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Overview

This project explored the use of quantum-assisted algorithms for pattern matching in sub-atomic physics
experiments. Pattern matching algorithms are commonly employed to prune data of random noise and
to help discriminate between signals generated by particle tracks of interest and signals generated by
background events. The quantum-assisted algorithms explored in this project were based on an Ising
formulation of quantum associative model (QAMM) recall and quantum content-addressable memory
(QCAM) recall. The recall is performed by comparing a probe pattern with those stored in a library of
patterns encoded in the QAMM/QCAM model.

The classification accuracy of QAMM and QCAM recall was determined as a function of detector
resolution, noise, and efficiency and pattern density, where pattern density is defined as the ratio of the
number of reference signal patterns encoded in the library to each pattern’s length. We found that
QAMM achieved high classification accuracy when applied to datasets with low pattern density. QCAM
achieved high classification accuracy for datasets with high pattern density and was found to be more
robust to detector noise. The project methodology and results are described in detail in our arXiv preprint
(arXiv:2011.11848)".

This project was conducted by scientists at the Johns Hopkins University Applied Physics Laboratory and
Oak Ridge National Laboratory from August 2018 to August 2020 and was supported by DOE grant DE-
SC0019497.

Background

Track recognition and classificaiton is a challenging and necessary part of most subatomic physics
experiments. Track reconstruction is the process of mapping detector signals produced by a particle
traversing a detector back into the particle’s trajectory. This process is complicated by random noise,
detectors with high spatial resolution or low efficiency, and experiments with many simultaneous particles
traversing the detector region. Pattern matching algorithms are commonly employed to prune data of
random noise, which simplifies the track reconstruction task. Pattern matching algorithms quickly identify
potential track candidates by comparing the pattern of detector signals to a library of patterns known to
be from events of interest. However, the performance of these algorithms is sensitive to the amount of
random detector noise, background processes, and the detector’s spatial resolution.

Pattern matching for track recognition can be accomplished through several methods, two of which are
associative memory model (AMM) recall and content-addressable memory (CAM) recall. AMM is a
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supervised learning model for pattern matching when given incomplete or incorrect information.2 CAM
is a form of associative memory that stores the association between a key and a value and recalls this
association by retrieving the key when given the exact or approximate value.? It has been shown that
AMM?* and CAM?® can be solved using quantum annealing (QA), a probabilistic algorithm that exploits
quantum phenomena to find the global minimum to an objective function.® This quantum AMM (QAMM)
and quantum CAM (QCAM) approach has the potential to provide improvements to the learning capacities
of the models, and ultimately lead to increased performance in pattern classification algorithms for track
reconstruction. While currently available QA processors are limited in size, devices such as the D-Wave
2000Q-6 processor provides a useful testbed of evaluating toy models and experimentally investigating
recall methodologies for track classification and pattern matching.

Project goals

This aim of this project was to evaluate QAMM and QCAM recall performance when used to perform
pattern matching for particle track classification in subatomic physics experiments.

This goal was split into three main tasks. The first task was to generate a dataset of patterns based on a
detector simulation. Using a simulated dataset that could be easily modified allowed for the classification
accuracy of QAMM and QCAM recall to be determined as a function of parameters such as detector
granularity, efficiency, and the level of detector noise. The second task was to develop, optimize, and
characterize the QCAMM and QCAM recall algorithms' classification accuracy. The QAMM and QCAM
performances were optimized for each simulated dataset by selecting the learning rule used to train the
models, determining the optimal classifier or combination of classifiers for QAMM and QCAM, and
optimizing the annealing schedule of the D-Wave QPU. The third task was to compare QAMM and QCAM
to the classical approach using experimental data.

The ultimate goal was to compare the classification accuracy using QAMM and QCAM to the classical tree
search method to determine potential improvements in the rejection of noise signals, computational
speed, and track reconstruction. This benchmark was to be achieved by applying QAMM and QCAM recalls

2 John J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences. 79(8):2554-2558, 1982

3 Hopfield, 1982

4 Hadayat Seddigi and Travis S Humble. Adiabatic quantum optimization for associative memory recall. Frontiers in
Physics, 2:79, 2014; Siddhartha Santra, Omar Shehab, and Radhakrishnan Balu. Ising formulation of associative
memory models and quantum annealing recall. Physical Review A, 96(6):062330, 2017.

5 Jonathan Schrock, Alex J McCaskey, Kathleen E Hamilton, Travis S Humble, and Neena Imam. Recall performance
for content-addressable memory using adiabatic quantum optimization. Entropy, 19(9):500, 2017.

6 Giuseppe E. Santoro, Roman Martonak, Erio Tosatti, and Roberto Car. Theory of quantum annealing of an ising
spin glass. Science, 295(5564):2427-2430, 2002; M. W. Johnson and et al. Quantum annealing with manufactured
spins. Nature, 473:194-198, 2011; Catherine C. McGeoch. Adiabatic quantum computation and quantum
annealing: Theory and practice. Synthesis Lectures on Quantum Computing, 5(2):1-93, 2014; Tameem Albash and
Daniel A. Lidar. Adiabatic quantum computation. Rev. Mod. Phys., 90:015002, Jan 2018.



models to an experimental dataset from the OLYMPUS experiment’ and comparing the performance to
that of a classical tree search method.

Accomplishments

Task 1: Generate datasets of patterns based on a detector simulation
The detector simulation was done using the Geant4
simulation and modeling toolkit.2 It consisted of
three parallel detector planes that could be
segmented into individual detection segments to
control the detector granularity, and
correspondingly, the number of bits in each pattern.
A diagram of the simulated detector is shown in
Figure 1.

The detector segments were mapped to an array of
Boolean elements of size V. The detector shown has
16 segments per plane (V = 48 segments in total),
which creates a Boolean pattern of 48 bits.

The created patterns that corresponded to particle
trajectories, electrons and positrons were initialized
left of the detector and traversed the detector region
interacting with each detector plane. If a given cell was activated, the corresponding bit in the array of
Boolean elements was set to 1, and 0 if it was not. Then, various random detector noise rates, i, and
detector inefficiency, y, were included by flipping some of the Boolean elements. Background patterns
were also created by setting the bits in the array of Boolean elements randomly to either 0 or 1.

For this project, we explored detector granularity of ] ) ]
Figure 1: A diagram of the simulated detector with three

24-segments, 30-segments,  42-segments, 48- parallel planes. The blue line represents a track of an
segments, and 54-segments. The random detector electron traversing the detector.

noise levels considered were y =
[0.0.02,0.04, 0.06, 0.08] and the detector efficiencies considered were n = [1,0.98,0.96, 0.94, 0.92].

Task 2: Characterization QCAMM and QCAM Recall Algorithms

The classification accuracy for QAMM and QCAM recall was determined as a function of y, 7 and pattern
density ag, defined as the ratio of the number of signal patterns encoded into the library to the number
of bits in the pattern, V. First, we explored different approaches to defining a classifier for QAMM and
QCAM. Second, the classification accuracy was determined for noiseless patterns with perfect detector
efficiency for each classification method and both QAMM and QCAM recall. Next, the classification
accuracy was determined for patterns that contained noise signals and inefficiencies. Last, the QA control
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schedules were manipulated through a method called reverse annealing to increase the classification
accuracy for noisy patterns.

Determination of classifiers

More than one classifier can be used for QCAM and QAMM recall to distinguish between signal and
background patterns. Two approaches were explored here. The first classifier that can be used is the key
of the recalled pattern. This requires the datasets to include both signal and background patterns, labeled
by keys. The second classifier is the energy of the solution states resulting from QA. Energy-based
classification requires only signal patterns to be encoded. For each probe pattern recalled, 100 annealing
runs are carried out. From this, the average energy (E) and key (k) can be calculated for each probe
pattern.

We define 8 as the tolerance of (E) and key (k) of a particular probe pattern to be different from that of
the rest of the set. We allowed the tolerance S for both energy (E) and key (k) to range widely from 8 =
[0, 10] and display the classification accuracies using receiver operator characteristic (ROC) curves. This
allows for the true positive rate (TPR) and the false positive rate (FPR) to be shown on a single chart, as a
function of 5.

Noiseless pattern recall

We first examine QCAM and QAMM recall performance for both classifiers under the condition of
noiseless pattern recall. Noiseless signal probe patterns are defined as signal patterns that perfectly match
patterns encoded within the model. Noiseless background probe patterns are defined similarly with the
caveat that background probes will only perfectly match patterns within the training set when performing
key-based classification. We summarize the noiseless recall results in Figure 2 for varying detector size
and encoded signal pattern density. ROC curves for energy-based classification for QCAM and QAMM are
shown in panels (a)-(d) and (e)-(h), respectively. Panels (i)-(l) denote key-based QCAM performance, while
panels (m)-(p) convey QAMM recall using key-based classification. Each column contains a fixed encoded
pattern density, where each panel displays ROC curves for a variety of detector sizes. The data is
generated from 5 unique training sets and 50 unique probe patterns (25 signal and 25 background). ROC
curves are produced by varying 8 over the range discussed above. Each data set includes a logistic fit to
help guide the eye. Note that ROC curves favoring each subplot's top-left corner denote optimal
discriminators, while those tending towards the diagonal, black, dotted line designate models with the
least discriminatory capabilities. In certain cases, for example, panel (o), the data drops below the
diagonal, denoting reciprocated class discrimination. This behavior is likely due to the presence of
spurious memories, which is elaborated upon in arXiv:2011.11848.
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Figure 2: Comparison between recall models as a function encoded signal pattern density a; for varying detector size V. Models
considered include: energy based QCAM [panels (a)-(d)], energy based QAMM [panels (e)-(h)], key based QCAM [panels (i)-(1)],
and key-based QAMM [panels (m)-(p)]. Data is averaged over 5 unique training sets and 50 unique probes (25 signal and 25
background patterns).

As these results indicate, the energy-based QAMM (panels (e)-(h)] show the best performance for a; < 1
and the classification accuracy appears to be relatively robust as V increases. For high pattern density
(g = 1) key-based QCAM provides the highest classification accuracy.

Faulty pattern recall

Next, the classification accuracy as a function of inefficiencies and noise was explored. Here, faulty probe
patterns with either missing signal bits (due to detector inefficiency) or additional signal bits (due to
detector noise) are recalled. Because the energy-based QAMM and key-based QCAM performed the best
with the noiseless data, these recall methods were used to explore how inefficiencies and noise impact
the classification accuracy.
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Figure 3: Comparison between recall models as a function encoded signal pattern density as for varying detector efficiency n
and V = 54. Models considered include: energy based QAAM [panels (a)-(c)] and key based QCAM [panels (d)-(f)].

Figure 3 shows the ROC curves for energy-based QAMM [panels (a)-(c)] and key-based QCAM [panels (d)-
(f)] for recalling patterns with missing signals due to detector inefficiencies. This plot only shows the data



for V = 54. As this reveals, the classification accuracy does not have a strong dependence on detector
inefficiencies.

While the classification accuracy for energy-based QAMM and key-based QCAM appeared to be robust to
detector inefficiencies, the classification accuracy was strongly impacted when recalling noisy patterns.
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Figure 4: Comparison between recall models as a function encoded signal pattern density as for varying detector noise y and V
=54. Models considered include: energy based QAAM [panels (a)-(c)] and key based QCAM [panels (d)-(f)].

Figure 4 shows the results for noisy data. Again, figures are for V = 54. As shown, the amount of noise
in the dataset significantly decreases the classification performance, especially for energy-based QAMM.
However, as shown in panel (d), Key-based QCAM appears to be slightly robust to noisy datasets for small
a,. This implies that key-based QCAM might be a better classifier for noisy experimental data.

Reverse annealing

In efforts to improve the noisy pattern recall performance, some of the D-Wave’s QPU advanced control
features were exploited. This effort focused improvements to the key-based QCAM approach as this
showed the best performance on noisy data. By manipulating the QA control schedule through a process
known as reverse annealing, an increase the TPR was observed with only minor increase to FPR for low
pattern density. Figure 5 shows this for IV = 54, where the control path was chosen such that the
guantum system was initialized in a candidate classical state provided by a forward annealing optimization
run. The system is then driven in “reverse” by ramping the control field such that the contribution to the
dynamics that drive transitions in the system becomes more dominant. This process allows quantum
fluctuations to increase and contribute to the dynamics over a fixed time duration. After a selected period
of time has expired, the system is driven according to the standard forward anneal and subsequently
measured. The choice of the reverse annealing profile was chosen by preliminary studies of recall
performance as a function of ramp duration and pause time; see arXiv:2011.11848 for further details.
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Figure 5: Key-based QCAM recall performance as a function of detector noise with reverse annealing control.

This report only summarizes the achievements and results. Detailed discussion of these results can be
found in arXiv:2011.11848. This paper includes an extensive discussion on the datasets analyzed and the
methods utilized for this project including quantum annealing, the quantum associative memory model,
the quantum content addressable memory model and projection rule learning. Additionally, the results
are discussed at length.

Task 3: Comparison to classical methods

Current hardware significantly limits both the size of the patterns that can be recalled and the number of
patterns stored in the library. Because of the current hardware limitations, we determined that QAMM
and QCAM recall cannot be directly applied to pattern recognition for most experimental datasets. Before
we could attempt to apply QAMM and QCAM recall to the OLYMPUS dataset, we needed to focus on fully
characterizing QAMM and QCAM recall as a function of pattern size, number of patterns in the library,
and the rate of faulty patterns (those with noise or inefficiencies). This helped identify which datasets
QAMM and QCAM recall could provide high classification accuracy, especially as the hardware improves.

Although we did not accomplish the last goal of applying the recall methods to experimental data, we
explored a methodology that could transform experimental datasets to datasets suitable for QAMM and
QCAM recall given the current hardware constraints. As discussed in arXiv:2011.11848, a Hough-
Transform (HT) can be used to subdivide a large experimental dataset into smaller datasets, according to
pattern features, such as track length and initial angle. The robustness of the HT method was explored
using the Geant4-simulated detector with much higher detector resolution (360 segments) and the same
noise and detector efficiencies as explored for QAMM and QCAM recall. Using the HT method, large
experimental pattern libraries can be split into multiple pattern banks of shorter patterns providing
suitable pattern libraries for QAMM and QCAM recall.



Results dissemination
A detailed description of the background, methodology, and results of this project are publicly available
on ArXiv (arXiv:2011.11848) and are currently being reviewed for publication.
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