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Abstract—Because of the limits input/output systems currently
impose on high-performance computing systems, a new genera-
tion of workflows that include online data reduction and analysis
is emerging. Diagnosing their performance requires sophisticated
performance analysis capabilities due to the complexity of execu-
tion patterns and underlying hardware, and no tool could handle
the voluminous performance trace data needed to detect poten-
tial problems. This work introduces Chimbuko, a performance
analysis framework that provides real-time, distributed, in situ
anomaly detection. Data volumes are reduced for human-level
processing without losing necessary details. Chimbuko supports
online performance monitoring via a visualization module that
presents the overall workflow anomaly distribution, call stacks,
and timelines. Chimbuko also supports the capture and reduction
of performance provenance. To the best of our knowledge,
Chimbuko is the first online, distributed, and scalable workflow-
level performance trace analysis framework, and we demonstrate
the tool’s usefulness on Oak Ridge National Laboratory’s Summit
system.

Index Terms—Performance Trace, Benchmark, Profiling,
Anomaly Detection, Visualization, Provenance

I. INTRODUCTION

The Chimbuko framework captures, analyzes, and visualizes
performance metrics for complex scientific workflows at scale.
Meanwhile, the TAU performance analysis tool is used to
capture trace and profile performance data, and provenance
of the underlying architecture’s specification and execution
details are extracted. All performance data are analyzed,
reduced, and visualized in real time and in situ by Chim-
buko, providing key insights into the behaviors of scientific
applications and workflows. The performance provenance data
enable the identification of specific performance events, as
well as the comparison of performance behavior across several
runs. A key application area for Chimbuko is co-design trade-
off studies for online data analysis and reduction workflows
because it allows scientific applications and workflows to
trace their execution patterns on heterogeneous architectures
at realistic scales.
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The U.S. Department of Energy (DOE)’s Exascale Com-
puting Project (ECP) currently is developing a portfolio of
applications to run on the first exascale systems, and a sig-
nificant portion of these applications are workflows. Further-
more, scientific workflows are becoming more prevalent in
mainstream scientific computing. Here, workflows are defined
as the composition of numerous coupled tasks. They execute
(in situ) by exchanging information over memory, storage
hierarchy, and interconnect network of a high-performance
computing (HPC) system [5].

Workflows face specific performance challenges that extend
beyond the performance of its separate single components,
specifically interdependence between workflow components
and increased potential for resource contention. Assessing
their performance and identifying possible bottlenecks require
tools that exceed today’s available performance analysis tools.
Along with the ability to capture the interaction between
several applications combined within a workflow, the new tools
also need to cope with tremendous performance data volumes.
Rather than collecting trace-level performance data from a sin-
gle application, it is necessary to capture it for multiple appli-
cations at the same time. Given the cost of data movement and
input/output (I/O) on large-scale HPC systems, it is paramount
to analyze and reduce this performance data immediately and
not introduce unacceptable levels of overhead and distortion
to the workflow. At the same time, critical information from
the performance data must be preserved. Therefore, rather
than just providing high-level statistics, Chimbuko focuses
on anomalous events along with sufficient information for a
root cause analysis. Online performance visualization enables
workflow developers to investigate anomalies as they occur, for
example, to determine if they are workflow internal or caused
by contention for resources that other users’ applications are
heavily using. The identified anomalies also can be saved to
disk for more in-depth study later.

The primary characteristic that distinguishes Chimbuko
from existing tools is its ability to perform scalable, trace-level,
real-time performance analysis on workflows—the first such



workflow performance analysis tool available to date. Specif-
ically, Chimbuko provides the following innovative function-
ality:

1) Performance Data Analysis across Workflows In Situ.
In this approach, applications orchestrated as a workflow
emit performance anomaly data to a single analysis
instance. Thus, we can identify performance bottlenecks
stemming from inefficient interactions between work-
flow components and issues caused by their combined
use of system resources in addition to potential bottle-
necks within the applications.

2) Data Reduction using Anomaly Detection. We offer
data reduction methods based on anomaly detection
(AD) that filter normal events while focusing on abnor-
mal performance behavior as these are of greater interest
to application developers.

3) Scalable Architecture. We have developed a novel,
distributed architecture for in situ performance trace
analysis that minimizes data traffic across the communi-
cation fabric. We process large quantities of performance
trace data on the node where the data are generated. This
feature significantly reduces the quantity of inter-node
communication and enables real-time analysis.

4) Visualization. We offer a coupled in situ visualization
framework to monitor abnormal performance. The vi-
sualization presents a multiscale design by dynamically
and interactively updating the trace anomalies in dif-
ferent levels of detail, e.g., rank, time frame, function
execution, and function call stack. This feature allows
the users to monitor the performance online and quickly
dive into execution details for root cause investigation.

5) Prescriptive Provenance. We extract streaming perfor-
mance provenance information for each run and reduce
the trace to focus on detected anomalies. Provenance
includes static information for a run and dynamic in-
formation, such as workflow execution environment.
Metrics are available for collection together with their
provenance when anomalies are detected. This supports
not only online analysis of anomalies, but also subse-
quent comparison with other runs.

To show the proposed framework’s capabilities, we ran
performance studies for several workflows. Among them, a
workflow based on the NWChem computational chemistry
code [20] is demonstrated on the Summit supercomputer.
We executed the workflow while analyzing trace-level perfor-
mance data with Chimbuko on thousands of Message Passing
Interface (MPI) ranks. Compared to running the workflow
with the TAU performance analysis tool [17] alone, which
collects and saves all performance data, we were able to
reduce the trace data rate 148 times. The ability to locate
performance anomalies quickly and efficiently allowed us to
identify communication delay issues in the workflow.

II. CHIMBUKO ARCHITECTURE
A. Design Objectives

Our goal is to deliver a real-time, scalable analysis tool for
performance trace data that can diagnose workflow-level per-
formance behaviors. The Chimbuko framework’s main com-
ponents are: 1) AD, 2) Visualization, and 3) Provenance.
The initial aim is to design a system that will scale to:

e Nodes: 1000 or more
o MPI Ranks: 10,000 or more.

B. Architecture

The proposed architecture was designed to enable efficient,
distributed data processing; limited data movement; and scal-
ability while generating minimal overheads for the workflow
under investigation—all critical characteristics for a tool that
needs to operate on future exascale systems.

Figure 1 depicts the proposed Chimbuko architecture di-
agram, showing a workflow with two applications running
concurrently (for simplicity). In this architecture, aggregating
the performance trace data across the workflow is avoided
because relevant events already are selected at each node.
The remaining events are used to create performance profile
statistics then discarded. Profile data remain useful to give a
general impression of the workflow’s performance, but it is not
supportive of identifying specific performance issues. Online
AD is split into two modules: an online AD parameter server
and on-node online AD module.

Online versus Offline. The Chimbuko framework has been
designed not only to provide support for online performance
analysis, but also for optimization efforts that require longer-
term performance studies. To this end, all Chimbuko compo-
nents can be run both in on- and off-line modes, allowing users
to reinvestigate and compare performance data across a num-
ber of runs. The online (in situ) components are implemented
and available in GitHub repositories [27], [28]. The following
sections describe the different Chimbuko components in more
detail.

C. TAU

The TAU Performance System [17] is a portable profiling
and tracing toolkit for performance analysis of parallel pro-
grams written in Fortran, C/C++, Java, and Python. TAU is
capable of gathering performance information through system-
interrupt-based sampling and/or instrumentation of functions,
methods, basic blocks, and statements. The instrumentation
can be inserted in the source code automatically with a TAU-
specific compiler wrapper based on the Program Database
Toolkit (PDT) [12], dynamically using DyninstAPI [23], at
runtime in the Java Virtual Machine or Python runtime, or
manually using the instrumentation API (application program-
ming interface). TAU measurements represent first-person, per-
OS (operating system) thread measurements for all processes
in a distributed application, such as an MPI simulation. TAU
measurements are collected as profile summaries and/or a full
event trace.
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Fig. 1. Chimbuko architecture diagram with the major components: TAU, Online AD modules, Visualization, and Provenance Database. Image illustrates two

concurrently running applications.

To enable runtime analysis of TAU performance data, TAU
has been extended with an ADIOS2 plugin. ADIOS2 is
a reimplementation of the ADaptable Input Output System,
ADIOS [13]. In addition to file support, ADIOS provides a
step-based (in situ) data engine that can be read by external
applications running concurrently with a scientific simulation.
Using the available ADIOS2 Sustainable Staging Transport
(SST) engine, TAU trace data periodically are written to an
output data stream to be consumed by the Chimbuko analysis.

In the experiments described herein, NWChem was com-
piled using TAU compiler wrappers, selectively instrumenting
to avoid high-frequency, short-duration functions. TAU also
includes an MPI interposition library to measure MPI calls
without requiring instrumentation. As instrumented functions
enter and exit and when send/receive events happen, events
are written to a local buffer. Periodically, the event buffer is
written to the ADIOS2 data stream. The periodicity for the
following experiments was configured for once-per-second as
a compromise between providing fresh data and minimizing
overhead.

III. PERFORMANCE ANOMALY DETECTION

For modern scientific workflows on exascale systems, the
trace data generated by a representative workflow would
amount to hundreds of terabytes of data—most of which are
uninteresting from a developers’ perspective, except for events
that could indicate potential performance bottlenecks. For
example, the execution time of a parallel program is bounded
by the slowest processor. Therefore, parallel application de-
velopers aim to distribute the computational work evenly
among all processors, but this may not always be achieved.
If in a problem setting operations take disproportionately

more time on one processor than on others, this indicates the
processor was assigned more work, pointing to a potential
bottleneck. Analyzing program trace data helps to detect these
anomalies. However, this analysis cannot happen postmortem
without storing prohibitive amounts of data on disk. To date,
application developers either had to run much smaller problem
sizes, potentially not capturing the behavior they wanted to
investigate, or only look at very small areas of code at any
given point in time, possibly missing the root cause or the
event itself completely. We propose that the analysis of the full
trace data should be performed on the fly, providing access to
all of the necessary information while quickly reducing the
collected data to only their significant components.

A. Setup

As mentioned previously, TAU is used to instrument work-
flow application source codes and generate trace data. During
execution of the Chimbuko workflow, TAU submits the ob-
served events to our analysis code, which performs the data
reduction. There are largely two types of events: function and
communication events. A function event contains information
of the function identifier, name, and its type (ENTRY or
EXIT). A communication event includes data tag and size
(in bytes) and identifiers of sender and receiver. All events
come with common information, including identifiers of the
application, MPI rank and thread, and timestamp (in micro-
seconds).

B. Data Reduction and Anomaly Detection

This section introduces Chimbuko’s methodology, used to
reduce performance data and detect anomalies, for example,



within the function execution times. As execution time imbal-
ances are a major source of workflow performance variability,
we start with this particular metric. It is our intention to add the
analysis of further metrics to Chimbuko in upcoming releases.
The major components are the On-node AD Module and
Parameter Server.

1) On-node AD Module: The on-node AD module takes
streamed trace data (per rank) from TAU. As all events in
the streamed trace data are sorted according to the event
timestamp, the AD module can build and maintain a function
call stack with function events and map communication events
to a specific function if they are available. The completed
function calls (i.e., ENTRY and EXIT of a function event are
observed) are extracted from the tree and statistical analysis
based on the function execution time is performed to determine
anomalous function calls that have extraordinary execution
times compared to normal function calls. Specifically, we label
a function call as an anomaly if it has a longer execution time
than the upper threshold (= p; + « % 0;) or has a shorter
execution time than the lower threshold (= p; —axo;), where
u; and o; are mean and standard deviation of execution time
of a function 7, respectively, and « is a control parameter that
is set to 6 in our entire studies.

If there are any anomalies within the current trace data, the
AD module sends them to visualization server or stores them
in files. This is where significant data reduction occurs because
we only save the anomalies and a few nearby normal function
calls of the anomalies. In our studies, we saved anomalies
along with most £ normal functions calls before and after the
anomaly (if available). For our case studies, we set k to be 5.

To have consistent and robust AD power, it is important to
update local statistics (u; and o;) in each on-node AD module
with the global one that is available in the Parameter Server.
Along with local statistics, the AD module also sends other
information, such as the number of detected anomalies to the
Parameter Server, so the server can have a global view of
workflow-level performance trace analysis.

2) Online AD Parameter Server: The online AD Parameter
Server is designed to maintain a global view of workflow-
level performance trace analysis. It includes, for example,
execution time statistics per function (u; and ;) and the
number of detected anomalies per rank within a time interval,
which is determined by the frequency of TAU streaming
data (refer to Section II-C). The global view is updated
by the local analysis results from the on-node AD modules
without any synchronization barriers and periodically sent to
the visualization server if there are any updates. This enables
users to review the performance trace analysis results overview
in real time. In our case studies, the periodicity is set to 1
second.

I'V. PERFORMANCE VISUALIZATION

The design goal for visualization is to provide an online
anomaly visualization and exploration platform that not only
allows users to observe any anomalous performance, but also
to support a deeper investigation of specific anomalies. This
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Fig. 2. The architecture for visualization backend server [6] adopted for this
work. Specifically, it includes uWSGI workers serving concurrent connections,
celery workers and a Redis message queue for asynchronous tasks, and a
database for data storage.

platform must cope with significant data streams. Therefore,
migrating from our previous versions [26] [24], we divide the
visualization into two parts: in situ anomaly statistics visu-
alization and online analysis visualization. In the following,
we first describe the visualization backend server architecture
followed by a detailed explanation of the two visualization
parts.

A. Visualization Backend Server

There are two types of clients of the visualization server.
The first is data senders, including the on-node AD modules
and the online AD Parameter Server. The second type is
the users who are actually exploring and interacting with the
proposed visualization via a web browser.

For the data senders, the visualization server should be able
to digest the requests asynchronously so there is no waiting
time and minimal memory overhead on the senders’ side
by consuming data as quickly as possible. Furthermore, the
visualization server should be able to handle huge amounts
of concurrent requests—as many as the number of on-node
AD modules currently running. For users, the visualization
server should be able to stream data as soon as they arrive
from the data senders (e.g., Parameter Server). In addition, it
must manage long-running tasks asynchronously, so users can
interact with the visualization without it freezing as data are
updated.

To meet these requirements, the visualization server is
designed to have two levels of scaling [6]. At the first level,
uWSGI [19] will instantiate the web application in its first
process and will fork multiple times until the desired number
of workers is reached. Each of them will be fully instantiated
to be ready to serve connections. At the second level, espe-
cially to handle the long-running tasks (e.g., inserting/querying
data into/from database) asynchronously, the requests are
distributed over pre-forked processes (celery workers [3] and
Redis message queue [10]) and return responses as quickly
as possible. Finally, streaming (or broadcasting) data to the
connected users is done by using Websocket technology with
socket 10 library. Figure 2 depicts the overall architecture of
the visualization server.
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In its current implementation, we use a simple, serverless
SQL database (SQLite) that has a limitation on handling
concurrent writing operations. Thus, the data from the on-node
AD modules are stored in predefined file paths directly by
the on-node AD modules, and the visualization server fetches
those files upon users’ requests.

1) Requests from Data Senders: All requests from the data
senders are processed asynchronously and stored in the SQL-
based database. From this, the data from the Parameter Server
are broadcast to the connected users after processing the data
according to users’ query conditions. The broadcast data are
used for the in situ visualization.

2) Requests from Users: Requests from users are processed
synchronously for simple tasks (e.g., change query conditions)
and asynchronously for long-running tasks (e.g., query to
database). One example of long-running tasks is to query a
call stack that contains anomaly functions within a certain
time range and a specific MPI process of an application. The
queried data are broadcast to the connected users using socket
I/0.

In the next two subsections, two frontend visualization
modules are introduced. This visualization design presents
data in different levels of detail by following the “Overview
first, zoom and filter then details on-demand” mechanism
commonly adopted in the visualization domain [2].

B. In Situ Visualization

Using data from the Parameter Server, the in sifu visualiza-
tion receives data in a streaming fashion and processes it into
a number of anomaly statistics. We aim to provide a dynamic
“ranking dashboard” of the most and least problematic MPI
ranks as a rank-level granularity of the application. Figure 3
shows the statistics per rank (or MPI processes) adopted to

select the focused ranks. The statistics includes the average,
standard deviation, maximum, minimum, and total number of
anomaly functions. Users can select one of the statistics along
with the number ranks they want to see. For example, Fig. 3
shows the top and bottom 5 ranks based on standard deviation.
Detailed information is available when hovering over each bar
chart.

Selecting (or clicking) bars in Fig. 3 activates the visual-
ization server to broadcast the number of anomalies to the
connected users in a time frame while performance traced
applications are running. This streaming scatter plot serves
as a time-frame-level granularity by showing the number of
anomalies of an MPI rank within a time window. In Fig. 4,
each dot represents a time frame (referred to as “step” in the
case study) of a selected rank. Color encoding is applied to
differentiate ranks. Hovering over a dot will provide a pop-
up window that shows detailed information, including the
number of detected anomalies, time frame identification (ID),
and analyzed time range. Clicking one dot triggers the online
analysis visualization.

C. Online Analysis Visualization

The online analysis visualization is designed to retrieve data
from a database and present the finest level of granularity
into the function execution details. It consists of two parts:
a function view and call stack view. The function view
visualizes distribution of executed functions within a selected
time interval (Fig. 4). The distribution can be controlled by
selecting the X- and Y-axis among function ID, entry and exit
time, inclusive and exclusive runtime, label indicating if it is
anomaly or not, number of children functions, and number of
communication (messages). For example, Fig. 5 shows some
of executed functions at 0-th application, 0-th rank, and 149-
th frame. For the X- and Y-axis, entry time and function ID
are selected, respectively. Hovering over a circle will show all
available information. Clicking a circle (or a function) will
trigger a call stack view that includes the selected function.
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Fig. 5. The function execution visualization for a selected time frame (ID
149) and Rank ID O for Application O in an “entry” versus “fid” layout.
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In the call stack view, users can more closely investigate
the relationships among functions and communications over
ranks. For example, Fig. 6 shows a zoomed-in call stack
view within the time range refined by a user. Anomaly labels
are encoded by the color of the name of each function with
black being normal and red indicating abnormal. Hovering
over a horizontal bar in the call stack will provide a pop-up
window with detailed information regarding the corresponding
function. Communication (message receiving or sending) is
encoded by an arrow between a function and a horizontal line
representing another rank ID.

V. PRESCRIPTIVE PROVENANCE

We have developed the concept of prescriptive prove-
nance to facilitate the extraction of provenance for selected
performance events, describing their execution stack and
environment. Prescriptive provenance is the provenance of
events identified as anomalies by the distributed AD. The
AD prescribes the events for which provenance is extracted.
In addition, prescriptive provenance includes a number of
functions executing before and after these events are collected.
Some provenance data are collected directly by the TAU tools,
such as static information for a run, architecture and software
libraries, TAU instrumentation variables, and filtering configu-
ration used. Other information is generated by Chimbuko from
the performance trace, such as the anomalous functions and
their rank, thread, entry and exit timestamps, runtime, number
of children and messages, and a label (normal or anomaly).

Anomalous events are stored on disk together with their
provenance by the On-node AD Module. Additionally, a user-
defined runtime variable indicates the number of functions
to be stored before and after a detected anomaly. The value
determined by heuristics depends on the application code and
its stability regarding performance.

Provenance metadata will provide a map of the execution
model for each workflow run, including dataflow patterns.
Prescriptive provenance takes advantage of the data reduc-
tion afforded by AD to reduce a verbose performance trace
while simultaneously exhibiting anomalous and surrounding
functions at a detailed level.

In future work, when a locally anomalous event is detected,
the On-Node AD Module will output provenance data and

metadata. In the case of a globally detected event, the online
AD Parameter Server will trigger the provenance data and
metadata output for all nodes involved.

VI. EXPERIMENTS

In this work, we have selected a performance study that was
executed on Summit [22], a supercomputer equipped with IBM
POWERY9 CPUs (2/node) and Volta V100s GPUs (6/node) at
the Oak Ridge Leadership Computing Facility (OLCF). Each
node is furnished with 512 GB of DDR4, 96 GB HBM2, and
1600 GB of NV Memory. Summit nodes are connected by a
Mellanox EDR 100G InfiniBand network with non-blocking
fat tree topology.

A. The NWChemEx Scientific Use Case

The NWChemEx ECP project is targeting a range of
computational chemistry methods, from molecular dynamics
to high-order many-body methods. For molecular dynamics
capabilities, NWChemEx steers toward simulations of about
one million atoms, simulating processes on timescales of
about a microsecond and taking about one billion time steps
to complete [4]. Each time step creates a snapshot of the
molecular structure, and the time sequence of these shots
forms a trajectory. To cope with the resulting data volume
generated by these simulations, trajectories will need to be
analyzed on the fly. This approach requires a workflow setup
where the simulation and analysis codes run concurrently
and the data flow from one component to another. From a
performance perspective, the workflow approach generates a
number of additional concerns related to the scalability of
different components, the data flows between them, and how
interactions between the components affect performance. The
NWChemEx project’s goal is to achieve high performance,
requiring nontrivial optimization efforts, and its effectiveness
must be measurable to demonstrate any benefits. Application
performance provenance information (i.e., knowledge about
the development of code performance over time) can help
identify performance bottlenecks faster, as well as document
the effectiveness of performance optimization efforts [15].
Helpful information types include provenance data regarding
how the workflow maps to the machine (thereby defining
dataflow patterns) and where in the calculation (processor,
function, thread, etc.) performance issues arise. It is expected
that performance issues often will be related to communica-
tion. This can be within a node if busses get saturated or
between nodes if the network gets saturated or load imbal-
ance forces processes to wait. Thus, it will be important to
record where data originate and where it flows. Maintaining a
historical record of this information also is useful, so multiple
simulations can be run with different workflow configurations
in a co-design study. Moreover, this information can be mined
to discover how anomalous patterns depend on the workflow
configuration. The ability to query the execution of a single
workflow and analyze performance anomalies that arise will
assist in identifying problems and suggesting solutions. Mean-
while, the ability to query how performance changes across



different simulation setups will help assess what has been
achieved and how much of the design space has been explored.

As NWChemEx is under development, a modified version of
the molecular dynamics capability in NWChem [20] was used
for the case study provided in this work. The biomolecular
system considered in this case represents the scale and com-
plexity of the systems that NWChemEx ultimately will be able
to simulate on next-generation leadership-class computers. The
molecular system consists of two lipid layers in an aqueous
environment, while transmembrane proteins are embedded in
the lipid layers [21]. Using periodic boundary conditions, this
system emulates cellular compartments that can interchange
calcium ions through transmembrane ion channels. The system
consists of 1.2 million atoms to run simulations at a realistic
scale. To demonstrate in situ data analysis, NWChem was
modified to stream the trajectory data through ADIOS2 to the
analysis component. In addition, NWChem and the analysis
component were instrumented with TAU to stream perfor-
mance trace data to the Chimbuko infrastructure and analyze
the workflow behavior.

B. Scalability Analysis

1) Analysis of On-node AD Module: The AD accuracy
of the on-node AD Module is studied by comparing the
distributed and non-distributed versions. In the non-distributed
version, all performance data from all MPI processes are
managed with a single AD Module instance. As a result,
this single instance has the exact statistics. In the distributed
version, each MPI process has its own AD Module instance,
which handles only the performance data of the corresponding
MPI process of the simulation. Therefore, it only has local
statistics. These statistics are communicated asynchronously
with the Parameter Server, which collects global statistics.
The Parameter Server provides the global statistics back to
the various AD Module instances by request. The AD Module
instances subsequently use a combination of local and global
statistics to detect anomalous function behavior. Throughout
the simulations, the statistics are updated according to [14].
Figure 7 compares the function calls that were considered
anomalous between the non-distributed and distributed ver-
sions of the AD Modules. In our experiment, the distributed
version is as accurate as the non-distributed version—97.6%
accuracy on average over a range of MPI processes from
10 to 100. More importantly, the distributed version shows
significantly faster and constant execution time over increas-
ing MPI processes than the non-distributed version. For the
distributed version, the average execution time over different
numbers of MPI processes is around 0.05 seconds, while the
non-distributed version tends to increase the execution time as
the number of processes increases. This is because the single
AD instance has to aggregate and process trace data from all
MPI processes.

2) Analysis of the NWChem Execution Time and Data
Reduction: Figure 8 illustrates the execution time of the
NWChem workflow measured for three different cases: 1)
NWChem, 2) NWChem + TAU, and 3) NWChem + TAU

B distributed [ non-distributed accuracy
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Fig. 7. Comparison of the distributed and non-distributed AD modules.

+ Chimbuko. Notably, each measurement is the average of
15 independent executions, while all runs used the same
problem size. In addition to measuring the execution time,
TAU trace data are collected as NWChem is running. For the
"NWChem + TAU” case, the TAU data are dumped into BP
files with the ADIOS2 BP engine. For the "NWChem + TAU
+ Chimbuko” case, the TAU data are streamed to Chimbuko
with the ADIOS2 SST engine, and data reduced by Chimbuko
are dumped into JSON files. Figure 9 measures and compares
the sizes of the dumped data. It is worth noting that with
help from NWChem team domain scientists, we filtered TAU
trace function events in NWChem compilation and running
time that do not help the performance bottleneck reasoning.
For the execution time, we only used the filtered NWChem +
TAU (+ Chimbuko) version. Meanwhile, for the data reduction,
we also measured the size of dumped data from the unfiltered
version.

Figure 8 shows there are not many execution time differ-
ences with TAU or TAU + Chimbuko until around 1000 MPI
processes, compared to NWChem only case. After 1000 MPI
processes, the time difference increases. The time difference is
reinterpreted as execution time overhead, defined as follows:

(Tr - T;n)

T,
Here, T, is NWChem “only” execution time with r» MPI

overhead(%) = x 100.
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Fig. 8. NWChem execution time over MPI processes (log-log).



TABLE I
CHIMBUKO OVERHEAD OVER NWCHEM EXECUTION TIME

# MPI | 80 | 160 | 320 | 640 | 1280 | 2560
without Chimbuko | 1.85 | 2.60 | 5.13 | 692 | 854 | 1827
with Chimbuko | 1.31 | 213 | 553 | 6.85 | 16.67 | 24.56

processes, and 7" is NWChem + m execution time, where
m is either TAU (without Chimbuko) or TAU + Chimbuko
(with Chimbuko). Table I summarizes the calculated overhead.
With less than 1000 MPI processes, the overhead from “with
Chimbuko” is less than 10% (or less than 1% add from
“without Chimbuko”). With larger than 1000 MPI processes,
the overhead suddenly jumps to a higher number. For instance,
with 1280 MPI processes, there is about 8.54% overhead
without Chimbuko and about 16.67% overhead with Chim-
buko (about 8% add from “without Chimbuko™). We currently
are investigating where the sudden overhead jump comes
from. Nevertheless, with the insignificantly increased overhead
from Chimbuko (maximum about 8% addition at 1280 MPI
processes) in the execution time, we achieved averages of
14 and 95 times of data reduction for filtered and unfiltered
(full) cases, respectively. With the largest MPI processes, we
achieved 21 and 148 times of data reduction, respectively.
For example, at 2569 MPI ranks, 2,300 GB of raw data (or
117.5 GB for filtered) are reduced to 15.5 GB (or 5.5 GB
for filtered)}—a factor of 148 (or 14) times data reduction
with about 6% of additional overhead on top of about 18%
overheads from “without Chimbuko.” More importantly, even
with such a huge reduction in performance data, Chimbuko
still can provide scientists/developers with important insights
into workflow performance (demonstrated in Section VI-C).

C. A Visual Analysis Case Study

We conducted a visual analysis of the performance data with
a domain scientist from the NWChemEx team.

In the experiment, the scientist was specifically interested
in the function “MD_NEWTON” as it is a major simulation
function. By choosing one of the top five anomalous ranks, he

NWChem + TAU + Chimbuko (Filtered) B NWChem + TAU + Chimbuko (Full)
B NWChem + TAU (Filtered) B NWChem + TAU (Full)
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Fig. 9. Trace data size over MPI processes.
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Fig. 10. A case study of NWChemEx showing the function delay.

selected Rank 1164 and kept tracking the dynamic scatter plot
for the step-wise anomaly status. He found that a consecutive
step series reported normal execution, such as step 70 shown
in the top of Fig. 10. However, one execution was identified
as an anomaly in step 86, shown in the bottom of the same
figure. The abnormal execution almost tripled the time of the
normal one. By carefully comparing the children functions in
both steps, they remained quite similar. The scientist confirmed
that the root cause was not from the children. As highlighted in
the figure, he found that the launch time of a children function
“MD_FORCES” had an apparent delay in the abnormal case.
Hence, the scientist concluded the delay as the major reason
for decreased performance.

Then, the scientist switched to Rank 0 and wanted to check
how “MD_FORCES” may affect other ranks. He found that
Rank 0 mainly suffered anomalies in “MD_FINIT” (Fig. 11
and “CF_CMS” (Fig. 12). Both routines were related to
the “MD_FORCES.” Essentially, “MD_FINIT” initializes the
calculation of the forces in every time step. Within that,
“CF_CMS?” calculates the center of mass of the solute atoms.
This center of mass calculation involves calculating the center
of mass of the solute atoms on every processor. A global sum
is used to calculate the center of mass across all processors.
Next, the distance squared of every solute atom to the center
of mass is calculated and summed per processor. Another
global sum calculates the sum of distance squared across all
solute atoms. Taking the square root generates something of
a standard deviation of the mass of the solute atoms relative

Fig. 11. The case study showing anomalous function “MD_FINIT.”



Fig. 12. The case study showing anomalous function “CF_CMS.”

to their center of mass. The scientist supposed Rank 0 had
such problems here because it needed to be involved in the
global sums, but it also had a unique role to participate in other
functions which might cause it to fall behind other processors.

Another interesting finding drew the scientist’s attention.
He found that all other processes than Rank O tended to
have anomalies in “SP_GTXPBL” (or the wrapper routine
“SP_GETXBL,” see Fig. 13). This routine fetches data about
the atoms that live on other processes. The amount of data
to fetch and subsequently process depends on the domain
decomposition. When process ¢ fetches data from process
7, it fetches the water (solvent) molecules separately from
the solute atoms. However, depending on how the atoms are
distributed across the domains, some of these get operations
may take longer than others. Hence, this routine frequently
gets flagged as taking an anomalously large amount of time.
The scientist concluded that this observation helped him to
understand the cause of problem by explaining it from the
domain perspective.

VII. LITERATURE REVIEW

Workflows are increasingly used for orchestrating the ex-
ecution of complex scientific code suites in extreme-scale
and highly heterogeneous environments. However, to date, we
cannot reliably predict, understand, and optimize workflow
performance. Sources of performance variability—particularly,
the interdependencies of workflow design—execution envi-
ronment, and system architecture are not well understood.
While there is a rich portfolio of tools for performance
analysis [9], [11], [16], [18], modeling, and prediction for
single applications, these have not been adapted to handle
workflows. Workflows have specific performance issues based
on underlying resource management, potential contention for
resources, and interdependence of the different workflow tasks.
Performance tools for single applications, such as Score-p and
TAU, produce similar output in the form of Event Trace and

Time.

R1164.

Fig. 13. The case study showing anomalous function “SP_GETXBL.”

Profile files that can be read by performance and analysis
tools, such as Jumpshot, Paraprof, Vampir, and others. The
Profile file contains a concise summary of events, while the
Event Trace includes event details with timestamps and can
be quite large. Starting with Version 2.27, TAU has been
modified to integrate with Chimbuko and now offers some
support for workflows. HPCToolkit [18] does not provide the
level of granularity needed to detect the interdependencies be-
tween resources inherent in workflows. Currently, there are no
tools available apart from Chimbuko that capture performance
provenance for single applications or workflows. Other tools,
such as XALT [1], are used by facility administrators to track
user environments and do not extract performance.

Numerous efforts aimed at reducing and better understand-
ing detailed performance data exist, e.g., data compression,
feature extraction, and performance modeling. However, these
efforts are designed to operate post hoc on complete per-
formance data sets rather than in real time and may not
accommodate the level of details needed to address the com-
plexity of emergent workflows. Furthermore, as these tools
work post hoc, they require the collection of extreme-sized
performance data files, severely limiting their applicability for
complex applications and workflow scenarios. Performance
visualization is crucial for the representation and diagnosis
of HPC application performance [7] [25], showcasing dif-
ferent levels and aspects of the performance data. For trace
events, visualizing the events along a time axis is an intuitive
design as in Vampir [8] and Jumpshot [29]. These temporal
visualizations provide level-of-detail explorations, so users can
zoom into different time window granularities [25]. Function
invocation visualization is critical to understand the potential
trigger for runtime problems. A directed tree or graph usually
is employed to present the structure in a call stack, such
as Vampir [8] and CSTree [26]. Message communication
between functions also is important information to visualize, as
well as a common reason for application latency. A directed
line is drawn to represent the message delivery path, which
is adopted in Jumpshot [29]. Vampir also summarizes the
communication between threads or processes in terms of an
adjacency matrix [8].

The major drawback of existing visualization methods is
their limited capability for online performance evaluation and
processing of streaming performance data in an in sifu fashion.
However, online data reduction and sampling are critical
for extreme-scale applications to cope with their tremendous
performance data volumes. Chimbuko alone provides scientific
application developers with a single framework that integrates
in situ performance data reduction with provenance while
maintaining explainability thanks to its visualization module.

VIII. SUMMARY

In this work, we presented Chimbuko, the performance
analysis framework for real-time, distributed streaming AD
and visualization. Our approach is a scalable performance
framework that targets the capture and evaluation of trace-
level performance data for scientific workflows at the exascale.



It provides significant performance data reduction with a
factor of 148 times—without adding unreasonable additional
computational overhead. The streaming AD was shown to be
comparable in its accuracy to other batch processing modules.
Moreover, the visualization framework presented a scalable
solution for backend data processing and frontend multiscale
data representations. Finally, to showcase its effectiveness,
we presented the results of a case study of the Chimbuko
framework on Summit, successfully analyzing a NWChemEx
workflow study.

For future work, we will boost Chimbuko’s overall perfor-
mance to further minimize existing application overhead and
maximize detection power of anomaly behaviors in trace data.
As part of the effort to improve its AD capability, we will
use a more advanced AD algorithm to extend the AD module.
Furthermore, to achieve minimal overhead, we will seamlessly
integrate the AD module and TAU. For visualization, we
intend to adopt a more advanced distributed database for
simultaneous writing and advanced visual design.
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