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I. Executive Summary 

Wide-area transmission planning for the electric power system is one of the major 
remaining challenges today.   With the likely changes over the next several decades 
in the location and technologies for power generation, transmission planners need to 
plan now for improvements to the high-voltage transmissions system to avoid future 
congestion.  However, planning is complicated by the long lead times needed to plan 
new transmission investments (typically 10 years in the U.S.) and the uncertainty in 
the location of future generation that exists when transmission investments must be 
chosen.  In addition, uncertainty in other aspects of the power grid must be anticipated 
in order to avoid making costly investments that fail to provide value or failing to make 
investments that will be needed later to ensure reliable grid performance.  These 
uncertainties include changes in demand patterns, changes in fuel prices, changes in 
regulation or electricity markets, and concerns about resilience to natural stressors on 
the power system.  Finally, all transmission planning requires a simulation of the power 
flow on the network for many different possible hours, for which demand and renewable 
output varies across the network, to compare the performance of alternative 
investment plans.  It is not practical to simulate every possible hour for all years of a 
study when there are many investment plans to test and many long-term scenarios. 

Mathematically, the selection of which lines to add or reinforce in a large network with 
uncertainty and several investment decision periods over time is a large optimization 
problem that is difficult to solve with existing techniques.  Increasing the size of the 
network considered, the number of future scenarios to consider, or the number of 
distinct decision points increase the size and complexity of the problem.  In practice, 
most power system planners use computational models to inform their decisions by 
studying a single investment period in which lines will be added and rely on scenario 
analysis to address uncertainties.  Scenario analysis consists of solving the model to 
find the best transmission plan for one possible future, assuming that future will occur 
with certainty.   This approach does not allow planners to identify investments that 
provide flexibility when future conditions are not known or to identify investments that 
should be postponed and only built in some possible futures. 

The overall objective for this project was to develop and demonstrate a set of methods 
for solving the transmission investment problem for a large network considering many 
possible scenarios of future conditions and multiple decision points when investments 
can be made.  Project sub-objectives achieved this goal through a succession of 
extending the methods to apply to problems with increasing complexity or additional 
features, including the number of decision points, whether generation and transmission 
are co-optimized, and whether AC or DC power flow is used. 

The main innovations in the numerical methods developed in this project were in how 
the very large set of possible futures could be simplified and organized into smaller 
problems that can be solved and that approximate well the solution to the full problem.  
Existing methods reduce problems with many possible scenarios to a size that is 
feasible to solve by grouping together scenarios that are “similar” in terms of the future 
conditions.  Each group is then replaced by one “representative” scenario, resulting in 
a smaller set of scenarios.  In the method developed in this project, we instead use a 
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variety of mathematical techniques to group together scenarios for which a similar 
decision is made, and the method ensures that the reduced set consists of scenarios 
that will best distinguish among the alternative investments.  A second innovative 
aspect of the technical approach is that the methods address both long-term 
uncertainties for conditions that change slowly over years (e.g., natural gas prices or 
new generation) and short-term variability that changes on a time-scale of minutes to 
hours (e.g., demand, renewable generation). Our approach uses a nested 
representation for long-term and short-term uncertainties; this enables a distinct 
representative set of hours to be selected for each long-term future and improves the 
accuracy of the approximation. 

A transmission model was developed for the Western Electric Coordinating Council 
(WECC) region, the high-voltage transmission system that serves the western third of 
the continental U.S.  Using a dataset provided by WECC and by researchers from John 
Hopkins University, we have validated and demonstrated the model and used it to 
compare the new method for solving multi-stage stochastic transmission planning to 
several state-of-the-art techniques. 

The project has resulted in several key outcomes and achievements: 

• The covariance-based method for choosing a small set of hours to represent 
short-term variability has superior performance in terms of accuracy to existing 
methods, including K-means clustering and Importance Sampling; 

• The combined partitioning method for long-term uncertainty with the nested 
clustering approach for choosing representative hours for each long-term group 
has superior accuracy for equivalent computational effort compared with 
existing methods; 

• Using the partitioning/clustering method combined with Sample Average 
Approximation provides both statistical bounds on the quality of the solution and 
at the same time, a complete investment plan for all contingencies in the full 
uncertainty set; no existing methods can provide both at the same time; 

• The method is demonstrated to work well for choosing both transmission and 
generation investments; 

• A variant on the method allows for both scenario selection and simultaneous 
correction for the error from the DC power flow approximation to provide a 
tractable method for AC power flow-based transmission planning under 
uncertainty; 

• The method applied to the WECC case study demonstrates the additional value 
to the system operator and the consumer of identifying flexible investment 
options in the near-term decisions.   In particular, the case study exhibits 
significant option value in postponing some transmission additions that appear 
useful but in some long-term system states create new congestion problems. 
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II. Objectives 

Technical Background 

Transmission Network Expansion Planning Models 

One of the primary computational tools to assist in transmission planning is a 
Transmission Network Expansion Planning (TNEP) model.   The simplest and most 
common version of a TNEP model is an optimization model that finds the minimum cost 
transmission plan (which new lines to add) that meets some reliability constraint.  The 
subproblem in this optimization is an optimal power flow (OPF) model for one or more 
time periods, each with a different pattern of demand and renewable output across the 
network.  The OPF subproblem solves for the minimum cost generation from all 
dispatchable generators to meet the demand at all buses, subject to Kirchhoff’s laws of 
current and voltage and enforcing maximum power flow constraints on transmission 
lines.     

Although the OPF can be formulated as a convex (linear) mathematical program, the 
discrete decisions for each candidate transmission line (build or do not build) make the 
TNEP problem non-convex.  TNEP models are typically formulated as mixed integer 
linear programs (MILPs).   The computational complexity of solving even a static (one 
future year) deterministic (no uncertainty) TNEP can be considerable for a network with 
large numbers of buses and transmission lines. 

Before renewable generation became a substantial part of grid operations, it was often 
considered sufficient to evaluate new transmission lines only for the hour of the year 
with the highest load. Any transmission network that allowed for adequate operation 
during this hour was considered likely to operate at least as well during any other 
demand scenario [1]. This “worst hour” approach to selecting a test scenario is still 
deceptively appealing, but in modern systems, it is not obvious which hour is most likely 
to cause reliability issues, and the worst hour may vary by region or change as new 
lines are added and reliability issues are resolved. The "worst hour" approach also 
provides no indication of the total operations cost of the proposed network over a full 
year, so line investments that would significantly reduce operation costs, but are not 
necessary for the reliability of the system, are likely to be missed. Transmission planning 
for today's system requires the consideration of many possible operating conditions. 

Standard practice is to include a small subset of the possible demand and generation 
scenarios in the TNEP optimization model. However, it is difficult to determine which 
scenarios are relevant a priori. There is a need for methods that can accurately 
determine the performance of a network in the relevant operating conditions without 
requiring an excessive number of representative hours [2].  

One class of problems referred to as stochastic TNEP problems are in fact single period 
investment models with a second recourse stage where the OPF 9 (i.e., dispatch) is 
solved for each realized pattern of demand.  These one-stage TNEP models are 
designed to address the short-term (hourly) variability of load and renewable output and 
are better thought of as approximating the performance of transmission plans over one 
year.  The first objective below is focused on finding a solution for how to best 
approximate the short-term variability with a small number of representative hours. 
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Multi-Stage Stochastic Transmission Planning  

In addition to the short-term uncertainty discussed above, there is a need for planning 
to anticipate the needs of the system in the future as technological, economic, and 
regulatory conditions change.  Within the coming decades, these changes are likely to 
involve dramatically increased renewable generation requirements and/or strict carbon 
limits, coal generator retirements, possible nuclear retirements, rapidly decreasing costs 
of energy storage, increased electric vehicle adoption, electrification of industrial and 
residential energy use, uncertainty in the cost and role of natural gas generation, 
modifications to electricity market design, and increasing concern about power system 
resilience to non-traditional external stressors [3-6]. Any additions to the transmission 
network should provide a net improvement across the possible realizations of these 
uncertain trends, but each scenario will exhibit distinct spaciotemporal distributions of 
supply and demand that benefit from different transmission topologies. Thus, different 
scenarios will benefit from different transmission investments, and an expansion plan 
must be adaptable to many outcomes. By ignoring uncertainty, planners not only risk 
overlooking strategic near-term investments that provide future flexibility, they also risk 
undertaking unnecessary, or even detrimental, projects. 

A formal mathematical model to address long-term uncertainties and to represent future 
transmission investments that are contingent on the system state is a two-stage or a 
multi-stage (three or more) stochastic program. In a two-stage stochastic TNEP model, 
one set of transmission investments is made in the first stage of the problem, before 
uncertainty is realized, and then recourse investments are made in the second stage 
after the uncertain events have resolved. Modeling transmission investments as 
recourse decisions is often referred to as adaptive transmission planning, with notable 
examples [7-10]. Adaptive TNEP problems are even more difficult to solve than the one-
stage stochastic problems described above, because each scenario adds another set 
of binary recourse variables (additional line investments in the second stage) to the 
analysis and the problem quickly grows too large to solve. A major focus of adaptive 
TNEP research is to reduce the number of scenarios to a manageable size while still 
providing a reasonable representation of the long-term uncertainty [10]. 

The effects of short-term uncertainty are compounded in the adaptive planning 
paradigm because most of the factors that are uncertain in the long-term will alter the 
short-term characteristics   of the system. Each scenario will have a distinct combination 
of technological and regulatory parameters that manifest unique short-term behavior, 
and the specific spatial patterns of demand and renewable generation that cause 
congestion will occur at different times across scenarios. The short-term uncertainty is 
nested within the long-term scenarios. An insufficient representation of this interaction 
will produce inaccurate and/or biased estimates of the expected benefits of candidate 
investments in each scenario, undercutting the value of using an adaptive framework. 
A sophisticated and efficient handling of the full joint distribution of long-term and short-
term uncertainty is required to properly represent this interaction while remaining 
computationally tractable. 

The challenges described here for adaptive transmission planning motivate the 
additional goals of this project to develop methods for reducing the number of long-term 
scenarios to obtain a tractable unbiased approximation of the solution to the original 
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stochastic problem, and to select a distinct set of representative hours to approximate 
short-term variability for each long-term scenario or group of scenarios. 

Additional Challenges to TNEP 

Incorporating additional features enable a computational model to capture important 
aspects of the true problem faced by system planners.   In some regions, investments 
in new generation sources are not independent of transmission investments, and the 
simultaneous planning or co-optimization of generation and transmission can lead to 
better decisions.    The addition of decision variables for candidate generators in each 
stage dramatically increases the size of the decision problem.    

Accurate representation of the physics of power flow on the network requires solving 
AC optimal power flow (AC-OPF), which is a non-linear optimization problem which can 
be challenging to solve for even a single representative hour. AC-OPF is generally too 
computationally demanding to incorporate into high-level transmission expansion 
planning analysis for large networks where potential transmission additions are first 
identified. Instead, AC power flow is typically represented with a linear formulation, such 
as the DC-OPF approximation. Candidate plans identified with the DC-OPF based 
TNEP optimizations are then elevated to an AC-OPF based feasibility study where 
reliability issues are addressed with ad hoc modifications.  However, this process has 
been shown to produce suboptimal plans in practice because the DC-OPF error is non-
negligible, especially in the stressed system states that are most relevant to 
transmission planners. 

Finally, two-stage adaptive TNEP models can be useful, but are still limited in 
representing dynamic investment problems in which there are many potential decision 
points.  Multistage stochastic models are needed to specify the timing of future 
investments, and the long-term events that should trigger those investments, in more 
detail. These details are crucial for developing an effective investment strategy and 
identifying the opportunities for increasing the flexibility of the investment plan. 

Additional project goals are motivated by the need to address the challenges above by 
extending the methods to apply to co-optimization, to approximate AC power flow, and 
to facilitate tractable solutions to multi-stage formulations. 

 

Existing Approaches for Stochastic Transmission Planning 

Traditionally, the representative scenario set was often chosen heuristically, based on 
the modeler's intuition [1]. Many studies instead randomly select scenarios and give 
them equal weight in the TNEP model [11]. The performance of these two strategies is 
erratic, but quickly optimizing scenarios chosen with simple rules, or many small sets of 
randomly sampled scenarios, will occasionally provide a few acceptable networks that 
can be evaluated and refined further with other tools. Other studies have addressed 
volatility by employing variance-reduction techniques like Latin-hypercube sampling or 
repeated Monte Carlo sampling across iterations of the solution method [12-13]. 

Another approach is to use a scenario selection technique that only needs information 
about the operation parameters that vary across scenarios. Most of these techniques 
share the objective of minimizing the distance between the scenarios omitted from the 
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analysis and their closest counterpart that is included. Forward scenario selection, 
backward scenario selection, and K-means clustering (KMC) are examples of this 
approach. 

Grouping scenarios together based on distance minimizing criteria; however, will 
inevitably average extreme events into less extreme clusters so these methods often 
have trouble representing reliability risks with fewer than 200 scenarios [14], [15]. Some 
algorithms compensate for this by requiring shorter distances between extreme 
scenarios and their representative cluster, or by iteratively adding more clusters until 
the error of the model is sufficiently reduced [16], [17]. This does not fully resolve the 
issue because a large proportion of the sample is still devoted to scenarios that are 
unlikely to fail and do not provide useful additional information.  

Importance sampling (IS) has been applied to address this limitation by first solving the 
OPF models for the full set of scenarios of potential interest for a baseline network, and 
then adjusting the probability of sampling each scenario and its weight in the 
optimization according to its contribution to the total cost of the baseline run. This 
ensures that the sampled scenarios are more focused on impactful situations [18], [19]. 

However, importance sampling has several shortcomings that we aim to address. First, 
importance sampling focuses on scenarios with a large objective value (i.e., high cost), 
but the magnitude of this value is often partially due to factors that are not affected by 
transmission decisions. Some scenarios will be more expensive regardless of the 
configuration of the transmission network. The representative power of a subset of 
scenarios would be improved by instead selecting the scenarios that have a large 
variance across the possible network configurations to ensure that factors affected by 
the decisions at hand are focused on. Second, implementations of importance sampling 
reveal that the most important scenarios often come from the same short period of the 
year and have similar operating conditions [19]. These scenarios all exhibit the same 
underlying problem and including several of them in the model is redundant. Further, if 
there are several failure mechanisms that occur, large samples are still required to be 
sure that the least expensive failure modes are sampled at least once. Third, the use of 
a baseline network does not account for problems that are unique to the other networks 
under consideration; new lines can cause new problems and importance sampling is 
likely to miss problems that did not occur in the baseline network. Finally, it is difficult to 
estimate the true cost of the system, which is necessary both to justify the investment 
in new assets as opposed to other risk mitigation techniques and to measure the validity 
of the sampling and weighting technique. 

For long-term uncertainty, adaptive TNEP studies limit the number of scenarios 
considered, the number of candidate lines considered, and/or the size of the network 
modeled to be able to solve the problem [7-10].  In addition, most adaptive transmission 
studies have relied on simple representations of short- term uncertainty in which a small 
number of representative hours are selected from historical operating conditions and 
weighted in advance, without considering how the underlying parameters in those hours 
would change in each long-term scenario or for each candidate investment decision. 
The selection of representative hours is typically made with random sampling [11], [18], 
heuristically to represent known seasonal operating regimes [13], or with methods such 
as k-means clustering [14-15] or moment matching to the historical data. There have 
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been some notable examples of the related generation expansion planning problem that 
explicitly treated both long-term and short- term uncertainties [9] although none explicitly 
considered the dependence of nested scenarios. 

 

Proposed Solution 

In this section, we briefly describe the main innovations in the methods developed in 
this project.  We focus here on the main ideas, and the technical and mathematical 
detail is provided in the Technical Approach section. 

Our approach for selecting representative hours is called the Approximate Latent Factor 
Algorithm (ALFA).  The key idea that motivates this method is the recognition that if a 
small number of hours are to be used in selecting the best transmission plan, that the 
set of hours should be chosen to best distinguish between the alternative candidate 
plans.  Because the focus of transmission is primarily on reliability, and only secondarily 
on efficiency (lower cost), the hours selected should represent all possible failure modes 
in the system.  Existing methods such as importance sampling focus instead on 
selecting the hours with the highest cost or worst reliability performance.  However, 
multiple hours with high cost may be examples of the same underlying problem, and 
the additional transmission that improves reliability in one of those hours may well 
improve in all the others as well.   This approach often includes redundant hours that 
add no information, and may also omit hours that represent distinct, if less costly, failure 
modes. 

The main approach within ALFA consists of first sampling a small number of feasible 
transmission plans, and evaluating their performance for the full short-term uncertainty 
set (e.g., all hours of the year from a historical dataset).  The costs from the OPF solution 
for each hour for each sampled plan can then be organized in a matrix to which singular 
value decomposition (SVD) is applied.  The SVD results identify the distinct failure 
modes or “latent factors” and indicate the degree of correlation in the costs across hours 
for plans and across plans for hours.   ALFA then applies experimental design methods 
to this information to select the hours for a specified sample size that maximize the 
covariance across plans.   In other words, ALFA chooses a set of hours for which the 
different transmission plans have the maximum difference in costs.  Finally, a set of 
weights is calculated associated with the selected hours that best approximate the costs 
of a plan across all hours based on the cost from the selected sample of hours.   These 
weights can then be included directly in the objective function of the reduced TNEP 
model.  

Our approach to manage the complexity of many long-term scenarios is based on 
partitioning, rather than selecting a subset of representative scenarios and omitting the 
rest.  Scenarios are still clustered together to increase efficiency. As in ALFA, the 
clustering is done not on the basis of similarity in parameter space, but rather groups 
together scenarios that make the same or very similar first stage decisions.  Once all 
scenarios are assigned to a cluster, all are retained in the approximate model.  The 
increase in computational efficiency is obtained by constraining the second stage 
decisions to be the same within a group, but still allows distinct adaptive decisions for 
different groups.   This dramatically reduces the number of second stage binary 
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variables, allowing for faster computation.  At the same time, there are benefits to 
retaining all long-term scenarios in approximate model.  One benefit is that the solution 
provides a complete decision rule for all future contingencies.   This is in contrast to 
several currently used methods, for example Sample Average Approximation (SAA), 
which randomly samples a subset of scenarios; as a result, the second-stage strategies 
for omitted scenarios are unknown. 

The third innovation in the method developed in this project is to treat long-term and 
short-term uncertainties as nested.  Specifically, the ALFA method is extended from the 
one-stage setting to two-stage by applying the same technique to each cluster of long-
term scenarios.   The nested approach is motivated by the recognition that in different 
long-term scenarios, the critical hours to capture the underlying failure modes will occur 
at different times and will consist of distinct load patterns. The combination of clustering 
long-term scenarios that benefit from similar transmission investments with selecting 
representative hours for each group that best discriminate between transmission plans 
produces very good approximate solutions with reasonable computational effort. 

One challenge to other methods for approximately solving two-stage adaptive 
transmission planning is that they do not generally provide any information about the 
quality of the solution.   Each method of simplifying or reducing the original problem 
from the full uncertainty space to a smaller set of scenarios produces approximate 
solutions to the full problem, but there is no way to know how far they are from the true 
optimal solution.  Another innovation in the methods developed in the project uses a 
combination of approximation methods to provide upper and lower bounds on the cost.  
The partitioning approach to long-term scenarios provides a complete feasible decision 
strategy.   This strategy can then be fixed and simulated for all long and short-term 
uncertainties to obtain the true cost, which gives an upper bound to the optimal cost.  A 
statistical confidence band for the lower bound on cost can be obtained by applying the 
SAA method, solving many repetitions of the problem with randomly sampled sets of 
scenarios.  Because the SAA does not include all scenarios in each instance, it provides 
a lower bound on the cost.   The efficiency of SAA is further improved by employing a 
combination of control variates and importance sampling to reduce the variance in the 
estimate, both of which are facilitated by re-using the sampled simulation results from 
the development of the partitioned model with ALFA. 

 

Objectives 

To address the challenges identified above to solving multi-stage stochastic 
transmission planning models with large sets of long-term and short-term uncertainties, 
this project pursued the following objectives: 

1. Develop and demonstrate method for short-term uncertainty for one-stage 
stochastic TNEP and compare to existing methods; 

2. Develop and demonstrate method for nested long-term and short-term uncertainty 
for two-stage stochastic TNEP and compare to existing methods; 

3. Demonstrate method for co-optimizing generation and transmission; 
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4. Extend and demonstrate method for AC-OPF-based TNEP; and 

5. Demonstrate the ability to solve three or more stage stochastic TNEP problems.  

 

Expected Results 

This project was intended to address the Transmission Planning objectives in the 
original FOA from the Dept of Energy.  Specifically, this project aimed to develop a 
rigorous method for performing multi-period transmission planning under uncertainty, 
and transmission and generation joint planning under uncertainty, applied to large 
power systems, and with AC optimal power flow.   The developed method will be 
computationally efficient, will produce solutions within a few percent or less of the 
optimal (minimum cost) plan, and will not require artificial restrictions on the problem as 
often assumed (reduced list of candidate lines or reduced scenarios of future generation 
location).   This method could be used by RTOs, NERC regions, and other wide-area 
planning efforts, and would better represent the features of their actual planning problem 
than do the existing methods. 

The primary expected result of the project is a dramatic reduction in the computation 
time required to determine the best high-voltage transmission lines to add to the existing 
grid in the near-term when we do not know where future generation, in particular 
renewable energy sources, will be located. Improved transmission planning would 
facilitate reduction in the cost of electricity and enable the integration of greater capacity 
of renewable generation.  The method to be developed, which would be placed in the 
public domain and shared freely, would enable ISO/RTOs and other regional 
organizations to more effectively plan for changes in the coming decades to the power 
system, and enable them to consider a broader range of alternative investments and 
possible future scenarios than current methods. 
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III. Technical Approach 

Project Activities 

The project tasks correspond closely to the objectives identified in the previous section.  
Here we briefly review each task, when it was completed, and the milestones and 
deliverables that resulted from each: 

Task 1: Develop and demonstrate method for short-term uncertainty for one-stage 
stochastic TNEP and compare to existing methods 

Task 1 focused on addressing the short-term variability in demand and renewable 
generation.   The ALFA method was developed in Task 1 and was tested on a one-
stage transmission planning problem for the WECC network (see below for case study 
description).   The accuracy of the method was compared to two widely used 
techniques, K-means clustering and importance sampling.  Key outcomes (see Section 
IV) are quantitative estimates of the accuracy of ALFA relative to other methods for 
equivalent computational effort. This task resulted in one publication, Bukenberger and 
Webster (2019a). Task 1 was conducted primarily during Q1-Q4, although the 
publication of the article took additional time because of the review and editorial 
process at the journal. 

 

Task 2: Develop and demonstrate method for nested long-term and short-term 
uncertainty for two-stage stochastic TNEP and compare to existing methods 

Task 2 focused on addressing the long-term uncertainty and short-term variability with 
a nested approach.   The Latent Uncertainty Clustering Algorithm (LUCA) method with 
the extension of ALFA to the multi-stage context was developed in Task 2.  The LUCA-
ALFA method was tested on two different two-stage transmission planning problems, 
both using the WECC network.   This task also included the development of the 
bounding approach that combined LUCA-ALFA with SAA to establish upper and lower 
bound costs for the approximate solution.  The accuracy of the method was compared 
with using only K-means clustering or only Sample Average Approximation.  Key 
outcomes (see Section IV) are quantitative estimates of the accuracy from our method 
and of the quality of the solutions obtained, relative to other methods for equivalent 
computational effort. This task resulted in an article currently under review, 
Bukenberger and Webster (2020a). Task 2 was conducted primarily during Q5-Q12, 
with many iterations of continuous improvement.   The method developed in Task 2 
provided the foundation for the subsequent tasks, and those tasks spurred additional 
improvements in the core method over the performance period.  

 

Task 3: Demonstrate method for co-optimizing generation and transmission 

Task 3 focused on extending the partitioning of long-term scenarios to apply to two-
stage adaptive models that choose investments in generation and transmission at the 
same time (the co-optimization problem).  The goal of this task was to demonstrate the 
partitioning method would work for the co-optimization setting.  We constructed an 
alternative two-stage investment problem with a distinct uncertainty set consisting of 
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load growth, carbon price, renewable credit value, capital costs in wind and solar, and 
early retirements of existing generation.  The results from the partitioning method were 
compared with those from a forward scenario selection approach.  This task resulted 
in one publication, Bukenberger and Webster (2019b), and an associated conference 
presentation. Task 3 was conducted primarily during Q4-Q8. 

 

Task 4: Extend and demonstrate method for AC-OPF-based TNEP 

Task 4 focused on extending the ALFA method for representing short-term uncertainty 
to be used for transmission planning with AC power flow instead of the DC-OPF 
approximation.  The one-stage stochastic TNEP problem from Bukenberger and 
Webster (2019a) was augmented with reactive power demand.  Rather than simply 
repeat the ALFA procedure directly on an AC-OPF Model, we demonstrate superior 
performance from combining the challenge of AC load flow approximation and the 
scenario reduction problem to manage uncertainty.  Specifically, the ACDC-ALFA 
method solves both AC-OPF and DC-OPF for the same sample plans and all short-
term operating conditions, and uses the ALFA method to select the operating 
conditions to include in the approximate model and, importantly, the weight associated 
with each hour such that the approximate TNEP model can be solved used DC-OPF, 
but the weights approximate the solution one would have obtained with AC-OPF.  
Importantly, this approach enables the DC to AC correction to be adapted to each 
unique operating condition (i.e., each hourly pattern of demand and renewable 
generation at all buses). This task resulted in one paper that has been prepared for 
publication, Bukenberger and Webster (2020b), which will be submitted to IEEE 
Transactions on Power Systems in the near future. Task 4 was conducted primarily 
during Q6-Q12. 

 

Task 5: Extend and demonstrate method for TNEP with three or more investment 
stages 

Task 5 focused on extending the LUCA method for stochastic multistage adaptive 
planning (MAP) settings with three or more transmission investment stages.  We 
developed two multi-stage case studies, one with five stages but a relatively simple set 
of long-term uncertainties, and a three-stage problem with a larger set of long-term 
scenarios representing uncertainty in more dimensions.  The nested long-term and 
short-term scenario methodology from Bukenberger and Webster (2020a) was 
extended to the multistage context by adapting the notion of clustering long-term 
scenarios in the two-stage case to clustering subtrees and using dynamic programming 
to solve the successive subproblems for each stage.  This task resulted in one paper 
that has been prepared for publication, Bukenberger and Webster (2020c), which will 
be submitted to INFORMS Journal on Computing in the near future. Task 5 was 
conducted primarily during Q8-Q12. 
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Methods 

WECC Network Data and Assumptions 

For all tasks and experiments in the project, we use the Western Electricity 
Coordinating Council (WECC) as the context for the transmission planning problems.  
Specifically, all models in this project use a 312-bus aggregation of the WECC network 
extended from the work done by the Johns Hopkins University [7], [15], [20], and using 
the methodology from Shi [21]. In this model there are 654 existing transmission lines 
and 51 candidate lines; this results in over 2.25x1015 possible candidate networks that 
must be chosen from. Our model includes 980 generation units which are aggregated 
from the full set of actual generation units by bus and fuel type. In our model, 438 of 
the generators are dispatchable and the remaining 542 are intermittent renewable 
generators.  

Fuel prices, regional load, and renewable resource data is taken from the WECC 2024 
Common Case Dataset [22]. The fuel prices vary by location and natural gas prices 
also vary by month. This results in 52 different fuel price profiles, 25 of which change 
over the year. There are 261 distinct renewable generation profiles developed from 
site specific data to preserve the geospatial and temporal relationships between 
different generation units. The hourly wind, solar, and hydroelectric data are modeled 
as intermittent resources with hourly profiles detailed in [22]. The hourly load shapes 
are extrapolated from historical data for 40 balancing areas and proportionally 
distributed to each bus according to the balancing areas that are represented at that 
bus. Most buses represent multiple balancing areas so the load profiles at these buses 
are proportionally constructed from the relevant load shapes as described in [20]. The 
system load is increased by 30% relative to the reference data. Unserved load incurs 
a penalty of $1,000 per MWh and curtailed renewable energy incurs a penalty of $300 
per MWh. 

Detailed assumptions and methods for each specific task are described in the 
associated publications: Bukenberger and Webster (2019a, 2019b, 2020a, 2020b, 
2020c).    

 

One-Stage TNEP Experimental Design and Assumptions 

ALFA is designed to select the set of hours where the impact of transmission 
investments is most apparent while avoiding redundant hours that represent the same 
underlying problem. Beyond identifying individual hours, the cost-covariance between 
different hours can be used to accurately approximate the costs in unobserved hours. 
ALFA should therefore provide an accurate measure of the total expected cost of an 
expansion plan with fewer representative hours, which in turn should result in better 
transmission recommendations when compared to models developed with other 
uncertainty representation techniques.  

The performance of ALFA in terms of accuracy and in solution quality will be compared 
to k-means clustering, which is the preferred method for transmission planning, and 
importance sampling, which is a popular method for transmission planning and the 
broader stochastic optimization community.  
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The validity and usefulness of this hypothesis is tested on 52 weeks of hourly data, a 
total of 8,736 hours, taken from the WECC common cases data set. The experiment 
has variable demand, renewable generation, and natural gas prices. 

  

Two-Stage TNEP Experimental Design and Assumptions 

LUCA, the covariance-based scenario partitioning method, should be compared to 
both scenario reduction methods and other partitioning methods. The performance of 
these methods with and without the added consideration of short-term uncertainty is 
also relevant. Finally, LUCA should be tested both with and without generation co-
optimization, since there are advocates for both paradigms in multistage TNEP. 

Partitioning methods may outperform scenario reduction methods by giving better 
resolution into the short-term events of the full scenario set while reducing the number 
of binary transmission planning variables. For example, in generation co-optimization 
studies, the partitioning approach will give better resolution into the decisions of 
generation planners in every scenario, therefore leading to better first-stage 
investments from both generation and transmission planners. In models with extensive 
short-term uncertainty, partitioned models will be able to represent the important 
extreme events from many scenarios within a single block whereas scenario reduction 
methods will need to identify both the important scenarios and the important extreme 
events from within those scenarios. However, grouping long-term scenarios into 
blocks, as opposed to selecting representative scenarios, artificially reduces the 
adaptability of the modeled decision process, which may degrade the solution overall.  

Several experiments are investigated with a two-stage model. First, comparisons 
between all methods on the quality of first stage decisions both with and without short 
term uncertainty. Next partitioning methods provide a complete investment policy with 
a single optimization, whereas scenario reduction methods only provide the first stage 
investment decisions, so both partitioning and scenario reduction methods will be 
compared on the quality of their first stage decisions, and partitioning methods will also 
be compared on the basis of their full decision policy (first and second stage solutions). 
Finally, generation co-optimization will be performed on a realistic data set to compare 
partitioning methods.  

Three different test cases are developed to conduct these tests. 

A small version of the WECC problem is developed with only the 10 candidate lines 
that are frequently found to be beneficial. This model has 20 scenarios of demand 
growth as the only dimension of long-term uncertainty. A summer and a winter day are 
used to give 48 hours of short-term uncertainty. The benefit of this model is that, with 
just 10 candidate lines, there are 1,024 possible expansion plans; this is few enough 
that the cost of every expansion plan can be calculated exactly and stored. Then, not 
only can the problem be solved exactly with dynamic programming, but approximating 
models can be generated and solved very quickly with the same data. 

A larger and more realistic model uses the full set of 51 candidate transmission lines 
and the full year of hourly short-term data. Additionally, several dimensions of long-
term uncertainty are included in this case study. The sources of long-term uncertainty 
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include load growth, RPS levels, water availability for hydropower, generation 
expansion, generation retirements, and regulation to mitigate the impact of a natural 
gas pipeline disruption as described in [23]. The long-term uncertainty scenarios are 
summarized in Table 1. This model highlights the difficulty of realistically representing 
long-term uncertainty; the long-term scenario data is an aggregation of much more 
complex short-term behavior. Simple scenario reduction methods, and methods for 
selecting hours from within those scenarios, are likely to show degraded performance 
on the more realistic uncertainty sets.  

A generation co-optimization model uses the first 15 scenarios, again with demand 
growth, hydro availability, generation retirements, natural gas disruptions, and RPS 
levels, but now 759 generating units are treated as variables rather than uncertain 
scenario realizations. Rather than a full year of short-term data, only two hours from 
the year are used on this model so the effects of long-term uncertainty can be 
separated from short-term uncertainty and LUCA can be compared directly to other 
partitioning methods on a multi-dimensional long-term uncertainty set.  

 

Table 1: Scenario Assumptions for Large Two-Stage TNEP Experiment 

State/Scenario Demand 

Growth 

Hydro 

Availability 

Rapid 

Retirements 

Natural Gas 

Disruption 

RPS 

penalty 

New 

NG 

New 

Solar 

New 

Wind 

1 20% High Y Y  $100  0 0 0 

2 20% High Y Y  $900  0 0 0 

3 10% Low Y Y  $300  0 0 0 

4 20% Low Y Y  $100  9614 7484 2958 

5 20% Low Y Y  $900  0 0 0 

6 10% High Y Y  $300  9614 7484 2958 

7 20% Low N N  $900  9614 7484 2958 

8 20% Low N Y  $100  0 0 0 

9 0% Low Y Y  $900  9614 7484 2958 

10 20% High N N  $900  0 0 0 

11 10% Low Y N  $300  5864 8490 1935 

12 20% High Y N  $100  9614 7484 2958 

13 10% Low Y N  $900  0 0 0 

14 10% High Y N  $900  0 0 0 

15 10% High N N  $100  7559 5783 1089 

16 10% Low N Y  $300  5864 8490 1935 

17 10% Low N Y  $900  5864 8490 1935 

18 20% Low Y N  $900  0 0 0 

19 20% Low N Y  $100  9614 7484 2958 

20 10% Low N Y  $100  9614 7484 2958 

21 20% High N Y  $300  9614 7484 2958 

22 0% High N Y  $100  0 0 0 

23 10% High N Y  $300  0 0 0 

24 0% Low N N  $300  0 0 0 

 

 

One-Stage AC-OPF TNEP Experimental Design and Assumptions 

By simulating both the AC-OPF and the linearized DC-OPF for the same hours and 
transmission topologies, the error in the DC-OPF can be characterized and corrected 
in the transmission optimization. This can improve the transmission optimization in two 
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ways: first, the objective function will more accurately reflect the AC operation cost of 
the topology, so the DC optimization model should be more capable of finding lines 
that are marginally not worth their cost in the DC system but in fact are worthwhile in 
the AC system. Second, the error characterization will correlate certain DC behavior 
with AC reliability penalties, even when the DC costs are low; the resulting DC-based 
optimization can then maintain AC feasibility and reduce reliability penalties by 
avoiding the DC behavior that is indicative of AC reliability failures.  

The ACDC extension to ALFA will be compared to ALFA applied to the DC 
simplification of the problem and to ALFA applied to the AC problem. We would expect 
the AC-based TNEP model to provide the best overall solutions because the most 
accurate OPF is used; however, the resulting optimization is a MINLP and is much 
more difficult to solve than the MILP models from the other two approaches. 

We test these three approaches with 8,760 hours of operating conditions on the WECC 
network. We compare the methods based on the accuracy and quality of the final 
solutions when simulated with AC power flows.   

 

 Multi-stage TNEP Experimental Design and Assumptions 

Multistage adaptive planning models allow for the timing of investments, and the 
sequence of long-term events that might trigger investments, to be represented in more 
detail. Realistic multistage TNEP models have not been successfully demonstrated 
with other methods, so comparisons will not be possible for large-scale multistage 
tests. Of course, finding a high quality TNEP investment strategy for a problem with 
thousands of scenarios and unique short-term events is itself a significant result. 

Comparisons between LUCA-MAP, sampling-based scenario reduction methods, and 
other partitioning techniques will be performed on a smaller WECC model that can be 
solved exactly with dynamic programming. All methods will be compared on the quality 
of the first stage investments. Scenario reduction approaches do not generally provide 
a method for recovering the full investment policy, so alternative partitioning methods 
will be used here to evaluate the quality of the complete investment policy of LUCA-
MAP for the full investment horizon.  

The large multi-stage experiment uses the full set of 51 candidate lines and considers 
2,025 long-term scenarios with uncertainty from load-growth, RPS level, EV adoption, 
and several policies that determine the charging behavior of EV. Four future EV 
possibilities are considered: negligible EV adoption, EV adoption with peak charging 
aligned with the existing demand peak, EV adoption with charging delayed 6 hours, 
and EV adoption with charging moved forward 6 hours to align better with solar 
generation. States without EV adoption have equal probability of transitioning to any 
other EV state; states with either delayed charging or early charging remain in that EV 
charge state; states with EV charging aligned with peak demand can transition to the 
three EV charge states but cannot backtrack to the state without significant EV 
adoption. Short-term uncertainty is represented with 4 weeks of hourly data, one week 
from each season to capture the seasonal operation patterns, this gives a total of 672 
hours in each node of the decision tree.  
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Figure 1: Short-term electricity demand patterns in long-term scenarios with differing 
EV adoption and charge behavior. 

 

The small WECC model with 10 candidate lines is extended to a multistage model with 
using the same data as in the two-stage case. A total of 5 decision stages are 
considered with a branching factor of 5 in each stage. The model has 3,125 total 
scenarios. 

 

Table 2: ALFA Algorithm 

Step Approximated Latent Factor Algorithm (ALFA) 

1 Take sample of candidate transmission topologies 

2 Calculate OPF costs for each topology and each short-term event. Store 
values in data table Z 

3 Center the OPF cost data around the mean of each row (hour) 

4 Decompose the mean centered OPF cost data with SVD  

5 Select D-optimal subset of rows (hours) with row exchange algorithm, i.e. 
candexch, detmax, Fedorov exchange algorithm 

6 Calculate weights for each selected hour with OLS regression equations; 
alternatively, calculate strictly positive weights with minimum mean squared 
error 

7 Form approximating optimization problem with selected hours and 
appropriate weights 
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 Table 3: Nested LUCA/ALFA Algorithm 

Step Latent Uncertainty Clustering Algorithm (LUCA) 

1 Take sample of candidate transmission topologies 

2 Calculate expected annual costs (operation and fixed costs) for each topology 
in each scenario by solving the OPF cost for every short-term event in that 
scenario. Store in data table Z 

3 Filter for delta-optimal plans in each scenario so the best sampled topology 
has a score of delta and any sub-optimal plans have a floor of zero. 

4 Calculate Q, the covariance matrix (or alternatively the correlation matrix) of 
delta scores between each pair of scenarios  

5 Cluster scenarios into blocks of related scenarios (blocks of scenarios that 
benefit from the same transmission expansion plans) with spectra of Q.  

6 Combine short-term OPF cost data for each scenario block; approximate the 
short-term costs for each block with ALFA.  

7 Form approximating optimization problem with expansion decisions modeled 
for each scenario block and short-term costs modeled approximated with 
ALFA. 
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Table 4: LUCA Algorithm for Multistage Adaptive Planning  

Step LUCA for Multistage Adaptive Planning (LUCA-MAP) 

1 Generate scenario tree with nodes and unique information states  

2 Take sample of candidate transmission topologies 

3 Calculate expected annual costs (operation and fixed costs) for each topology 
in each information state by solving the OPF cost for every short-term event 
in that scenario. Store in data table Z 

4 Solve the dynamic program over full scenario tree with the sample of 
transmission topologies. Store optimal expected value of state action pair at 
stage t in matrix V 

5 From the root block, gather descendant nodes in stage 2 and group them into 
node blocks with the LUCA algorithm (steps 3 to 5) using the dynamic 
program result V as the matrix of costs. Step forward into stage t = 2. 

6 For each block in stage t; gather the nodes in stage t+1 that are descended 
from the current block and group them with the LUCA algorithm using Vt+1 as 
the matrix of costs. Step forward into stage t+1 and repeat until every node in 
the scenario tree is assigned to a block. 

7 Combine short-term OPF cost data for each node block; approximate the 
short-term costs for each block with ALFA.  

8 Form approximating optimization problem with expansion decisions modeled 
for each node block and selection of representative hours. 
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IV. Accomplishments and Conclusions 

 

Major Activities Completed 

All tasks as described in Section III and as outlined in the original proposal have been 
completed.  We have developed the methods for approximating short-term uncertainty 
for transmission planning, nested long-term and short-uncertainty approximation, and 
extended the algorithms to apply to generation and transmission co-optimization, AC 
power flow-based transmission planning, and multi-stage planning problems.  Each of 
these methods were tested extensively on transmission planning problems for the 
WECC network with one, two, three, and five transmission investment stages, 
depending on the method being tested. 

The methods have been tested and validated in several ways.  Two of the papers have 
been published in peer-review outlets, one is under review, and two more will be 
submitted shortly.  In each experiment, solutions from our method are rigorously 
compared to one or more state-of-the-art solution methods, both to validate the solution 
obtained as well as to establish the performance metrics described below.   Finally, all 
experiments have been presented in numerous fora to experts in the field in academic 
conferences, seminars, and presentations to industry. 

Five papers have resulted from this project, as planned in the original SOPO.  Two 
have already been published in peer-reviewed journals (Bukenberger and Webster, 
2019a;2019b), one is currently under review (Bukenberger and Webster, 2020a), and 
the final two papers are ready for submission (Bukenberger and Webster, 
2020b;2020c).   The complete references are provided in Appendix A. 

The methods developed in this project have been presented to several industry, 
government, and academic organizations.  Specifically, we have given seminars or 
presentations and explored applications of these methods in visits to PJM 
Interconnection, New York ISO, a webinar to U.S. Dept of Energy, Office of Electricity, 
presentation at two INFORMS annual conferences, the CIGRE annual meeting in 
2020, and a seminar at Johns Hopkins University.   Discussions continue with several 
collaborators for future application and extensions to these methods, including with 
PJM, NYISO, EPRI, and NREL. 

 

Project Goals Achieved 

All project goals and objectives identified have been achieved: 

1. Developed and demonstrated method for short-term uncertainty for one-stage 
stochastic TNEP and compare to existing methods; 

2. Developed and demonstrated method for nested long-term and short-term 
uncertainty for two-stage stochastic TNEP and compare to existing methods; 

3. Demonstrated method for co-optimizing generation and transmission; 
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4. Extended and demonstrated method for AC-OPF-based TNEP; and 

5. Demonstrated the ability to solve three or more stage stochastic TNEP problems.  

The detailed outcomes and metrics are provided in the next section. 

 

Noteworthy Results 

 

Performance of ALFA on 1-stage 

ALFA is significantly more accurate than approximations based on importance 
sampling and K-means clustering. Figure 2 compares performance across these 
methods for one key metric: the error in the estimated expected cost of out-of-sample 
transmission plans relative to the true expected cost.  The accuracy translates into 
better solutions than the other two methods, especially with very small sample sizes.  
A second key metric is the expected cost of the recommended best transmission 
investment plan relative to the cost of the true optimal investment plan; Figure 3 
compares this metric from ALFA to other methods.  ALFA also finds more of the optimal 
lines and identifies the most critical lines more frequently than the other methods. 
When compared to importance sampling ALFA finds fewer non-optimal lines. K-means 
tends to recommend plans with fewer new transmission lines, and therefore it 
frequently misses important lines but includes fewer non-optimal lines.   Key outcomes 
for the new lines identified by each method for the one-stage case study are provided 
in Table 5. 

 



26 
 

 

Figure 2: Error in the estimated expected total cost of transmission plans relative to 
the true expected cost of those plans, based on estimated costs from approximate 
models with representative hours chosen by Importance Sampling, K-Means 
Clustering, and two variants of ALFA. 
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Figure 3: Relative expected cost of the recommended best transmission investment 
plan from chosen by Importance Sampling, K-Means, and ALFA, compared to the 
cost of the independently solved true optimal transmission plan. 
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Table 5: Frequency of Identifying Critical Transmission Lines in the Recommended 
Optimal Plan from each Method 

Method Sample 

Size 

Freq. of Including Critical 

Line Opt. 

lines Nonopt. 1 29 43 19 13 

ALFA- 

10 

2 1 1 0.9 1 0.95 0.63 0.13 

4 1 1 1 1 1 0.71 0.15 

8 1 1 1 1 1 0.81 0.14 

12 1 1 1 1 1 0.82 0.10 

24 1 1 1 1 1 0.81 0.12 

ALFA-

30 

2 1 1 1 1 1 0.67 0.17 

4 1 1 1 1 1 0.78 0.11 

8 1 1 1 1 1 0.76 0.14 

12 1 1 1 1 1 0.81 0.14 

24 1 1 1 1 1 0.85 0.15 

Imp. 

Samp. 

2 0.95 0.65 0.9 0.75 0.85 0.57 0.14 

4 0.95 0.8 1 0.95 0.55 0.65 0.13 

8 1 0.95 1 0.9 0.8 0.70 0.12 

12 1 0.95 1 1 0.85 0.76 0.14 

24 1 1 1 0.95 0.95 0.80 0.15 

K-means 

 

2 1 0.3 1 1 0 0.54 0.04 

4 1 1 1 1 0.8 0.68 0.06 

8 1 0.8 1 1 0.9 0.69 0.09 

12 1 0.95 1 1 0.9 0.67 0.11 

24 1 1 1 0.9 0.85 0.67 0.10 
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    Performance of LUCA/ALFA on 2-stage 

For two-stage TNEP problems, a key performance metric is the excess first-stage cost 
of the recommended investment plan from an approximation method relative to the 
true cost of the optimal plan. 

Without considering short-term uncertainty, scenario reduction methods make worse 
first stage decisions when compared to partitioning with either LUCA or the Forward 
Scenario Selection (FSS) algorithm. Forming random partitions does the worst of all 
the methods, and the CVIS variance reduction method is an improvement over simple 
random sampling. Both LUCA and FSS always find the optimal first stage decision 
when used to form two or more partitions of long-term uncertainty.  Figure 4 compares 
the excess cost metric for several methods of partitioning or sampling long-term 
scenarios of various sizes. 

When short-term uncertainty is included in the model, the LUCA-ALFA combination 
makes the best first stage decisions, especially with small samples of short-term hours. 
The FSS and K-means combination method has inconsistent performance. All 
methods make substantially more costly first stage decisions without perfect short-term 
information. Figure 5 compares the excess cost metric for several methods for 
selecting representative hours to approximate short-term uncertainty. 

A second key metric for two-stage problems is the excess expected cost over both 
stages from the recommended plan relative to the expected cost of the true optimal 
plan.  Figure 6 compares the excess total expected costs for both stages across LUCA-
ALFA and several alternatives. The full decision policy (first and second stage 
decisions) found with LUCA are better than those found with other partitioning method. 
While both LUCA and K-means partitioning methods often find the optimal first stage 
decision, the second stage decisions found with LUCA are better than the other 
partitioning methods. LUCA should have better performance on multistage problems 
for this reason. 

A third key metric for two-stage TNEP problems is the optimality gap identified, the 
difference between the best upper and lower bounds on the true cost.   The smaller 
this gap, the more confidence in the recommended investment plan from the 
approximate model.   Figure 7 shows the optimality gap size from four variants of the 
sample average approximation method to find the lower bound on the optimal cost: 
pure random sampling, using importance sampling to reduce the variance, using 
control variates to reduce the variance, and using the CVIS method developed in this 
project which combines importance sampling and control variates.  Although scenario 
reduction via sampling has poor performance overall, it provides good bounds. The 
bounds can be improved by about one order of magnitude with control variates or 
importance sampling. The CVIS method improves the bounds by about two orders of 
magnitude. Because CVIS uses the same data as LUCA, these two methods work well 
in conjunction. For finding the upper bounds on the optimal cost, the LUCA-ALFA 
method’s advantage scales to larger problem where it outperforms the FSS and K-
means method (Figure 8). While the LUCA-ALFA method and the FSS and k-means 
combination have similar performance on the small test case, LUCA-ALFA 
outperforms on the larger test case, indicating that the performance of the distance-
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based method FSS degrades when faced with more complex long-term uncertainty 
from a more realistic problem. 

Finally, a key outcome is the demonstration of the value of these methods for long-
term transmission planning under uncertainty.  LUCA-ALFA models tend to postpone 
investments until they are needed later, when compared to the best solutions from 
FSS-KMC. But some alternative strategic investments are also made. Illustrative 
examples from the two-stage WECC case study are shown in Figure 9.  Numerical 
results are provided in Tables 6 and 7. 

 

 

 

Figure 4: Excess first-stage costs above the cost of the true optimal plan for the two-
stage TNEP case study.   The excess cost of the recommended plan from LUCA 
(developed in this project), forward scenario sampling, randomly sampled clusters, 
randomly sampled scenarios, and scenarios sampled with variance reduction.   The 
x-axis shows the number of clusters of long-term scenarios formed with each 
method. 
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Figure 5: Excess first-stage costs above the cost of the true optimal plan for the two-
stage TNEP case study.  The excess cost of the recommended plan from 
approximate models with short-term uncertainty represented by LUCA-ALFA 
(developed in this project), forward scenario sampling with K-means clustering, 
randomly sampled scenarios, and scenarios sampled with variance reduction. Two 
long-term decision points are used for this example, and the x-axis shows the 
number of hours included. 
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Figure 6: Excess total expected costs (first and second stage) above the total cost of 
the true optimal plan for the two-stage TNEP case study.   The x-axis shows the 
number of second-stage groups formed by each method. 
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Figure 7: Log of the optimality gap (distance between upper and lower bound 
estimate of optimal cost) for four different variants of SAA to estimate the lower 
bound.  The x-axis shows the number of replicants of the sampled approximate 
models for lower bound estimation. 
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Figure 8: The estimated upper bounds on optimal cost from Forward Scenario 
Selection – K-Means Clustering (a) and (c) and from the LUCA-ALFA method 
developed in this project (b) and (d).   Both absolute magnitude of cost and the excess 
cost above the best upper bounds estimate from any method are both shown.  Panels 
(a) and (b) show results for different numbers of long-term scenario clusters, and 
panels (c) and (d) shown results for different numbers of hours included in approximate 
models.  Dashed horizontal line in all panels indicates the best found upper bound as 
a reference. 
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Figure 9: First stage investments for the large case study from LUCA-ALFA (left) and 
FSS-KMC (right).  Recommended new lines from each method shown in green.   Blue 
circles indicate new lines recommended in plans from LUCA-ALFA but not FSS-KMC, 
and red circles indicate new lines recommended by FSS-KMC but not LUCA-ALFA. 

 

Table 6: Upper Bound Results for Two-Stage Experiment 
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Table 7: Lower Bound Results for Two-Stage Experiment 

 

Performance of LUCA for Co-optimization partitioning vs simple partitioning  

With generation co-optimization, LUCA with perfect short-term information has better 
performance than distance based partitioning methods. The difference between LUCA 
and FSS is larger here than in the small case studies, which demonstrates how simple 
clustering heuristics (FSS, K-means) degrade with more complex scenario spaces 
(Figure 10).  This improvement shows fewer line investments and fewer generation 
investments indicating that the improvement comes from a more efficient use of capital 
as opposed to making more investments that are ultimately valuable (Figure 11). The 
first stage decisions for capacity investments show similar generation investments for 
the two methods while fewer line investments are made with LUCA than with FSS. 
Differences in first-stage investments in transmission and generation between LUCA 
and FSS are illustrated in Figure 12. 

 

Figure 10: Total expected cost of recommended plan for generation and transmission 
co-optimization for two methods of clustering long-term scenarios in a two-stage 
problem. 
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Figure 11: Difference in new generation capacity built in Stage 2, shown by generation 
type and realized long-term scenario. Difference shown is the new capacity 
recommended in the approximate solution from LUCA minus the new capacity 
recommended by the FSS method. 

 

Figure 12: First stage generation and transmission investments with LUCA (left) and 
FSS (right) with perfect short-term information. Bubble sizes indicate the quantity of 
new generation capacity installed at a location. 
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Performance of AC-OPF ALFA 

The metrics for one-stage problems, error (%) of the estimated cost of plans from the 
approximation models relative to the true cost and the total expected cost, are used to 
compare the performance of alternative methods to choose transmission lines 
considering AC power flow.  A key outcome of this work is to show that ACDC-OPF 
approximation is as accurate as fully AC-Approximation, and more so than the DC-
approximation.  Figures 13 and 14 show the error in approximate investment plans and 
the expected cost of plans from each method, respectively.  Because AC-TNEP is 
often not feasible with generic solvers, and DC-OPF based TNEP models are 
sometimes infeasible when validated with AC-OPF, a significant advantage to the 
ACDC method is that it is solvable but stills better produces investment plans that are 
feasible for AC-OPF. 

 

Figure 13: Error in estimated cost of transmission plans evaluated with AC-OPF 
relative to the true cost of each plan. 
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Figure 14: Total expected cost of recommended plan from each method, based on 
evaluation with AC-OPF. 
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Performance on Multi-stage TNEP Problems 

Key metrics were assessed and outcomes were developed for the multi-stage 
problems using two case studies: a five-stage problem with fewer candidate 
transmission lines and uncertainty only in demand growth, and a three-stage problem 
with all 51 candidate transmission lines considered and multiple uncertain factors 
varied across long-term scenarios.   The key performance metrics from the two-stage 
experiments were used in these cases. 

The five-stage TNEP problem consists of 10 candidate transmission lines, and 
uncertainty in demand growth.   Different instances of this case were generated with 
different numbers of total long-term scenarios but choosing different branching factors: 
in each stage, how many different demand growth scenarios branch off for the next 
stage.   This problem is small enough to solve for the true optimal decision policy with 
dynamic programming. We compare the excess first-stage costs in Figure 15, and the 
excess total expected costs from all 5 stages across methods in Figure 16.  The key 
outcome from this experiment is to show that while random sampling scenario 
reduction outperforms random partitioning, it does not typically find the optimal first-
stage decisions whereas LUCA and K-means partitioning do (Figure 15).   We also 
demonstrate that constructing a high-quality policy with LUCA-MAP is possible and 
exhibits better performance than those from other partitioning methods (Figure 16). 

The three-stage experiment is a larger problem in its absolute size and represents 
several relevant uncertainties identified in WECC’s public planning documents.  In this 
case study, we compare the investment strategies from our method applied to the 
multi-stage problem to a non-adaptive or static strategy that does not make stage 2 
and 3 investment decisions contingent on the realized uncertainty.   A key outcome of 
this experiment is to demonstrate that adaptive strategies for investments will incur 
higher upfront (stage 1) cost but will have lower expected long-term cost and reduced 
tail end risk (Figure 17). 

A second noteworthy outcome of this experiment is the demonstrated ability to 
generate a solution to a problem of this size.  Existing methods, including the 
comparison methods in the previous experiments, are not able to generate a solution 
to this problem.  The developed multi-stage version of LUCA-ALFA is able to solve 
large multi-stage TNEP problems that were previously too large to consider. The 
results from the three-stage example are consistent with the findings in the two-stage 
experiments that adaptive transmission planning delays investments that are only 
beneficial in some scenarios (Figure 18). The higher first stage costs in the adaptive 
plan come from more costly operations rather than from investments in transmission; 
the savings in later stages comes from increased adaptability to extreme scenarios 
and from a general efficiency gain in operations overall.   
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Figure 15: Excess first-stage cost of recommended investment plans relative to best 
known first-stage plan from any method for the five-stage case study. 
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Figure 16: Excess total (first-stage plus second-stage) expected cost of recommended 
investment plans relative to best known investment policies from any method for the 
five-stage case study. 
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Figure 17: Excess costs in each stage relative to best known investment policy for 
three-stage case study.  Blue ranges show the costs in each stage of the adaptive plan 
(different investments in Stages 2 and 3 conditional on realized scenario) and red 
ranges show the costs from the static plan (distinct investment decisions in each stage 
but Stages 2 and 3 make the same investments regardless of the scenario realized). 
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Figure 18: First stage decisions in the adaptive plan with a branching factor of 2 (left) 
and the static plan (right). The adaptive plan delays some investments until it is clear 
they are needed in later scenarios (brown circles), while making one additional 
strategic investment (blue circles). 
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Conclusions 

This project was successful in achieving the original goals of developing and 
demonstrating methods to facilitate the solution of multi-stage transmission investment 
under uncertainty for very large problems that are not solvable by existing methods.    
The methods are computationally efficient, produce high-quality transmission plans 
that approximate the optimal plans of the original large decision problem, and provide 
tight confidence bounds to quantify the quality of the solution provided. 

The experiments and case studies solved show that the method developed here has 
lower errors and more consistently produces solutions with lower costs than alternative 
methods for solving these problems.  Importantly, the largest example problems tested 
were able to be solved using our method, but alternative methods cannot generate 
solutions. 

The longer-term goal beyond this project is for the methods developed to be adopted 
in practice by organizations that conduct transmission planning.   This goal will take 
longer to achieve, in part because of the complexity of the decision-making processes 
for transmission planning in the U.S. context (e.g., stakeholder processes and voting 
procedures in ISOs).   However, outreach activities performed during this project has 
generated interest in the methods in several organizations, and that dialog will continue 
beyond the formal end to this project. 

In addition, the methods developed have application to other relevant problems for the 
electric power sector beyond transmission planning.  For example, the short-term 
uncertainty selection of ALFA could be adapted to aid ISOs or utilities in revisiting and 
prioritizing among all possible contingencies used in reliability planning. Other 
important innovations in electricity market design and market clearing in the coming 
decades may include a shift to two-stage stochastic unit commitment for day-ahead or 
intra-day markets to manage the risk of increased generation from renewables.  This 
would require stochastic unit commitment models to be solved very quickly for large 
electricity markets. The methods developed here may provide a useful tool for enabling 
the implementation of these new market designs. 
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APPENDIX A: Product or Technology Production 

Published Peer-Reviewed Articles 

Bukenberger, J.P., and Webster, M. (2019a). Approximate Latent Factor Algorithm for 

Scenario Selection and Weighting in Transmission Expansion Planning.  IEEE 

Transactions on Power Systems 35 (2) 1099-1108. DOI 

10.1109/TPWRS.2019.2942925. 

https://ieeexplore-ieee-

org.ezaccess.libraries.psu.edu/stamp/stamp.jsp?tp=&arnumber=8846058 

 

Bukenberger, J.P., and Webster, M. (2019b). Latent Clustering Model for Co-

optimization of Transmission and Generation Investments Under Uncertainty.  CIGRE 

2020 Session.  

https://www.cigre.org/GB/publications/papers-and-proceedings 

 

Currently Under Review 

Bukenberger, J.P. and Webster, M.D. (2020a).  A Partitioning and Bounding Method for 

Adaptive Transmission Planning.  Operations Research.  (in review). 

 

In Preparation: 

Bukenberger, J.P. and Webster, M.D. (2020b).  Stochastic Transmission Planning: 

Latent Factor Approximation of AC Costs with DC Subproblems.  IEEE Transactions on 

Power Systems. (to be submitted). 

Bukenberger, J.P. and Webster, M.D. (2020c).  Multistage Transmission Planning with 

Correlation Clustered Scenario Trees.  INFORMS Journal on Computing.  (to be 

submitted). 
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2. For all presentations given during the past year to external audiences (in person 

or via webinar) that are related to this Assistance Agreement, provide the presentation 

title, date of presentation, event title, an electronic copy of the presentation, and a 

hyperlink to the presentation (if available.)   Indicate if the presentation was peer-

reviewed. 

 

Bukenberger, J. and Webster, M. (2019).   Stochastic Transmission Expansion 

Planning: Approximating the Annual AC Operating Cost with the DC Subproblem.   

INFORMS Annual Meeting, Seattle WA, October 24, 2019. [not peer reviewed]. 

 

Bukenberger, J. and Webster, M. (2020).   A Multistage Stochastic Transmission 

Expansion Algorithm for Wide-Area Planning Under Uncertainty.   U.S. Department of 

Energy, Office of Electricity, Webinar (Virtual), September 24, 2020. [Invited; not peer 

reviewed]. 

 

Webster, M. (2020).   Technology Portfolio Planning for an Uncertain Future: Overview 

of Decision Concepts.   Electric Power Research Institute, Program 201-B, Webinar 

(Virtual), August 31, 2020. [Invited; not peer reviewed]. 

 

Bukenberger, J. and Webster, M. (2020).   Latent Clustering Model for Co-optimization 

of Transmission and Generation Investments Under Uncertainty   CIGRE, Webinar 

(Virtual), September 3, 2020. [Peer reviewed].  
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