tion theory with respect to the matter–radiation inter-
action Hamiltonian, the following expression for the
time-dependent emission profile can be obtained90:

LD(t,ω) ≡ 2Re
[∫ t

0
d t′e−iωt′+i EDt′/h̄

× 1
ZbD

TrbD

{
ei(HbD+BD)t/h̄e−i HbDt′/h̄

× e−i(HbD+BD)(t−t′)/h̄e−βHbD

}]
. (22)

Inserting Eq. (22) into Eq. (21), we find the following
expression for the nonequilibrium rate90:

k(t) = J 2

2πh̄2

∫ ∞

−∞
d ωIA(ω)LD(t,ω). (23)

In the limit where t → ∞, this expression approaches
Eq. (12) given that LD(∞, ω) approaches the emission
lineshape in the stationary limit.

Inelastic FRET
It is reasonable to use the Condon approximation
that the electronic coupling J in Eq. (3) is inde-
pendent of nuclear coordinates if it indeed remains
constant or fluctuates in a way independent of the
electronic excitation dynamics without any energy
exchange. In the latter case, averaging over the time-
dependent fluctuations leads to a constant J. How-
ever, for the cases where the donor–acceptor pair is
connected by a bridge molecule or locked in soft en-
vironments with significant quantum modes, the ex-
change of energy between the electronic excitation
and the nuclear quantum degrees of freedom should
be taken into consideration. Extension of FRET for
this situation has been made.88

Assume that the bath Hamiltonian Hb can be
decomposed into three components as follows:

Hb = HbD + HbA + HbJ , (24)

where HbJ is the bath Hamiltonian governing the dy-
namics of J. If HbJ is independent of all the degrees
of freedom constituting the donor and the accep-
tor baths, and thus commutes with HbD, HbA, BD,
and BA, a time-dependent perturbation theory can be
used following similar steps as those leading to Eq.
(12). As a result, one can obtain the following rate
expression88:

kI F = 1
2πh̄2

∫ ∞

−∞
d ω

∫ ∞

−∞
d ω′LD(ω)IA(ω′)KJ (ω − ω′), (25)

where

KJ (ω) = 1
π

Re
∫ ∞

0
d t eiωt

TrbJ

{
ei HbJ t/h̄ J e−i HbJ t/h̄ JρbJ

}
. (26)

The form of Eq. (25) is generic for inelastic processes
where the exchange of energy between transferring
excitation and the modulating degrees of freedom is
possible. Introducing

K̃J (ν̃) = 2πcKJ (2πcν̃), (27)

and inserting Eqs. (14) and (15) into Eq. (25), we
find an expression analogous to Förster’s expression
as follows:

kI F = 9000(ln 10)
128π5 NAτDµ2

Dµ2
A

×
∫

dν̃

∫
dν̃ ′ fD(ν̃)εA(ν̃ ′)

ν̃3ν̃ ′ K̃J (ν̃ − ν̃ ′). (28)

Equation (20) corresponds to the limit of the above
expression, where K̃J (ν̃) approaches the delta func-
tion and modulation of J is caused by orienta-
tional fluctuation, i.e., K̃J (ν̃ − ν̃ ′) ≈ µ2

Dµ2
Aκ2δ(ν̃ −

ν̃ ′)/(n4
r R6). Equation (28) can be extended further to

include the nonequilibrium effect and effects of com-
mon modes.88

Multichromophoric FRET
In natural light harvesting complexes or synthetic
multichromohpore systems, it is common to find
transfer of excitons delocalized over multiple chro-
mophores or sites. As long as the group of donor
molecules in these systems is well separated from that
of acceptor molecules, a rate description based on the
FGR formula can be justified.

Assume that the system consists of two distinc-
tive sets of chromophores, donors (Dj, j = 1, . . ., ND)
and acceptors (Ak, k = 1, . . ., NA). The state where all
the Djs and Aks are in their ground electronic states
is denoted as |g〉. The state where Dj is excited while
all other remain in the ground electronic state is de-
noted as |Dj〉. The state |Ak〉 is defined similarly. All
the rest degrees of freedom such as molecular vibra-
tions and solvation coordinates are termed as bath.
The bath Hamiltonian is assumed to be Hb = Hb,D
+ Hb,A, where the subscripts D and A, respectively,
denote the components coupled to the set of donors
and acceptors.

The excitation dynamics is assumed to be much
faster than the spontaneous decay of the excited
state, which is neglected. Thus, the single exciton
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Hamiltonians of D and A are

He,D =
ND∑

j=1

EDj |Dj 〉〈Dj | +
∑

j ,= j ′

*D
j j ′ |Dj 〉〈Dj ′ |, (29)

He,A =
NA∑

k=1

EAk|Ak〉〈Ak| +
∑

k,=k′

*A
kk′ |Ak〉〈Ak′ |, (30)

where *D
j j ′ and *A

kk′ are assumed to be real numbers.
The resonance interaction between |Dj〉 and |Ak〉 is
represented by

HDA =
ND∑

j=1

NA∑

k=1

J jk(|Dj 〉〈Ak| + |Ak〉〈Dj |), (31)

where Jjk is assumed to be independent of any bath
coordinates. The excitation-bath coupling is assumed
to be diagonal in the site excitation basis as follows:

Heb =
ND∑

j=1

BDj |Dj 〉〈Dj | +
NA∑

k=1

BAk|Ak〉〈Ak|

≡ Heb,D + Heb,A, (32)

where BDj and BAk are bath operators coupled to
|Dj〉 and |Ak〉, respectively. These operators and the
bath Hamiltonian can be arbitrary except that all the
bath modes coupled to |Dj〉s are independent of those
coupled to |A〉ks. Thus, the total Hamiltonian can be
expressed as

H = HD + HA + HDA, (33)

where

HD ≡ He,D + Hb,D + Heb,D, (34)

HA ≡ He,A + Hb,A + Heb,A. (35)

Assume the situation where a donor exciton is
populated by an impulsive pulse at t = 0, before which
all the chromophores have been in the ground elec-
tronic states and the bath in thermal equilibrium. As
in the single chromophoric case, the duration of pulse
is assumed to be short and can be approximated well
by a delta function. Then, the density operator of the
system plus the bath after the excitation by the pulse
can be approximated as

ρ(0) = |Dê〉〈Dê|ρg
bD

ρ
g
bA

, (36)

where |Dê〉 = ê ·
∑

j µDj
|Dj 〉, with ê be-

ing the polarization of the impulsive pulse
and µDj

the transition dipole moment vec-
tor of Dj, ρ

g
bD = e−βHb,D/TrbD{e−βHb,D}, and

ρ
g
bA = e−βHb,A/TrbA{e−βHb,A}.

Employing the same time-dependent perturba-
tion as deriving Eq. (21), we obtain the following rate
expression43:

k(t) =
∑

j ′ j ′′

∑

k′k′′

J j ′k′ J j ′′k′′

2πh̄2

∫ ∞

−∞
d ωIk′k′′

A (ω)Lj ′′ j ′

D (t,ω), (37)

where Ik′k′′

A (ω) and Lj ′′ j ′

D (t; ω) represent absorption of
acceptors and the stimulated emission of donors and
are defined as

Ik′k′′

A (ω) ≡
∫ ∞

−∞
d t eiωt

×TrbA

{
〈Ak′ |ei Hb,At′/h̄ e−i HAt′/h̄ρ

g
bA

|Ak′′ 〉
}

, (38)

Lj ′′ j ′

D (t; ω) ≡ 2Re
[∫ t

0
d t′ e−iωt′

× TrbD

{
〈Dj ′′ |e−i Hb,Dt′/h̄ e−i HD(t−t′)/h̄

× |Dê〉〈Dê|ρg
bD

ei HDt/h̄|Dj ′ 〉
}]

. (39)

In the stationary limit of t → ∞, k(t) approaches
the following multichromophoric-FRET (MC-FRET)
rate expression:

kMF =
∑

j ′ j ′′

∑

k′k′′

J j ′k′ J j ′′k′′

2πh̄2

∫ ∞

−∞
d ωIk′k′′

A (ω)Lj ′′ j ′

D (∞,ω). (40)

Under the assumption that the dynamics in the exci-
tonic manifold is ergodic, we find that

Lj ′′ j ′

D (∞,ω) = 2Re
∫ ∞

0
d t e−iωt

×TrbD
{
〈Dj ′′ |e−i Hb,Dt/h̄ρe

D,b ei HDt/h̄|Dj ′ 〉
}
, (41)

where ρe
D,b = e−βHD/Tr{e−βHD} is the canonical den-

sity operator of donors and the bath in the single
exciton manifold. Sumi’s starting expression in his
MC-FRET theory92 is equivalent to Eq. (40) with the
above expression of emission lineshape.

Coherent Resonance Energy Transfer
Quantum coherence is an issue that has been
drawing significant experimental13,16,39,53,93–95 and
theoretical96–104 attention lately. Two-dimensional
electronic spectroscopy on natural photosynthetic
systems53–55 and conjugated polymers16 reported time
domain measurement of long lasting quantum coher-
ence despite substantial disorder and relaxation pro-
cesses. In soft macromolecules such as natural photo-
synthetic and conjugated polymer systems, multitudes
of electronic and nuclear dynamical processes ren-
der it difficult to make clear separation of timescales.
For quantitative analysis and assessment of quantum
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coherence in RET processes occurring in such sys-
tems, theory needs to go beyond the assumption of
incoherent quantum transfer21,43,88,90105 and the ap-
proximation of weak system-bath coupling106–108 be-
cause the strengths of electronic and electron–phonon
coupling are comparable in this so-called intermedi-
ate coupling regime. New theoretical approaches ad-
dressing these issues have been developed by a num-
ber of groups.96,97,99–102 Among these, we present a
brief overview of polaronic quantum master equa-
tion (PQME) approach96,109–113 developed for gen-
eral multistate-boson Hamiltonian.110,113

The concept of small polaron was pioneered by
Holstein114 to treat charge transfer in organic molec-
ular crystals in the 1960s and later extended by Sil-
bey and coworkers115–121 to treat RET in the 1970s.
This provides a general framework that yields accu-
rate results in both strong and weak electron–phonon
coupling limits, although the coherent version of the
dynamical equations has never been developed in the
literature. Instead of treating the electronic and vi-
brational degrees of freedom separately, the polaronic
approach adopts a fundamentally different picture for
RET. Through the application of a polaron transfor-
mation, a combined electronic/vibrational basis called
polaron states is used to describe the RET dynamics,
thus considering the electronic excitation that moves
collectively with its surrounding bath deformation as
the zeroth-order state.

Consider a group of N chromophores embed-
ded in protein or solid medium not necessarily crys-
talline. Let us assume that the single exciton space of
chromophores defines the system. Then, the system
Hamiltonian can be expressed as

Hs =
N∑

l=1

El |l〉〈l| +
N∑

l ,=l ′
Jll ′ |l〉〈l ′|, (42)

where |l〉 represents the state where only the lth chro-
mophore is excited and El is its excitation energy.
Jll ′ is the electronic coupling between states |l〉 and
|l′〉. The rest degrees of freedom are defined as the
bath, which are approximated as linearly coupled har-
monic oscillators. Thus, Hb =

∑
nh̄ωn(b†

nbn + 1
2 ) and

Hsb =
∑N

l=1
∑

nh̄ωngn,l(bn + b†
n)|l〉〈l|. Then, the total

Hamiltonian governing the dynamics of system and
bath can be written as follows:

H = Hs + Hsb + Hb. (43)

The total density operator of system and bath, which
is denoted as ρ(t), is governed by the following quan-

tum Liouville equation:

d
d t

ρ(t) = −iLρ(t) = − i
h̄

[H, ρ(t)]. (44)

The exact solution of this is not possible in general
and approximation needs to be made.

Polaron transformation114–120 can be used to
construct a quantum master equation (QME) that
is applicable beyond weak system-bath coupling uti-
lizing the fact that the resulting system-bath couplings
after the transformation are of bounded exponential
form. Consider the following polaron transformation
of the total Hamiltonian:

H̃ = eGHe−G = H̃s + H̃sb + Hb, (45)

where G =
∑N

l=1
∑

n gn,l(b
†
n − bn)|l〉〈l|. Here, we can

define a new zeroth-order Hamiltonian

H̃0 = H̃s + 〈H̃sb〉b + Hb = H̃0,s + Hb, (46)

where 〈. . .〉b means average over the bath in equilib-
rium and H̃0,s = H̃s + 〈H̃sb〉b. Then, define the follow-
ing interaction picture and polaron transformed total
density operator.

ρ̃I (t) = ei H̃0t/h̄eGρ(t) e−G e−i H̃0t/h̄. (47)

The corresponding reduced system density operator
is defined as

σ̃I (t) ≡ Trb {ρ̃I (t)} . (48)

Then, employing the standard projection operator
technique, the following form of time evolution equa-
tion can be derived:

d
d t

σ̃I (t) = −R(t)σ̃I (t) + I(t), (49)

where R(t) accounts for the relaxation and dephasing
of the system and I(t) the contribution of nonequilib-
rium initial distribution. Explicit expressions for R(t)
and I(t) valid up to the second order of H̃sb − 〈H̃sb〉b
has been derived.109

Once the reduced system density operator in the
interaction picture, σ̃I (t), is determined, the popula-
tion at the lth site can be calculated by

pl(t) = Trs
{

Pl,I (t)σ̃I (t)
}
, (50)

where Pl,I (t) = ei H̃0,s t/h̄|l〉〈l|e−i H̃0,s t/h̄.
The PQME approach for coherent resonance

energy transfer (CRET) explained above is an elegant
way to describe non-Markovian dynamics, coherence
(off-diagonal density matrix element) dynamics, and
multiphonon effects. In addition, it can be extended
for more general forms of system–bath interactions.
Thus, it goes beyond perturbation theory while being
tractable, and will be able to play a critical role for our
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FIGURE 1 | The arrangement of chromophores in the LH2 of Rps. Acidophila (left figure) and the energy level diagram of a typical B850 exciton
band (right figure). In this diagram, solid red lines represent major bright states and dashed red lines represent weakly bright states.

understanding of how coherence between excitonic
states affect the excitation energy transfer and how
protein dynamics is coupled to the RET dynamics be-
tween chromophores in photosynthetic complexes.

APPLICATIONS

Photosynthetic Light Harvesting Complex 2
This section reviews recent applications43,44,122 of
the MC-FRET theory to the energy transfer within
the LH2 of Rhodopseudomonas (Rps.) acidophila.
Figure 1 shows the structure and the arrangement
of chromophores in LH2, which was determined by
Cogdell and coworkers.8,123 The structure reveals re-
markable symmetry in the arrangement of bacteri-
ochlorophylls (BChls), in which 27 BChls (type a) are
arranged into two highly symmetric rings: 18 of them
form the so-called B850 ring that is responsible for the
absorption band with a maximum at 850 nm, and the
other 9 form the B800 ring that absorbs maximally at
about 800 nm. The center-to-center distance between
adjacent B850 BChls is about 9.6 Å, which results
in moderately strong nearest-neighbor couplings of
about −300 cm−1. The center-to-center distance be-
tween BChls in the B800 ring is about 21 Å, leading to
relatively weak nearest-neighbor electronic couplings
of about −25 cm−1.

The total Hamiltonian of the system can be ex-
pressed as

H = Eg|g〉〈g| + HA + HD + HDA, (51)

where |g〉 is the ground electronic state where none
of the BChls in B850 and B800 is excited and Eg is
the corresponding energy. HA is the acceptor (B850)
Hamiltonian and represents the entire B850 unit, HD
is the donor (B800) Hamiltonian, and HDA represents
the electronic coupling between the donor and the ac-

ceptor. Let us define H0
A as the Hamiltonian repre-

senting only single exciton states of B850. Thus,

H0
A =

18∑

n=1

En|n〉〈n| +
∑

n,=m

*(n − m)|n〉〈m|, (52)

where |n〉 is the state where nth BChl of B850 is ex-
cited (Qy transition) whereas all other BChls are in
the ground state and En is the corresponding energy.
We here use the convention that odd n represents an
α-BChl and even n a β-BChl. *(n − m) is the elec-
tronic coupling between states |n〉 and |m〉, for which
a complete set of values124 is available.

Within the approximation of bosonic bath, the
total acceptor Hamiltonian can be expressed as

HA = H0
A +

18∑

n=1

∑

k∈BA

h̄ωkgk,n(b†
k + bk)|n〉〈n|

+
∑

k∈BA

h̄ωk(b†
kbk + 1

2
), (53)

where ωk is the frequency of the kth bath harmonic
oscillator in the set of the acceptor bath BA, gk,n rep-
resents the strength of its coupling to |n〉, and b†

k and
bk are corresponding raising and lowering operators.

The eigenstates and the lineshape expression for
the B850 unit have been studied in detail.124 Since
the symmetry element of the B850 unit contains two
BChls (one α and one β), the eigenstates of H0

A con-
sist of two bands,125 denoted upper and lower. Each
band has nine electronic states. In the absence of dis-
order, the states in each band can be labeled accord-
ing to their cyclic symmetry, ranging from 0 to 8.
In actual system, this symmetry is broken because
each BChl has different excitation energy and local
environment.125 A typical energy diagram including
the effect of disorder is shown in Figure 1. We denote
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the eigenstates of H0
A as |ψ l,p〉 and |ψu,p〉, where p =

0, . . ., 8 and l (u) represents the lower (upper) band.
Then, H0

A can be expressed as

H0
A =

8∑

p=0

{
El,p|ψl,p〉〈ψl,p| + Eu,p|ψu,p〉〈ψu,p|

}
, (54)

where, for p < p′, El,p < El,p′ and Eu,p > Eu,p′ . Let
us introduce a transformation matrix C relating the
local excitation states to the above eigenstates as
follows:

|n〉 =
8∑

p=0

{
Cn

l,p|ψl,p〉 + Cn
u,p|ψu,p〉

}
, (55)

where Cn
l,p = 〈n|ψl,p〉 and Cn

u,p = 〈n|ψu,p〉. Given the
parameters of H0

A for a specific B850 unit, the eigen-
values and eigenvectors in Eq. (54), and the transfor-
mation matrix in Eq. (55) can be determined simulta-
neously through numerical matrix diagonalization of
H0

A.
Assuming that each BChl in B850 has the same

spectral density, the following form can be used to
characterize the exciton–phonon coupling:

J (ω) =
∑

k∈BA

δ(ω − ωk)ω2
kg2

k,n = 0.22ωe−ω/ωc1

+ 0.78
ω2

ωc2
e−ω/ωc2 + 0.31

ω3

ω2
c3

e−ω/ωc3 , (56)

where ωc1 = 170 cm−1, ωc2 = 34 cm−1, and ωc3 =
69 cm−1. This spectral density is based on that de-
termined by Renger and Marcus126 from fluores-
cence line narrowing experiment of the related B777-
complex.

Let us first approximate the donor as the single
chromophore in the B800 unit as drawn in Figure 1.
This simplification is based on the fact that the elec-
tronic couplings between BChls in B800 are much
smaller than those in B850. But as will be shown be-
low, coherence in B800 can have subtle but important
effect. With this point in mind, for now, we can as-
sume the donor and its bath Hamiltonian consists of
three terms as follows:

HD = ED|D〉〈D| +
∑

k∈BD

h̄ωkgk(b†
k + bk)|D〉〈D|

+
∑

k∈BD

h̄ωk

(
b†

kbk + 1
2

)
, (57)

where |D〉 corresponds to the state where the BChl
representing the B800 is excited and ED is its energy,
ωk is the frequency of the kth oscillator in the set of
the donor bath BD, gk is the magnitude of its coupling

to |D〉, and b†
k and bk are the raising and lowering

operators of the kth oscillator. It was found that the
following approximation for the spectral density for
B800 can reproduce the lineshape of B800 within this
single BChl representation44:

JD(ω) ≡
∑

k∈BD

δ(ω − ωk)ω2
kg2

k = 0.7J (ω). (58)

The electronic coupling Hamiltonian HDA in Eq.
(51) is given by

HDA =
18∑

n=1

Jn(|D〉〈n| + |n〉〈D|), (59)

where Jn can be approximated as the transition dipole
interaction between |D〉 and |n〉 as follows:

Jn = µD · µn − 3(µD · R̂n)(µn · R̂n)
n2

r R3
n

. (60)

In this expression, Rn is the distance between the
donor and the nth acceptor, R̂n is the corresponding
unit distance vector, µD is the transition dipole for
|g〉 → |D〉 (the excitation of the BChl in B800), and
µn is that for |g〉 → |n〉 (the excitation of nth BChl in
B850). All the transition dipole vectors are assumed
to have the same magnitude, µ = |µD| = |µn|.

The MC-FRET rate expression, Eq. (40), when
applied to the present system, can be expressed as

kB800→B850

=
18∑

n,n′=1

Jn Jn′

2πh̄2

∫ ∞

−∞
d ωIA,nn′ (ω)LD(ω), (61)

where

LD(ω) =
∫ ∞

−∞
d t ei(ω−εD+εg)t

e−0.7
∫ ∞

0 d ω J (ω)
ω2

{
coth( h̄ω

2kBT )(1−cos(ωt))−i sin(ωt)
}

, (62)

IA,nn′ (ω) ≡
∫ ∞

−∞
d τ eiωτ

TrbA
{
〈n|ei Hb,Aτ/h̄ e−i HAτ/h̄ρ

g
bA

|n′〉
}
. (63)

In the above expression, TrbA is the trace over the
basis of the acceptor bath Hamiltonian Hb,A and
ρ

g
bA

= e−βHb,A/TrbA{e−βHb,A}.
Let us introduce the following linear combina-

tion of the acceptor states weighted by Jn:

|J 〉 =
18∑

n=1

Jn|n〉. (64)
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FIGURE 2 | Distribution of rates based on the MC-FRET and FRET
(see also Ref 44)

Invoking the approximation of the second-order time
nonlocal QME,124 Equation (61) can be expressed
as

18∑

n,n′=1

Jn Jn′ IA,nn′ (ω) ≈

− 1
π

ImTrA

{
|J 〉〈J |

ω +
(
Eg − H0

A

)/
h̄ + iK̂(ω)

}

≡ JA(ω),

(65)

where

K̂(ω) =
18∑

n=1

8∑

p=0

u∑

b=l

κ̂(ω − Eb,p/h̄)|Cn
b,p|2|n〉〈n|, (66)

with

κ̂(ω) ≡
∫ ∞

0
d t eiωt

∫ ∞

0
d ωJ (ω)

×
{

coth
(

h̄ω

2kBT

)
cos(ωt) − i sin(ωt)

}
. (67)

Then, the MC-FRET rate expression equation (61)
can be simplified to

kB800→B850 ≈ 1
2πh̄2

∫ ∞

−∞
JA(ω)LD(ω). (68)

Evaluation of this rate expression can be made by
calculating JA(ω) and LD(ω) at discrete values of ω

and performing numerical integration.
At the simplest level, the disorder in LH2 can

be modeled by Gaussian disorder in three energies,
En, Eg, and ED. For the B850 unit, the standard de-
viations for En and Eg are 250 and 40 cm−1. For
the B800 unit, the standard deviation for ED − Eg
is 54 cm−1 and the average bias of the excitation en-

ergy of the B800-BChl relative to that of B850-BChl,
〈ED − En〉 is 260 cm−1. These choices are based on
the fitting of low-temperature ensemble lineshape. In
all the calculations of the ensemble lineshape and the
energy transfer rate shown below, a low-temperature
limit of kBT = 10 cm−1 is assumed. Figure 2 shows the
resulting distribution of rates in units of ps−1. Com-
parison is also made with the hypothetical distribu-
tion of FRET rates treating the B850 as a single chro-
mophore. In both calculations, it was assumed that
each BChl has the same value of µ/nr = 5.3 Debye (D).
This choice was made by assuming that the average
rate calculated from the distribution of MC-FRET
rates is equal to the experimental rate at 4 K,127 which
is (1.5 ps)−1. Assuming that the optical dielectric re-
sponse of the protein medium is ε = 1.5 − 2, we
find that µ = 6.5 − 7.5 D, which is comparable to
experimental results.127–129

As can be seen clearly from Figure 2, the rates
based on Eq. (68) are much larger and more disper-
sive than those based on FRET. The most probable
rate of the former is about five times larger than the
latter, which is consistent with known discrepancies
between experimental and FRET rates. The major
source of the enhancement is the contribution of dark
coherent exciton states of B850, which are in tune
with the energy of the B800 unit. Although this fact
had been recognized in previous applications based
on the sum-over-exction states approach,130,131 the
above result44 provides more definitive and clear the-
oretical understanding.

The energy difference between the B800 and
B850 units comes from the excitonic delocalization
of the B850 band, on the one hand, and the fact that
the BChl in the former has higher excitation energy
than the latter (about 260 cm−1). It is interesting to
see whether this difference has any biological implica-
tion. Calculation has been made for the distributions
of both MC-FRET rates and the original FRET rates
for six other values of the energy difference. For each
choice of bias, the values of τ = 1/kav, where kav is
the average of the distribution of kMFs or kFs, are
plotted in Figure 3. It is important to note that the
transfer time based on MC-FRET is quite insensitive
to the bias up to about 400 cm−1, whereas that based
on FRET varies over an order of magnitude. Thus,
the MC effects make the transfer time insensitive to
changes in energy bias. This indicates that the pur-
ple bacteria are utilizing the MC effect to almost the
greatest extent to guarantee the irreversibility of the
energy flow from B800 to B850 while not affecting
the transfer time significantly. Thus, the MC-FRET
theory provides clear rationale for relative band posi-
tions of the B800 and B850 exciton states.

10 Volume 00, January /February 2012c© 2012 John Wi ley & Sons , L td .



WIREs Computational Molecular Science Resonance energy flow dynamics of coherently delocalized excitons in biological and macromolecular systems

FIGURE 3 | Plot of average transfer times versus the bias (see also
Ref 44).

The results43,44 reviewed above demonstrate the
MC effects within the B850 unit. However, the MC
effect within B800 can be significant as well although
in a subtle way.122 Typically, B800 excitations are
considered as localized on individual pigments as de-
picted in Figure 1 because the electronic couplings
between B800 BChls are smaller than the energetic
disorder in the system. However, a detailed investi-
gation of the low-temperature spectrum of the B800
band revealed that coherence in the B800 ring sub-
tly changes both the spectrum and RET dynamics in
the LH2 complex.122 Figure 4 shows the experimen-
tal low-temperature B800-only ensemble spectrum to-
gether with a simulation of the spectral lineshape for
an ensemble of B800 rings. The simulation was based
on a model of 9 B800-BChls with modest nearest
neighbor excitonic coupling:

HB800 =
9∑

n=1

En|n〉〈n| +
∑

n−m=±1

Jnm|n〉〈m|. (69)

To model static disorder, En and J are treated as hav-
ing random components:

En = E(0) + δEI + δED(n), (70)

Jn,n+1 = J (0) + δ J (n). (71)

where E(0) and J(0) are ensemble-averaged site en-
ergy and nearest neighbor electronic coupling, respec-
tively. δEI, δED(n), and δJ(n) are independent Gaus-
sian random variables with zero mean and standard
deviations σ I, σD, and σ J, respectively. By fitting to
the experimental spectrum, these disorder parameters
were determined as follows: σ I = 10 ± 5 cm−1, σD
= 60 ± 10 cm−1, and σ J = 15 ± 5 cm−1. The fit in-
dicates that the off-diagonal disorder δJ(n) cannot be

FIGURE 4 | Spectral lineshape calculated for an ensemble of the
B800 rings from Rps. acidophila including static disorder and quantum
coherence effect.122 We compare the simulated spectrum (solid line)
with the experimental absorption spectrum at 6 K (open circle). A
Gaussian fit to the red side of the simulated spectrum (dashed line) is
also presented to show that the long tail at the blue side of the band
cannot be explained by a Gaussian inhomogeneous lineshape.

ignored. Moreover, the excellent agreement with the
experimental data shown in Figure 4 indicates that the
effect of coherence exists in the B800 ring and results
in the asymmetric lineshape with a pronounced tail in
the blue side of the band. The modeling suggests that
because the B800 excitations are coherently delocal-
ized on multiple BChls, the redistribution of dipole
moments in the B800 exciton manifold leads to the
asymmetric lineshape. Based on the calculated par-
ticipation ratio in the simulations, it was determined
that a majority of the B800 states are delocalized on
2–4 pigments. The calculation clearly shows that de-
spite strong energetic disorder, the coherence in the
B800 ring cannot be neglected, and the pronounced
blue tail of the B800 band at low temperatures can
be attributed as a signature of quantum coherence.
Interestingly, the room temperature B800 absorption
spectrum also exhibits a blue tail, suggesting that the
higher temperatures do not fully destroy the coher-
ence in the B800 ring. Note that the electron–phonon
coupling and other dynamical effects were neglected
in this modeling of lineshape. In principle, couplings
to intra- and intermolecular vibrational modes of
the B800 BChl molecules could also lead to a blue
tail in the absorption band. While the contribution
of vibrational couplings to the asymmetric shape of
the B800 band remains to be examined in more de-
tails, several previous studies have indicated that the
B800 spectrum cannot be explained solely by a simple
theory including experimentally measured homoge-
neous lineshape function.132,133 Clearly, a significant
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FIGURE 5 | A comparison of the distributions of the average B800
→ B850 RET rate predicted by a B800 dimer model and a B800
monomer model. The theoretical B800 → B850 RET rate at kBT =
10 cm−1 is calculated from the MC-FRET theory. The insert is a
schematic of RET pathways in the B800 dimer model, showing
alternative pathways when the coherence enables rapid energy
transfer between the two B800 states.

portion of the asymmetric lineshape is due to the elec-
tronic coherence in the B800 excitations.

The MC effect caused by the quantum co-
herence in B800 ring also influences the B800 →
B850 RET dynamics. Since a great portion of the
B800 states are delocalized on two pigments across
a wide regime of the B800 band, a coherent exciton
delocalized on a pair of nearest-neighbor BChls
presents a more realistic model for the B800 excited
state at low temperatures. To study the MC effect
of B800 on the B800 → B850 RET dynamics, the-
oretical rates for two simplified models for B800, a
monomer BChl monomer and a dimer of BChls, were
calculated.122 In these calculations, the second-order
time-nonlocal QME lineshape expression in Eq. (65)–
(79) was used, and the spectral function in Eq. (58)
was employed for the B800 BChl molecule. For the
B850 BChls, the spectral density in Eq. (68) and the
effective Hamiltonian for LH2 in Refs 134 and 135
were adopted. A simulation of the B850 linear absorp-
tion spectrum at 6 K was carried out to confirm that
the model indeed reproduces well the B850 spectrum
when the standard deviations for Gaussian disorder
in En and Eg are set to 200 and 50 cm−1, respec-
tively. Figure 5 shows the distributions of B800 →
B850 RET rates calculated based on the model and
the MC-FRET theory (Eq. (40)). The dimer calcula-
tions indicate that coherence allows rapid intraband
transfer between B800 BChls to provide alternative
RET pathways when a direct transfer to the B850
is slow. As a result, the B800 coherence makes the
B800 → B850 RET rate more uniform and hence
more robust against energetic disorder in the system.
Along with the results shown in Figures 2 and 3, it

was suggested that the MC effects due to coherent
delocalization of the donor and acceptor exctions can
be responsible for the optimization of the natural sys-
tem that helps the RET dynamics efficient and robust
against energetic disorder.122

To summarize, the energy tuning and spectral
characteristics of the B850 system depend critically
on the quantum coherence induced by the strong in-
traring excitonic couplings in the system. The efficient
B800 intraband RET, due to the B800 coherence, is
also likely to assist the B800 → B850 RET at low tem-
peratures. Clearly, delocalized exciton states in the
LH2 complex are intimately related to its highly opti-
mized design for efficient and robust RET dynamics.
While this is an important step forward for the elu-
cidation of the quantum dynamical effects, it is also
true that further examination of proposed MC effects
and other contributions need to continue. These in-
clude more thorough examination of the effects of
the disorder and temperature, the role of coherence
within B800,122 and the back transfer from B850 to
B800.41,136 Considering that the interpretation of var-
ious spectroscopic information on LH2 is not far from
being settled, a comprehensive theoretical effort ac-
counting for all major experimental findings and de-
velopment of a more advanced theoretical tool that al-
lows large-scale calculation of open system quantum
dynamics are required. Recent theoretical analysis137

of single molecule spectroscopy and the development
of PQME approach96,109,110 for CRET are significant
steps forward in this regard.

Photosynthetic Reaction Center
The LH2 complex from purple bacteria proved to be
a prototypical system demonstrating clear MC effects
in the RET process. In addition to the highly symmet-
ric light-harvesting systems of purple bacteria, natural
photosynthetic organisms utilize compact photosyn-
thetic complexes with a great variety in structures
and the arrangement of chromophores for efficient
light-energy harvesting.32 These photosynthetic sys-
tems, including antenna complexes and reaction cen-
ters (RCs), often exhibit clusters of strongly coupled
chromophores and efficient energy transfer between
them. As a result, MC effects should play important
roles in many of these systems as in LH2.

For example, the RC of purple bacteria repre-
sents a typical photosynthetic system that requires
a treatment based on the MC-FRET theory to ex-
plain its energy transfer properties. Figure 6 shows
the linear absorption spectrum and arrangement
of pigments in the RC from the purple bacterium
Rhodobacter (Rb.) sphaeroides. This RC contains
two bateriochorophylls (Bchl) called the special pair
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FIGURE 6 | Arrangement of bacteriochlorophylls (PM, PL, BM, and BL) and bacteriopheophytins (HM and HL) in the RC from the purple
bacterium Rb. sphaeroides, and the experimental linear absorption spectrum measured at 77 K.

(P) in the center, an accessory Bchl flanking P on each
side (BL and BM), and a bateriopheophytin (HL and
HM) next to each B. Upon excitation of P, the RC
quickly undergoes charge separation to convert solar
energy into chemical potential with a quantum effi-
ciency near 1 in about 3 ps at room temperature. In
addition, as early as 1972, absorption measurements
performed by Slooten have indicated that excitation
energy transfer from H and B to P occurs in the RC

of Rb. sphaeroides in the ultrafast timescale (H to B
in about 100 fs and from B to P in about 150 fs) with
very little temperature dependence.138,139

If the energy transfer has been dominated by
the Förster mechanism, the modest spectral overlap
between B and P at low temperatures and the signif-
icant spectral dependence on the temperature would
predict very different RET behavior.140,141 Theoreti-
cal calculations based on the FRET theory predicted a
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time constant of ∼ 3 ps, which is mainly attributable
to the modest donor–acceptor spectral overlap.140

This result fails to explain the ultrafast timescales of
RET and has motivated numerous discussion con-
cerning the mechanism of energy transfer within the
RC.140,142,143 The puzzle was not resolved until it
was recognized that since the two chlorophylls in
the special pair are coupled strongly, much like the
B800 → B850 RET case mentioned above, it is nec-
essary to consider energy transfer from B to a co-
herently delocalized P state.92,141,144 In particular, a
detailed study carried out by Jordanides et al. using an
adaptation of the Förster theory with correct calcula-
tion of effective donor-acceptor couplings and their
associated spectral overlaps demonstrated that the
RET dynamics in the RC are described by a weak-
coupling mechanism.141 Again, the MC effect neces-
sitates that a picture of RET between coherently de-
localized states must be considered to describe exper-
imental results.

The MC-FRET theory (in a slight different
form) has also been applied to describe energy trans-
fer from the peripheral chlorophyll connecting the an-
tenna system to the six coupled core pigments of the
RC of photosystem II.145,146 This system also crit-
ically depends on the MC effects, and the energy
transfer process was shown to be directly coupled
to the energy trapping by primary charge separation
in the PS II RC.145 It seems that general coherence-
assisting principles play important roles in many
photosynthetic light-harvesting complexes. However,
they have to be examined in more details in other pho-
tosynthetic complexes before any general conclusion
is drawn. Interestingly, recent work by Schlau-Cohen
et al. also indicates the importance of coherence in
defining the pathways of energy flow in the major
light-harvesting complex of higher plants.147

Artificial Organic Materials
RET in organic crystals, thin films, and aggregates
is an area of significant current interest due to the
potential application for organic optoelectronic and
energy devices. Historically, this is the field where gen-
eral theoretical frameworks were laid out for CRET
and the effects of quantum coherence were scruti-
nized intensively.6,30,121,148 An important issue that
dominated the literature in the 1960s to 1980s is
the temperature-dependent transition from coherent
to incoherent mechanisms of the exciton mobility in
molecular crystals. Most recently, coherence effects in
two-dimensional (2D) excitons in oligoacene molecu-
lar crystals was considered by Emelianova et al.149

These molecular crystals exhibit herringbone-like

structure in which the molecules are more strongly
coupled within the layers and only weakly coupled
in the interlayer directions. As a result, the energy
carriers are best described as intralayer delocalized
2D excitons that move along the interlayer direc-
tion. Emelianova et al. applied a generalization of the
FRET theory to calculate the effective couplings be-
tween such 2D excitons. This approach results in the
renormalization of couplings between interlayer 2D
excitons that enhances the interlayer transfer rate sig-
nificantly. The enhancement comes from many con-
tributing channels involving optically dark exciton
states and can explain experimental observation. This
work confirms the significance of generalized theories
such as MC-FRET as new guiding principles for the
design of artificial energy materials.

Molecular aggregation has significant ramifica-
tions on the optical response of organic materials. It
is well known that photoexcitations in organic aggre-
gates can delocalize over several tens or even hundreds
of molecules.150,151 As revealed in the Recent The-
oretical Developments section, simple FRET theory
cannot account for the RET dynamics in these mate-
rials, and at least the MC effects should be considered.
Scholes investigated such MC effect in a model system
consisting of a single donor molecule and a 2D array
of acceptor molecules.65,152 This study demonstrated
an interesting example of “super” transfer caused by
large effective coupling between the donor and the set
acceptor molecules that are coupled strongly among
themselves and form superradiant exciton states. This
is another example that RET dynamics in complex
molecular assemblies can be significantly affected by
physics that are not captured by the simple FRET the-
ory. Clearly, although the theories described in the
Recent Theoretical Developments section were mo-
tivated by RET dynamics in photosynthetic systems,
their applications and potential to reveal new photo-
physics and design principles in artificial systems can
be significant. A theoretical study in this direction just
started,153 and investigation of MC, inelastic, and co-
herence effects in the RET dynamics of pi-conjugated
systems remains an important theoretical subject.

CONCLUSION AND OPEN ISSUES
Motivated by intriguing experimental results and the-
oretical developments, the RET dynamics of coher-
ently delocalized excitons have become the subjects
of intensive studies in recent years. In this work,
we provided a cross section of such efforts related
to our works, by reviewing theoretical developments
and applications to biological and macromolecular
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systems. In particular, the successful generalization
of the FRET theory to include MC effects has deep-
ened our understanding of the mechanisms of RET in-
volving coupled molecular aggregates within the rate
description. A key insight gained is that the basis of
RET process must be reexamined carefully and that
the choice of coherently delocalized states as the unit
of energy transfer can provide a more accurate de-
scription. Given the heterogeneous nature of natural
photosynthetic systems and macromolecular organic
aggregates, the additional realism incorporated into
the MC-FRET description should have broad appli-
cations.

We also reviewed recent advances in the un-
derstanding of energy transfer mechanisms in the
LH2 complex of purple bacteria. In this complex, in-
tradonor or intraacceptor quantum coherence clearly
plays fundamental roles in spectral properties, energy
tuning, and the energy flow dynamics. The new de-
sign principles revealed by application of MC-FRET
to LH2 may have great implications for the design of
artificial systems. Whether similar effects can be iden-
tified for inter donor–acceptor quantum coherence is
an interesting subject to explore for more general ar-
rangement of chromophores.

In the future, advances in ultrafast spectroscopic
methods will continue to provide critical tests of new
theoretical developments, and it is important to en-
gage close interactions between experiments and the-
ories to explore new frontiers of RET dynamics in
complex molecular aggregates. A central issue in this
research is the characterization and assessment of
electronic quantum coherence. The newly developed
PQME approach96,109–113 for CRET as well as other
approaches102,154–156 will find great utility in answer-
ing this question.

There are a couple of important open issues to
be addressed for more reliable description of the RET
dynamics. The FRET and all the theories described
in this work are based on the assumption that lo-
cal field effect can be neglected. As noted by Knox
and van Amerongen,157 consideration of local field
effects involve subtle issues that require careful treat-
ment. Formulation at the level quantum electrody-
namics formalism158,159 may be necessary to address
them. On the other hand, heterogeneity of local field
effect was found to be significant and can play a role
in high efficiency of energy flow in light-harvesting
systems.160 Similar effects may be found in other nat-
ural and synthetic systems as well.

Another key open issue is reliable specifica-
tion and determination of the spectral density, which
plays a fundamental role in the RET dynamics. Most
spectral densities being used so far have been deter-
mined by fitting to spectroscopic data. While these
may provide adequate description of relevant spec-
troscopic observables, they may not be sufficient to
gain correct microscopic understanding of the effects
of exciton–protein interactions and of the roles of
the environments. Olbrich et al. recently investigated
environmental effects on electronic transitions in the
Fenna-Matthews-Olson photosynthetic complex us-
ing a combined molecular dynamics and quantum
chemistry approach.60,161 Further advances in this di-
rection are needed to elucidate molecular level details
critical for RET process.

NOTES
aThe physical implication of this term is ambiguous
and can be misleading because what is being trans-
ferred is not the fluorescence but the energy.
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156. Strümpfer J, Schulten K. The effect of correlated bath
fluctuations on exciton transfer. J Chem Phys 2011,
134:095102.

157. Knox RS, van Amerongen H. Refractive index de-
pendence of the Förster resonance excitation transfer
rate. J Phys Chem B 2002, 106:5289–5293.
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