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Abstract

Computational protein threading is a powerful technique for recognizing native-like folds
of a protein sequence from a protein fold database. In this paper, we present an improved
algorithm (over our previous work) for solving the globally-optimal threading problem, and
illustratehow the computational complexity and the fold recognition accuracy of the algorithm
change as the cutoff distante for pairwiseinteractionschanges. For a given fold of m residues
and M core secondary structures (or simply cores) and a protein sequence of n residues, the
algorithm guarantees to find a sequence-fold alignment (threading) that is globally optimal,
measuredcollectivelyby (1) the singletonmatch fitness, (2) pairwiseinteractionpreference,and
(3) alignmentgap penalties, in O(mn + MnN15c-1) time and O(mn + nNC-l) space. C, the
topological complexity of a fold as we term, is a value which characterizesthe overall “structure”
of the considered pairwiseinteractionsin the fold, which are typically determinedby a specified
cutoff distance betweenthe beta carbon atoms of a pair of amino acids in the fold. C is typicaI1y
a smallpositive integer. N representsthe maximum number of possible alignmentsbetween an
individual core of the fold and the protein sequence when its neighboring cores are already
aligned, and its value is significantlyless than n. When interactingamino acids are requiredto
“see each other”, C is bounded from above by a small integer no matter how large the cutoff
distance is. This indicatesthat the protein threading problem is polynomial-timesolvableif the
condition of “seeing each other” between interacting amino acids is sufficientfor accurate fold
recognition. A number of extensionshave been made to our basic threading algorithmto allow
finding a globally-optimal threadingunder variousconstraints,which include consistencieswith
(1) specified secondary structures (both cores and loops), (2) disulfidebonds, (3) active sites,
etc.

1 Introduction

Computational protein threading, as an effective tool for recognition of native-like folds, concerns
finding an alignment between a protein fold template and a query protein sequence, which optimizes
a specified scoring function. Typically, this function is a weighted sum of the following measures:
(1) the fitness of aligning a particular amino acid to a particular environment in the fold template;
(2) the interaction preference between a pair of amino acids assigned to the template positions that
are spatially “close”; and (3) gap penalties for the unaligned amino acids and template positions.
A number of computer programs for protein threading, using this type of scoring function or

variations, have been developed [1, 2, 6, 7, 8, 10, 12, 13]. While some success has been achieved
by these and similar computer programs, the protein threading problem is far from being solved
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[3, 4]. Among many of the unsolved issues in the protein threading
computational methods that guarantee to find an optimala threading
problems which need to be further addressed.

problem, lack of effective

represents one of the key

The computational protein threading problem, using the above or a similar scoring scheme, is

widely considered to be computationally intractable. While this belief is supported by the NP-
hardness proof of protein threading [9], it also makes people shy away from seeking a more direct
solution to the threading problem. As the NP-hardness proof is done based on the assumption

that interactions between every pair of amino acids in a protein structure need to be considered
and included in the scoring scheme, this result may not apply to the protein threading problems
that many of the existing computer programs attempt to solve. This is because most of the
these programs use a cutoff distance in defining the pairwise interactions, which typically ranges
from 7A to 15& As we know, when the cutoff distance changes from the size of a protein fold’s
diameter to zero, the computational complexity of the threading problem changes from NP-hard
to polynomial-time solvable. Some recent research suggests that considering pairwise interactions
among spatially “close” residues, e.g., residues that can “see each other”, is probably sufficient for
accurate fold recognition [11]. Understanding how the cutoff distance of pairwise interactions affect
the computational complexity and the fold recognition accuracy of the protein threading problem
is one of the key goals of our research.

We have developed an algorithm which guarantees to find an optimal threading between a
query protein sequence and a fold template. In formulating the threading problem, we follow a
few widely-used assumptions. We assume that (i) each protein fold is represented by a series of
cores (cwhelices and /?-strands) with the connecting loops being removed; and (ii) alignment gaps
are confined to the regions between cores. Different than the other threading algorithms, the
computational complexity, O(mn + lVfnN1-5c-1 ), of our algorithm depends not only on the length
n of the query sequence, the length m and the number of cores of the fold template, but more
import antly also depends on the topological complexity C of the fold template, where N is << n.
The topological complexity, which will be defined in Section 2, characterizes the overall structure of
the considered pairwise interactions of the fold template, and it is a monotonic function of the cutoff
distance of pairwise interactions. It is bounded from above by a small constant when the concept
of “visible volume)’ [11] is used in defining the pairwise interactions, implying that the protein
threading problem is polynomial-time solvable if the “seeing-each-other” condition on interacting
pairs is sufficient for accurate fold recognition.

We have implemented this globally-optimal threading algorithm with a number of extensions
as a computer system, called PROtein Structure Prediction and Evaluation Computer Toolkit
(PROSPECT). These extensions are added to facilitate easy incorporation of known biological
information, like (1) known (or predicted) loop regions and other types of secondary structure
information, (2) known disulfide bonds, (3) active sites, about the query protein sequence into our
threading program.

aThroughout this paper, an optimal threading means a globally optimal threading.
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2 An improved algorithm for globally optimal threading

2.1 Problem formulation

Let s = S1S2...sn be a protein sequence, and (t, T) be a protein fold template with loops being

removed~, where t = t1t2...tm is a sequence of templat e positions (with an array of physical proper-

ties attached to each of them), and T = 2’1,..., TM is the sequence of core secondary structures t is

partitioned into. Let pairs (t, T) be the set of all pairs of positions in the template (t, T), considered
to have pairwise interactions. Further let loop(Ti, Ti+l ) represent the loop lengthc between the cores
Tz and Ti+l. We use ~ (z, y) to represent the fitness of aligning the amino acid x to the template
position ~, P(z1, Z2) to denote the interaction preference between of a pair (ZI, X2) G pairs (t, T), and
L(rl, Jr2)to represent a penalty for the length difference between two (“aligned”) loops of lengths
T1 and r2. A protein threading problem can be defined as to find a partition~ {S1, ..., S2M+1} of s
such that l\S2iII= llTi[1for all 1 S i S M, and the following function is minimized:

~ ~ f(%i[~l,~i[~])+ ~ ~(Sz~[j],Szi,[j’]) + ~ L(llSz~_lll,1OOP(2’-1 , Ti))

K[l,lvqjc[l,llzll] (n [j],Tif [j’])epairs(t,q i~[l,h’+1]

(1)

‘~ element of X, and [[ . [Irepresents the cardinalit y of a set.where X [k] represents the k

Because of our assumption that alignment gaps are confined to regions between cores, we can
use cores as the basic alignment units and give the following more compact definition of the protein
threading problem, which we will use throughout the rest of the paper. Let

PAIRS (t, T) = {(Tz, Tj) Ithere exists (z, y) E pairs(t, T) and x E Tz, y G Tj}.

The protein threading problem can be restated so as to minimize the following function:

~ F’(SZ,, T,) + ~ HS22, s2i’
K[l,M] (T,,Ti,)ePAIRS(t,~)

where
P(szi, Szzt)= x

+ ~ ~(lls2z-lll> looP(Ti-l, Tz)) (2)
iE[l,M+l]

p(szz [j], Szz/[j’]) ,

(~,~],1”,,~’])cpairs(t,~)

and

Note that each partition {S1, .... S2~+1 } ofs defined above gives an alignment between T1.. .TM
and s. We call the starting position of S2i in s an aligned position of core Tz.

~Only loop lengthconservationbut not the actualloop alignment is modeled in our formulation of the protein

threading problem.
cloop(’To, 2’1) and loop(TN, TjV+I ) represent the lengths of loops before the first core T1 and after the last core TN,

respectively.

‘Each Si is a substring ofs, and some of the S;’s could be f).
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Figure 1: A graph representation of a template. Each node represents a core. An edge represents

pairwise interactions between residues of the corresponding cores. The portion inside the dotted
box represents a partial template, where each open link has an assigned orientation.

2.2 A divide-and-conquer algorithm

The problem described in Section 2.1 is a variation of the one described in [15], and we outline an
improved algorithm for solving the problem. We first introduce a few terminology. We call each

(Ti, T’) c l’AIRS(f, T) a link between cores Ti and Tj. Each link (Ti, Tj ) has an orientation, i.e.,

one end is the source and the other end a sink. The orientation of an link is determined by our
threading algorithm to optimize the computational efficiency of the algorithm. For any sequence
Z, we use Xi,j to denote the subsequence of z from positions z to j. Each partial template Ti,~
determines a set of open links {(TV, Tw)}, with v E [i, j] and w $! [z,j]. An open link Ti,j, for a
given set of link orientation assignments, is called an in-link of Ti,j if its source @ Tz,j; otherwise
it is an out-link of T2,3. The open Link complexity of Ti,j under a particular set of link-orientation
assignments is defined to be the number of different sources that its open links have. An aligned

position of a link (Tv, Tw) is the aligned position of its source.
Let score(Ti,j, s~,w, .Di,j, Ai,j) represent the score of a lowest-scoring alignment between the

partial template Ti,j and the partial sequence sO,Wunder the constraints that Tz,j’s open links
have orientation assignments
statement can be proved by
k G [i, j – 1], there exists a u

Di,j and Tz,j’s open links’ aligned positions are Ai,j. The following
an inductive argument, which we omit in this abstract. For any
< [v, w – 1] such that

sC~@ij ~sW,W7 Di,j, Ai,j) = min
D;k ,A: ~,>

and for the boundary condition,

score (Ti,k, Sv,u, D# U D&A@ A:,k)+

score (Tk+l,j~ s~+I,w?D?: u D&4; u-%)+ (3)

L(posn(Tk+l) – posn(T~) – llTkl[, loop(Tk;T~+l))

{

F(aligned(Ti, u), Ti) + ~in-link (Ti,Tj)~PAIRS(~,T)
score (Ti,i, Sv,u,Di,ijAi,i) = min

@o,w-l]Ti,il+l] P(aligned(Ti, u), aligned(Tj, posn(Tj))) }
7

(4)

where D: ~ (and similarly A: ~) denotes the orientation (aligned position) assignments to the open

links of Ti,k that connect t; Tk+l,j; A~f (similarly A~:~) represents the subset of A;,j that is

associated to Ti,k (Tk+l ,j ); and D~,;$and D~;$ are similarly defined; posn(Ti) denotes the current
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aligned position of T!zand aligned(Ti, z) denotes the aligned portion ofs with T!! when the aligned

position of Ti is x; and ~ represents the inversed “in”/ “out” sequence of X.
Based on (3) and (4), we know that scare(T’l,~, Sl,n, ,0 0) gives the score of an alignment that

minimizes function (2) (and equivalently function (1) ). The following pseudo-code gives a direct
implement ation of recurrence (3) and calculates the score of an optimal alignment between T and
s.

THREADING (Ti,j, Sv,w, Dz,j, Ai,j, score)

I. if” “
2.

3.

4.

5.
6.

7.
8.
9. else a simple procedure for calculating function (4).

Z<J

score + +m;

pick a k E [i, j – 1] and a set of orientation assignments D~,k;
for each u E [v, w – 1] and each possible set of aligned positions A& do

score. + L(posn(T~+l) – posn(Tk) – [lTkIt,loop(Tk, Tk+l));
call THREADING (Tz,k, sV,M,D&$ U D?k, A# U A~,k,sco~el );

call THREADING (T~+l,j j s~+1,w7 .D~j~ u D~k, A~~ U A~,k,score2);
if (score > score. + scorel + score2) then score ~ scoreo + scorel + scorez;

The algorithm is correct for any k e [z,j – 1] and any set of orientation assignments (line 3); but
its computational efficiency changes as these values change. To recover an optimal sequence-fold
alignment from the optimal alignment score, some simple bookkeeping needs to be done, which can
be done without increasing the asymptotic complexity of the algorithm.

3 Computational complexity analysis

By exploiting a number of (nontrivial) data structures, the algorithm THREADING can be
1“5C time and O(mn + nC) space, where C is the maximum openimplemented in O (mn + inn )

link complexity throughout the recursion of the algorithm (for the selected k’s and orientation
assignments). To further reduce the computational complexity hinges on two things: (a) making
C as small as possible; (b) making the number of possible aligned positions for each individual
core, and hence the number of combined aligned positions (line 4), as small as possible. We have
achieved this by (i) discovering a new and significant parameter, the topological complexity of a
fold template, which leads to the minimization of C; and (ii) utilizing biological constraints to
reduce the number of possible aligned positions for each core.

3.1 The topological complexity of a fold

For partial template Ti,j, we use c(Ti,j, D) to denote Ti,j’s open link complexity under the link-
orientation assignments D. Let ‘T represent a binary tree with the root representing the whole

template T1,M, the two children of each non-leaf node v representing a hi-partition of the (partial)
template that v represents, and each leaf node representing a (different) core. We call

rein{
‘T,D tree n~d~Ti,j ET

c(Zj, ~)} (5)
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the topological complexity of fold T. An efficient algorithm has been developed for calculating the
topological complexity of a fold and its associated hi-partition points and link-orientation assign-
ments. By using these hi-partition points and link-orientation assignments in line 3 of THREAD-
ING, the maximum open link complexity C becomes the topological complexity of the fold, and

hence minimized. We refer the reader to [15] for more details.
Table 1 shows the distribution of the topological complexity with respect to the cutoff distance

(measured between beta-carbon atoms) for pairwise interactions, over a set of 750 folds’ in our

database. The first number of each entry denotes the number of cases among 750 folds that has
a particular topological complexity (row) when the cutoff (~) for pairwise interactions is set at a
particular distance (column). The second number of each entry is the same as the first one except
that the “seeing-each-other” condition is applied. We have observed that the topological complexity
of our current data set is bounded from above by 8, no matter how large the cutoff distance when
the “seeing-each-other” condition is used in defining interacting pairs.

Table 1: Distribution of topological complexity

c/cutoff (A) 5 6 7 8 9 10 11 12 13 14 15

0 52 52 52 52 52 52 52 52 52 52 52
52 52 52 52 52 52 52 52 52 52 52

1 87 87 87 87 87 87 87 87 87 87 87
87 87 87 87 87 87 87 87 87 87 87

2 249 161 133 116 110 105 101 98 116 125 121
255 162 134 118 111 107 103 102 128 135 125

3 246 251 184 133 114 99 91 85 70 86 82
250 252 194 150 116 105 86 79 76 92 84

4 116 179 231 197 159 140 129 116 120 102 93
106 177 241 187 160 150 138 133 117 105 103

5 0 20 61 140 144 147 121 113 106 109 102

0 20 61 135 152 142 127 116 102 106 102

6 0 0 2 24 77 100 119 123 111 98 96

0 0 1 20 66 96 121 121 114 97 103

7 0 0 0 1 7 18 47 69 74 78 86
0 0 0 1 6 10 35 60 66 66 76

8 0 0 0 0 0 2 2 6 13 12 28
0 0 0 0 0 1 1 2 6 10 18

9 0 0 0 0 0 0 1 1 1 1 4

0 0 0 0 0 0 0 0 0 0 0

3.2 Application of biological constraints

To reduce the number of possible aligned positions in the query sequence for each individual core
is another key in reducing the total number of possible sets of aligned positions, the computational
bottleneck of our threading algorithm. For each core Ti, we use Di to denote the set of all possible
aligned positions of Ti. Two types of information can be used to reduce the size of a Dz: (1) general
biological constraints; and (2) fold-specific knowledge.

‘The template length ranges from 31-793 amino acids and the number of their core secondary structures ranges

from 1 to 34.
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Figure 2: Valid aligned positions D,:(x) and D: for T.z_l and Tz+l, respectively, when T; is aligned at
position x. Each node on layer i represents a possible aligned position core Ti may have (independent
of other cores alignments). Each g E Dt: (x) and ~ forms a directed edge from x to g; Similarly for
each y e D$ (z).

We have developed a method for calculating the fitness profile of each individual core in the query
protein sequence based on the combination of singleton fitness and secondary structure predictions
[16], and have applied this method to preclude part of the query sequence as the possible aligned
positions. Based on our extensive study, we have O% false preclusion of correct aligned positions
in the fold recognition process when related thresholds are set so that 10 - 20% of the sequence
positions are precluded as possible aligned positions for each core. Knowledge about specific folds
could help to further reduce the number of possible aligned positions for each individual core.
Multiple sequence alignment or other protein sequence analysis could reveal positions of loop regions
in a sequence, which can be precluded for consideration for possible aligned positions for any core.

Typically a loop region has 5- 30 amino acids. By using the minimum and maximum loop
lengths as constraints, we can significantly reduce the size of each Di. We outline an algorithm to
achieve this. Let each Di be sorted in the increasing order of their potential aligned positions. For
each z E Dz, define D;(z) be the sublist of Dz+l such that both the minimum loop length and
the maximum loop length are satisfied whe Ti is aligned at position a and TZ+l is aligned with any
element of this sublist, for each i G [1, M — I]. Z3j (~) is similarly defined with respect to !2’-1,
for each z E Dz and each z E [2, M]. Using the graph representation of Figure 2, we have the
following key observation: an x E Di is a part of a possible set of aligned positions in line 4 of
THREADING, for any i, if and only if r is on a simple direct path from an element of D1 to an
element of D~. The following algorithm removes all the elements that are not on any such direct
path.

FILTER (23)
forward step:

1. for i = 2 till M step +1 do
2. if z ● Di has 27:(z) = @then removex;
reverse step:

3. fori = M– 1 till 1 step –1 do
4. if z ~ Di has Zl%+(x) = 0 then remove Z.

7
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The correctness of the algorithm is straightforward to verify. Let IV = maxi,z~~,{ IID,v(x) l/, 11-D~(~) 11}.

With a careful implementation and analysis, the computational complexity of THREADING can
15C–1) time and O(mn + nNc–l ) space.be reduced to O(rnn + MniV

4 Constrained optimal protein threading

This section gives a number of extensions to the basic THREADING algorithm of Section 2. The
main goal is to provide a mechanism to facilitate easy incorporation of known biological constraints
and knowledge during the fold recognition process. Knowledge about a query protein sequence

will not only help to reduce the computational cost of the threading problem (as we discussed in
Section 3), it could also help to significantly increase the fold recognition accuracy. All the following
constrained optimal protein threading problems can be solved by slightly generalized versions of
THREADING.

Secondary structure information

It is estimatedthat the best secondary structure prediction programs can give approximately 70%

of secondary structure (cwhelix, @-strand, and loop) prediction accuracy. Effectively using this type
of information should help to improve the sequence-fold alignment accuracy. Typically, a secondary
structure prediction program gives an estimate on the “probabilities” of a particular residue being a
helix, a strand and a loop, represented as (PO(o), pfl(x), po(z) ). We can model the optimal threading
problem with known secondary structure predictions in the same way as in problem (1) except that
the following term is added to the objective function (1).

w, ~ ~ (1 ‘Pcore(~,~])(S2i[~l))
ze[l,M]jE[l,/lTill]

where core(a) E {a, ~, o} is the secondary structure of residue Ti [j] in the fold template,
a weight factor.

Disulfide bonds

Disulfide bonds between certain cysteine pairs of an unknown structure could possibly

(6)

and WSis

be deter-

mined before the full protein structure is solved. This type of knowledge can also help to improve
the fold recognition accuracy. We model the optimal threading problem with known disulfide bonds
C in the same way as in problem (1) under the constraint that each pair of C are aligned with tem-
plate positions within certain distance dC_C. This constraint can be implemented by adding the

following term to the objective function (1).

E bond(Tz~], T!f) (7)
(s2,[j],s2i,~q)cc

where bond(z, g) = Wd, a large negative weight factor if the distance between x and g is < dC_C, it

is zero otherwise.



●,’

Active sites

Active sites of a query sequence could be determined experimentally or by multiple sequence align-
ment before the structure is fully determined. If the geometric relationship among the involved
residues of an active site in the tertiary structure is known, this type of information can also be

used to help to improve the sequence-fold alignment accuracy. The optimal threading problem with
known active sites can be modeled as follows. Let G(A) be a vector of geometric features describing
the relationship among the involved elements of an active site A, and similarly G(aligned(A)) for
A’s aligned positions in the fold template. Ideally, G() should reflect the multi-party relationship
among the involved elements. But in our current implement ation, G () is represented as an array
of pairwise relationship, describing geometric features along the line connecting two involved ele-
ments of A. This is because the general framework of our algorithm can deal with only pairwise
“interactions”. The constraint of putting an active site in an appropriate geometric environment
of a fold template can be implemented by adding the following term to the objective function (1).

‘a E match(G(a;, aj), G(aligned(ai), aligned)) (8)
(ai ,aj )GA

where A is a list of all the pairs of elements of an active site, and match (z, g) measures how well
two feature vectors match. Research is currently under way to extend this problem to deal with
the most general form of G().

Residue-residue distance constraints

Research is currently under way to explore using distance information between certain amino acids
in an unknown structure from the NMR data as constraints for protein threading. Distance infor-
mation between some pairs of amino acids in a sequence can be easily and unambiguously extracted
from the NOESY spectra data. Effectively using this type of information could significantly im-
prove the fold recognition accuracy. A generalized objective function to the one used for disulfide
bonds is currently being studies for the purpose of incorporating NMR data in the fold recognition
process.

5 Summary

The goals of our research are two-fold: (1) on the practical side, we want to develop an efficient
algorithm that guarantees to find an optimal threading between a protein sequence and a fold
template; (2) on the theoretical side, we are interested in understanding the intrinsic computational
complexity of the protein threading problem under a rigorous formulation in which “accurate”
fold recognition can be achieved. Our research suggests that topological complexity of a protein
fold plays a significant role in determining the (intrinsic) computational complexity of the protein

threading problem. The discovery of the topological complexity of a fold also helps us to better
understand how to develop more efficient algorithms for the protein threading problem, by taking
advantage of the properties of this measure.
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By studying the topological complexity as a function of the cutoff distance between two inter-
acting amino acids, we have put the protein threading problem into a more general framework of
study. As we know, at the two extreme points lay the protein threading problem either as low-
degree polynomial time solvable or NP-hard. Our study shows how the computational complexity
changes as the cutoff distante increases, with and witbout applying the idea of visible volume.
Extensive study is currently under way to understand how the fold recognition accuracy changes as

the cutoff distance for interacting pairs changes. In a preliminary test on the sequence-fold align-
ment accuracy, PROSPECT aligned about 50’%0of the cores to the correct positions on 33 out of
the 68 pairs of aligned structures from the UCLA benchmark set [5], and the average alignment
accuracy is 3.9 base shifts per residue.

By carefully implementing the THREADING algorithm as a computer system PROSPECT,
we can realistically find the most probable fold, based on a specified scoring scheme, for a query
sequence of about 400 amino acids against a database of over 1000 folds with their topological
complexity ~ 6, on a workst ation. With guaranteed global optimality and low computational cost,
we expect PROSPECT to become a powerful tool in helping structural molecular biologists in
their work of protein structure determination.
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