
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 1

Phase-Only Beam Broadening of Contiguous
Uniform Subarrayed Arrays

Barry K. Daniel, Senior Member, IEEE, Adam L. Anderson, Senior Member, IEEE

Abstract—In modern antenna systems, beam broadening of
subarrayed arrays provides continuous coverage of a wide angu-
lar extent in a cost-effective manner. While many methods have
been published that address beam broadening of traditional (non-
subarrayed) arrays, there is a knowledge gap in the published
literature with respect to efficient beam broadening of contiguous
uniform subarrayed arrays. This paper presents efficient methods
for beam broadening of contiguous uniform subarrayed arrays
where the excitation of each element is not individually controlled
but the elements of the array are grouped together as subarrays
to have the same element excitations. Particularly, this paper
focuses on phase-only optimization to preserve maximum power
output. Three modified iterative Fourier transform (IFT) methods
and one genetic algorithm (GA) are presented to efficiently search
the vast solution space of possible phase settings for a solution
that satisfies the desired broadened pattern. These methods are
evaluated on idealized 1x40 and 1x80 linear arrays with five
element subarrays and 40x40 and 80x80 element rectangular
arrays with 5x5 element subarrays. The proposed modified IFT
methods are found to be faster than the GA approach while
the GA approach only offer a few percentage points of better
effectiveness.

Index Terms—Antenna pattern synthesis, beam broadening,
iterative Fourier transform, subarrayed arrays.

I. INTRODUCTION

MANY of the instrumentation radars being delivered to
military test centers around the world are designed with

phase-only adjustable contiguous uniform subarrayed arrays
to reduce cost while giving acceptable performance. These
instrumentation radars utilize beam broadening for continu-
ous measurement of objects over wide areas to increase the
probability that unexpected phenomenology produced from
prototype projectiles can be captured and characterized. There-
fore, the generation of efficient and effective broadened beam
patterns for contiguous uniform subarrayed arrays is essential
and is the focus of this paper.

The architecture of a contiguous uniform subarrayed array
reduces cost by limiting the number of control elements but
introduces problems with the generation of broadened beam
patterns because the elements are grouped together in a manner
that only allows the amplitude and phase of each subarray, not
each element, to be adjusted independently. Only allowing
excitation adjustments at the subarray level makes it more
difficult to form a low-ripple broadened main beam and to
reduce the sidelobes. Subarrayed architectures also produce
grating lobes which limit the effective electronic scanning of

B. K. Daniel is with the Oak Ridge National Laboratory, Oak Ridge, TN,
37831 USA (e-mail: danielbk@ornl.gov).

A. L. Anderson is with MRSL Real-Time Systems Lab, Monterey, CA,
93933 USA e-mail: adam.anderson@mrsl.com.

these types of arrays. However, currently delivered subarrayed
instrumentation radars utilize mechanical movement to steer
the widened beams instead of electronic steering.

These delivered instrumentation radars utilize solid-state
transmit amplifiers which operate most efficiently in saturation
(unity gain), it is often desired to utilize phase-only approaches
to beam broadening as presented in [1]–[3] to optimize
power efficiency. However, these published methods of beam
broadening assume that the phase of each element in the array
can be independently adjusted which is not true of contiguous
uniform subarrayed arrays.

There is currently a gap in the available literature regarding
efficient methods to broaden the main beam of subarrayed
arrays when the synthesis is constrained to be phase-only, uti-
lize contiguous uniform subarrays, and produce low sidelobes.
Papers such as [4], [5] address synthesis with subarrayed
architectures but they concentrate on optimization of combined
sum and difference patterns, not broadening the main beam.
The author in [6] proposes a synthesis method for subarrayed
arrays but this method is amplitude only, utilizes subarrays
of unequal sizes, and does not address beam broadening.
The papers [7], [8] approach our desired domain space but
utilize hybrid subarrays where the amplitude is dependent on
the subarray amplitude but the phase of each element in the
subarray can still be adjusted independently. To the best of our
knowledge, the closest published material found is [9] where
a beam broadening approach for subarrayed architectures is
constrained to be phase-only and utilize contiguous subarrays.
Unfortunately, this method constrains the widened full array
beam widths to only those beam widths that are multiples
of the subarray beam width often producing unacceptable
sidelobe levels.

It is well known that the Fourier transform (FT) can be used
to compute the array factor (AF) of a phased array antenna
with uniformly spaced antenna elements [10] where the AF is
defined as the radiation pattern of the array minus the effects
of the individual element patterns. A single application of a
simple transform method such as FT cannot be used effectively
for phase-only synthesis applications because simple transform
methods assume that the amplitude and phase of the elements
or subarrays can be adjusted. Therefore, iterative processes
using transform methods such as FT were developed. Early
works such as [11], [12] show the benefits of utilizing iterative
processes based on the FT to synthesize beam broadened array
patterns. In [13], iterative use of the FT and the inverse FT
was shown to enable generation of AFs with low sidelobes
and directional nulls. In [14], [15], this iterative process was
improved by detailing the usage of the more computationally

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 2

efficient fast Fourier Transform (FFT) and the inverse fast
Fourier transform (IFFT). However, these published IFT
approaches assume that the phase of each element can be
independently adjusted which is not true for subarrayed arrays.

This paper contributes to the currently published literature
by presenting new efficient beam broadening methods for
contiguous uniform subarrayed arrays by proposing three
enhanced IFT methods and adapting the GA method for sub-
arrayed arrays. The proposed IFT methods extend previously
published IFT methods by accounting for contiguous uniform
subarrayed architectures through the use of mean pooling tech-
niques to aggregate the elements into subarrays and to ensure
symmetry in the array pattern. Likewise, the presented GA
method has been adapted for contiguous uniform subarrayed
arrays. The GA method was selected for adaptation because it
has been commonly utilized in previous non-subarrayed array
synthesis literature such as [16], this is the first time to the
authors’ knowledge that it has been adapted for contiguous
uniform subarrayed arrays. The proposed methods are applied
to linear subarrayed arrays and are then expanded for use
in planar subarrayed arrays. Simulation results for the beam
broadening and shaping of the main beam for linear arrays
containing eight and sixteen subarrays, each containing five
elements, are given to demonstrate the validity and efficiency
of the proposed method. Simulation results for planar arrays
containing 8x8 and 16x16 subarrays, each containing 5x5
elements, are also presented.

The mathematical foundation for synthesis is presented in
Section II and is followed by Section III which presents the
three enhanced IFT methods and the GA method that are
modified to account for subarrayed architectures. Section IV
shows the simulated results of the proposed methods for linear
and planar subarrayed arrays and compares the efficiency and
effectiveness of each method. Finally, the paper is concluded
in Section V.

II. MATHEMATICAL FOUNDATION

It is well known that the far-field array pattern of a linear
array of N elements each spaced a distance d apart can be
written as the product of the element factor, EF , and the array
factor AF

F (u) = EF (u)AF (u) (1)

where u = sin θ, and θ is the angle relative to the array
normal. For isotropic elements, EF (u) = 1; therefore, the
array pattern, F (u), depends solely on the array factor which
can be represented as

AF (u) =

N−1∑
n=0

Wne
jkndu, (2)

where N is the total number of elements in the linear array,
Wn is the complex excitation of the nth element, k is the
wavenumber (2π/λ), and λ is the wavelength. The complex
excitation, Wn, for a normal phased array where the amplitude
and phase of each element can be independently adjusted can
be written as

Wn = Ane
jφn , (3)

where An is the amplitude and φn is the phase of the element
excitation.

Let us consider a subarrayed linear array where these N
elements are separated into contiguous groups of Ns elements
to form S subarrays. Each subarray has a complex excitation
consisting of an amplitude and phase value that drives all
elements in the subarray as visualized in Fig. 1. For subarrayed

Fig. 1. Subarrayed architecture geometry. This figure shows an example of
a contiguous uniform subarrayed linear array antenna with N = 12 antenna
elements, Ns = 4 elements per subarray, and S = 3 subarrays.

architectures (2) can be rewritten as

AF (u) =

S−1∑
s=0

Ns−1∑
ns=0

W(Nss+ns)e
jkd(Nss+ns)u, (4)

where the complex excitation variable WNss+ns
is the com-

plex excitation applied to each subarray. For instance, in Fig.
1 the first subarray consists of the first four elements of the
array. Since this first subarray is given a complex excitation
of A0e

jφ0 , the excitation of each of the first four elements is
identical, W0 = W1 = W2 = W3 = A0e

jφ0 . The response of
each subarray is given by

AFs(u) =

Ns−1∑
ns=0

W(Nss+ns)e
jkdnsu. (5)

AF (u) =
S−1∑
s=0

AFs(u)e
jkdNssu. (6)

As mentioned above, the excitation of each element in the
subarray is identical; so the excitation variable WNss is a
constant within each subarray and can be pulled outside of
the summation as a variable only dependent on the subarray
number as

AFs(u) =W(Nss)

Ns−1∑
ns=0

ejkdnsu. (7)

Now if we recognize that the summation in (7) is the
common pattern for the structure of each subarray in the
uniform contiguous subarrayed array, we can reduce (7) to

AFs(u) =W(Nss)B(u), (8)

where B(u) represents the common pattern for the structure
of each subarray.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 3

Substituting (8) into (4), the resulting array factor for the
subarrayed architecture is

AF (u) = B(u)

S−1∑
s=0

W(Nss)e
jkdNssu. (9)

Notice that the summation in (9) is using subarray spaced
(dNs) elements to represent the substructure of the positioning
of the subarrays in the full array and that B(u) is a constant
outside of the summation. Using this information, (9) can be
reduced further to

AFss(u) = AF (u)/B(u) =

S−1∑
s=0

W(Nss)e
jkdNssu . (10)

Expanding the scope of the mathematical model for use in
planar subarrayed arrays, (2) can be extended to apply to 2-D
arrays with N ×M elements arranged in a rectangular grid
with spacing dx and dy as

AF (u, v) =

N−1∑
n=0

M−1∑
m=0

Wn,me
jk[ndxu+mdyv], (11)

where Wn,m is the complex excitation of the element in the
nth column and mth row, k is the wavenumber (2π/λ), λ is
the wavelength, dx is the separation between the columns of
elements, dy is the separation between the rows of elements,
u = sin θ cosφ, and v = sin θ sinφ.

Similarly, (4) can be extended to represent planer subarrayed
architectures as

AF (u, v) =

S−1∑
s=0

T−1∑
t=0

Ns−1∑
ns=0

Ms−1∑
ms=0

Wx,ye
jk[xdxu+ydyv], (12)

where x = Nss+ ns and y =Mst+ms.
Likewise, (10) can be extended to represent planar subarray

substructures as

AFss(u, v) = AF (u, v)/B(u, v) =

S−1∑
s=0

T−1∑
t=0

Wg,he
jk[gdxu+hdyv].

(13)
where g = Nss and h =Mst.

A. General IFT Method

Close inspection of (2) reveals that this equation can be
represented as a finite Fourier series that relates the element-
level excitations, Wn, of the array to the array factor of the
array through a discrete inverse Fourier transform. Since AF
is related to the element excitations through a discrete inverse
Fourier transform, a discrete direct Fourier transform applied
to AF will yield the element excitations. The general IFT
method utilizes these Fourier transform relationships between
AF and Wn to iteratively find Wn that will generate a desired
AF , AFdes. The general process is initiated with all Wn set to
unity amplitude and zero phase. Then the process iteratively
generates the AF associated with the current Wn, compares it
to the AFdes, adjusts the AF to be more like the AFdes, and
then generates new Wn from the adjusted AF . This iterative
process is repeated for a maximum number of iterations, imax.

For computational efficiency the IFT process makes use of
the IFFT and FFT operations. When Wn is used in the IFFT
operation to generate the AF , it is zero padded to become
Wzp where the size of Wzp is the nearest power of two greater
than 10×N . After the FFT process is used on the AF , Wzp

is truncated to find Wn. A detailed step-by-step process of the
general IFT approach can be found in [15].

B. Cost Function

In this paper a cost function determines how close the
generated array factor, AFgen, is to the desired array factor,
AFdes. The desired array factor is defined as a normalized flat-
top function with a main beam and sidelobes. The main beam
consists of a desired angular width with an amplitude of 0 dB.
The sidelobes are the points in AFdes outside this main beam
with a desired sidelobe level defined in negative dB. AFgen

is computed by taking the IFFT of the element excitations
(2) and is normalized before comparing it to AFdes. The cost
function, C, is defined as:

C = log(Emb + Esl) (14)

where Emb is the error calculated for the points that are in
the main beam and below 0 dB, θmb, and is defined as:

Emb =
∑
θmb

(|AFdes(θmb)| − |AFgen(θmb)|)2 (15)

and Esl is the error calculated for the points that are outside
the main beam and above the desired sidelobe level, θsl, and
is defined as:

Esl =
∑
θsl

(|AFgen(θsl)| − |AFdes(θsl)|)2 (16)

.
The logarithm is used in (14) to reduce the values returned

to a more condensed range so that the convergence rate of
the cost function can be more easily visualized. For a more
tangible performance measure, (14) can be converted to a
percentage pattern effectiveness metric as

Peff = 10−
√

exp(C)/(β×100) × 100, (17)

where β represents the number of angular points used to
evaluate AFgen vs. AFdes.

III. PROPOSED METHODS

This paper presents new efficient beam broadening methods
for contiguous uniform subarrayed arrays by proposing three
speed enhanced IFT methods that modify the general IFT
approach [15] to account for contiguous uniform subarrayed
architectures and to broaden the main beam. This paper also
presents a GA method that has been altered for use with
contiguous uniform subarrayed architectures. The previously
presented (2) assumes that the amplitude and phase of each
individual array element can be independently adjusted. This
assumption does not hold true for subarrayed array architec-
tures where the amplitude and phase adjustments are applied
to groups of array elements.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 4

A. Integrated IFT (iIFT)

The first proposed modified IFT algorithm, herein referred
to as the integrated IFT, or iIFT algorithm, enhances the
general IFT method by using a “mean pooling” strategy to
group the elements into subarrays and assign each element
in the subarray the average phase value of the elements in
the subarray. The average phase value is calculated using the
complex number form of the element excitations to account
for the phase being a circular function. These averaged values
are used as the new element excitations and the next AF in the
iterative process is generated using these element excitations.
The iIFT process is shown in block diagram form in Figure
2. The detailed process for the iIFT method is shown in

Fig. 2. Block diagram of the iIFT process. Note that the mean pooling phase
is integrated into the iterative loop.

Algorithm 1.

Algorithm 1 Integrated Iterative Fourier Transform (iIFT)
1: i← 0
2: W (i)← 1 . Initialize element excitations
3: C ← 1× 1030 . Initialize the cost value
4: Define AFdes . Normalized desired pattern
5: while i < imax do
6: Wzp ←W (i)+ zero padding
7: AFgen(i)← IFFT{Wzp} . Generate the pattern
8: Compute Cnew using (14)
9: if Cnew < C then

10: C ← Cnew

11: ibest ← i . Save index of best pattern
12: end if
13: |AFgen(i, θmb)| ← |AFdes(θmb)|
14: |AFgen(i, θsl)| ← |AFdes(θsl)|
15: Wzp ← FFT{AFgen(i)} . Generate new excitations
16: W (i+ 1)←Wzp(1 : N)
17: for s = 0 : S do . Adjust subarray excitations
18: Calculate element φmean of equidistant subarrays.
19: for ns = 0 : Ns do . Set element excitations
20: |W(Nss:Nss+ns)(i+ 1)| ← 1
21: 6 W(Nss:Nss+ns)(i+ 1)← φmean

22: end for
23: end for
24: i← i+ 1
25: end while
26: Wbest ←W (ibest)
27: AFbest ← AFgen(ibest)

B. Decoupled IFT (dIFT)

The second proposed modified IFT algorithm, herein re-
ferred to as the decoupled IFT, or dIFT algorithm, creates
an additional set of element excitations, Vn, to decouple the
grouping of the elements into subarrays from the iterative
process. After the element excitations, Wn, are found via
the IFT process for the next iteration, they are grouped into
subarrays to form a new set of element excitations, Vn. Vn
is then used to generate a subarray influenced array factor,
AFgenv , which is compared to AFdes using (14). The dIFT
process is shown in block diagram form in Figure 3. The

Fig. 3. Block diagram of the dIFT process. Note that the mean pooling phase
is decoupled from the iterative loop.

detailed process for the dIFT method is shown in Algorithm
2.

C. Subarray Spaced IFT (ssIFT)

The third proposed modified IFT algorithm, herein referred
to as the subarray spaced IFT, or ssIFT algorithm, enhances
the general IFT method by reducing the problem to focus
on the subarray substructure pattern instead of focusing on
the full array pattern. With the ssIFT algorithm there is some
additional complexity added with the transition from the full
pattern domain to the subarray substructure domain. From
(10), given a desired overall array pattern, the desired overall
array pattern can be divided by the subarray pattern which
results in the pattern of the phase weights at the center
of each subarray referred to herein as the desired subarray
structure pattern (AFdes(ss)(elem)

). This subarray substructure
pattern then needs to be converted from element-wise FFT
bins to subarray-wise FFT bins. A new number of FFT bins
(M) is calculated as the nearest power of two greater than
10 × S. The angular extent of the pattern (θss) also needs
to be limited to arcsin [−M/2,M/2− 1](λ/(Mdsub)) due
to the subarray spacing. Then interpolation can be used to
arrive at the desired subarray spaced subarray substructure
pattern (AFdes(ss)(sub)

). While there is some added single-use
complexity added with this method, the complexity inside the
iterative loop can be reduced using this algorithm by reducing
the size of the FFT and using a simplified “mean pooling”
strategy to ensure that subarrays that are equidistant from

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 5

Algorithm 2 Decoupled Iterative Fourier Transform (dIFT)
1: i← 0
2: W (i)← 1 . Initialize element excitations
3: C ← 1× 1030 . Initialize the cost value
4: Define AFdes . Normalized desired pattern
5: while i < imax do
6: Wzp ←W (i)+ zero padding
7: AFgen(i)← IFFT{Wzp} . Generate the pattern
8: |AFgen(i, θmb)| ← |AFdes(θmb)|
9: |AFgen(i, θsl)| ← |AFdes(θsl)|

10: Wzp ← FFT{AFgen(i)}
11: W (i+ 1)←Wzp(1 : N) . Generate new excitations
12: for s = 0 : S do . Adjust subarray excitations
13: Calculate element φmean of equidistant subarrays.
14: for ns = 0 : Ns do . Set element excitations
15: |V(Nss:Nss+ns)(i+ 1)| ← 1
16: 6 V(Nss:Nss+ns)(i+ 1)← φmean

17: end for
18: end for
19: Vzp ← V (i)+ zero padding
20: AFgenv(i)← IFFT{Vzp}
21: Compute Cnew using (14)
22: if Cnew < C then
23: C ← Cnew

24: ibest ← i . Save index of best pattern
25: end if
26: i← i+ 1
27: end while
28: Vbest ← V (ibest)
29: AFbest ← AFgenv(ibest)

the center of the array receive the same excitation to force
symmetry in the array pattern. These averaged values are
used as the new excitations and the next generated subarray
substructure pattern, AFgen(ss)

, in the iterative process is
generated using these subarray excitations. The ssIFT process
is shown in block diagram form in Figure 4. The detailed
process for the ssIFT method is shown in Algorithm 3.

D. Genetic Algorithm (GA)

A genetic algorithm (GA) is inspired by the process of nat-
ural selection and relies on bio-inspired operators such as mu-
tation, crossover and selection to evolve an initial population
of candidate solutions toward better solutions. Each candidate
solution has a set of properties (its chromosomes or genotype)
which can be mutated and altered. The evolution usually starts
from a population of randomly generated individuals, and is an
iterative process, with the population in each iteration called a
generation. In each generation, the fitness of every individual
in the population is evaluated; the fitness is usually the value
of the objective function in the optimization problem being
solved. The more fit individuals are stochastically selected
from the current population, and each individual’s genome is
modified (recombined and possibly randomly mutated) to form
a new generation. The new generation of candidate solutions is
then used in the next iteration of the algorithm. The algorithm

Fig. 4. Block diagram of the ssIFT process. Note that the mean pooling phase
is simplified from the iIFT and dIFT approaches since it is not averaging the
grouped element phases but only averaging at the subarray level for those
subarrays that are equidistant from the center of the array.

terminates when either a maximum number of generations has
been produced, or a satisfactory fitness level has been reached
for the population.

For our beam broadening array pattern optimization prob-
lem the population includes candidate sets of element ex-
citations. Therefore, in genetic algorithm terminology, a set
of element excitations for each element in the array is the
chromosome and each individual element citation is the gene.

The GA process used in this paper is derived from the im-
plementation described in [17] but minimizes a cost function
instead of maximizing a fitness function. In addition, elite
members of the population are introduced due to analysis in
[18]. The variables description of the GA process are defined
as:

• U : A candidate set of element excitations.
• P : The population of candidate sets of element excita-

tions.
• Pnew: The new population of candidate sets of element

excitations derived from the previous population.
• C: A function that assigns an evaluation score to a given

candidate set of element excitations.
• G: The maximum number of generations.
• Z: The number of candidate sets of element excitations

to be included in the population.
• r: The fraction of the population to be replaced via the

crossover technique at each step.
• m: The mutation rate.

The implemented GA process can be described as:

1) Randomly generate a population, P , of size Z candidate
sets of subarray excitations, U .

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 6

Algorithm 3 Subarray Spaced Iterative Fourier Transform
(ssIFT)

1: Define AFdes(full) . Full desired pattern (element-spaced)
2: W (1 : Ns)← 1 . Initialize subarray element excitations
3: Wzp ←W (1 : Ns)+ zero padding
4: AFsubarray ← IFFT{Wzp} . Generate subarray pattern
5: AFdes(ss)(elem)

← AFdes(full)
/AFsubarray

6: θss ← arcsin [−M/2,M/2− 1](λ/(Mdsub))
7: AFdes(ss)(sub)

← interp(AFdes(ss)(elem)
, θss)

8: i← 0 . Set iteration count variable
9: Wsub(i)← 1 . Initialize element excitations

10: C ← 1× 1030 . Initialize the cost value
11: while i < imax do
12: Wzp ←Wsub(i)+ zero padding
13: AFgen(ss)(sub)

(i)← IFFT{Wzp} . Generate pattern
14: Compute Cnew using (14)
15: if Cnew < C then
16: C ← Cnew . Update cost value
17: ibest ← i . Save index of best pattern
18: end if
19: |AFgen(ss)(sub)

(i, θmb)| ← |AFdes(ss)(sub)
(θmb)|

20: |AFgen(ss)(sub)
(i, θsl)| ← |AFdes(ss)(sub)

(θsl)|
21: Wzp ← FFT{AFgen(ss)(sub)

(i)}
22: Wsub(i+ 1)←Wzp(1 : S)
23: for s = 0 : S do . Adjust subarray excitations
24: Calculate element φmean of equidistant subarrays.
25: |Wsub(s)

(i+ 1)| ← 1
26: 6 Wsub(s)

(i+ 1)← φmean

27: end for
28: i← i+ 1
29: end while
30: Wsubbest

←Wsub(ibest)
31: AFgen(ss)(sub)best

← AFgen(ss)(sub)
(ibest)

32: Zero pad subarray excitations to elem spacing (Welembest
)

33: AFgen(ss)(elem)
← IFFT{Welembest

}
34: AFgen(full)

← AFgen(ss)(elem)
×AFsubarray

2) For each U , synthesize the array pattern and evaluate
the generated pattern against the desired pattern via a
cost function, C.

3) For G generations of solutions
a) Create a set of parents by selecting rZ members

of P in a probabilistic manner. The probability
Pr(Uz) of selecting candidate set Uz from P is
given by

Pr(Uz) =
Cmax − C(Uz)∑Z

j=1(Cmax − C(Uj))
, (18)

where Cmax = max(C(U1), C(U2), . . . C(UZ)). If
all the values of C(Uz) are the same, Pr(Uz) = 1

Z .
b) For each pair of candidate sets from P , 〈U1, U2〉,

produce two offspring by applying the crossover
operator. Add all offspring to Pnew.

c) For each of the members of Pnew, perform the
following mutation operator from [18]: for each

gene, if rand() < m, mutate it.
d) Add the (1 − r)Z members of P with the lowest

cost into Pnew as elites.
e) Update the population: P ← Pnew.
f) For each candidate set of subarray excitations,

synthesize the array pattern and evaluate the gen-
erated pattern against the desired pattern via a cost
function, C.

4) Return the candidate set from P that has the lowest cost
function value.

IV. RESULTS

The results presented in this paper were generated using a
computer simulation that synthesized an approximation of the
array pattern using (1) where each element was assumed to
be an isotropic radiator thus making EF equal to 1. The AF
portion of the array pattern approximation was implemented
with an FFT-based approach that utilized (2) as its foundation.
This simulation contained adjustable parameters that allowed
arbitrary arrays to be modeled based on the number of
elements in each subarray, the number of subarrays in the
array, the spacing between elements, and the number of bits for
each phase shifter. The desired antenna pattern was described
using parameters for width of the broadened main beam and
maximum sidelobe level. The simulation also constrained the
generated element/subarray excitations to be symmetric based
on their distance from the center of the array to ensure that
the synthesized array pattern was symmetric about the center
of the array. The iIFT, dIFT, ssIFT, and GA methods are
iteratively executed until the maximum number of iterations
is achieved.

The simulation was configured to model X-band (10 GHz
transmit frequency) linear arrays of 40 and 80 elements and
rectangular arrays of 40x40 and 80x80 elements. The linear
arrays were grouped into contiguous subarrays of five elements
while the rectangular arrays were grouped into subarrays of
5x5 elements. The simulation was configured to synthesize
an array pattern that closely approximates a flat-top pattern
with a beamwidth of 12 degrees and maximum sidelobes
of -13 dB. To better understand the impact of subarrayed
architectures, array patterns were synthesized for arrays with
and without subarrays. Since it is the relative phase of the
elements and subarrays to each other that is important, the
innermost subarrays were fixed to zero phase to reduce the
solution space and thus decrease the convergence time.

Since the GA method is a not a deterministic process, the
GA method was performed 100 times with the same settings
to obtain statistical significance. The constants used in the
GA algorithm are given in Table I. Using a quarter of the
population as elites in the parent selection was determined
to improve convergence. Due to the use of elitism preserving
genes in the GA, r and m were both set higher to increase the
rate of testing new solutions. The selection of population size
was based on the rule-of-thumb that population sizes between
20 - 50 are usually sufficient. For the smaller 40x40 array
with a smaller solution space, a population of size 25 was
used. However, in the case of the 80x80 radar, due to the

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 7

increased solution space size, a larger population size of 50
was used. The generation size was set to ensure that 20000
arrary patterns were generated.

TABLE I
CONSTANTS USED IN GA APPROACH

r m N G

1x40 1 0.07 25 800
1x80 1 0.07 50 400
40x40 1 0.07 25 800
80x80 1 0.07 50 400

A. A Note on Complexity

The iIFT, dIFT, ssIFT, and GA approaches are compared
based on their computational efficiency and their effectiveness.
The efficiency of each approach is compared based upon the
number of array patterns and/or sets of element excitations
that need to be generated per iteration times the number of
iterations that were performed. Each iteration of the proposed
iIFT and ssIFT methods calculate one array pattern and one set
of array element excitations. Thus, the number of generated
array patterns and sets of element excitations for iIFT is twice
the number of iterations of the algorithm. The dIFT method
creates an additional set of element excitations and generates
an array pattern with this additional set for each iteration.
The number of generated array patterns and sets of element
excitations for dIFT is three times the number of iterations of
the algorithm. The GA method calculates an array pattern for
each new candidate set of the population at each generation.

To summarize, the computational efficiency is measured by
counting the number of array patterns and sets of element
excitations that were generated to achieve a desired minimum
cost value. The effectiveness of each approach is measured by
its ability to achieve the lowest cost value.

After the IFT and GA methods calculate their best solutions,
the calculated phase values were constrained to values that a
6-bit phase shifter can utilize. Constraining the phase values
during the IFT process was found to overly constrain the
solution space and hinder the IFT process. In other words,
there is no advantage to enforcing the resolution constraint
before running the algorithms.

B. 1x40 Results

The convergence curves for the synthesis of a 40 element
linear array (subarrayed into 8 subarrays of 5 element each) are
shown in Figure 5. The iIFT approach requires 50 generated
array patterns/excitations to find its best solution (C = 6.38)
and 90 generated array patterns/excitations to find its steady-
state solution (C = 6.41). The dIFT approach requires 78
generated array patterns/excitations to find its best solution
(C = 6.47) and 114 generated array patterns/excitations to
find its steady-state solution (C = 6.54). The ssIFT approach
requires 30 generated array patterns/excitations to find its best
solution (C = 6.36) and 70 generated array patterns/excitations
to find its steady-state solution (C = 6.39). In comparison the
GA approach on average needs to generate greater than 20000

array patterns to reach the same best cost function value as the
ssIFT approach (3000 array patterns to reach the ssIFT steady-
state value), 14000 array patterns to reach the same best cost
function value as the iIFT approach (1500 array patterns to
reach the iIFT steady-state value), and 600 array patterns to
reach the same best cost function value as the dIFT approach
(400 array patterns to reach the dIFT steady-state value).
The best (lowest cost, most effective) synthesized amplitude
patterns are shown in Figure 6. The phase excitations for each
element in the 40 element array that are associated with the
best generated patterns are presented in Figure 7.

Fig. 5. The cost convergence curves for the synthesized 40 element linear
array. Notice that the iIFT, dIFT, and ssIFT methods achieve their best
solutions before their iterative process finds the steady state. The convergence
curve for the non-subarrayed array is given as a reference. The full synthesis
was executed for 20000 generated array patterns/coefficients.

C. 1x80 Results

The convergence curves for the synthesis of an 80 element
linear array (subarrayed into 16 subarrays of 5 element each)
are shown in Figure 8. The iIFT approach requires 120
generated array patterns/excitations to find its best and also
steady state solution (C = 7.21). The dIFT approach requires
315 generated array patterns/excitations to find its best solution
(C = 7.28) and 381 generated array patterns/excitations to
find its steady state solution (C = 7.36). The ssIFT approach
requires 100 generated array patterns/excitations to find its best
and steady state solution (C = 7.19). In comparison the GA
approach on average needs to generate 1240 array patterns to
reach the same best cost function value as the ssIFT approach,
1195 array patterns to reach the same best cost function value
as the iIFT approach, and 1160 array patterns to reach the
same best cost function value as the dIFT approach. The best
synthesized amplitude patterns are shown in Figure 9. The
phase excitations for each element in the 80 element array that
are associated with the best generated patterns are presented
in Figure 10.

D. 40x40 Results

The convergence curves for the synthesis of a 40x40 element
rectangular array are shown in Figure 11. The iIFT method
requires 50 generated array patterns/excitations to provide its

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 8

(a) Full Visible Region

(b) Zoomed

Fig. 6. The full (a) and zoomed (b) amplitude patterns for the synthesized
40 element linear array. Notice that the patterns are very similar in the main
beam region, and the effectiveness is comparable among the iIFT, dIFT, and
ssIFT, and GA methods. Also notice that the sidelobes in the visible region
are below the desired level.

Fig. 7. The element phase excitations for the synthesized 40 element linear
array that generate the most effective AF for each synthesis method. Note:
Each method achieves its most effective AF at a different iteration number.
Therefore, the displayed subarray phases of the dIFT method are not, and
should not be, the average of the 1x40 phase excitations.

best and steady state solution (C = 11.52). The dIFT method
requires 60 generated array patterns/excitations to provide its
best and steady state solution (C = 11.59). The ssIFT method
requires 70 generated array patterns/excitations to provide its
best and steady state solution (C = 11.39). In comparison

Fig. 8. The cost convergence curves for the synthesized 80 element linear
array. Notice that the dIFT method achieves its best solution before its iterative
process finds the steady state. The convergence curve for the non-subarrayed
array is given as a reference. The full synthesis was executed for 20000
generated array patterns/coefficients.

(a)

(b)

Fig. 9. The full (a) and zoomed (b) amplitude patterns for the synthesized 80
element linear array. Notice that patterns are similar for the iIFT, dIFT, and
ssIFT methods, but the GA pattern has noticeably lower main beam ripple.
Also notice that the sidelobes in the visible region are below the desired level.

the GA approach on average needs to generate 1039 array
patterns to reach the same best cost function value as the
ssIFT approach, 440 array patterns to reach the same best cost
function value as the iIFT approach, and 270 array patterns to
reach the same best cost function value as the dIFT approach.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 9

Fig. 10. The element phase excitations for the synthesized 80 element linear
array that generate the most effective AF for each synthesis method.

The best synthesized amplitude patterns are shown in Figure
12 and Figure 13. The phase excitations for each element in the
40x40 element array that are associated with the best generated
patterns are presented in Figure 14.

Fig. 11. The cost convergence curves for the synthesized 40x40 array. The
convergence curve for the non-subarrayed array (40x40 IFT Reference) is
given as a reference. Notice that the iIFT, dIFT, and ssIFT methods converge
significantly faster than the GA method, but the GA method can eventually
achieve a lower cost value. The full synthesis was executed for 20000
generated array patterns/coefficients.

E. 80x80 Results

The convergence curves for the synthesis of a 80x80 element
rectangular array are shown in Figure 15. The iIFT method
requires 195 generated array patterns/excitations to provide its
best and steady state solution (C = 12.85). The dIFT method
requires 480 generated array patterns/excitations to provide
its best and steady state solution (C = 12.94). The ssIFT
method requires 360 generated array patterns/excitations to
provide its best solution (C = 11.64) and 700 generated array
patterns/excitations for its steady state solution (C = 12.94).
In comparison the GA approach needs to generate 5000 array
patterns to reach the same best cost function value as the
dIFT approach, 6600 array patterns to reach the same best cost
function value as the iIFT approach, and greater than 20000
array patterns to reach the same best cost function value as the

(a) iIFT (b) dIFT

(c) ssIFT (d) GA

(e) No subarrays IFT

Fig. 12. The amplitude patterns for the synthesized 40x40 array. Notice that
the iIFT, dIFT, ssIFT, and no subarrays IFT methods produce very similar
antenna patterns. Also notice that the GA method produces an antenna pattern
with more power and a flatter response in the main beam than the IFT methods.

ssIFT approach. The best synthesized amplitude patterns are
shown in Figure 16 and Figure 17. The phase excitations for
each element in the 80x80 element array that are associated
with the best generated patterns are presented in Figure 18.

F. Summary Results

Table II summarizes the efficiency comparisons of the three
proposed IFT methods with the GA method and identifies the
improvement factor (Fimp) of each IFT method versus the
GA method. Table III compares the best effectiveness of each
method for 20,000 generated array patterns/excitations.

TABLE II
NUMBER OF GENERATED ARRAY PATTERNS TO EQUIVALENT COST

SOLUTION (IFT METHODS VS. GA)

iIFT dIFT ssIFT

iIFT GA Fimp dIFT GA Fimp ssIFT GA Fimp

1x40 50 140000 280 78 600 7.7 30 >20000 >667
1x80 120 1195 10 315 1160 3.7 100 1240 12.4
40x40 50 440 8.8 60 270 4.5 70 1039 14.8
80x80 195 6600 33.8 480 5000 10.4 360 >20000 55.6

The provided efficiency results summarized in Table II show
that the three proposed modified IFT methods are between four

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 10

(a) iIFT (b) dIFT

(c) ssIFT (d) GA

(e) No subarrays IFT

Fig. 13. The amplitude patterns including the full visible region for the
synthesized 40x40 array. Notice that the extended sidelobe patterns are below
the desired sidelobe level.

TABLE III
EFFECTIVENESS COMPARISON

C Peff

iIFT dIFT ssIFT GA iIFT dIFT ssIFT GA

1x40 6.38 6.47 6.36 6.38 78.10 77.22 78.29 78.10
1x80 7.21 7.28 7.19 6.9 76.75 76.03 76.95 79.72

40x40 11.52 11.59 11.39 10.92 86.70 86.26 87.48 89.97
80x80 12.85 12.94 11.64 12.52 87.04 86.49 92.70 88.90

and greater than 667 times more efficient in synthesizing array
patterns than GA which is a more common approach in the
published literature. The GA approach can be more effective in
generating a lower cost pattern if given enough computational
resources and time. However, Table III shows that even after
20000 iterations the effectiveness of the GA method is only a
few percentage points higher than the iIFT, dIFT, and ssIFT
methods which take substantially less computational time. The
pattern efficiency value, Peff , in Table III describes how close
the generated pattern is to the desired pattern.

A comparison of the proposed methods reveals that the
ssIFT approach does limit the effectiveness of the synthesis
by inhibiting the iterative process from jumping out of lo-
cal optima to find a more effective global optima, but this
approach is the most efficient approach overall. Among the
IFT methods, the performance of the ssIFT is followed by

(a) iIFT (b) dIFT

(c) ssIFT (d) GA

(e) No subarrays IFT

Fig. 14. The element phase excitations for the synthesized 40x40 array.

Fig. 15. The cost convergence curves for the synthesized 80x80 array. The
convergence curve for the non-subarrayed array (80x80 IFT Reference) is
given as a reference. Notice that the iIFT, dIFT , and ssIFT methods converge
significantly faster than the GA method. The full synthesis was executed for
20000 generated array patterns/coefficients.

the iIFT and then the dIFT. Although the ssIFT adds some
initial complexity in its transition between the element spaced
domain and the subarray spaced domain, it is able to utilize
smaller FFT sizes and a simpler mean pooling technique than
the other two presented IFT methods inside the iterative loop.
This makes the ssIFT more computationally efficient than the
other presented IFT methods.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 11

(a) iIFT (b) dIFT

(c) ssIFT (d) GA

(e) No subarrays IFT

Fig. 16. The amplitude patterns for the synthesized 80x80 array. Notice that
the iIFT, dIFT, and no subarrays IFT methods produce very similar antenna
patterns. The extended sidelobe patterns, not shown in this figure, are all
below the desired sidelobe level.

V. CONCLUSIONS

This paper has presented four methods (three modified IFT
methods and one GA method) that have been found to be
efficient and effective in generating array patterns for contigu-
ous uniform subarrayed arrays. The modified IFT methods
are significantly (up to 667 times) more efficient than the
average performance of the GA method and are only slightly
outperformed (a few percentage points in power efficiency in
the main beam) in effectiveness by the GA.

This paper has extended the impact of the IFT and GA
methods and has shown that they can be efficiently and
effectively utilized for synthesis of subarrayed architectures.
Future work in this area includes an extension of this work
that utilizes the iterative projection method (IPM) to give more
freedom to the transition regions between the main beam and
the sidelobe region.

REFERENCES

[1] J. C. Kerce, G. C. Brown, and M. A. Mitchell, “Phase-only transmit
beam broadening for improved radar search performance,” in 2007 IEEE
Radar Conference, 2007, Conference Proceedings, pp. 451–456.

[2] A. F. Morabito, A. Massa, P. Rocca, and T. Isernia, “An effective
approach to the synthesis of phase-only reconfigurable linear
arrays,” Ieee Transactions on Antennas and Propagation, vol. 60,
no. 8, pp. 3622–3631, 2012. [Online]. Available: 〈GotoISI〉://WOS:
000308435800009http://ieeexplore.ieee.org/document/6204059/

(a) iIFT (b) dIFT

(c) ssIFT (d) GA

(e) No subarrays IFT

Fig. 17. The amplitude patterns including the full visible region for the
synthesized 80x80 array. Notice that the extended sidelobe patterns are below
the desired sidelobe level.

[3] A. Chatterjee and G. K. Mahanti, “Combination of fast fourier
transform and self-adaptive differential evolution algorithm for
synthesis of phase-only reconfigurable rectangular array antenna,”
Annals of Telecommunications, vol. 69, no. 9-10, pp. 515–527,
2014. [Online]. Available: 〈GotoISI〉://WOS:000342412500005https:
//link.springer.com/content/pdf/10.1007%2Fs12243-013-0396-1.pdf

[4] T.-S. Lee and T.-K. Tseng, “Subarray-synthesized low-side-lobe sum and
difference patterns with partial common weights,” IEEE transactions on
antennas and propagation, vol. 41, no. 6, pp. 791–800, 1993.

[5] P. Rocca, L. Manica, R. Azaro, and A. Massa, “A hybrid approach to the
synthesis of subarrayed monopulse linear arrays,” IEEE Transactions on
Antennas and Propagation, vol. 57, no. 1, pp. 280–283, 2009.

[6] R. L. Haupt, “Optimized weighting of uniform subarrays of unequal
sizes,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 4,
pp. 1207–1210, 2007.

[7] P. Rocca, R. L. Haupt, and A. Massa, “Sidelobe reduction through
element phase control in uniform subarrayed array antennas,” IEEE
Antennas and Wireless Propagation Letters, vol. 8, pp. 437–440, 2009.

[8] L. Manica, P. Rocca, G. Oliveri, and A. Massa, “Synthesis of multi-
beam sub-arrayed antennas through an excitation matching strategy,”
IEEE Transactions on Antennas and Propagation, vol. 59, no. 2, pp.
482–492, 2011.

[9] S. Rajagopal, “Beam broadening for phased antenna arrays using multi-
beam subarrays,” in 2012 IEEE International Conference on Communi-
cations (ICC), 2012, Conference Proceedings, pp. 3637–3642.

[10] C. Balanis, Antenna Theory: Analysis and Design. Wiley, 2016. [On-
line]. Available: https://books.google.com/books?id=iFEBCgAAQBAJ

[11] O. Bucci, G. Franceschetti, G. Mazzarella, and G. Panariello, “In-
tersection approach to array pattern synthesis,” in IEE Proceedings
H (Microwaves, Antennas and Propagation), vol. 137. IET, 1990,
Conference Proceedings, pp. 349–357.

[12] G. Franceschetti, G. Mazzarella, and G. Panariello, “Array synthesis with
excitation constraints,” in IEE Proceedings H (Microwaves, Antennas

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, ??? 2020 12

(a) iIFT (b) dIFT

(c) ssIFT (d) GA

(e) No subarrays IFT

Fig. 18. The element phase excitations for the synthesized 80x80 array.

and Propagation), vol. 135. IET, 1988, Conference Proceedings, pp.
400–407.

[13] C. Carroll and B. V. Kumar, “Iterative fourier transform phased array
radar pattern synthesis,” in Proc. of SPIE, vol. 827, 1987, Conference
Proceedings, pp. 73–84.

[14] W. P. Keizer, “Fast low-sidelobe synthesis for large planar array antennas
utilizing successive fast fourier transforms of the array factor,” IEEE
Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 715–
722, 2007.

[15] ——, “Low-sidelobe pattern synthesis using iterative fourier techniques
coded in matlab [em programmer’s notebook],” IEEE Antennas and
Propagation Magazine, vol. 51, no. 2, 2009.

[16] Y.-Q. Wen, B.-Z. Wang, and X. Ding, “A wide-angle scanning and
low sidelobe level microstrip phased array based on genetic algorithm
optimization,” IEEE Transactions on Antennas and Propagation, vol. 64,
no. 2, pp. 805–810, 2016.

[17] T. M. Mitchell, Machine learning. McGraw-Hill Boston, MA:, 1997.
[18] G. Rudolph, “Convergence analysis of canonical genetic algorithms,”

IEEE transactions on neural networks, vol. 5, no. 1, pp. 96–101, 1994.

Barry K. Daniel (S’95, M’16, SM’19) received
both a B.S. degree in Electrical Engineering and a
B.S. degree in Computer Science in 1995 from Ten-
nessee Technological University. He received a M.S.
degree in Electrical Engineering in 2000 from the
University of Alabama, Huntsville. He is currently
pursing a Ph.D. degree in Electrical Engineering
from Tennessee Technological University.

At the beginning of his career, he worked in
Huntsville, Alabama for 10 years developing simu-
lations of radar and optical portions of missile threat

systems and performing signal processing analysis. Since 2005, he has been
working for Oak Ridge National Laboratory in the areas of antenna array
synthesis, efficient digital processing algorithms, track/data fusion, machine
learning, real-time simulation test beds to analyze new waveforms, evaluation
of prototype radar designs, and environment models that propagate RF and
EO/IR energy.

Adam L. Anderson (S’00, M’10, SM’15) received
the B.S. and M.S. degrees from Brigham Young
University and the Ph.D. degree from the University
of California at San Diego in 2008. He is currently
a scientist at MRSL Real-Time Systems Laboratory.
Dr. Anderson was the winner of the 2014 DARPA
Spectrum Challenge, received the 2014 Leighton
E. Sissom Award for Creativity and Innovation,
and was recently awarded as a finalist in the 2019
DARPA Spectrum Collaboration Challenge.

