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ABSTRACT

Temperature response functions, known as g-functions, are a computationally efficient method for
simulating ground heat exchangers (GHEs), used with ground-source heat pump (GSHP) systems,
either as part of a whole-building energy simulation or as part of a dedicated ground heat exchanger
design tool. In fact, at present, they are the only feasible way to simulate a ground-source heat
pump system in a whole-building energy simulation. This paper summarizes recent developments
in the field and recent experience using a new open-source g-function calculation tool known as
pygfunction. This experience includes accuracy, computation time, memory requirements and
sensitivity to boundary conditions. With larger ground heat exchangers, e.g. in excess of 100
boreholes, the computational time and memory requirements can create challenges.

1. Introduction and Background

Temperature response functions, known as g-functions, are a computationally efficient method for
simulating ground heat exchangers (GHEs) used with ground-source heat pump (GSHP) systems,
either as part of a whole-building energy simulation or as part of a dedicated ground heat exchanger
design tool. In fact, at present, they are the only feasible way to simulate a ground-source heat
pump system in a whole-building energy simulation. This speed is possible because the most
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computationally intensive portion of the analysis is done before the simulation — that is, the g-
function is calculated first. At present, both design tools and energy simulation tools rely mainly
on libraries of g-functions for specific borehole configurations. By “configurations”, we mean
geometric arrangements of boreholes with specific ratios of spacing to depth. For example, 100
boreholes in a 10x10 grid with a horizontal spacing to depth ratio of 0.1. The boreholes could be
vertical or angled, regularly-placed or irregularly-placed, uniform depth or non-uniform depth.

Libraries of g-functions are quite useful, but not sufficient for many designs. Therefore, it is highly
desirable to have methods that do not rely solely on libraries. For purposes of automating design
and automatic optimization of design, where hundreds of configurations might need to be
evaluated quickly, faster procedures are really needed.

One complicating but subtle feature of g-functions is that the thermal response has a significant
dependence on how the heat rejected or extracted is distributed through the borefield. G-functions
are computed with a fixed heat rejection rate, but how the heat is distributed through the borefield
will vary with time. One can think of the situation for a large rectangular borefield with continuous
heat rejection over many years. In this case, the inner boreholes get “saturated’ with heat and
hence reject less heat over time. There are three approximations that have been used:

1. Uniform inlet fluid temperature (UIFT). Here, all of the boreholes receive fluid at the same
temperature. The actual distribution is then calculated as part of the calculation of the g-
function.

2. Uniform borehole wall temperature (UBHWT). With this approximation, the borehole
wall temperatures have a time-varying but uniform temperature (i.e., same borehole wall
temperature for all boreholes at any given time).

3. Uniform heat flux (UHF). With this approximation, the heat input is uniformly distributed
and all boreholes have the same heat flux (i.e., the total heat input used to calculate the g-
function is divided by the total borehole length).

Arguably, the UIFT approximation is the closest match to reality. The heat transfer fluid is
generally returned to the GHE in a single pipe, which is then delivered to each borehole in parallel.
Other than differences in the length of horizontal piping having a small effect on the delivery
temperature to each borehole, the inlet fluid temperature should be uniform. As will be discussed
below, the UBHWT approximation gives similar results to the UIFT approximation. Malayappan
and Spitler (2013) investigated the UHF approximation and found that, while it works well for
small numbers of boreholes (i.e., less than 30 boreholes), it can give significant sizing errors for
large borefields where significant thermal interference between boreholes is present.

The concept of using thermal response functions, known as g-functions, was introduced by
Claesson and Eskilson (1985). More recently, several promising approaches have been developed.
These include:

e Use of an analytical method (finite line-source) to compute g-functions. Lazzarotto (2015)
and Cimmino (2018a) have made a number of improvements that speed the calculations.
Cimmino’s approach is available in an open-source Python library, pygfunction.

e Use of a block matrix formulation (Dusseault et al., 2018) to calculate g-functions quickly.
The block matrix formulation is similar in some respects to Cimmino (2018), but the
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numerical integration of the error function is replaced with Chebyshev polynomials. With
this approach, the authors have been able to compute g-functions for 50-borehole GHEs
over a 40-year period in less than a half-second on a notebook computer.

e Use of artificial neural networks (ANN) to calculate g-functions. (Dusseault and Pasquier,
2018; Pasquier et al., 2018; Dusseault and Pasquier, 2019) In this approach, a library of g-
functions is used to provide training data for the ANN. Preliminary testing for small
borehole fields (with less than 10 boreholes) had been very promising.

G-functions can cover a range of times. At very short times (minutes to hours), factors such as
fluid transit time, heat transfer within the borehole, and heat transfer in the ground immediately
surrounding the borehole affect the response. At longer times, borehole-to-borehole interference
and end effects (i.e., heat transfer to/from the ground surface and the ground formation beneath
the boreholes) become more important. This paper focuses on “long-time-step” g-functions,
applying, at times, greater than about two days. For more information on short-time-step g-
functions, the reader is referred to work by Mitchell (2019), Brussieux and Bernier (2019),
Pasquier et al. (2018), Beier et al. (2018), Beier and Spitler (2016), Xu and Spitler (2006) and
Yavuzturk and Spitler (1999).

2. Literature Review

Methods for computing long time step g-functions were introduced by Prof. Johan Claesson of the
University of Lund and his graduate student, Per Eskilson, in the 1980s. For many years, these
methods were the only ones available. However, in the last five years, there has been a renewed
interest in methods for calculating g-functions.

2.1 Superposition Borehole Model

The concept of using thermal response functions, known as g-functions was introduced by
Claesson and Eskilson (1985). The methodology for computing g-functions was described by
Eskilson and Claesson (1988). A 3600-line FORTRAN 77 implementation is described in the
paper. A more detailed explanation is given in a 95-page unpublished report by Eskilson (1986).

The solution procedure makes use of a detailed radial-axial numerical simulation of the ground
surrounding a single borehole coupled to a detailed analytical model of the heat transfer inside the
borehole. This individual solution is then superimposed spatially to give the response of an entire
borefield. The detailed analytical model of the heat transfer in the borehole allows the model to
cover all the boundary conditions (UFIT, UBHWT, UHF) discussed above.

It should be noted here that this code is intended for a range of simulations, but that it could be,
and has been, adapted to calculate g-functions. This only requires a constant heat input; from the
resulting outlet temperature the g-function can be calculated. However, as a practical matter, the
code is not publicly available.

2.1.1 Cimmino

Cimmino (2019b) gives the latest development in a series (Cimmino and Bernier, 2013; Cimmino,
2014; Cimmino and Bernier, 2014; Cimmino, 2015; Cimmino and Eslami-Nejad, 2017; Cimmino,
2018a) of papers on calculation of g-functions. Cimmino’s methodology is based on a finite-line-
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source simulation. By dividing each borehole into multiple segments, the UBHWT and UFIT
boundary conditions can be approximated. This requires a rather complex method for determining
the required time-varying heat flux on each segment. Cimmino’s method identifies the symmetries
within the borehole field and computes segment-to-segment response factors for each unique pair
of segments. The results for the overall borehole field can then be calculated at the same time the
time-varying heat flux on each segment is calculated.

The approach of dividing the borehole into multiple segments, each of which forms a finite line
source, is known as the “stacked finite line source method” (Cimmino and Bernier, 2014) The use
of “stacked” is helpful to distinguish it from the finite line source (FLS) with the UHF
approximation, where all boreholes have the same heat flux, so each borehole is treated as a single
finite line source.

A major advantage to this method is that Cimmino has released an open-source version (Cimmino,
2018b and 2019a), known as pygfunction. We expect that coding (from scratch) any g-function
calculation method that can calculate UFIT and UBHWT boundary conditions would likely take
several months of graduate student time, at best. The availability of open-source code is highly
beneficial.

2.2 Pasquier — SBMF

Prof. Philippe Pasquier, his graduate student Bernard Dusseault, and colleague Prof. Denis
Marcotte, have made several contributions to the calculation of GHE response. Dusseault et al.
(2018) introduced a structured block matrix formulation (SBMF) for the FLS method. The method
is capable of calculating g-functions for UBHWT boundary conditions, but they have implemented
it for individual boreholes rather than multiple segments per borehole. (That is, it uses FLS, not
stacked FLS.) It may be possible to adapt it to use multiple segments per borehole. Or, it may be
that this approximation is sufficiently accurate for fast automated sizing.

The method has several features of interest. For cases with regular borehole spacing and therefore
high degrees of symmetry, the borehole-to-borehole response can be represented with Chebyshev
polynomials, which speeds the calculation. The resulting computation time for a 50-borehole,
regularly-spaced borefield is quite fast — less than a half second on a desktop computer. However,
it is difficult to make a direct timing comparison with Cimmino’s method. The SBMF method is
only working with 50 segments. Cimmino’s method, with 66 segments, takes about 9 seconds on
our cluster. However, the use of one segment per borehole will not give adequate accuracy over
the entire range of configurations of interest. It may be possible to extend the SBMF method to
handle multiple segments/borehole, but we have not attempted to do so.
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2.3 Lazorotto

Lazzarotto (2016) and Lazzarotto and Bjork (2016) describe some aspects of a methodology for
computing g-functions with the finite line source method. The emphasis is on improvements to
the analytical solution and application to cases where the boreholes are inclined from vertical.
Only small borehole fields (<10 boreholes) are considered in the paper, so it is difficult to
determine its applicability to larger borehole fields. Timing results are reported for several
permutations of implementing the code in Julia, Python, and Python with Cython. However, the
borehole configuration is not reported, so it is impossible to compare with other methods. The
availability of the source code is unknown.

2.4 Monzo

Monzé et al. (2015) reported on use of a numerical model to calculate g-functions. Although there
are some interesting aspects to the work, the proposed method cannot quickly calculate g-
functions.

2.5 Cullin — Equation fit

Cullin (2008) described an equation fit for large rectangular borefields. A six-term polynomial
gives g-function values as a function of two ratios: the number of corner to interior boreholes and

. . . t
the number of corner to perimeter boreholes. Six coefficients are stored for each value of In (;)

and for multiple B/H ratios. Computational time is not reported, but it is very fast even at typical
personal computers. In order to pursue such an approach, data sets containing g-functions for a
variety of configurations would be needed.

2.6 Pasquier — ANN

Dusseault and Pasquier (2019) present an interesting possibility for fast calculation of g-function
— the use of artificial neural networks (ANN). The use of ANN requires a large training set. The
ANN developed by Dusseault and Pasquier utilized a training set of 500,000 g-functions computed
for random arrangements of 1-10 boreholes within a 30mx30m rectangular area. Pasquier (2019)
suggested that a training data set of a million g-functions would be necessary to create an ANN
that could calculate g-functions for a wide variety of designs. Once the ANN is created, g-
functions can be calculated in a fraction of a second. The first challenge would be to develop a
database of a million g-functions that covered the range of configurations of interest.

2.7 Discussion of long time step g-function calculations

Of the methods discussed above, the first five calculate g-functions based on fundamental physics.
This is necessarily time-consuming. The last two methods rely on data sets generated from
fundamental physics. But once the data sets are produced using one of the first five methods, the
last two methods can give very fast answers.

3. Software Development

The pygfunction code, as provided by Cimmino, was set up so that the borefield specifications
were set within the code itself. While this is likely satisfactory for a single user generating only a
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few g-functions, we have been creating large numbers of long time step (LTS) g-functions and
have, therefore, recast the code.

The code to generate large numbers of LTS g-functions works in two steps. The first step is to
define calculation configurations (i.e., positions of each borehole in the field) in a spreadsheet. To
create, for example, all configurations between 2x2 and 32x32, a short Excel VBA code was used
to calculate the borehole positions and, for each configuration, write those to a single worksheet
in the Excel workbook. Scripts read the borehole position information on each worksheet and use
that information to organize the g-function calculations on one of the clusters at Oklahoma State
University.

The second step of the g-function generator takes four arguments. The first three arguments are
the path locations of the bore field geometry, input parameters (grout, ground, g-function
calculation time, etc.), and the annual profile of the thermal loads (if sizing will also be performed).
The last argument selects a boundary condition (UBHWT, UIFT, or UHF).

The initial work was done on a desktop computer. For several reasons, including high memory
requirements and the desire to calculate large numbers of g-functions, we transitioned to working
on two computing clusters at Oklahoma State University, named “Cowboy” and “Pete.” Nodes
that are utilized for calculating g-functions are:

e Cowboy has 252 nodes with dual Intel Xeon E5-2620 “Sandy Bridge” hex core 2.0 GHz
CPUs and 32 GB RAM.

e The two big memory nodes on Cowboy, each with dual Intel Xeon E5-2620 “Sandy
Bridge” CPUs and 256 GB RAM.

e Pete has 164 nodes with dual Intel “Skylake” 6130 CPUs and 96 GB RAM.

e The twelve large memory nodes on Pete, each with dual Intel “Skylake” 6130 CPUs and
768GB RAM.

Further details of the clusters are available at the OSU High Performance Computing Center
website (OSU HPCC, 2019). The g-function calculations for large borefields conducted in this
study often require the high-memory (256GB or 768 GB RAM) system nodes..

4. Results — Computational Requirements and Verification

Based on the discussion above, our testing reported here has been of the Cimmino method, with
an eye towards generating simultaneously a large library of long-time-step g-functions and,
possibly, a training set for an artificial neural network.

4.1 Timing and memory requirements

Important aspects of the computation of g-functions include the time and memory required for
computation of a single g-function. The computational time requirements are important, whether
the method is going to be used to compute a custom g-function for a one-off application or to be
used to compute a large library of g-functions. Memory requirements are important because:

e Many desktop computers do not have sufficient RAM to compute g-functions for larger
borehole configurations.
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e Even high-power desktop computers (“workstations”) may encounter limits that preclude
calculating g-functions with sufficient accuracy.

e The computing clusters have far more nodes with smaller amounts of RAM; knowing the
required memory lets us more effectively allocate the available resources.

The stacked finite line source method used in pygfunction allows the discretization of each
borehole into segments. We’ve found that the computing time and memory requirements scale
roughly to the total number of segments. Some variations are due to the amount of symmetry in
the borehole field. The configurations used here vary in the amount of symmetry. Most of the
configurations are uniformly-spaced rectangular configurations.

Required computation times for a range of configurations are shown in Figure 1, along with a 2"d
order polynomial curve fit. While actual computation times will depend on the computer and
processor, this gives an estimate for a high performance CPU, and can be used to yield an estimate
of how long it might take to calculate a library of g-functions.

This also gives some idea of the problems associated with calculating custom g-functions ‘on the
fly’ as part of a design process. Once the configuration of boreholes has been set, it may take on
the order of 10 iterations to determine the required depth. In cases with large numbers of boreholes
and segments, it is not practical to compute 10 g-functions while the user waits. An alternative
approach is to compute a set of g-functions for different pre-defined depths, then calculate g-
functions for specific depths using interpolation. One scheme is described in Section 4.5.

Memory requirements may also vary with the installation. We have not done a detailed analysis
of the memory usage, but offer two data points:

e When calculating g-functions for a 1024 borehole case with 6 segments/borehole (6144
segments) on a desktop workstation, memory requirements for the process maxed out at 87
GB of RAM or 14 GB/1000 segments. In this cases, other processes on the computer were
also consuming RAM.

e When computing g-functions for a range of rectangular configurations on the big memory
nodes of the Pete cluster, with 256 GB, the maximum number of segments that can be run
without failing is 24,192 segments. A case with 24,800 segments cannot be run, so the
absolute limit should fall in between. Using 256 GB to calculate 24,192 segments
corresponds to 10.6 GB/1000 segments. This number is presumably lower because other
processes on the computer also consume RAM.
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Figure 1: Computation time on the Pete cluster versus the number of segments in a borehole field.

4.2 Sensitivity to Boundary Conditions

As discussed earlier, there are three commonly used boundary conditions: UBHWT, UIFT, and
UHEF. For a 100-borehole rectangular configuration with 5 m borehole spacing and 100 m borehole
depth, g-functions have been computed for all three boundary conditions. Figure 2 shows a
comparison of the g-functions. It took 176, 197, and 4.4 seconds, respectively, to compute the g-
functions under boundary conditions of UBHWT, UIFT, and UHF. The GLHEPRO values were
computed with the superposition borehole method using the UBHWT boundary conditions. As
discussed earlier, UIFT is arguably the most accurate, and may be considered as the “reference g-

function.” At In (;ts) = 0.0913, corresponding to 30 years with dense rock and 43 years with

saturated heavy soil, the g-function value resulting from UBHWT is 4.2% lower than that from
UIFT and the g-function value resulting from UHF is 24% higher than that from the UIFT. Actual
errors in sizing will be quite a bit lower, since the load on the GHE is not constant. Nevertheless,
the UHF has the possibility to significantly oversize the GHE and so cannot be recommended. The
UBHWT g-function is likely to give no more than a few percent undersizing, well within the
uncertainties of ground properties and building loads.
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Figure 2: Comparison of g-functions for a 10x10 borefield computed with pygfunction under three different
boundary conditions (UBWT, UIFT, and UHF).

It is important to note that the UIFT g-function depends on the system flow rate and borehole
resistance. Parameters for an example comparison are given in Table 1. The highlighted rows
indicate the parameters that were changed — the four cases represent combinations of low and high
system flow rate, and low and high borehole thermal resistance (R;). The different shank spacings
are illustrated in Figure 3. The left-hand image with zero shank spacing corresponds to a high
borehole thermal resistance. The right-hand image with 45 mm of shank spacing corresponds to
a low borehole thermal resistance.
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Table 1: Parameters for UIFT Sensitivity analysis.

High R, High R, Low R, Low R,

Comment High flow Low flow High flow Low flow
Burial Depth (m) 4.5 4.5 4.5 4.5
borehole radius (m) 0.075 0.075 0.075 0.075
pipe outer radius (m) 0.0167 0.0167 0.0167 0.0167
pipe inner radius (m) 0.013665 0.013665 0.013665 0.013665
shank spacing (m) 0.017 0.017 0.045 0.045
pipe roughness (m) 2.00E-05 2.00E-05 2.00E-05 2.00E-05
U-tube Single Single Single Single
Ground thermal diffusivity (m2/s) 1.29E-06  1.29E-06  1.29E-06  1.29E-06
Ground thermal conductivity (W/m.K) 33 33 33 33
Undisturbed ground temperature (degC)  20.30 20.30 20.30 20.30
Grout thermal conductivity (W/m.K) 0.7 0.7 2.1 2.1

Pipe thermal conductivity (W/m.K) 0.42 0.42 0.42 0.42
Fluid mass flow rate per borehole(kg/s)  0.75 0.25 0.75 0.25
Fluid specific isobaric heat capacity

(J/kg.K) 4173.80 4173.80 4173.80 4173.80
Fluid density (kg/m?) 998.2 998.2 998.2 998.2
Fluid dynamic viscosity (kg/m.s) 0.001 0.001 0.001 0.001
Fluid thermal conductivity (W/m.K) 0.593 0.593 0.593 0.593

G function calculation years 250 250 250 250
Number of segments per borehole 12 12 12 12

Height (m) 100 100 100 100
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Figure 3: U-tube positions used for UIFT sensitivity analysis.

The results of the sensitivity analysis are shown in Figure 4. As can be seen there, within the range
of flow rates shown, and for a 100 m deep borehole, the effect of the flow rate is fairly small. The
effect of the borehole thermal resistance is about 5% at times corresponding to 45 years for dense
rock or 65 years for heavily saturated soil.

For the work described here, we use the UIFT with a ‘typical’ flow and R, value, in between the
cases shown here, as a reference g-function. To serve as a reference g-function, it also needs to
have sufficient segments. The required number of segments is discussed in Section 4.4. Different
conditions may lead to £2.5% variation in the long-term g-functions. As GHEs generally have
lower design lifetimes than the 45 and 65 years shown in Figure 4, and as the annual variation in
building heating/cooling loads leads to the response at shorter times being more important, we
expect that the error associated with this approximation is somewhat less than +2.5%.
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Figure 4: Effect of borehole parameters on g-functions calculated with UIFT boundary condition for a 100-
borehole field.

4.3 Accuracy of Long-Time-Step g-functions

Fully validating the accuracy of g-functions with full-scale experimental measurements is difficult
or, more likely, impossible. Difficulties include the time-scale, maintaining adequately accurate
experimental measurements and fixed heat inputs over time, and locating the ground heat
exchanger in a sufficiently homogeneous underground.

Some laboratory-scale measurements have been made, and validations of design methods using g-
functions have been reported (Cullin et al., 2015), though these cases have at most only a few years
of data and relatively balanced annual loads. When the loads are balanced, the effects of borehole-
to-borehole interference are diminished, and any errors in the late-time g-functions are irrelevant.

Therefore, verifying the g-functions with one of two approaches is probably the best that can be
done at present:

e The accuracy of the g-functions for borefields with regular spacing can be verified by
comparison to the g-functions used by GLHEPRO or by g-functions provided by Eskilson
(1987). This allows comparisons for rectangular fields of up to 20 x 20 boreholes.

e The number of segments required to reach a converged solution can be verified by using
the equivalent to a grid-independency test used with finite difference and finite volume
conduction heat transfer analyses. That is, the number of segments is sequentially
increased until the change in the calculated g-function is negligible.
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The accuracy of the g-functions for borefields with regular spacing can be verified by comparison
to the g-functions used by GLHEPRO or by g-functions provided by Eskilson (1987). With the

exception of the 200 borehole field, the long time-step portions of the g-functions [where In (;i)

> —8.5] come from the GLHEPRO library and were calculated with the superposition borehole

model (Eskilson, 1986). The g-function for the 200 borehole field was computed using the
equation fit developed by Cullin (2008) based on g-functions computed with the superposition
borehole model provided by Hellstrom (2006).

Figures 5 and 6 show comparisons of the g-functions generated with pygfunction for cases with
nine or fewer vertical boreholes, and 30-200 boreholes, respectively. The parameters used for
these boreholes are shown in Table 2. The dashed lines represent the g-functions used by
GLHEPRO. As discussed in Section 3, we are using only the long time-step (LTS) portion of the

g-function generated by pygfunction. So, the deviation below In (tis) = —8.5 may be ignored. As

can be seen, the g-functions match quite closely. To quantify the deviation, In (tis) = 1 corresponds

to 74 years for a 100 m deep borehole in hard rock conditions and 107 years for saturated heavy
soil conditions. At this point, the difference between the g-values for the 0009 BH case is about
0.1%. This implies that in the worst case of a completely imbalanced system with a constant load
on the GHE, the prediction of long-term temperature rise or fall could be off by about 0.1% after
75 years. This error is much, much smaller than other errors in the design process and is, therefore,
acceptable. Furthermore, slightly higher errors may also be acceptable for the sake of decreasing
computation time.

It should be noted that these verifications utilize 12 segments and 100 m deep boreholes,
suggesting that 12 segments/100m may be acceptable. This is examined further in the next section.
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Figure 5: Comparisons between g-functions computed with pygfunction and GLHEPRO (superposition
borehole method) for borefields with less than 10 vertical boreholes.
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Figure 6: Comparisons between g-functions computed with pygfunction and GLHEPRO (superposition
borehole method) for borefields with 30 to 200 vertical boreholes.

Table 2: g-function inputs for verification test cases.

Input Value
Burial Depth (m) 4.5
Height (m) 100
Horizontal spacing (m) 5
Borehole radius (m) 0.075
Type of U-tube Single U
Ground thermal diffusivity (m?/s) 1.29E-06

Ground thermal conductivity (W/m-K) 3.3
Undisturbed ground temperature (°C) 20.30
Fluid mass flow rate per borehole (kg/s) 0.503

Fluid specific isobaric heat capacity

kg K) 4173.8

Fluid density (kg/m?) 998.2

Number of segments per borehole 12



Spitler et al.

4.4 Sensitivity to Number of Borehole Segments

Since pygfunction approximates each borehole as a number of segments, and over each segment
the heat flux is constant, the solution depends on the number of segments per borehole.
Furthermore, the dependence on the number of segments seems to vary with overall depth and
number of boreholes. This complicates the sensitivity analysis, which is still underway as we
write. Therefore, the results in this section are preliminary. To begin the analysis, we analyzed
the values of the g-functions at specific times. For example, Figure 7 shows the variation of the
g-value with the number of segments for a 10x10 borehole field with 5m spacing and 275m depth.
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73.0 1

-1.9) = 31.4 years

72.5 7 *

g(In(t/ts)

72.0 *

?15 T T T T T T
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Number of segments / 100 m

Figure 7: g-values at 31.4 years vs. number of segments for a 10x10 borefield, 275 m deep.

Based on many results like this for fields as large as 10x10, we are preliminarily treating 30
boreholes/100m as a reference calculation. The attentive reader may see the problem. When
attempting to calculate the reference g-function for a 32x32 borehole field, 400m deep, we have
122,880 segments. Based on the estimates in Section 4.1, such a simulation might require about
23 days and 1.3 terabytes of RAM. The Pete cluster has one node with 1.5 TB, but it is not usually
possible to obtain use of it for more than a week.

Therefore, to date, we have only been able to make rather coarse estimates of the possible error
for different numbers of segments. By treating 30 segments/100m as a reference case, the error
may be plotted, as shown in Figure 8. Here, errors with 4x4, 6x6, 8x8, and 10x10 boreholes are
plotted as points for different numbers of segments per 100m. Cases with 10.2 segments/100m
(i.e., 28 segments/275m) and 14.9 segments/100m are extrapolated as shown. The authors concede
that these extrapolations may not be sufficiently accurate! The computational work necessary to
calculate actual errors with higher numbers of boreholes is underway now. Given the limited data
to date suggests that on the order of 10-15 segments per 100 m depth may be sufficient for
calculation of g-functions with acceptable error (under 5%).
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Figure 8: Error in g-value for cases with 16-100 boreholes, extrapolated to 1000 boreholes.

4.5 Verification of Interpolation Used to Compute Depth-Specific g-functions

As discussed in Section 4.1, our approach is based on developing g-functions for several borehole
depths, then, when sizing, interpolating between the g-functions associated with the pre-computed
borehole depths. We are using Lagrange polynomials to do this. Figure 9 shows an example of g-
functions pre-computed for four different borehole depths. The dashed lines represent the
Lagrange polynomial interpolations. Finally, Figure 10 shows a comparison between the
interpolated g-function and one calculated for a depth of 65 m. The interpolation is nearly perfect,
with a difference of 0.01% in the area beneath the curves (g-functions).
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Figure 9: Lagrange polynomial interpolation based on g-functions pre-computed for four different borehole
depths.
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Figure 10: Comparison of interpolated g-function to one calculated with pygfunction for the exact borehole
depth.
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5. Conclusions

This paper describes our experiences using a modified version of Cimmino’s pygfunction (2019a
and 2019b) to generate g-functions for a wide range of borehole configurations, including some
that exceed 1000 boreholes in size. It is possible to calculate g-functions for large borehole
configurations, but there are challenges with computational time, memory requirements and
adequately establishing the accuracy for large fields. For smaller borehole fields, up to 20x10, it
has been shown to give excellent accuracy, with less than 1% difference in the predicted long-term
temperature rise or fall compared with that predicted with the original g-functions. Verification
of accuracy for larger fields and a wider range of depths is underway.
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