/2
° IRAIamos

NATIONAL LABORATORY
- — (37,1943 =~ -

LA-UR-20-30197

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

THE RISTRA PROJECT: FY20/21 MILESTONE REPORT

Daniel, David John; Hungerford, Aimee L.; Bergen, Benjamin Karl;
Bowen, Dennis Brent; Burke, Timothy Patrick; Campbell, Joann Marie;
Certik, Ondrej; Charest, Marc Robert Joseph; Chiravalle, Vincent P.;
Davis, Erin Jessica; Demeshko, Irina P.; Dolence, Joshua C.; Drayna,
Travis William; Dunning, Daniel Jeffrey; Edelmann, Philipp Valentin
Ferdinand; Ferenbaugh, Charles Roger; Fryer, Christopher Lee;
Garimella, Rao Veerabhadra; Grosset, Andre Vincent Pascal; Halverson,
Scot Alan; Hammer, Hans Ruediger; et al.

Report

2020-12-11




Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher

recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its

technical correctness.



THE RISTRA TEAM

THE RISTRA PROJECT: FY20/21 MILESTONE REPORT

FOR ASC ATDM CDA LEVEL 1 AND ECP MILESTONES

LOS ALAMOS NATIONAL LABORATORY
LA-UR-20-XXXXX, DECEMBER 1, 2020



The Ristra team
Co-leads

Aimee Hungerford <aimee@lanl.gov>, Physics and Applications
David Daniel <ddd@lanl.gov>, Computer Science

Contributors (from Ristra, FleCSI, Portage, Legion, Kitsune, Lynx, SimTools and EAP teams)

Benjamin Bergen, Dennis Bowen, Timothy Burke, Joann Campbell, Ondrej Certik, Marc Charest, Vincent
Chiravalle, Erin Davis, Irina Demeshko, Joshua Dolence, Travis Drayna, Daniel Dunning, Philipp Edel-
mann, Charles Ferenbaugh, Christopher Fryer, Rao Garimella, Andre Grosset, Scot Halverson, Hans Ham-
mer, Angela Herring, Stuart Herring, Austin Isner, Christoph Junghans, Timothy Kelley, Evgeny Kikinzon,
Oleg Korobkin, Brendan Krueger, Ricardo Lebensohn, Hyun Lim, Li-Ta Lo, Julien Loiseau, Peter Maginot,
Mounia Malki, Christopher Malone, Len Margolin, Patrick McCormick, Michael McKay, Zachary Medin,
Jacob Moore, Nathaniel Morgan, EunJung Park, HyeongKae Park, Robert Pavel, Katherine Perry-Holby,
Jonathan Pietarila Graham, Nirmal Prajapati, Hoby Rakotoarivelo, Navamita Ray, Jonathan Regele, Andrew
Reisner, Michael Rogers, Mikhail Shashkov, Daniel Shevitz, Galen Shipman, George Stelle, Karen Tsai, Jan
Velechovsky, Daniele Versino, Alexander White, Ann Wills, Ryan Wollaeger, Jonathan Woodring, Nathan
Woods, Duan Zhang

With apologies for omissions.

Los Alamos report: LA-UR-20-XXXXX, December 1, 2020

Copyright © 2020 Triad National Security, LLC. All Rights Reserved.

Unless otherwise indicated, this information has been authored by an employee or employees of the Triad
National Security, LLC, operator of the Los Alamos National Laboratory with the U.S. Department of En-

ergy.


mailto:aimee@lanl.gov
mailto:ddd@lanl.gov

RISTRA FY20/21 MILESTONE REPORT i

Contents
I Milestone completion 1
1 Mission impact 2

2 Portability 3
3 Developer productivity 4
4  Code performance 4

Il  Introduction to Ristra 8
1 Timeline 8
2 Goals 9

3 Ristra software architecture: planning for flexibility in a volatile future 10

III  Deep dives 13
1 FleCSI 13
2 Portage 15

3 Multiscale Material Dynamics on Modern Computer Architectures 23

IV Productivity in the Ristra Environment 42
1 The physics developer experience 42
2 The CS developer experience 52

3 The user experience 63

4 A zoo of FleCSl-based codes 64

V' Preparing for the future 66

1 Legion and task parallelism 66

2 Kitsune & Tapir: Compiler Design, Parallelism, and Modern Architectures 75
3 The role of Ristra at LANL post-ATDM 88



ii THE RISTRA TEAM

Appendix 89
A Glossary 89
B ATDM charter 91

C  Advanced Technology Development and Mitigation (ATDM) Target (Level 1 Milestone
Definition) 92

D  Project timeline (selected highlights) 94

References 101



RISTRA FY20/21 MILESTONE REPORT

Part I

Milestone completion

The metrics that we will use to demonstrate milestone completion,
as presented to the committee in December 2019 and with revisions
based on feedback, are as follows:

Mission impact

v Turn-around times for demonstration problem on 25% Sierra and
50% Trinity along with same for EAP codes on 50% Trinity
Demonstration of ease of geometry setup, workflow, efc.

In situ visualization and analysis enabled in FleCSI

Integration of necessary physics

Demonstration of mechanism for model-form uncertainty

SNENENEN

Portability

v’ Symphony demonstrated on Sierra, Trinity and Astra. Performance
and memory usage documented

v’ Symphony demonstrated with MPI and Legion runtimes. Perfor-
mance and memory usage documented.

v' Code differences for different systems and runtimes will be docu-
mented (Physics code changes; Infrastructure changes)

Developer productivity

v" Ease of improving, modifying or extending code (Physics and CS
Infrastructure)

v Examples of algorithmic diversity

v" Code reuse between codes measured and demonstrated

v' Software environment metrics (Repository statistics; Continuous
integration statistics)

v Documentation and training materials enumerated

Code performance

v' Time to solution, Grind times, I/O times, Efficiency

v’ Strong scaling (Trinity vs Sierra vs Astra; MPI vs Legion)
v Weak scaling (Trinity vs Sierra vs Astra; MPI vs Legion)
v’ Abstraction overhead, e.g. FleCSI, Legion, Kokkos

In this section we provide summary evidence for each check mark,
referring to more detailed evidence either in the document below, or
in the accompanying slide deck.

1



2 THE RISTRA TEAM

1 Mission impact

Turn-around times for demonstration problem on 25% Sierra and 50%
Trinity along with same for EAP codes on 50% Trinity

We have run a reference demonstration problem on 50% of Trinity
KNL with both Ristra and EAP codes We have run the same on 25%
Sierra and 100% Astra with Ristra codes. Time to solution was chosen
at a reference simulation time based on physics exhibited Each run
was optimized for turn-around time using features available in each
code base Mesh choices (EAP is AMR; Ristra is unstructured), solver
options, and timestep controllers were judiciously selected by each
team. Turn-around for EAP and Ristra codes are comparable at 625
nodes, but currently Ristra codes do not weak scale as well as EAP
codes (see Code Performance below) At smaller node counts, turn
around time is comparable. For further analysis, including memory
usage, see the addendum to the report available to the committee in
the Wednesday review session.

Platform Nodes Cycle time (s) Time to solution (s)
Trinity Ristra 5000 33.55 28214
Trinity EAP 5000 41.35 13397
Sierra Ristra 1096 12.10 12099

Demonstration of ease of geometry setup, workflow, etc.

A number of tools have been developed within Ristra or integrated
into the workflow for Ristra codes. These include TIDE, a Lua-based
compile- and run-time problem setup tool, and Crosslink/Parmesh, a
scalable, parametric meshing tool. These are demonstrated in sub-
section The physics developer experience and in the accompanying slide
deck. Examples of integration with the Common Modeling Fram-
work (CMF) are also included.

This work is further covered in talks from Chris Malone and
Aimee Hungerford on physics developer and user experiences in
session 2 of the review. User experiences were gathered from poten-
tial code users tutorial sessions on ICF problems with Symphony and
positive initial feeback was received:

“Opverall, for the first time seeing ... symphony, I found the decks
pretty straightforward to follow/track, as well as to modify. ... The
flexibility and ease of switching between physics models was great,
particularly the hydro. 3D run times were faster than I anticipated...”

“It was very easy to take the 3D ICF input deck and make it into a 2D
input with a simple perturbation of the intial conditions. Even never

Table 1: Turn around times for the
demonstration problem.



RISTRA FY20/21 MILESTONE REPORT

having heard of Lua before ... it took about 2 minutes to make the
conversion from 3D to 2D (worked the first time), and maybe 5 minutes
to impose a sinusoidal density perturbation into the ice and ablator
materials.”

In situ visualization and analysis enabled in FleCSI

In situ visualization using Paraview/Catalyst has been available in
FleCSI-based codes since 2016 and has recently been enabled and
demonstrated in Symphony

Integration of necessary physics

Integration of the targeted physics has been completed in Ristra
codes and will be demonstrated in the addendum to the report avail-
able to the committee in the Wednesday review session.

Demonstration of mechanism for model-form uncertainty

A number of physics model swaps are demonstrated in the accompa-
nying slide deck in the "User experience" section.

2 Portability

Symphony demonstrated on Sierra, Trinity and Astra. Performance and
memory usage documented.

Symphony has successfully run a demonstration multi-physics prob-
lem on 25% Sierra, 50% Trinity KNL and 100% Astra.

Symphony demonstrated with MPI and Legion runtimes. Performance
and memory usage documented.

Symphony is portable to both MPI and Legion parallel backends and
has run with both on a variety of platforms including Sierra. Strong
scaling results are presented in the "CS developer experience" section
and slides. Weak scaling is a work in progress as we await the avail-
ability of a new release of Legion that addresses scalability challenges
triggered by unstructured-mesh FleCSI-based codes.

CODE DIFFERENCES FOR DIFFERENT SYSTEMS AND RUNTIMES WILL
BE DOCUMENTED

This is documented in the accompanying slides.



4 THE RISTRA TEAM

3 Developer productivity
Ease of improving, modifying or extending code (Physics and CS Infras-
tructure)

The modular architecture of FleCSI-based codes with well-defined
data and execution models ease the path to extending methods and
algorithms, while the separation of concerns between physics and CS
issues allows for more efficient development across the team. These
benefits are discussed in the Productivity in the Ristra Environment
section. In particular, the Multi-Material Multi-Physics (M3P) disci-
pline developed for FleCSI-based codes and described in the "Physics
developer experience" greatly eases physics implementation.

Examples of algorithmic diversity

This is captured throughout the report and accompanying slides.

Code reuse between codes measured and demonstrated

Described in the accompanying slides and in the "Physics developer
experience" section.

Software environment metrics

These are captured in the accompanying slides.

Documentation and training materials enumerated
e FleCSI documentation: https://laristra.github.io/flecsi/
® Portage documentation: https://laristra.github.io/portage/

e Friendly User Cookbooks have been developed for Symphony and
FleCSALE-mm as part of early engagement with users.

4 Code performance

Performance
Time to solution, cycle times, etc.
Weak scaling

Trinity, Sierra, Astra A weak scaling study of a demonstration prob-
lem has been performed on up to 50% Trinity KNL, 25% Sierra, and
100% Astra. simulation, see Figure 1.


https://laristra.github.io/flecsi/
https://laristra.github.io/portage/

RISTRA FY20/21 MILESTONE REPORT 5

Node-to-node comparison: weak scaling

[O)
© °
> . ././
b
g 2
£
= System
7
h A§tra
b Sierra
g ! Tr!n{ty
) 2 = Trinity-EAP
o
>
@)
b
0
L 2
Q
=
= -1
2
57 58 2 510 Hlt )12 )13
Nodes

Strong scaling

Strong scaling results for the demonstration problem on Sierra and
Astra are shown in Figure 2.

For Trinity KNL a full set of strong scaling data at the target scales
is not available at the largest scales but we have collected data at
smaller scales, as shown in Figure 3.

A discussion of throughput comparing Ristra and EAP codes can
be found in addendum to the report that will be available to the
committee in the Wednesday session of the review.

MPI vs Legion

At present we are unable to run our full-physics codes at large scale
using legion because they trigger bad scaling of Legion’s data-alias
equivalence sets. A solution from the Legion team is in hand but not
yet demonstrated.

This prevents us from a meaningful comparative study of weak
scaling our demonstration problem.

However, a smaller scales (and with a correspondingly smaller
mesh) we are able to explore strong scaling behaviour as shown in
Figure 4.

Abstraction overhead, e.g. FleCSI, Legion

In general FleCSI imposes negligible overhead relative to the underly-
ing runtime Anecdotal evidence: using a code with both FLeCSI/MPI

Figure 1: Weak scaling of the demon-
stration problem, including runs at the
target scales of 50% Trinity KNL, 25%
Sierra, and 100% Astra. Numbers are
normalized to CTS-1 performance at
625 nodes. Notes: (a) The Astra line is
from an earlier simulation time since
that is where we had a consistent set
of data, and hence is looks better; (b)
The EAP time per cycle is higher, but
for algorithmic reasons they need fewer
cycles their time to solution is better.



6 THE RISTRA TEAM

Time per cycle / CTS-1 time per cycle

Time per cycle (s)

Node-to-node comparison: strong scaling

Nodes

Node-to-node comparison: strong scaling

System

Astra
Sierra

System

= Trinity
= CTS-1

Figure 2: Work in progress for strong
scaling plots for Sierra and Astra for the
demonstration problem. Numbers are
normalized to CTS-1 performance at
625 nodes. The different lines for each
system are: (a) single point: full mesh;
(b) long dash; half mesh; (c) short dash:
quadrant mesh; (d) short long dash:
octant mesh.

Figure 3: A strong scaling comparison
between Trinity KNL and CTS-1 for

a demonstration problem at smaller
scales.



RISTRA FY20/21 MILESTONE REPORT 7

Figure 4: Legion vs MPI strong scaling

Legion vs MPI Backends - Strong Scaling of the demonstration problem on a
2° small mesh on Sierra
o
w
L 8
©
) Backend
)
o 22 MPI
8 Legion
©
£ 2
}—
50
2—1
50 o 02 3 o o5 i
processes

and stand alone MPI running a realistic 5-material compression prob-
lem on CTS-1, no discernable difference in run time is observed Ex-
ceptions have been identified related to related to the implementa-
tion of certain mesh iterators in FleCSI 1.X: fixed in FleCSI 2.0 See
“FleCSI” discussion.

For Legion we are still learning how to write applications in a data-
and task-oriented fashion. For our simple test applications Legion can
often be a factor of 2 slower in an initial implementation. Progress
towards resolving this through appropriate task granularity and
grouping is discussed in the “Legion and task parallelism” section of
the report. Hierarchical tasks are a potential path towards backend-
agnostic performance of the tasking model are available for us to
explore in FleCSI 2.0.



8 THE RISTRA TEAM

Part 11

Introduction to Ristra

The ASC Advanced Technology Development and Mitigation (ATDM)
sub-program was established in 2014 to develop new simulation tools
operating on exascale-class computers to serve NNSA (see Appendix
B).

Over the course of ATDM, LANL management have set a strategy
for exascale-class application codes that follows two supportive and
mutually risk-mitigating paths: evolution for established production
integrated design codes (IDCs) — with a strong pedigree within the
user community — based upon existing programming paradigms
(MPI+X); and a new start ATDM project, Ristra, a high-risk/high-
reward push for a next-generation multi-physics, multi-scale simu-
lation toolkit based on emerging advanced programming systems
(with an initial focus on data-flow task-based models exemplified
by Legion). The role of Ristra as the high-risk/high-reward path for
LANL’s codes was fully consistent with the goals of ATDM as de-
scribed in Appendix B, in particular its emphasis on evolving ASC
capabilities through novel computing programming models and com-
puting technologies.

In short, LANL has taken the opportunity provided by ATDM to
invest in a long-term approach, recognizing that an incremental im-
provement of our current production IDC capabilities is insufficient
to address new and complex challenges that LANL will face across
its mission space in future, even though our production IDCs play
a crucial role in maintaining the deterrence of the nation’s stockpile
and will continue to do so for at least a decade.

1 Timeline

LANL’s ATDM CDA project Ristra started in FY15 and built off of
the recommendations from an interdisciplinary task force that was
formed in FY14. Initial high level goals and requirements were iden-
tified in the early months of FY15. A 5 year plan was presented

that included a 2 year exploratory phase where the team surveyed
available technologies and identified gaps through prototype code
development activities. This exploratory phase completed with a
FY16 Level 2 milestone.

The FY16 milestone delivered a plan for the following years of the
project. By this time, sponsors from NNSA had extended the lifetime
of the project, so the plan outlined work for the following 4 years
(FY17-FY20). First, focus was on delivering a co-designed release of



RISTRA FY20/21 MILESTONE REPORT

a high-level computer science abstraction layer FleCSI (flexible com-
putational science infrastructure). Attention was placed on getting
the design for FleCSI’s data model right. At the same time, Ristra
recognized the need for its products to work together with current
IDCs, so the creation of Portage, an extensible remap and link library
was prioritized, with the expectation that this would provide early
mission impact from the project. Low energy density (LED) physics
implementations (i.e. multi-material hydro with solid mechanics)
are known for the complexity of their data expression so LED multi-
physics codes (FIeCSALE and FUEL) were the first software products
co-designed with FleCSI (FY17). The focus then shifted to a design of
FleCSI’s task execution model. High energy density (HED) physics
applications place stringent requirements on a task execution model
in order to follow the flow of a multi-physics calculation. A HED
radiation-hydrodynamics code Symphony was the resulting software
product from the FY18 co-design efforts. The FY19 Level 2 mile-
stone deliverable focused on the integration of these individually co-
designed components (FIeCSALE, FUEL and Symphony, with Portage
for remap). In FY20, product integration continued and demonstra-
tions on Advanced Technology Systems (ATS) became an emphasis,
with performance optimization emphasized for delivery of a final
high energy density simulation result for the current Level 1 mile-
stone review.

The COVID-19 pandemic severely disrupted progress towards the
FY20 goals, dramatically reducing the team’s access to classified re-
sources and negatively affecting options for demonstrating mission
impact. Less tangible consequences of the current work environment
are the sustained stress on staff and challenges to communicate effec-
tively across a very diverse project. Both have undoubtedly reduced
the productivity of the team as a whole.

As the ATDM initiative draws to a close, LANL management are
currently developing a major new program and code strategy, and
the foundations laid in Ristra are playing a significant role in those
planning activities.

A more detailed timeline for the project is included in Appendix
D.

2 Goals

The guiding philosophy behind the Ristra project was to create a
software ecosystem that allows LANL the agility to build codes that
respond to our ever changing mission questions and the ever chang-
ing HPC technologies.

Today’s multi-physics codes are architected to support a spe-



10 THE RISTRA TEAM

cific multi-physics algorithm-set, with some ability to shift between
physics models, but very limited ability to change the over-arching
model for how the multi-physics components interact with one an-
other. Similarly, they are designed with one mesh topology assump-
tion and one parallel runtime assumption. These assumptions are
hard-coded in to the implementation at all layers. Any shift in these
assumptions would likely require a rewrite of the code base.

In contrast, Ristra, is developing a toolkit to enable the develop-
ment of a set of next-generation multi-physics codes in diverse appli-
cation domains spanning the NNSA mission space. We are targeting
a combination of developer productivity, portability, and performance
that will ease the job of developing and maintaining efficient codes
for exascale-class computers and beyond. The name Ristra (meaning
“string” in Spanish, but in a New Mexican context, a string of chiles),
was chosen to emphasize that our aim was not to develop a single
monolithic code, but rather a toolkit connecting a consistent suite of
codes for different application domains.

Ristra, has taken a high-risk path that enables exploration of next-
generation physics methods implemented using novel computer
science technologies, with co-designed abstractions that enforce a
separation of concerns between the two disciplines. The benefit of
this path is greater agility, both in the code’s ability to incorporate
new algorithms (physics and computer science) and respond to the
anticipated increased diversity in application requirements.

Other goals for the project (TBD)

e Task based design
¢ Exploration of novel programming paradigms

¢ A modular architecture where emphasizing open source compo-
nents and code reuse across applications

* Code development processes designed to leverage solutions from
the world-wide HPC community

3 Ristra software architecture: planning for flexibility in a volatile
future

Two key challenges on the path to multi-physics computing at exas-
cale and beyond are (a) abstracting details of underlying hardware
and systems software from multi-physics code development and (b)
solving mission-relevant problems at multiple physical scales.



RISTRA FY20/21 MILESTONE REPORT

To address the first challenge, Ristra is developing a computer
science interface (FleCSI) that limits the impact of disruptive com-
puter technology on the development of multi-physics codes. FleCSI
enables the adoption of novel programming models and data man-
agement methods to address the challenges and diversity of new
technology.

Simultaneously, Ristra is exploring the use of multi-scale numerical
methods that offer improved physics fidelity and computing effi-
ciency, in both high energy density (e.g. inertial confinement fusion),
and low energy density (e.g. advanced materials and solid dynamics)
regimes, that are relevant to NNSA'’s mission of stockpile steward-

ship.
Compile-time specialization Figure 5: Ristra multi-physics code
= A o o architecture
<= . @ 2 o o =
7] Physics A S % =l 5 E
i =]
< | . S8 o 2 E £ Sl 9
o |l @ : : S S £ S E = o
= oy Physics E Physics B @« S ? 3 < =
(= %3 5 3 > S ) =
=|l 3 £8 %
S|l = LS a 2
Y O =
c|l & 29 a]| &
S PhysicsD  PhysicsC kS S 3o 3 o
2| g g I 5SS xnlfeall ef] &
2|l < N ) SEllO 2 [Ssellag 2 S
Iy = Multiplicative coupling S o (SIS |2 & £ o £ 8 Qo
S| g h SE[|R 5T |5CE(=EN =] £
5 5 (synchronous) & (TRl - S S S § sl s 5
p Q High- < 9 < o
k= = High- orderB  High- S O L
8 order A order C L3 r c
2| g 28 - _ls2ll=lls
? || & , 3 2 [Ba|<| 2| 2
2
— Q Continuum &0 Q O Sc2f|lo o S '6
o || < L9 OSl|lS2csE|s &l § 4
2 28 F|SSESEN S| ©
(=) Additive coupling g g g g3 23 '§ g
<

(asynchronous)

Future physics Future computers

Ristra has adopted a software architecture (Figure 5) that empha-
sizes a separation of concerns between the computational physi-
cists who need to respond to a diversity in questions of interest, and
computer scientists who need to adapt to changing software and
hardware computing technologies. That separation of concerns is
implemented through an open-source abstraction layer, FleCSI. FleCSI
can be thought of as a toolkit for building discretizations and physics
operators to support physics expression over an abstract data and
execution model that can target a variety of underlying parallel run-
times ranging from traditional MPI implementations to more capable
modern runtimes like the Legion programming system that origi-
nated at Stanford and is being actively developed at NVIDIA and Los
Alamos.

The FleCSI execution model is an asynchronous task-based pro-
gramming model that is well suited to highly heterogeneous com-
puter architectures, and is also well suited to explorations of new

11



12 THE RISTRA TEAM

more asynchronous algorithmic techniques. Specifically, we are
exploring novel multi-physics couplings in our codes, including a
number of multi-scale algorithms that break the conventional op-
erator split implementations of current multi-physics codes into a
more concurrent model that has potential benefits for execution on

extreme-scale computer platforms.

Tide
New codes Lua-based
input syntax

Kitsune Paraview/Catalyst Legion

2 Experimental Exascale in situdata | Innovative task-
3 parallel compiler analysis built in parallel runtime
2
[} s_ mphon . Compile-time specialization
'cos Multi-scale, multi- — K (o |
O material rad-hydro o o ) Nl : §
£ gl EH |- | B A L3 |6
B FUEL S| 5| e s 2 B g I
> Multi-material | S £8 sl
-Z_§ hydro with strength g 2 — 53 <
S/l and realisticEOS [l |- U 3.llz59 . 5

- < 173
g 21 s Multiplicative coupling g8 % 83 2 g E 2
o FleCSALE-mm = § (synchronous) E S T 580 ?l @ 13
o Multi-material o ey o 83 sl 8
£ hvd £ S o | (OB, | wan. | ISR} o
5 ydro S orderA — | £ =
8 £ & 3 >
5 4 e S3l| & =
5 Ak e foll sl e [2)elE
= = a @

o Additive coupling 2 3 L sl 2

(asynchronous) < ‘ o (=)

Future mlssmn Future physics Future computers

Mesh-free hydro
el Re:q:r;::inz & Tr’rTPtled N':g:-lrgvsa
tra physics codes R B linking library | parallelism portability

In a multi-physics code, we need a variety of types of discretiza-

tion — structured mesh, unstructured mesh, and particle-based, and
so on — to operate together, so an important part of our project is
Portage, a remap and link library that allows physical geometry and
data to be mapped between discrete representations (see Figure 6).
Portage has been developed as a stand-alone library that can be read-
ily extended to provide link capabilities between arbitrary computa-
tional physics codes, but is at the same time sufficiently lightweight
to serve as an inline remap within Ristra codes (for example for ALE
in several of our reference hydrodynamics codes).

Figure 6: Ristra: state of the project



RISTRA FY20/21 MILESTONE REPORT

Part 111
Deep dives

1 FleCSI

FleCSI is an open-source, compile-time configurable framework de-
signed to support multi-physics application development. As such,
FleCSI provides a very general set of infrastructure design patterns
that can be specialized and extended to suit the needs of a broad
variety of solver and data requirements. FleCSI currently supports
multi-dimensional mesh topology, geometry, and adjacency infor-
mation, as well as n-dimensional hashed-tree data structures, graph
partitioning interfaces, and dependency closures.

FleCSI introduces a functional programming model with control,
execution, and data abstractions that are consistent both with MPI
and with state-of-the-art, task-based runtimes such as Legion and
Charm++. The abstraction layer insulates developers from the under-
lying runtime, while allowing support for multiple runtime systems
including conventional models like asynchronous MPL

The intent is to provide developers with a concrete set of user-
friendly programming tools that can be used now, while allowing
flexibility in choosing runtime implementations and optimizations
that can be applied to future architectures and runtimes.

FleCSI’s control and execution models provide formal nomen-
clature for describing poorly understood concepts such as kernels
and tasks. FleCSI’s data model provides a low-buy-in approach
that makes it an attractive option for many application projects, as
developers are not locked into particular layouts or data structure
representations.

The structure of applications built on top of the FleCSI program-
ming system assumes three basic types of users. Each of the user
types has their own set of responsibilities that are designed to sepa-
rate concerns, and to make sure that development tasks are intuitive
and achievable by the associated user type.

The user types are:

¢ Core Developer
These are users who design, implement, and maintain the core
FleCSI library. Generally, these users are expert C++ developers
who have a well-developed understanding of the the low-level
design of the FleCSI software architecture. These users are gener-
ally computer scientists with expertise in generic programming
techniques, data structure design, and optimization.

13



14 THE RISTRA TEAM

* Specialization Developer
These are users who adapt the core FleCSI data structures and run-
time interfaces to create domain-specific interfaces for application
developers. These users are required to understand the compo-
nents of the FleCSI interface that can be statically specialized, and
must have a solid understanding of the runtime interface. Addi-
tionally, specialization developers are assumed to understand the
requirements of the application area for which they are designing
an interface. These users are generally computational scientists
with expertise in one or more numerical methods areas.

¢ Application Developer
These users are methods developers or physicists who use a par-
ticular FleCSI specialization layer to develop and maintain applica-
tion codes. These are the FleCSI end-users, who have expertise in
designing and implementing numerical methods to solve compli-
cated, multi-physics simulation problems.

The source code implementing a FleCSI project will reflect this
user structure:

¢ The project will link to the core FleCSI library.

¢ The project will use one or more specializations (These will usu-
ally also be libraries that are linked to by the application.)

¢ The application developers will use the core and specialization
interfaces to write their applications.

For more details on recent developments with FleCSI, please see
the accompanying slides.



RISTRA FY20/21 MILESTONE REPORT

2 Portage

A. Herring, C. Ferenbaugh, C. Malone, E. Shevitz, E. Kikinzon, G. Dilts,
H. Rakotoarivelo, ]. Velechovsky, K. Lipnikov, M. Shashkov, N. Ray, R.
Garimella

Portage is an open-source, scalable and extensible remap library
for numerical simulations. It supports state-of-the-art remap schemes
for meshes and particles in 2D and 3D up to a second-order accuracy.
Portage ensures critical properties such as local/global conservation
and bounds preservation for mesh remap. It enables multi-material
field remap through the use of a dedicated interface reconstruction
plugin, Tangram, and leverages the hybrid parallelism exposed by
advanced architectures using multi-processing and multi-threading.

Portage is currently the only actively developed open source library
that performs locally conservative remap. It provides a lightweight
and extensible interface that can easily be customized and integrated
into simulation codes. Portage supports general polyhedral mesh
fields with remap up to a second-order accuracy, while preserving
integral quantities of interest and numerical bounds. It supports
remap between particle fields as well and provides means to perform
mesh remap using the particle remap engine. Portage is designed
to scale to thousands of cores on distributed architectures through
MPI and OpenMP (using Nvidia’s Thrust wrapper), with support for
GPUs in development.

Portage is a framework for creating custom remappers from in-
teroperable components and not a monolithic, catch-all remapping
library. It is designed such that its major components can be mixed
and matched as necessary as long as they adhere to Portage’s APL. Its
design also seeks to minimize the amount of mesh and field data that
must be copied from clients in order to minimize data movement.

POR IAGE

Mesh search

Source material
volume fractions,
centroids

W
quANGRAM

Interface
Reconstruction

Source mesh
with data

Data on
[l target mesh

Mesh intersection

Mesh interpolation

Target mesh

Source swarm
with data

Dataon

rget swa
Target swarm target swarm

Application developers can:

e Use one of the included drivers with a mix of available and custom

Figure 7: Portage software design and
workflow

15



16 THE RISTRA TEAM

components to readily deploy a powerful remapping capability
into their application, or

* Write a custom remapping driver and use it with a mix of avail-
able and custom components to create a remapping capability
uniquely tailored to their application needs.

In order to enable this DIY approach, Portage uses a functional
design in which the remap driver is templated on the component
classes implementing the necessary methods, the mesh and state
managers for the source and target. The functional design allows a
remap driver to be written such that populating the fields on tar-
get entities is a nearly embarrassingly parallel process on-node.
Remapping on distributed meshes/swarms is also embarrassingly
parallel as long as the target and source partitioning is geometrically
matched. On the other hand, if there is a geometric mismatch of the
partitioning on the source and target, i.e., source entities overlap-
ping a target entity are on a different node, Portage performs some
communication and data movement in order to get source mesh cells
onto partitions needing them. Once this step is concluded, the remap
still shows excellent scaling.

The drivers furnished with Portage provide:

¢ Conservative remapping of multi-material fields between general
polygonal/polyhedral meshes

¢ Higher-order, non-conservative interpolation between particle
swarms as well as between meshes and particle swarms

¢ A modern design templated on the major components - mix and
match from the furnished suite or use a custom component

¢ Direct (no-copy) use of client application’s native mesh/parti-
cle and field data structures whenever possible (see distributed
remap)

¢ Built-in distributed and on-node parallelism even with custom
components (see scaling results)

Portage depends on the Wonton library to provide mesh/state
wrapper interfaces and some common definitions and functionality.
Multi-material remapping requires use of the Tangram library
for interface reconstruction and optionally, the XMOF2D library.
The supplied mesh-mesh remap driver of Portage also requires the
use of the R3D library for intersection of polyhedra. Distributed
parallelism of Portage is currently supported through MPI, while on-
node parallelism is enabled through the Thrust library. The default



RISTRA FY20/21 MILESTONE REPORT

on-node parallelism mechanism is OpenMP. Note that the TCMalloc
library available in Google Performance Tools is required to see the
expected scaling.

Implementation and architecture

| N o A~ N A Y A
Y ovary 'Q_{}"' T~ &_{.}’/ 5N &_{.}:’ SN
4 _‘_(J\‘]/\( \K/ o /1\ I’ \_l{; Ay A \[f \\_l{; Py | I
~ . - _ - ' =, VL
GRS VRSl el N
\/ R EAYA L= AV — L\ l 1/
= —] — = >_L Y  — .r'_L Y  p— .r'_L
1Y 7( Y A A A
“x:_( Iy ;\ — (/ I~ ;\ ~ // I~ ;\ ~ // I~
Y Il WAk VAN = N < v </
source: voronoi mesh  search for overlapping intersect cells,

target: cartesian grid source cells compute weights interpolate

Portage supports three types of remap:

Intersection-based remap is a conservative scheme that relies on
exact intersection of source and target meshes. It first identifies
the candidate source cells that may potentially overlap each target
cell. It then computes two moments of intersection (volume and
centroid) between each target cell and overlapping source cells
(Figure 8). Finally, it interpolates the target cell value from the
candidate source cells values using the moments of intersection as
weights [1].

Advection-based remap is a conservative scheme specifically de-
signed for meshes with the same topology but with different node
positions. As described earlier, this need arises from ALE hy-
drodynamic simulations when the mesh is slightly smoothed to
prevent cell distortion induced by the Lagrangian fluid motion.
Here, the remap is formulated as an advection or fluxing of inte-
gral quantities in/out of each cell through its faces. Any quantity
that is fluxed out of a cell is added into one of its neighbors, so the
method is intrinsically conservative. In this algorithm, the inter-
polation weights are deduced from the flux volumes, which is less
expensive but less accurate than the previous remap scheme [17].

Particle remap is a specific scheme for point clouds. In this method,
source fields are reconstructed by means of local regression [8].
Here a shape function is attached to each source point (scatter
form) or each target point (gather form). The algorithm first identi-
fies the source points included in the support of the shape function
of a target point (Figure 9) which are included in the zone de-
limited by the user-defined smoothing lengths which control the

Figure 8: Illustration of intersection-
based remap

17



18 THE RISTRA TEAM

number of points used for the local regression. It then computes
the weights by evaluating the shape function and its derivatives on
each point. Finally, it approximates the value on each target point
using those weights. Despite its high accuracy, this remap method
is not conservative.

Figure 9: Illustration of particle-based
® ; . rema
oe %, P
® I_,'. L4 ) I .'H‘--
e %0°, -FH J » 99
¢ *e T 4 i L9
9 N — ]
° e o @ ) L Y
e ° L
gather: shape function support scatter: shape functions supports
centered at target point (red) centered at sources points (blue)
it is evaluated at source points (blue). they are evaluated at a target point (red).

Each step can be processed in parallel with the granularity of a
single point or cell.

Design

Portage has a modular design. It relies on extensive C++ templating
of all remap steps, allowing client codes to extend, adapt or replace
them by customized ones. Most of its core methods are designed to
have no side-effects to ease their parallelization and their individ-
ual reuse. Portage’s components and their interactions are given in
Figure 7.

Portage takes the source and target domains along with fields data
as inputs, and then outputs remapped fields on the target domain.
Here a domain can be a mesh or a point cloud. For multi-material
fields, it requires the material volume fractions on the source domain
as depicted in Figure 10, and which corresponds to the proportion of
each material on each cell. The remap workflow consists of six stages:

1. Redistribution: this optional step is only necessary for distributed
domains with a mismatch between the source and target parti-
tions. In that case, some source entities (points or cells) are reas-
signed among MPI ranks such that each target subdomain is over-
lapped by the corresponding source subdomain. This eliminates
the need for communications in the remaining steps.

2. Interface reconstruction: this optional step is only required for
multi-material fields and is performed by a dedicated plugin
called Tangram. It recovers the interface between different materials
by computing the material polygons on each source cell given their



RISTRA FY20/21 MILESTONE REPORT

volume fractions and, optionally, their centroids for a second-order
remap accuracy.

. Search: this step identifies and retrieves the source entities that
are necessary to interpolate the value of a given target entity. The
algorithm depends on the remap scheme:

e intersection: collects the source cells that may overlap the target
cell.

¢ advection: collects the source cell itself and a subset of its neigh-
bors.

e particle: collects the source points included in the support of the
shape function of a target point in scatter form, and vice-versa
for gather form.

. Computation of weights: this step computes the contribution
weights of each identified source entity to reconstruct the value on
a given target entity. Again, the algorithm depends on the remap
scheme:

e intersection: computes the moments of intersection (volume and
cen- troids) of each candidate source cell that overlaps the target
cell.

* advection: computes the moments of each swept polyhedron
(volume and centroids) formed by the displacement of each face
of the source cell.

* particle: computes and accumulates the values of the shape
functions and their derivatives on each point given by the
search step.

. Interpolation: this step reconstructs the target entity values by in-
terpolating them using the computed weights. For mesh remap,
the gradient of the source field is required to achieve a second-
order accurate reconstruction. It is computed in Portage by a
least-squares method. Here, values can be limited using Barth-
Jespersen’s limiter, except at domain boundaries because boundary
conditions are not yet supported. For particles, we use the term es-
timation as recovered values may pass near the data not necessarily
through it.

. Repair: this step is only necessary in case of mismatch between
source and target mesh boundaries. Here, remapped values are
fixed to enforce the conservation of integral quantities. Portage
exposes three options to fix partially overlapped cells:

19



20 THE RISTRA TEAM

* constant-preserving : no field value perturbations but not conser-
vative.
¢ locally-conservative: conservative but perturbations may occur:

constant fields may not remain constant.

* shifted-conservative: conservative with minimal perturbations but
values are shifted: constant field remains constant but with a
different value.

It is also possible to extrapolate values to empty cells in the target

mesh.

7,

Volume fractions 'f' Target cell 't' superimposed . Volume fractions
and material fields 'u' on pure material polygons and fields for
on source mesh of source mesh target cell, 't'

Remap volume fractions
and fields one material
at atime

Drivers

A driver is the interface that exposes the remap capabilities to the
client simulation code. Writing a driver allows client codes to mix,
match, or extend specialized remap components for their partic-
ular needs. Portage comes with few drivers to ease the design of
custom ones and several apps to show common remap use cases.
Each driver is templated on core components (interface reconstruction,
search, weight computation, interpolation) for each remap method (inter-
section, advection, particle) and on mesh type. If the simulation code
provides a mesh with a set of queries that conforms with the mesh
wrapper interface, then no data recopy is involved. Portage embeds
five built-in drivers:

¢ uberdriver: an easy to use mesh remap class.

e coredriver: a low-level mesh driver that allows finer control on

remap steps.

Figure 10: Additional step involved in
multi-material remap



RISTRA FY20/21 MILESTONE REPORT

e mmdriver: a legacy monolithic mesh remap driver.
¢ driver_swarm: a dedicated particle remap driver.

e driver mesh swarm mesh: a mesh remap driver that relies on
particle kernels.

Scalability

Portage is designed for high performance computing clusters. It relies
on both MPI and OpenMP to leverage the hybrid parallelism exposed
by such architectures. Here we present some scaling results on a
simple multi-material problem in Figure 11. Tests are run on a cluster
formed by 256 dual-socket nodes (Intel Broadwell with 18 cores per-
socket at 2.1 Ghz). Here we consider a cell-centered three-material
field remap with 3D cartesian grids and a simple t-junction material
distribution on the domain. The source and target grids have 403 and
1203 cells respectively. To ease memory pressure, we set a single MPI
rank per node and 16 threads per rank explicitly pinned on cores
using KMP AFFINITY=granularity=core,compact.

Portage in production

Portage is increasingly being used for inter-code linking for produc-
tion problems at LANL. Examples can be found in the accompanying
slide sets.

Within Ristra, Portage is of course the main vehicle for intra-code
remapping (in ALE for example), but its utility is beginning to pay
off elsewhere as the following example makes clear.

PORTAGE IN EAT

LANL’s Eulerian Applications Project (EAP) maintains the pro-
duction rad-hydro code xRage. xRage contains a remapper capability
that maps mesh fields from its native AMR mesh to the GEM mesh
(General Eulerian Mesh) format used by some third-party libraries.
The current remapper was implemented in a short timeframe and is
challenging to maintain.

EAP is currently integrating Portage into xRage as an alterna-
tive remapping solution. This required writing some extensions to
Portage that were needed by EAP: initial support for cylindrical and
spherical coordinates; customized search and intersect routines; and a
customized remap driver that efficiently supported both forward and
reverse remaps in a single driver. Fortunately, because of Portage’s
modular design, these customizations could be written easily, and
where appropriate, contributed back into the Portage code base.

21



22 THE RISTRA TEAM

elapsed (s)

Figure 11: Scaling of multi-material
remap in a hybrid parallel setting. The
total execution time and the remap
time are depicted in black and red
respectively. The time spent on material
interface reconstruction - which is only
performed on multi-material cells - is
shown in purple. Here, the workload
per rank is impacted by the uneven
distribution of multi-material cells.
Despite the workload imbalance, a
reasonable scaling is still achieved.

1 | . i i I | i
1 2 4 8 16 32 64 128 256
ranks (16 threads each)

remap —=%— mesh-init
total ---%--- interface ——<—
linear --------



RISTRA FY20/21 MILESTONE REPORT 23

A preliminary timing study has shown that the Portage mapper
runs faster than the legacy mapper. Two large test cases, typical of
expected production use cases, were run.

Case 1:

¢ AMR mesh: 2.8M cells, distributed
e GEM mesh: 200K cells, distributed
¢ 800 MPI ranks

Case 2:
¢ AMR mesh: 2.9M cells, distributed
* GEM mesh: 200K cells, single rank
e 576 MPI ranks

Timing results for these two cases are shown in Table 2. These
results come with a few caveats:

* No optimizations have been made for the Portage version yet.

¢ The mappers are organized differently, so this comparison may not
be completely apples-to-apples.

We also analyzed memory usage for Case 2 and found that the
legacy mapper used roughly 1.83 Gb, while Portage used roughly
0.24 Gb, a reduction of about 7.5x.

Average time per call (ms) Table 2: Preliminary timing results for
Case 1 Case 2 Portage integration in EAP.
map direction | legacy Portage speedup | legacy Portage speedup
AMR to GEM 38.5 18.4 2.09X 56.4 21.5 2.62x
GEM to AMR 30.8 1.8 17.01X | 6754.5 302.2 22.35X

3 Multiscale Material Dynamics on Modern Computer Architec-
tures

N. Morgan, ]. Moore, R. Lebensohn, M. Zecevic, G. Shipman, V. Chiravalle,
D. Holladay, and D. Dunning

Within the Ristra project, the team developed a novel 3D multi-
scale hydrodynamic approach to capture mesoscale physics in con-
tinuum length-scale simulations. The new approach uses a modern
finite element (FE) Lagrangian hydrodynamic method coupled to the
multiscale Visco-Plastic Self Consistent Generalized Material Model



24 THE RISTRA TEAM

(a) Annealed copper [3] (b) Rolled copper [7]

Rolled Cu

10.7pus 10.6ps ) 10.7pus

Rassssaad ., TPPPPPPP

(c) Flyer plate experimental results [12]

(VPSC-GMM) to capture the nonlinear, non-homogeneous, and di-
rectionally dependent behavior of materials within simulations of a
full-scale part. The VPSC-GMM is computationally intensive, but is
local to each cell so simulations with this model can be significantly
accelerated by leveraging modern architectures. This multiscale hy-
drodynamic approach significantly improves the physical fidelity of
material dynamics simulations by allowing complex mesoscale ma-
terial models to be used on large-scale problems that have materials
with high internal variation.

Background

The microstructure of a material varies depending on the compo-
sition (alloy composition in metals or crystal-plastic composites in
polymer-bonded explosives) and processing (e.g. cast, annealed,
rolled, additively manufactured (AM), thermally /mechanically cy-
cled, aged) as shown in Fig. 12. Differences in microstructure can
lead to significant differences in the bulk mechanical behavior be-

Figure 12: Examples of different kinds
of microstructures for metals are shown
in (a) and (b). Explosively driven flyer
plate experiments demonstrate that

the microstructure can greatly affect
material dynamics on time scales of
107° seconds, see (c) for comparisons
between single crystal, annealed, and
rolled copper.



RISTRA FY20/21 MILESTONE REPORT

cause of the fundamentally anisotropic, heterogeneous behavior of
solids [13], see Fig. 12c. Capturing the mechanics at the scale of the
microstructure (termed the mesoscale) requires a constitutive model
that represents the mechanics of the individual grains that com-

pose the microstructure. This typically requires mesh resolutions on
the scale of tens of microns or smaller while most continuum-scale
problems are on the scale of centimeters or larger, making it com-
putationally prohibitive to directly simulate microstructure effects
with existing technologies of full-scale parts on exascale machines.
As a result, current simulations at the continuum-scale typically

use a homogeneous constitutive model to represent the mechanical
behavior of the material. The challenges with continuum-scale con-
stitutive models include: (1) homogeneous isotropic models neglect
microstructure and material anisotropy; (2) homogeneous anisotropic
models must be calibrated for every application and typically neglect
microstructure evolution; and (3) all homogeneous models are un-
able to capture any localized mechanical phenomena such as shear
banding, or void nucleation and crack formation/propagation (i.e.,
damage). An algorithmic gap exists with bridging between mesoscale
models and macroscale performance.

Computational physics is facing additional, new challenges that
arise with modern computer architectures comprised of multi-core
CPUs combined with GPUs (termed heterogeneous), but these ar-
chitectures also create new opportunities to support higher-fidelity
physics. Heterogeneous computer architectures are forcing the simu-
lation community to reconsider long held paradigms, such as relying
on mesh refinement with lower-order methods, and are shifting the
algorithmic development towards higher compute intensity methods
with excellent data locality and internal parallelism. The goal is to
maximize the compute intensity per memory load (FLOP/memory
ratio) and to eliminate the communication between distance cells
(e.g., good data locality). A new multiscale hydrodynamic simula-
tion approach was developed in the Ristra project that is: 1) well
suited for homogeneous and heterogeneous computer architectures;
2) is able to predict the 3D mechanical behavior of materials across
different compositions and processes, and that is sensitive to mi-
crostructure heterogeneity; and 3) designed for shock driven material
dynamics.

Innovation

As part of a multiscale strategy, different homogenization models
can be used to connect single crystal and polycrystal behaviors. This
work is focused on the use of self-consistent (SC) homogenization, in

25



26 THE RISTRA TEAM

which single crystals deform differently according to their orientation
and strength. SC methods provide more accurate microstructure-
sensitive constitutive response of the polycrystalline material points.
In this work, we couple the multiscale Visco-Plastic Self Consistent
Generalized Material Model (VPSC-GMM) with a modern finite el-
ement (FE) Lagrangian hydrodynamic method [5] in each cell of the
mesh, see Fig. 13. With this approach, the meso and macro-scales
are separated, but it is more predictive and accurate than using
anisotropic material models that are calibrated a priori to a partic-
ular test case. The new approach is computationally expensive com-
pared to using anisotropic strength models, but it can account for
microstructural evolution and how the latter affects the macroscopic
behavior, especially under deformation conditions involving large
deformations and/or large dynamic compression and strain-rates.
The high numerical cost associated with using VPSC-GMM in every
cell of the mesh in a simulation is dealt with and overcome by using
novel methods, efficient software implementation, and leveraging
parallelization strategies for modern computer architectures.

@ Material point Figure 13: The VPSC-GMM seeks to
® Cell nodes capture the dynamics of individual
= Cell boundary crystals (also called grains) within

a cell and will use a self-consistent
homogenization method to create a cell
average stress, which is stored at the
material point. Each crystal can have a
unique orientation and strength model.
The stress at the material point is used
in the FE Lagrangian hydrodynamic
code [5] to evolve the continuum-level
fields in the cell forward in time. The
strain of the cell is then used by the
VPSC-GMM to evolve the stress, strain,
and orientation of each crystal, and
then it will return a cell average stress.
The process is repeated every time step
in the hydrodynamic simulation.

New numerical methods in VPSC-GMM

In this section, two main improvements to the approach described

in the previous section, which are necessary for simulating more
complex problems using VPSC-GMM within an explicit FE solver,
are presented. First, we developed a more robust implicit solver to
evolve the crystal orientations and find the stress and strain of each
crystal. Next, a linear extrapolation algorithm for fast calculation of
mesoscopic stress is presented. We end this section providing further



RISTRA FY20/21 MILESTONE REPORT

details of the VPSC-GMM numerical implementation.
LINEAR EXTRAPOLATION OF MESOSCOPIC STRESS

Solving the full elasto-viscoplastic SC problem for each polycrys-
talline material point at each increment is computationally very ex-
pensive and impractical. To get around this, the elasto-viscoplastic SC
solution is not calculated at every increment, but only after enough
strain has accumulated with respect to the previous increment at
which the full SC problem was solved. In the increments between the
full solutions, the mesoscopic stress is approximated using a linear
extrapolation method.

In this work, we developed a new extrapolation procedure which
accurately takes into account changes in the loading direction. The
main idea behind this new extrapolation procedure is based on the
assumption that, for small strain increments, the non-linear depen-
dence of viscoplastic strain rate on mesoscopic stress can be accu-
rately described by the linear effective relation given by

e =M": 0 + & (1)

Where €Y and ¢ are mesoscopic viscoplastic strain rate and devia-
toric stress, and M? and € are effective viscoplastic compliance and
back-extrapolated strain rate. The integrated strain rate then becomes
linear in mesoscopic stress and can be easily solved. In our approach,
the full elasto-viscoplastic polycrystalline problem is solved every [
increments, after enough von Mises strain has accumulated to cause
appreciable evolution in state variables and thus mesoscopic response
(see fig. 14). The set of | increments applied at a material point is re-
placed by one accumulated increment, which is then applied to the
elasto-viscoplastic polycrystal. The strain increments are accumulated
as:

n
Aeﬂcc,n _ Aei,rot >
i:r§+l @

where Ae"* are strain increments rotated to the configuration at
current increment n. The rotation increments are used to update
the total amount of rotation per grain for that step. The threshold
von Mises strain increment, Ael, € [0.0001,0.01], is automatically
updated based on the difference between the stress calculated by
solving the full elasto-viscoplastic problem and the stress calculated
by linear extrapolation, which is described next. In the increments
k € (n —1,n) between the full solutions of the elasto-viscoplastic
problem, the stress is calculated by linear extrapolation. The inte-
grated strain rate is solved for stress under assumption that vis-
coplastic effective properties are independent of the mesoscopic stress

27



28 THE RISTRA TEAM

(linear approximation of viscoplastic behavior).

The calculated stress is then rotated to global frame and returned

to Lagrangian FE hydrodynamics code. The elastic self-consistent
effective stiffness at increment k is approximated by last available
estimate, L% = L¢"™"~1 The viscoplastic effective compliance and
back-extrapolated strain rate at k are approximated using the forward
euler method, and the time derivatives of the effective viscoplastic
compliance and back-extrapolated strain rate are calculated using

a finite difference approximation. The available information on the
dependence of viscoplastic strain rate on stress is utilized so that the
change in the direction of Ae* directly affects the direction of stress
through both the elastic and viscoplastic strain rates.

Figure 14: Based on the magnitude
Aegg® > Aeffy: full solution of the accumulated strain increment
Agace at current increment, the algorithm
‘ l Increments d.ecides w.hether to solve the full elasto-
| | | | | | | | | | L | viscoplastic problem or to perform
‘\ ' o o | &1 o L d linear extrapolation. The extrapolation
! I n n+m is uesd as long as the accumulated

strain at increment n, Ae™"° is below
some threshold value, Aeﬁ,’f,}'. This
method accounts for the possible

Aely 1€ < Aell: linear extrapolation change in the direction of loading,
thereby increasing the accuracy of the
extrapolation.

Verification and Validation

The Fortran-C++ interface allows coupling of the new VPSC-GMM
model with the fully-conservative Lagrangian FE hydrodynamics
code. In section Verification: single-element uniaxial quasistatic tension,
and compression and simple shear of an fcc polycrystal, we validate the
VPSC-GMM coupling and algorithmic modifications by simulating
uniaxial quasistatic tension, compression, and simple shear of an

fcc polycrystal using a single element and comparing the texture
evolution to the stand-alone VPSC code. Section Single-element hydro-
dynamic compression of an fcc polycrystal compares the hydrodynamic
response of a single element undergoing high-rate compression using
VPSC-GMM coupled to the FE hydrodynamic code and using VPSC
coupled to the commercial code Abaqus™. Section Validation on a
polycrystalline Taylor anvil experiment compares the results from a sim-
ulated dynamic Taylor anvil experiment to the experimental results
of a textured Ta cylinder, which is commonly used to validate mate-
rial models at high strain rates. Section Validation on a single-crystal
Taylor anvil experiment presents results for a series of single crystal
Taylor anvil experiments.



RISTRA FY20/21 MILESTONE REPORT

VERIFICATION: SINGLE-ELEMENT UNIAXIAL QUASISTATIC TENSION,
AND COMPRESSION AND SIMPLE SHEAR OF AN FCC POLYCRYSTAL

The VPSC-GMM with the FE hydrodynamics code was run for
a single element representing an fcc polycrystal with an initial tex-
ture of 100 grains with random orientations, for uniaxial tension
and compression and simple shear, applying a strain rate of 1 s}
with no hardening (Fig. 15). The fcc single crystal grains were as-
sumed to deform plastically by {111}(110) slip, with a constant (i.e.
no strain-hardening) slip resistance 7. ™ -10 GPa, a rate exponent
n=20, and initially spherical shape. The elastic constants correspond
to austenitic steel: Cq1= 205.0 GPa, C1,=138 GPa, and Cy=126 GPa.
The simulations were run up to 50% total strain for tension, compres-
sion, and shear. The results are compared to those obtained with the
stand-alone version of VPSC.

The resulting textures for each test case are compared in Fig. 16.
The red points are the stereographic projections of (111) poles of
the 100 grains predicted by the stand-alone VPSC code and the blue
points correspond to the predictions from the FE hydrodynamics
code with VPSC-GMM. The results match almost exactly for all cases,
with the largest difference observed in the shear case, due to slight
difference between how the FE hydrodynamics code and the stand-
alone VPSC code handle macroscopic rotations. Also, the stand-alone
VPSC code assumes the material is incompressible, while the FE hy-
drodynamics code allows for compressibility. To make the hydrody-
namics code match as well as possible to the incompressible solution,
the individual nodes of the element were given a velocity to match
the required deformation. Fig. 17 shows the stress strain response
for the shear case. Since hardening was not active for this calculation,
the slight positive slope of the plastic region comes from geometric
hardening caused by texture evolution. Also, the sampling rate of the
calculation was too coarse to show the elastoplastic transition of the
material. The first sample is at zero strain and the next sample jumps
to plastic deformation. This was done because the stand-alone VPSC
code does not include elasticity, so a comparison has little meaning.

For uniaxial tension and compression, the stand-alone version
of VPSC takes in a strain tensor whose longitudinal component is
defined while the transversal components are calculated with an
implicit solver to enforce incompressibility. Slight variations between
the implicit solver in the stand-alone VPSC code and the solution
from the hydrodynamics code created slight differences in the input
velocity gradient.

SINGLE-ELEMENT HYDRODYNAMIC COMPRESSION OF AN FCC POLY-
CRYSTAL

29



30

Equivalent Stress

THE RISTRA TEAM

0.7,

Tension Compression

(a) Tension (b) Compression

Shear

0.6

0.3

0.1

0.1 0.2 0.3 0.4
Equivalent Strain

0.6

Figure 15: Schematics of the three
verification test cases.

Figure 16: The texture predictions
using the VPSC-GMM coupled to the
FE hydrodynamics code are compared
to the stand-alone version of VPSC for
an fcc polycrystal with initial random
texture. The red dots are the stand-
alone VPSC predictions and the blue
dots represent the texture predicted
using the FE hydrodynamics code with
VPSC-GMM. The results are given for
a single element undergoing tension,
compression and simple shear.

Figure 17: Effective stress-strain re-
sponse for the shear test case predicted
with the stand-alone VPSC code (blue
dots) and the VPSC-GMM coupled to
the hydrodynamics code (orange dots).
The stress values are in MBars. The
stand-alone calculation neglects the ma-
terial’s elastic response, which is why
the starting stress value is non-zero,
while for the hydrodynamics code the
strain-stress curve starts at zero stress.
The small positive slope in the plastic
region is caused by geometric harden-
ing, since no strain hardening was used
for this calculation.



RISTRA FY20/21 MILESTONE REPORT 31

The FE hydrodynamics code with VPSC-GMM was also com-
pared to the VPSC model coupled to Abaqus™ Explicit for a single-
element high rate compression case. This test case is exploring the
hydrodynamic regime, where the previous tests were all quasistatic.
Symmetry boundary conditions were used for this test case on the
x=0, y=0, and z=0 planes, and an initial velocity of 4000 m/s was
applied downward to the nodes on the top face of the element. This
simulation was run for one microsecond. The purpose of this test
was to compare only the high strain rate hydrodynamics behavior
of the coupling, not necessarily the accuracy of the physical behav-
ior. The material input files used for this test were the same as the
test done in section Verification: single-element uniaxial quasistatic ten-
sion, and compression and simple shear of an fcc polycrystal. Plots of the
density, pressure, volume, and internal energy from Abaqus’™ and
the FE hydrodynamics codes are given in Fig. 18. There is excellent
agreement between the predictions of both codes.

Figure 18: Results from Abaqus™
are compared to results from the FE
001 ° ;i::i“’ hydrodynamics code with VPSC-GMM
for a unit cell undergoing rapid uniax-
ial compression for one microsecond.
In the left column, the orange dots
represent the solution from the FE hy-
drodynamics code and the red crosses
00150 0 are the solution from Abaqus™. The
00125 o blue dots in the right column are the
goowo difference in the solutions.

Density vs. Time Hydro Solution - Abaqus solution

Density (g/cm?)
S 5 5 3
Difference
s & b °
s o o °
g 8 B 8
o
0
o
Q
o
()
.
.
®
.

Pressure vs. Time

]
§owo07s
5 0.0050 o

0.0025

Pressure (Mbar)
e o o o o
S R 2 &
%,
S
.
()
)
%
O
%

0.0000

Volume vs. Time

1.000
T 0975
E 0.0015 0
50950
o
5 0.925 0.0010
50.900
S §
0-875 0.0005
0.850

Difference
..
)
()
.
..
.
.
®e

0.825 0.0000

Internal Energy vs Time

0.00

0.003 -o.01

-0.02
0.002 -0.03 ..'.

3 )

-0.04 e

0.001 L
)

-0.05 .,

0.000 -0.06 %

0.0 0.2 08 10 0.0 02 08 10

Difference
()

Internal energy (MBar* cm?)

0.4 056 0.4 0.6
Simulation Time (ps) Simulation Time (ps)

VALIDATION ON A POLYCRYSTALLINE TAYLOR ANVIL EXPERIMENT

The Taylor impact experiment involves impacting a cylindrical
specimen against a stiff target at high rate (~100 m/s), and mea-
suring the deformed shape and microstructure after the impact. We



32 THE RISTRA TEAM

simulated Taylor impact experiments of textured Ta cylinder per-
formed by Maudlin et al. [11]. Ta cylinders were cut from a rolled
Ta plate, with the cylinder axis parallel to the rolling and transverse
directions. Cylinder diameter was 7.62 mm and cylinder length was
38.1 mm. The impact velocity was 175 m/s.

Due to symmetry of the specimen and the constitutive response,
one quarter of the cylinder was simulated and discretized into 3597
cells. The nodes in the planes of symmetry were allowed to move in
those planes only. The contact between the anvil and the cylinder is
simulated by constraining the displacements of cylinder nodes in the
plane of contact to that plane. An initial velocity of 175 m/s was im-
posed to the cylinder. The density of Ta cylinder is 16640 kg/m? [11].
The polycrystalline Ta’s initial microstructure was the same for each
element, and consisted of 419 equiaxed grains, with orientations cho-
sen to reproduce the measured initial texture of the rolled Ta plate.
The initial slip resistance 75=115 MPa and rate exponent n=14 for Ta
were calibrated based on measured through-thickness compression
initial yield stresses of Ta specimens cut from the same rolled plate as
cylinders and measured by Chen et al. [4] (Fig. 19). For simplicity, no
strain-hardening was assumed and grains were allowed to deform by
{110}(111) and {112}(111) slip.

Fig. 20 shows the mesh, and the cylinder shape and von Mises
stress at different time increments. In the initial stages of the simu-
lation, the von Mises stress is the highest at the foot of the cylinder
where deformation is the highest (Fig. 20b). The tail of the cylinder
remains below the yield point throughout the simulation. At later
stages, the peak von Mises stress moves away from the foot more to-
wards the cylinder center (Fig. 20c-e). Note that von Mises stress is
proportional to the strain rate, and the shift of peak stress from foot
toward the tail indicates propagation of the plastic wave.

103
75)(102 [
© 2
Q.  5x10
=3
w0
(73}
g
& 25x10°
o
>_ L]
—VPSC n=14
= Chen et al. (1996)
102 4 2 0 I2 4
10 10° 10 10 10

Strain rate [1/s]

Fig. 21 compares the predicted and measured deformed cylinder

Figure 19: Rate sensitivity of initial
yield stress under through thickness
compression predicted by VPSC,
compared to measured initial yield
stresses at strain rates of 0.001, 0.1 and
1300/s, which were extracted from
experimental compressive stress strain
curves (Chen et al. [4] ).



RISTRA FY20/21 MILESTONE REPORT 33

ajt=0ms b)t =0.25 ms Figure 20: The evolution of von Mises
stress and shape of Ta cylinder during
Taylor impact simulation at five differ-
ent times: (a) o ms, (b) 0.25 ms, (c) 0.5
ms, (d) 0.75 ms, (e) 1.0 ms.

dit =0.75ms

Won Mses Stres

I0eedl S0 100 150 B0 30 M0 30 M0 450 SN0 S50 a0 650 Tieed

shapes. Fig. 21a shows good agreement between the predicted and
measured shapes of the cylinder foot. Comparison of the deformed
shape to the initial cylinder shape at the foot (dashed circle) indicates
a very high degree of deformation and significant ovalization. During
rolling of the initial Ta plate, the {111} crystallographic planes/di-
rections tend to align with the normal direction (through thickness
direction of the plate). The anisotropic single crystalline response of
bce Ta is hard along this direction, meaning that the through thick-
ness direction of the rolled plate is a hard direction in comparison

to in-plane directions. Since the hard direction is parallel to the x-
direction of the cylinder, the cylinder deforms less in the x-direction
than in the y-direction resulting in the observed anisotropic shape.
Major and minor profiles and radial strains shown on Fig. 21b and
Fig. 21¢, respectively, reveal even larger ovalization away from the
foot. As the deformation progresses, the crystallographic orientations
reorient and the anisotropy of polycrystalline constitutive response
changes. Since the ovalization is not the strongest at the foot where
most of the strain is accumulated, it appears that difference between
the x- and y-cylinder dimensions reduces with straining, due to tex-
ture evolution.

The boundary conditions implemented in the FE hydrodynamics
code simulation do not allow for the cylinder to “bounce back” after
the initial contact. This difference in the experimental vs simulation
setup contributes to the discrepancy between the calculated and the
experimental results. In addition, due to very high strain rates and
strains, especially at the foot of the cylinder, the temperature increase



34 THE RISTRA TEAM

due to adiabatic heating is significant (according to simulations of
Zecevic and Knezevic [18] temperature at center of the foot reaches
values close to 1000°C). The temperature increase would lead to a
decrease of the yield stress, making the foot softer at higher strains.
This effect is not captured in our model, and the predicted deforma-
tion at the foot is thus lower than experimentally observed.

Figure 21: Comparison between simu-
lation (solid line) and the experimental
= 0 gim ) results (dots): (a) foot of the Taylor
cylinder after the impact (before impact
shown with a dotted line); (b) major
and minor radius of the cylinder after

T (Exp)

a)

r [mm]

¥ mm] — Simulation

o Eperimen the impact; (c) major and minor radial
' 20 30 strain after deformation.
% [mm*
10 10 . Ema'm{Exp_)
0.8 -‘.: . t,[m.m]. )
06 B - Ermamr (Sim.)
W \. A — e (gim.)
04
0.2
20 30

VALIDATION ON A SINGLE-CRYSTAL TAYLOR ANVIL EXPERIMENT

The VPSC-GMM coupled to the Abaqus™™ explicit code was used
to simulate single crystal (SX) Ta Taylor Anivil tests by Lim et. al.
[9]. The results are shown in Fig. 22. Credit for the SX work goes to
Miroslav Zecevic (T-3), Jesse Feng (Univ. NH), Marko Knezevic (Univ.
NH) and Ricardo Lebensohn (T-3). The VPSC-GMM captures the
anisotropic deformation in these experimental tests, which demon-
strates the predictive capabilties of this multiscale model.

Performance improvements using openMP

The VPSC-GMM model involves significantly more computational
work than the FE hydrodynamics solve. The extrapolation scheme
added to VPSC-GMM increases the speed of a simulation, but it can
create load imbalance issues. Figure 23 shows how the computational
work is not always evenly distributed over the CPU cores with a
notional Taylor anvil simulation. Each color in Fig. 23 is a CPU core
running a single thread that executes the computational work for a
set of elements in the mesh. In this notional example, the orange core
is doing most of the work in the calculation, because VPSC-GMM is
executed on the orange core while the other cores will execute the
less expensive extrapolation scheme. This means that the code is



RISTRA FY20/21 MILESTONE REPORT 35

[149] SX

s 1
L. o

137.2m/s

[100] SX

137.5m/s N 137.5m/s

Figure 22: The VPSC-GMM, can be
embedded in different solid mechan-
ics/dynamics solvers. Abaqus™
VPSC-GMM results are shown for the
single crystal (SX) Ta Taylor-Anvil ex-
periments by Lim et al. [9]. The results
match the experiments remarkably well.



36 THE RISTRA TEAM

effectively running in serial, which is sub-optimal.

One way to get around the load imbalance issue is to change the
stride pattern for walking over the elements within a loop to help
prevent neighboring elements from running on the same CPU core.
This is achieved by creating a stride array so that a loop will jump
through the initial mesh to help distribute the work over the cores.
Figure 24 shows a notional example of this process with an 8 core
CPU and a stride size of 8. The efficacy of this improvement is prob-
lem dependent. If all elements in the mesh are undergoing large
amounts of deformation then the load is reasonably balanced over
the CPU cores. That being said, for problems were only small re-
gions of the mesh are experiencing significant deformation, then
using a stride pattern to walk over the mesh greatly accelerates the
calculation (i.e., it decreases the runtime) and improves the scaling
performance. It should be noted that the stride size is a user settable
variable, and the optimal stride size for each simulation will be dif-
ferent. In our studies using multi-core CPUs, we found a stride size
equal to the number of threads used in the simulation will, on av-
erage, distribute the work evenly across the CPU cores. All scaling
results presented in this paper use a stride size equal to the number

of threads.

[ core 1 Figure 23: The load imbalance issue

. Core 2 is shown for a notional Taylor anvil
simulation using an 8 core CPU with

I:I Core 3 8 threads (i.e., 1 thread per core). Each

[ core 4 color represents a CPU core and the

Il core s numbers correspond to the element
index. Depending on how the mesh

O core 6 is walked over in a loop, it is possible

[C] core 7 (and likely) that the VPSC-GMM will

[ Core 8 be executed on the same core or just a
few cores; as a result, majority of the
computational work is on a core or just
a few cores. This load imbalance issue
is addressed in this work.

[ core 1 Figure 24: The amount of computa-

. Core 2 tional work in each element can vary
substantially across the mesh. In this

O Core 3 notional example, an 8 core CPU is

[ core 4 used with 1 thread per core. The ele-

Il core s ments in the loop are walked over using
a stride size of 8, which better balances

[ core s the work load over the 8 CPU cores.

[C] core 7

[C] core 8

OPENMP PERFORMANCE STUDIES

To test the runtime performance of the new multiscale approach,
the Taylor impact simulation (see section Validation on a polycrystalline



RISTRA FY20/21 MILESTONE REPORT 37

Architecture AMD ARM
CPU AMD-EPYC 7551  Cavium ThunderX2 CNgg75
cores 32 32
Memory bandwidth [GB/s] 170.6 158.95
Cache memory [MB] 64 (L3) 8 (L2)

KNL Skylake
Xeon Phi 7250  Xeon Platinum 8176
68 28
115.2 119.21
34 (L2) 28 (L2)

Taylor anvil experiment) was run for 50 equally spaced time steps
while increasing the number of threads up to the maximum number
of cores, and then with hyperthreading. The first 50 times steps are
very computationally costly and there is a large variation in the com-
putational work load across the mesh because the elements in contact
with the wall are undergoing very high strain rates relative to the rest
of the mesh. The goal is show linear scaling. This scaling analysis
was done on four different CPU architectures (AMD, ARM, KNL,
and Skylake) to ensure the performance increase was not machine-
dependent (CPU specifications are given in Table 3). Parallelization
was done using Fortran OpenMP threads over the VPSC-GMM code.
The OpenMP scaling was aided by vectorization in the VPSC-GMM
code.

The results of the scaling analysis are shown in Fig. 25. The scaling
is linear on all architectures up to the maximum number of cores,
as desired. When pushed passed the core limit into hyperthreading,
different architectures showed more variance. In the hyperthread-
ing regime, the KNL and ARM architectures showed a very slight
performance increase with more threads, considerably weaker when
compared with linear scaling up to that point. The AMD and Skylake
CPUs showed performance decrease with hyperthreading. This is
quite common, when the task of scheduling all these threads takes
more of a performance toll than the additional work that can be
done. AMD, ARM, and Skylake runs performed similarly when us-
ing the number of threads equal to the max number of cores on the
CpPU.

The vectorization-specific data was gathered on an Intel Skylake
processor. This CPU was chosen simply because it is the architecture
that we had the best tools available for gathering and analyzing such
data. We used Likwid [16], a performance monitoring application
that provides many architecture-specific hardware counters. The
result from two separate runs are shown in Table 4 corresponding
to the case of using vectorization and with vectorization turned off.
We see that vectorization allows for a large increase in the number of
double-precision FLOPS per second. This improves the flat runtime
performance of the code, and also greatly increases the memory
bandwidth that is achieved throughout the calculation. Additionally,
we see a sharp decrease in the amount of energy used by the VPSC

Table 3: The performance of the VPSC
code was tested on a series of multi-
core CPUs. The details on each CPU are
provided.



38 THE RISTRA TEAM

Measure Vectorized Non-vectorized Table 4: The VPSC code hfad f'avorable
Runtime (5 Wy 708578 peformane ing eorizton. AL
Energy consumed (J) 37.0646 120.8417 the calculation without vectorization.
Memory Bandwidth (MBytes) 9.9381 0.9814
Vector FLOPS/s 115.0494 0.0016
Arithmetic Intensity 0.3722 0.2128

code. The arithmetic intensity is the ratio of floating point operations
(FLOPs) to bytes needed from memory; a higher value means that
more FLOPs per memory load, which is desirable. The arithmetic
intensity increases using vectorization.

Figure 25: The runtime scaling study
T T for four different CPU architectures:
e—e AMD || AMD, ARM, KNL, and Skylake. The
vV ARM cyan filled shapes represent the calcu-
KNL .

Skylake || lations where the number of threads

J is equal to the max number of cores
on the CPU. The purple filled shapes
show results for hyperthreading (i.e.,
using more threads than the number of
cores on the CPU). The scaling is nearly
linear up until the maximum number of
cores on all architectures. Performance
v—v gains were seen with hyperthreading
, for the ARM and KNL CPUs, while for
2T 1 Skylake and AMD the hyperthreading
2t 1 slowed down the code.

Runtime Scaling of Different CPUs

I

Time (s)

20 21 22 23 24 25 26 27 28 29 210 211
Number of threads

Performance studies with LEGION

Multiscale material dynamics presents unique challenges in achieving
performance and scalability on modern heterogeneous architec-

tures. As an example, the FE hydrodynamics code has much different
strong and weak-scaling characteristics relative to the VPSC-GMM
code. Additionally, these two codes have different performance char-
acteristics when using CPU or GPU resources that can be problem
and scale dependent. Historically the challenge of optimally mapping
different parts of these codes to different compute resources would
reside with the application developer often requiring heroic efforts in
coding and performance analysis and tuning.

The Legion programming system [2] addresses these concerns by
providing high-level abstractions for application and middleware
developers to describe properties of the data on which they oper-
ate, enabling the underlying runtime to automate many aspects of
achieving high performance, such as extracting task- and data-level



RISTRA FY20/21 MILESTONE REPORT

parallelism. Legion is designed to automate details of scheduling
tasks and data movement (performance optimization), and separates
the specification of tasks and data from the mapping onto a machine
(performance portability). Legion inter-operates with other runtime
systems such as MPI, allowing incremental adoption in existing ap-
plications.

Supercomputers such as the Sierra supercomputer at LLNL pro-
vide the majority of compute performance in terms of flops and
memory bandwidth via GPUs. The Sierra node architecture consists
of dual socket IBM Powerg CPUs each with 22 cores coupled to 4
NVIDIA Volta GPUs inteconnected via NVLink technology. VPSC
was ported to the Volta GPUs using CUDA Fortran to minimize the
required changes to the code base. VPSC was then refactored as a
stand-alone library that built upon Legion for inter-node (and multi-
GPU) parallelization. This combination enables the VPSC library to
handle all the complexity of data movement across different memory
spaces and scheduling of VPSC tasks across the machine. These com-
plexities are hidden from the user of the library but can be controlled
through a mapping interface within Legion to specify application and
machine specific policies to achieve high performance and scalability.
This decomposition is illustrated in Fig. 26, wherein the FE code can
use MPI for parallelization across Sierra’s Powerg CPUs while Legion
controls the distribution of VPSC tasks across the Volta GPUs.

FE geometry Figure 26: Decomposition of the

Using MPI Using Legion runtimes on Sierra.

NN NN —E
NN NN
(SIS gy
AN NN

Performance of VPSC was first assessed on GPU vs CPU on the
Sierra node architecture (RZAnsel). As detailed in Fig. 27, overall
performance of the GPU exceeded that of the CPU as the number of
cells per GPU exceeded 6o0.

Next the scalability of Legion VPSC was assessed on the Sierra
node architecture (RZAnsel) up to 16 nodes and 64 GPUs. As de-
tailed in Fig. 28, we achieve nearly perfect weak scaling with Legion
scheduling VPSC GPU tasks entirely within a standalone library.

39

FE CPU resources VPSC GPU resources FE+VPSC codes using MPI and Legion



40 THE RISTRA TEAM

time (s)

num cells

Consumers of this library (such as FE) are insulated from this com-
plexity. Ongoing work is focused on integration of the Legion VPSC
library into the FE hydrodynamic code base to demonstrate fully
coupled simulations at scale.

VPSC weak scaling on Sierra architecture

S )
N B O 0 O

VPSC evolution time (seconds)
=
o

o N B OO

0 10 20 30 40 50 60 70
# GPUs (up to 4 per node)

Conclusion

LANL requires tools to quantify the performance of materials made
with new and existing manufacturing processes. To address this
need, the VPSC-GMM was created and coupled to a finite element
(FE) Lagrangian hydrodynamic method. A series of verification and
validation tests were performed. The results from the test show the
approach can accuracy simulate the experiments.

Figure 27: Time to solution for GPU
vs CPU VPSC tasks on Sierra node
architecture.

Figure 28: Weak scaling of Legion
VPSC on Sierra node architecture up to
64 GPUs.



RISTRA FY20/21 MILESTONE REPORT

This research fills an existing technology gap by delivering a high-
fidelity multiscale hydrodynamic approach to practically predict the

performance of composite, cast, wrought, aged, and AM materials.
The ability to predict the mechanical behavior of complex materi-

als in dynamic environments is beneficial to Laboratory missions

in a variety of ways. Predictive modeling of materials is useful for
(1) contrasting the influence of microstructure texture on material
behavior such as quantifying the performance differences between
cast and rolled metals, (2) determining conditions that lead to ma-
terial damage and failure, (3) predicting the influence of advanced
manufacturing process such as additive manufacturing on material
properties, and (4) aiding in the design of various materials like met-
als or high explosives. Furthermore, the new multiscale approach
will be useful for general materials research and could lead to greater
opportunities for cooperative work in academia.

41



42 THE RISTRA TEAM

Part IV
Productivity in the Ristra
Environment

1 The physics developer experience

The development of a practical multiphysics application necessitates
flexibility. Users must be able to select which physics models to in-
clude in their simulations at runtime. Problems will have different
numbers of materials, each of which contain different models and
data — e.g., solids carry a stress tensor, gases do not.

FleCSI provides for some of this flexibility. Sparse storage patterns
enable efficient representations of multimaterial problems by not
storing all data associated with each material in each cell. Ragged
storage patterns allow for model datastructures of various sizes to
coexist with minimal overhead.

The way that F1eCSI 1.4 expresses this flexibility is at compile
time. In order to reason about the fields registered with the data
client, their dependencies between tasks, and the tasks themselves,
the 1.4 version relies on macro expansion into template specializa-
tions. We note that F1eCSI 2.0 aims to move much of the compile-
time requirements to the runtime.

Under this constraint, developers (acting as the earliest of users
of their own code) wrote new source code to apply the overarching
application to a new problem. When physics models had different
enough methodologies, developers wrote entirely new applications.
This resulted in an explosion in both the number of applications and
the number of ways in which new code was added to the codebase.

To reign in these issues, we developed a structure for Ristra
physics applications to adopt:

* a central driver to steer the application,

¢ a collection of physics interfaces that interact with the FleCSI
mesh data structures, and

* a collection of physics modules that are effectively “zero-d” in that
they don’t interact with the mesh.

The structure clarifies where a developer should insert new code
based on its function. Imposing the structure further fleshed-out pat-
terns we had seen in datastructures developed to handle Multiple
Materials with Multiple Physics models; we standardized these ab-
stractions into what we called M3P datastructures and methods.



RISTRA FY20/21 MILESTONE REPORT

This added discipline made it easier to reason about the minimal
set of items a user (read: developer at this time) needed to change
for a new problem. We still had to write C++ code, but now it was
delegated to a single header file (material_types.h) with an arguably
simpler setup than when we started. Nevertheless, for new devel-
opers or those not familiar with C++ template metaprogramming
— and especially for actual users that are not developers — writing
this header file correctly (or debugging it when it was incorrect) was
more difficult than we wanted. To that end, we developed a tool
called tide that provides a connection between a user’s Lua input
file and the header file by generating said header file at “runtime.”

Driver

To the extent possible, our high-level multiphysics applications like
flecsale-mm and symphony have a single driver. There are a few
exceptions as we continue to bring more of the fragmented flock
mentioned above into the fold.

In a traditional code, the driver could be thought of as the main
function. FleCSI-based applications have a runtime based on the
backend of choice (e.g., MPI, HPX, or Legion), so F1eCSI itself owns
main and calls into our driver. The driver’s responsibilities include:

* parsing application-specific command line arguments,
* parsing the user’s Lua input file,

¢ instantiating a mesh object and populating it with the contents of a
mesh file on disk,

¢ instantiating any interface objects, and configuring them and their
physics with user-set values from the input file,

* configuring material properties based on the input file and the
material_types.h header,

¢ running the time loop of physics evolution,
¢ and calling out to restart or data dumps.

The driver makes no FleCSI-based calls. It knows nothing about
the details of the mesh, the fields registered on the mesh, nor the
tasks registered with the runtime. These details are handled by the
interfaces, which expose methods to be called from the driver.

Interfaces

Our usage of the term interface differs from the norm in C++ where
one defines an abstract base class defining the API that children must

43



44 THE RISTRA TEAM

implement. We avoid this form of dynamic polymorphism to avoid
the potential costs associated with virtual table lookup, and any
potential issues of registered field data/models being pointed to in a
different memory space. Instead, we use interfaces as the abstraction
layer between the high-level concepts needed to advance aspects of a
simulation and the associated fields and tasks.

These concepts are illustrated through an example of one of our
ALE hydro method interfaces — maire_hydro_interface_t. Fig-
ure 29 shows pseudocode for the constructor; it knows the fields it
needs to grab handles to (e.g., scalar cell density, tensor velocity gra-
dient, or M3P datastructures for materials) and default-initializes
handles. The fields are known because they are registered elsewhere
as shown in Figure 30. flecsi_register_field is a macro that ex-
pands to generate an instance of a complicated templated object that
ensures hashes are created to uniquely identify the field.

maire_hydro_interface_t( mesh_handle_t * mesh_handle )
mesh_handle_ptr_( mesh_handle ),

uc_grad_ (
flecsi_get_handle (*mesh_handle_ptr_, hydro,
cell_material_velocity_gradient,
tensor_t, sparse, 0)),

all_states_(

m3p:: get_m3p_all_stateso (*mesh_handle_ptr_))
{)

namespace flecsale {
namespace hydro {

flecsi_register_field (

mesh_t, // mesh type
hydro, // mnamespace
cell_material_velocity_gradient, // field name
tensor_t, // datatype
sparse, // storage

1, // versions
mesh_t::index_spaces_t:: cells // location

);

The F1eCSI tasks called to advance the state use these private data

Figure 29: Pseudocode of interface
constructor.

Figure 30: Pseudocode showing field
registration.



RISTRA FY20/21 MILESTONE REPORT

handles of maire_hydro_interface_t to —in the case of the Legion
backend — reason about data dependencies between tasks. Hiding
these details behind the interface makes the driver cleaner and allows
for easy reuse of parts of the interface without the need to obtain and
pass in the complicted handles.

Continuing with the Maire hydro example, the timestepping
loop within the driver looks as shown in Figure 31. Here, hydro
is the instance of the interface class. hydro. step is a convenience
method provided by the interface to be used in a driver focused
solely on hydrodynamics, such as in the flecsale-mm applica-
tion. hydro. step calls other public methods on the interface like
update_conserved_state(delta_t, future) and update_reaction(soln_time, delta_t).
These methods are exposed so that other applications can pick and
choose which components are needed at any given point in the op-
erator split of its driver; symphony, which couples radiation from the
puno code and hydro from the flecsale-mm code, does not use the
step method, but rather picks things like update_conserved_state
so it can interweave radiation updates to state variables.

The complexity of calling F1eCSI tasks with all the handles is
hidden behind these public methods of the interface. For exam-
ple, update_conserved_state’s definition calls the registered task
named apply_update as shown in Figure 32. Most of the private
variables suffixed with _ are F1eCSI data handles that are obtained
during instantiation of the class as shown in the constructor in Fig-
ure 29.

The apply_update task is what uses the handle to the mesh to
loop over mesh entities and modify field data. This is shown in Fig-
ure 33.

Physics Models

As shown, interfaces call F1eCSI tasks responsible for mesh-like op-
erations on field data, including looping over mesh entities and ma-
terials. We define physics packages as a stateful class with associated
parameters that implements a capability on a local level. Typically,
“local level” means at the cell level, but in reality it means at a level
that does not need to interact with the mesh. If things like gradients
are needed, those should be constructed from the interface level and
passed to the local physics package.

In the apply_update task in Figure 33, the h object is an instance of
a hydro physics class; the multistate object from which h is obtained
will be explained below in the M3P section. This example only show-
cases how h (local to the cell; note the cl index) is used to store data,
e.g., the vector velocity field. However, physics package classes also

45



46 THE RISTRA TEAM

Figure 31: Portions of the

for (size_t num_steps = o; driver calling methods on the
(num_steps < max_steps && soln_time < final_time); maire_hydro_interface_t
++num_steps) | interface instance hydro.

// figure out the max possible time step

// take a step
hydro.step( soln_time, time_step, max_time_step );

if (do_remap>o0 && num_steps%do_remap==0) {
if (remap_scheme != "euler")
hydro.relax (remap_scheme, time_step, soln_time);
hydro.remap(soln_time);

}

// update time
soln_time += time_step;
time_cnt++;

// output the data if needed

// now output the solution

auto is_last_step = (num_steps==max_steps—1) ||
(std ::abs(soln_time—final_time) < epsilon);

hydro.output( time_cnt, soln_time, is_last_step );

hydro.conservation_sums (time_cnt);

Figure 32: Example of an interface

void update_conserved_state(real_t delta_t, method that simply calls a F1eCST task.
handle_t<int>& future) { The use of the wrapping interface class
flecsi_execute_task( and its private data handles simplifies

apply_update , the method call syntax.

flecsale :: hydro,

index,

+mesh_handle_ptr_,

delta_t, dUdt_, all_stateso_, vfrac_,
all_states_, uc_, pc_, dc_, ec_,
alpha_, axis_, future



RISTRA FY20/21 MILESTONE REPORT

void apply_update(

)

flecsi_sp :: utils :: client_handle_r <mesh_t> mesh,
real_t delta_t,
flecsi_sp :: utils :: sparse_handle_r<flux_data_t> dUdt,
m3p::all_material_sparse_handle_r_t tstateo ,

handle_t<int> future

{

constexpr auto HYDRO = MP_KEY("hydro");

// Using the cell residual , update the state
for ( auto cl : mesh.cells( flecsi::owned ) ) {
// get the cell wvolume
const auto & cell_vol = cl—>volume ();
// apply initial update
for_each<ms3p::num_materials >(tstateo , tstate,
[&](auto && m, auto && stateo, auto && state)
{
auto dUdt_cm = dUdt.at(cl ,m);
if ( !'dUdt_cm.exists ) return;
// restore old solution
auto multistateo = stateo(cl,o0);
auto & multistate = state(cl,o0);
auto & ho = multistateo.at (HYDRO);
auto & h = multistate [HYDRO];

// get the cell state
real_t et{h.internal_energy};
for ( int d=o0; d<num_dims; ++d )
et += o.5+h.velocity[d]+h.velocity[d];

Y); // for materials

} /) cells

// apply_update

Figure 33: Example task from the
interface for updating state.

47



48 THE RISTRA TEAM

have methods and through the M3P datastructures can query other
physics packages. For example, the hydro physics classes store the
local sound speed for calculations related to timestep size based on
the Courant condition. The hydro physics class gets the soundspeed
within its update_state_from_energy method by asking an — again local
to the cell/material — EOS physics package to calculate it from the
local density and specific internal energy.

M3P Datastructures and Methods

Our datastructures and methods for handling multiple materials
with multiple physics (M3P) underpin the capabilities of the above
outlined structure. The goals of M3P are to enable communication
between the physics packages without prior knowledge of specific
instances existing and to simplify the workflow of adding a new
physics capability. At a high level, the M3P capabilities use template
metaprogramming techniques like SFINAE to construct a material
model as a collection of physics models/packages (with associated
class methods and parameters) known at compile time.

Each material exposes a key-item pair for the particular physics
package, which registers itself with a common name. For example,
all EOS physics packages (e.g., ideal_gas_t or eospac_t) inherit from a
base EOS class that identifies its key as "cos”. Using these keys (with
a little extra M3P machinery) one can grab those models and use
their data and methods as shown with the hydro model obtained
from the multistate object with the HYDRO key in the apply_update
task of Figure 33. These keys are also the means by which a physics
package can ask for data/methods in other physics packages, as
was described above with a hydro package calling an EOS package’s
methods to get the soundspeed. The hydro package doesn’t need to
know which type of EOS is available, just that one exists.

The collection of materials is placed into a container that reasons
about its size at compile time. Similarly, the constexpr function tem-
plate for_each shown in the apply_update task uses template metapro-
gramming to allow iteration over the different materials, which are
different concrete types based on their physics models. for_each al-
lows for application of a single callable (a lambda function in this
case) on all materials to perform collective actions, such as updating
their state or calculating total cell mass from the individual materials.

From the developer’s perspective, the M3P abstraction unifies
the way new physics capabilities are implemented. The developer
need only implement methods and tasks at the interface level that
iterate over cells and/or materials using the techniques mentioned,
and the very localized physics package itself that can connect with



RISTRA FY20/21 MILESTONE REPORT

other packages. If the capability is of a new type (i.e. not a "hydro",
"eos", or other existing broad classes), the developer needs to create a
new base physics class that defines the unique key used in the M3P
datastructures.

The compile-time nature of these datastructures is required for the
reasons outlined at the start of this section and also because F1eCSI
needs to reason about the size of the types to register with the run-
time. This means a user who wants to run a problem still needs to
write C++ code to declare these types. We have narrowed this down
to a single file we call material_types.h. This file defines the available
physics models (used to enable the compile-time key lookup), the
specific material models, and the tuple collections for all the mate-
rials in the simulation. An example of a subset of the contents of
material_types.h for a single material using a constant bulk modulus
EOS, Lagrange hydro, a hypoelastic strength model coupled to an an-
alytic power-law flow stress model is shown in Figure 34. Even with
the convenience macros like MP_MATERIAL_TYPE that expand some
of the template ugliness, this is overly cumbersome for developers to
write just to run a different problem. We would get zero users if we
asked them to write this as part of their input deck.

tide

To hide the ugliness of material_types.h partial listing in Figure 34, we
would like to have a better syntax for users to use in their problem
set up. There are several patterns that appear when comparing dif-
ferent hand-written material_types.h files for various problems. This
lends itself to code generation. Towards that end, we developed a
tool called tide.

We already had Lua input files for setting physics properties such
as user-written functions for initial conditions, or the ability to set
gamma for an ideal gas EOS. These Lua input files needed to be used
in conjunction with the material_types.h file to fully specify the prob-
lem. tide extends the capabilities of our Lua input files by allowing
information in them to be used to generate the material_types.h file
and compile it in at the last minute. This is not JIT compilation in the
traditional sense — there is still an ahead-of-time compilation step that
links the final executable. We simply try to hide this from the user so
that for all purposes it appears that the Lua input file is what drives
the simulation.

tide provides three general capabilities:

¢ aset of CMake utilities that allow for source-code parsing of avail-
able physics packages within the code, the appropriate build setup
to compile as much code ahead of time as possible, and a gener-

49



50 THE RISTRA TEAM

Figure 34: Subset of example source
// — — — declare available physics — — — // code needed to write for a new prob-
using available_physics_t = MP_AVAILABLE PHYSICS TYPE ( lem.
flecsale :: basephysics::eos_t<real_t >,
flecsale :: basephysics:: flow_stress_t<real_t >,
flecsale :: basephysics :: hydro_t<real_t,
mesh_t:: num_dimensions >,
flecsale :: basephysics:: strength_t<real_t,
mesh_t:: num_dimensions >,
flecsale :: basephysics:: reaction_t<real_t> );
// — — — begin materials definition — — — //
using eos_constant_bulk_modulus_t =
typename flecsale :: physics::eos::constant_bulk_modulus_t<real_t >;
using hydro_lagrange_t =
typename flecsale :: physics::hydro::lagrange_t<real_t,
mesh_t:: num_dimensions >;
using hypoelastic_J2_t =
typename flecsale :: physics::strength:: hypoelastic_J2_t<real_t,
mesh_t:: num_dimensions >;
using flow_stress_power_law_t =
typename flecsale :: physics:: flow_stress:: power_law_t<real_t >;
// — material 1 — //
using materiali_t = MP_MATERIAL TYPE (
available_physics_t,
hydro_lagrange_t,
eos_constant_bulk_modulus_t,
hypoelastic_J2_t,
flow_stress_power_law_t);
using materiali_state_t = MP_MULTISTATE_TYPE(materiali_t);

using all_material_state_t = std::tuple<
materiali_state_t,

material2_state_t,

>;



RISTRA FY20/21 MILESTONE REPORT

ated shell script with appropriate settings to drive the final compi-
lation and running,

* a user-facing input file validation of specified models against the
database formed from parsing the source code with previous
capability, and

* a user-facing approach to material_types.h source code generation.

The source code parsing uses libclang to look through the physics
package source files for C++ user-defined attributes; we have been
using [[ ristra = physics ()]], but the name is immaterial. When such an
attribute is encountered on a physics package class or struct, informa-
tion about that type is gathered and that type is added to a database
of known physics models. The information gathered includes its base
classes, template arguments, and the user-settable parameters and
state of that physics package. This is represented internally as a Lua
table, and is dumped to disk after all source files are parsed. These
tables can be merged, as the structure of the table mimics that of the
namespace structure used to define the classes in C++. Furthermore,
documentation strings can be included in the attributes, which can
be used to auto-generate the documentation from the C++ source
code; this capability was strongly leveraged in the friendly-user class.
Additional ideas for leveraging this attribute capability are to add
constraints to certain parameters that can be checked when the input
file is parsed; for example, specifying that the gamma in an ideal gas
EOS must be greater than 1, and then this can be checked against the
user’s setting in a Lua input file.

The CMake utilities expose the source code parsing and generate
the database of known physics models at build time. They also com-
pile as much as possible ahead of time, generating and configuring
installed files and a shell script. This shell script is what the user di-
rectly interacts with. It is set up to point to the installed files, one of
which is a CMakeLists.txt file. The script takes as an argument the
user’s Lua input file and parses it for certain variables, such as those
in Figure 35. In particular, the dim is used to set a #DEFINE macro,
whereas the the models and materials tables are used to generate all
the content in Figure 34 and more.

The use of strings will likely be removed; this is enabled via Lua’s
metatables functionality. At the input parsing stage, if there is a typo
in a model name or the model name simply isn’t in the database,
the user is informed and suggested models are given. This input
validation step is also where constraints placed on parameters (the
gamma > 1 example) could be enforced.

Comparing the Lua code in Figure 35 with the material_types.h
listing of Figure 34, the total set of models specified in Lua maps over

51



52 THE RISTRA TEAM

—single material problem

dim = 2

fp = "flecsale.physics.”

models = {fp .. "hydro.lagrange_t",
fp .. "eos.constant_bulk_modulus_t",
fp .. "strength.hypoelastic_J2_t",
fp .. "flow_stress.power_law_t"

}

materials = { [1] = models }

to the available_physics_t, including the base classes of the concrete
children specified in the input. Likewise, individual materials are
constructed; here we are using “1” to identify the material, but this
could easily be a string name. So, the simplified syntax of the Lua
input file is used to generate the complicated C++ templated code.
This is facilitated by using a text templating engine based on the
mustache framework, called lustache whose source and license is
included within tide.

The shell script mentioned above takes the generated material_types.h
file plus the configured and installed CMake files and builds the final
executable, which it then runs. The meat of the shell script is shown
in Figure 36.

The end user would call the executable shell script (called flecsale-
mm, here) with something like this

$ flecsale —mm —n 4 —i input.lua —m mesh_file

That single command validates the input file against the database,
generates the material_types.h file if the input is valid, builds the fi-
nal executable including the generated file (if needed), and runs the
problem in parallel on four ranks. The compilation is hidden such
that all the user sees is a short delay before the simulation runs (this
is the purpose of the notify function in Figure 36). This much sim-
plified problem setup allows for faster problem setup, a property
important to both developers and users.

2 The CS developer experience

From a computer science perspective, two of FleCSI’s overarching
goals have been to reuse code where possible and appropriate and
to create abstract interfaces to swappable dependencies. In practice,
these principles have allowed for some interesting capabilities for
users and developers alike, and have resulted in some tangible ben-
efits for developing Ristra applications. Performance and portability
have separately been notable concerns for the project. While per-

Figure 35: Example of additions to Lua
input file needed to generate the listing
of Figure 34 (and more).



#

setup the local build environment

mkdir —p ${local_build_dir}

RISTRA FY20/21 MILESTONE REPORT 53

Figure 36: The heavy-lifting part of the
user-facing entry to a code built with
tide.

# generate the source code file from the input

$

{tide} generate \
—q \
—db=${db_file} \
—i ${input_file} \
—t ${template_file} &

notify "Verifying your input file" $!
rebuild=true
check to see if material_types.h has changed

#
#

if not, then don’t rebuild

if [ —f "${local_build_dir}/ material_types.h" ]; then
sha_old=$(shaisum ${local_build_dir}/ material_types.h

I cut —f1 —d” ")

sha_new=$ (shaisum material_types.h | cut —f1 —d’ )

if [ "$sha_old" = "$sha_new"
rebuild=false

rm material_types.h dim
fi

fi

if [ "$rebuild" = true ]; then
mv material_types.h dim ${local_build_dir}

fi

# do the build

1;

then

cp ${cmake_lists} ${local_build_dir}
pushd ${local_build_dir} > /dev/null

cmake

—DCMAKE_PREFIX_PATH="$ { cmake_prefix_path }; $ {CMAKE_PREFIX_PATH} " \

—DCMAKE_BUILD_TYPE=Release

. > ${local_build_dir}/cmake.out 2>&1 &

notify "Configuring your user experience" $!

make —j VERBOSE=1 > ${local_build_dir}/make.out 2>&1 &
notify "Customizing your user experience" $!

popd > /dev/null



54 THE RISTRA TEAM

formance and portability are often at odds with each other, we’ve
striven to provide both. With respect to portability, FleCSI-based ap-
plications can be compiled and run on a variety of architectures. Our
portability goals included running applications at scale on LANL's
Trinity, a heterogenous system with Intel Haswell and Knights Land-
ing processors, LLNL's Sierra, a GPU accelerated system with IBM
Powerg CPUs and NVidia V100 GPUs, and Sandia’s Astra system
based on ARM CPUs. We’ve been successful in building and running
various FleCSI applications on all three architectures, and can do so
with zero architecture specific code changes.

Architectural Diversity

Notable architectures:

¢ LANL Trinity, Trinitite — Haswell and KNL
— MPI at % Trinity (% KNL partition), Legion multinode
e LLNL Sierra, RZAnsel — IBM Powerg + Nvidia Vioo GPU
— MPI at % Sierra, Legion multinode
¢ SNL Astra, LANL Capulin — Thunder X2 ARM
— MPI], full machine

e LANL Darwin — AMD Rome + MI6o GPU (WIP)

On-Node Code Portability

One of FleCSI's primary goals has been to support code portability
to a variety of computational architectures. Code portability to GPUs
has been a focal point for FleCSI and the Ristra project, due to cur-
rent and future GPU accelerated supercomputer acquistions within
the Department of Energy. Targeting CUDA has been of particular
interest in order that we may support execution on the Sierra super-
computer at LLNL.

KOKKOS

Kokkos has provided FleCSI with the underlying structure on
which we’ve been able to build a physics informed interface to a
broad spectrum of computing architectures. With Kokkos, we’ve been
able to rapidly prototype multiphysics applications capable of run-
ning on architectures supported by Kokkos. This not only gets us
support on the set of hardware architectures that we're currently in-
terested in targeting, but also the promise of support and utilization
of future architectures through the efforts of the Kokkos development



RISTRA FY20/21 MILESTONE REPORT

team. Kokkos provides an abstraction layer for writing performance
portable kernels. FleCSI builds on top of Kokkos a physics-informed
interface for application developers to target. Through Kokkos, the
FleCSlI parallel interface allows users to target an an abstract par-
allel device instead of a specific device or framework like CUDA,
HIP, SYCL, or OpenMP. In turn, FleCSI is able to leverage all of the
work that the Kokkos team has done to define a parallel interface and
target specific frameworks or devices. Kokkos provides several key
characteristics that allow us to provide consistent on-node parallelism
in FleCSI

¢ C++ Compliant - One of the overarching goals of the Kokkos
project is to minimize the barrier to entry for adoption. In prac-
tice, this is accomplished by defining Kokkos as a compile-time
abstraction and ensuring that Kokkos can be compiled by a broad
set of compilers. As a result, Kokkos does not impose any addi-
tional restrictions on FleCSI. FleCSI is able to leverage parallel
APIs where they exist.

¢ Consistent in both data and execution model - Kokkos leverages
APIs for a number of parallel interfaces, most of which provide
different means of use. without Kokkos, FleCSI users would have
to write disparate implementations of parallel code, likely with
little opportunity for reuse. With a consistent data and execution
model leveraged in FleCSI, developers can write code for data allo-
cation and kernel execution once, and reuse simply by recompiling
with a different Kokkos headers and library.

* Awareness and abstraction of API and Hardware details - Partic-
ularly when accelerators are involved, efficient use of hardware
involves understanding details of hardware or APIs. For exam-
ple, accessing a multi-dimensional array in memory may be most
efficient in row-major order on a CPU when parallelized with
OpenMP, but may be most efficiently accessed in column major
oder when parallelized with CUDA on a GPU. Kokkos can hide
some of these details behind its API, allowing the end user to fo-
cus on one API and its details instead of many.

Our use of Kokkos has allowed us to target and achieve perfor-
mant on-node parallelism on disparate hardware. As a result, an
application developer using FleCSI can write a task following FleCSI
guidelines and reasonably expect that that task to run on CPUs and
accelerators and to take advantage of the hardware parallelism they
provide. FleCSI does not expose Kokkos interfaces directly, opting
instead for a wrapper interface around Kokkos. The primary motiva-
tion for the creation of a wrapper has been to limit the scope of the

55



56 THE RISTRA TEAM

dependency on Kokkos and to allow for the future possibility that
wrapper layer could be reworked to wrap other on-node parallelism
mechanisms (such as LLNL's RAJA).

KITSUNE

The Kitsune project at LANL is an effort to introduce parallel
constructs in LLVM IR and use them to generate parallel code for a
variety of parallel compute targets. Kitsune forwards language level
loops to LLVM where they are translated into parallel intermediate
representations. This allows the compiler to maintain information
about the parallel constructs throughout the compiling process, po-
tentially enabling additional optimizations while also reducing the
complexity of the compilation process. With minimal changes to the
above code example, Kitsune can compile the above example for a
variety of devices, and has been used to parallelize Flecsale-MM, a
multi-material hydrodynamics code based on FleCSI.

Distributed Computing

As FleCSI has incorporated capabilities from other projects, a com-
mon theme of abstraction and generalization has emerged. A funda-
mental goal of minimizing reliance on any one specific technology
has driven that theme, and this is best exemplified in our support
for distributed computing backends. The FleCSI team works closely
with and overlaps with the team behind the Legion programming
model. In addition, we support MPI as a mechanism for distributed
computing, and have ongoing efforts to evaluate HPX and Charm++
as additional backends.

LEGION

Legion is of particular interest to the FleCSI development team for
several reasons. First, it provides fine grained task and data par-
allelism through a dynamic runtime that has the potential to be
fundamentally superior to bulk synchronous methods used com-
monly in MPL In addition, Legion provides intrinsic management of
both data and execution across heterogenous architectures through
a declarative interface. This allows a dynamic runtime to analyze
requirements and optimally organize tasks given the resources avail-
able, both on-node and distributed. Legion also provides, in part
through its Mapper interface, a mechanism for separating high level
code from implementation details. In FleCSI, this means that appli-
cation developers and even many FleCSI developers can be isolated
from performance portability code, and that code for performance
portability can be highly leveraged across many applications.

However, we don’t want to tie FleCSI development solely to Le-
gion. MPI is a much more mature, supported, and widely used tech-



RISTRA FY20/21 MILESTONE REPORT 57

nology. FleCSI has been developed to support MPI as both a first-
class backend and as a supplemental backend to aid in migration.
This backend abstraction provides for direct comparisons between
backends in terms of features and performance.

In addition to a novel approach to distributed parallelism, Legion
also provides mechanisms to ease performance portability.

¢ Kokkos Interoperability

® Device Memory Management - Legion handles data dependencies
as part of its dynamic runtime capabilities. On supported devices
with disparate memory spaces, this means that data are automati-
cally migrated to the execution space where they are needed.

* Debugging - Legion supplies several tools for visualizing the struc-
ture and performance of a task-based application (Figures 37, 38,

39)-
Figure 37: Profiling Legion Task Paral-
proc 1 IR | ISR | [ letom oa 5 tacks ©©
Proc 2
ovy ot 298|

Proc 3

energy_flux .27s | .23s
Proc 4

momentum .29s energy_flux .23s -

Utility ﬂ M
N 1

Legion has shown great promise for applications in the FleCSI
Zoo. However, we have yet to fully realize the advantages that Legion
provides. The constraining factors limiting our performance when
using Legion fall into three categories.

The first category is limitations imposed by FleCSI. Legion’s graph
tracing capability provides a notable performance enhancement for
applications with complex tasking and relatively small tasks. At
a high level, Legion’s graph tracing facility memoizes the task de-
pendency structure in repeated multi-task workflows. This reduces
runtime overhead by reducing the amount of task dependency anal-
ysis that the runtime has to perform on behalf of the application.
This is particularly important for repeated task structures, which
often occur in physics simulations. While future versions of FleCSI



58 THE RISTRA TEAM

Figure 38: Profiling Legion Task Paral-
lelism on 5 tasks

. Figure 39: Using Legion Spy Data
L/e,gl)nspy Dependency Analysis

\
\\update state
\.06s

255 N
update v
: .05s

/ eval
dt
21s

~ mass_flux
.23s



RISTRA FY20/21 MILESTONE REPORT

will build upon this capability, the version used for applications in
this milestone does not. As a result, in many cases our FleCSI-based
applications are using Legion suboptimally and will likely improve
once Legion graph tracing is utilized.

Legion also provides a concept called colors. Legion’s coloring
model allows for a mapping of domain partitions to processes other
than 1:1. When a process manages multiple colors, effectively another
level of parallelism through domain decomposition is exposed. This
allows for more dynamic sharing of resources across partitions and
less runtime overhead in both compute and memory footprint. As
used in FleCSI 1.4, Legion is locked into a 1:1 mapping of colors to
processes, so we are not able to fully utilize the dynamic resource
sharing that Legion provides. We are currently paying an overhead
penalty that will be reduced in future versions of FleCSL

The second category is limitations that are imposed by the appli-
cation in its use of Legion. Within applications built on top of FleCSI,
we also currently exhibit some suboptimal behavior. Two common
issues that commonly arise in FleCSI applications that hinder Legion
performance are unnecessary data dependencies and synchronizing
at unnecessary synchronization points. In the case of unnecessary
data dependencies, an application developer may design a task with
the intent to use a field and later end up not using it but still include
the field as an unused dependency. In the case of the MPI backend,
this has little impact to performance, as tasks are generally not asyn-
chronously executed and fields are not copied or moved as a pream-
ble to a task. For Legion however, an unused field can result in tasks
that are functionally independent still being serialized relative to each
other due to a constraint arising from the field. In addition, Legion
may be required to copy the data represented by the field, even if it is
not used, resulting in unnecessary runtime overhead.

Finally, the last category is limitations imposed by Legion itself.
The most prominent example of Legion imposing a performance lim-
iting constraint is the implementation for copy launchers. As part
of a preamble or postamble of a task, Legion may have to copy data
to or from data structures on which the task will operate or has op-
erated. In some cases, the layout of the data to be copied may be
complex, and Legion may do a suboptimal job at coalescing that data
prior to transfer. In such cases, a copy launcher may move substan-
tially more data than are necessary, resulting in reduced effective
bandwidth. In pathological cases, this can result in a substantial per-
formance impact. The Legion team is aware of this issue and has
ongoing efforts to improve the efficiency of copy launchers in Legion.

MPI

In order to mitigate potential risks with using Legion as a means

59



60 THE RISTRA TEAM

for distributed parallelism and as a means of providing backwards
portability while interfacing with or porting existing applications and
libraries to the FleCSI framework, FleCSI can interface with MPI as

a backend distributed parallelism framework. From a developer’s
standpoint, this offers several benefits. While developing new func-
tionality in an application, the MPI backend provides a more familiar
debugging experience, allowing for external tools like debuggers and
profilers to interact with the application as the developer expects. For
applications and libraries being ported to the FleCSI interface, it al-
lows code to be adapted piecemeal, allowing the developer to ensure
ported code works as expected at a finer granularity. From a testing
standpoint, it gives developers a mechanism to assess how effectively
they are using other backends through comparison.

Portability Across Layers of Parallelism

From a developer’s standpoint, taking advantage of multiple lev-

els of parallelism across disparate architectures and programming
paradigms is a highly attractive goal. Much of the development of
FleCSI and its associated infrastructure has been in service of that
goal. Figure 40 shows what code written to target FleCSI’s portability
looks like. Through Legion or MPI, FleCSI distributes tasks by parti-
tioning a domain, in this case, a mesh. This figure shows two simple
routines - the first computes a dot product of two fields across all
cells through a reduction interface. The second computes a cell-wise
axpy function for each cell in a mesh. While the calculations exhib-
ited are simple, these are real code examples used in Puno as part of
its conjugate gradient solver.

Visualization
Difficulties

C++17 and CUDA

Performance portability often imposes trade-offs, as constraints
may differ between architectures. In particular, using C++17 with
CUDA has imposed some difficult constraints. Given the long de-
velopment timeframe for multiphysics codes, FleCSI needed to be as
forward-looking as possible with respect to programming languages.
Consequently, C++17 support was considered a requirement early on,
with the presumption that compilers would catch up to our needs.
Only recently has Nvidia provided even partial C++17 support for
CUDA devices. As a temporary solution, we have used the Clang
compiler to provide C++17 support for CUDA devices. Clang pro-
vides the ability to compile CUDA code, including C++17 features



RISTRA FY20/21 MILESTONE REPORT 61

Figure 40: Portable linear algebra
double dot_product_cell(client_handle_r <mesh_t> mesh, functions in Puno.

dense_handle_r<real_t> x,
dense_handle_r<real_t> y)

double sum(o0);

flecsi:: reduceall (c, lsum, mesh. cells (flecsi ::owned),
flecsi::reducer::sum<real_t >(sum), "dot_product_cell") {
lsum += x(c)*y(c);

}s

return sum;

}

[1717777777 7777777 777777777777777777777777777777777777777
// z = alphax*x+y;
void axpy_cell(client_handle_r <mesh_t> mesh,
real_t alpha,
dense_handle_r<real _t> x,
dense_handle_r<real _t> vy,
dense_handle_rw<real_t> z)

flecsi:: forall(c, mesh.cells(flecsi::owned), "axpy_cell") {
z(c) = alphasx(c) + y(c);

/)¢
Figure 41: Strong Scaling Perforamance
Legion vs MPI Backends - Strong Scaling of Legion vs MPI backends on LLNL’s

2° Sierra

24
s ?
° Backend
>
e MPI
2 Legion
©
£ 2
}_

20

2-1

20 2! 2 2° 2t 2° 28

processes



62 THE RISTRA TEAM

N N Figure 42: Paraview Catalyst Workflow
ParaView
Catalyst files

Simulation

Catalyst

) ) . ) Figure 43: Paraview Catalyst Scaling
Sealing for outputting VTK files using Catalyst on Snow

20

1.0

U.b . .

oo - - -
16 32 2] 128 256 512

Wranks

Time (s}



RISTRA FY20/21 MILESTONE REPORT

inside CUDA kernels. However, we have had to invest substantial
effort building the infrastructure to compile FleCSI and its dependen-
cies with Clang as both host and device compiler. This approach has
pushed us closer to the standard workflow for AMD GPUs. As a re-
sult, we're well-poised to take advantage of AMD GPU Architectures
with little change to our code infrastructure.

Due to the reliance on external dependencies for some of the un-
derlying capabilities in FleCSI based applications, building up an
environment for developing FleCSI based applications can be com-
plex. This is particularly true on advanced architectures, which may
require additional device libraries and compilers (CUDA for exam-
ple). To mitigate this, the Ristra team has invested the time to build
out a dependency management infrastructure through Spack (Figure
44). Spack provides developers a mechanism of programmatically
defining a tree of dependencies and modifications to those dependen-
cies to account for the special needs of FleCSI or derived applications.
It also provides a mechanism for deploying those dependencies to
users through the Environment Modules system found on most HPC
platforms. As a result, user environments are more consistent and
more easily maintained, while developers can more rapidly iterate on

dependency additions and modifications.

Spack

3 The user experience

To assess the progress of Ristra codes, a workshop was recently held
with several potential end users. Results and feedback from that
event are discussed in an accompanying set of slides.

63

Figure 44: Flecsi Dependency Tree from



64 THE RISTRA TEAM

4 A zoo of FleCSI-based codes

One of the Ristra project’s goals was to lower the barrier to entry of
developing a computational physics code in a modern task-parallel
style by providing a high-level abstract execution model, together
with a data model that can be specialized to the needs of specific
physics domains. FleCSI also provides an element of risk mitigation
relative to the direct adoption of still-maturing task parallel program-
ming models such as Legion or HPX, for example, since it provides
the reliable option of a traditional MPI backend. It is encouraging
that a number of FleCSI-based codes have been initiated over the last
five years.

FleCSPH

|

gravity =100 e " fiteration: 511

FleCSPH is a FleCSI-based smoothed particle hydrodynamics code
that is being used for astrophysical research with LDRD funding
(simulation pictured, Figure 45). The development team have worked
closely with the FleCSI team to co-design new FleCSI topologies
(compile-time specializations) appropriate to particle-based codes.

In particular, the tree topology that is new in FleCSI 2.0 grew directly
from this collaboration. This topology is currently being used for
early explorations of AMR in FleCSI-based codes.

Figure 45: Gravity-driven Rayleigh-
Taylor instability from a FleCSPH
simulation



RISTRA FY20/21 MILESTONE REPORT

MPAS-OCEAN

The Model for Prediction Across Scales (MPAS) is a collaborative
project for developing atmosphere, ocean and other earth-system
simulation components for use in climate, regional climate and
weather studies. MPAS-Ocean is a code designed for the simulation
of the ocean system from time scales of months to millenia and spa-
tial scales from sub 1 km to global circulations. With ECP support,

a task-parallel version is being investigated. After initially imple-
menting directly on Legion, the team decided on FleCSI as a more
expedient path and started the MPAS-O-FleCSI code in collaboration
with the FleCSI team. The coupling code is now working in proto-
type mode with interfaces for ocean, sea ice, atmosphere, and land
in place together with time management and merge-average-remap
capabilities. The next phase will be provided by FleCSI 2.0 will enable
multi-mesh capability and allow for investigation of increased task
parallelism through breaking apart existing modules into smaller
components (e.g. ocean column physics, ice pack physics).

CartaBlanca++

CartaBlanca++ is a FleCSI-based software environment for proto-
typing physical models and simulation of a wide variety of physi-
cal systems, using an ALE finite-volume method and the Material
Point Method (MPM) and the Dual Domain Material Point (DDMP)
method (simulation pictured, Figure 46).

65

Figure 46: Deformation of a 3-D printed

(] 4 (] lattice calculated using CartaBlanca++
with MPM. Particles are colored by the
stress in the vertical direction.

. .

| | |

It is being used in a number of application arrays including ad-
ditive manufacturing (see figure) and in fracture and fragmentation
field studies under the J]MP program.



66 THE RISTRA TEAM

Part V

Preparing for the future

1 Legion and task parallelism

Legion

Scientific applications, and multi-physics applications in particular,
will face significant challenges in realizing sustained performance
on exascale systems. Increasing hardware specialization, power and
cost constraints will result in exascale systems with order billion-way
concurrency, a growing gap between memory and network latency
and floating point performance, heterogeneity in both processing
and memory capabilities and more dynamic performance character-
istics due to power capping and highly tapered network topologies.
Achieving sustained exaflop performance requires significant ad-
vances in latency hiding, minimizing data movement, and the ability
to extract additional levels of parallelism from applications. An ad-
ditional challenge is that these applications will need to achieve this
level of performance on multiple exascale architectures. The Legion
programming system [2] is well positioned to address these chal-
lenges. Legion provides high-level abstractions for application and
middleware developers to describe properties of the data on which
they compute, enabling the underlying runtime to automate many
aspects of achieving high performance, such as extracting task- and
data-level parallelism. Legion is designed to automate details of
scheduling tasks and data movement (performance optimization) and
separates the specification of tasks and data from the mapping onto a
machine (performance portability).

How efficiently a supercomputer executes a simulation is directly
related to its programming system—the system that tells the super-
computer which tasks to complete when. All supercomputers rely
on parallelism, which allows the machine to perform multiple tasks
at the same time, but the process of determining which tasks should
run at which time is overwhelmingly complicated. Currently, that
burden is placed on the those developing applications.

Figure 47 gives a graphical picture of a small supercomputing
application that illustrates the complexity of the task scheduling
problem. Each box is a task that must be scheduled at a time differ-
ent from all of the boxes it is connected to. Satisfying the depicted
constraints by hand, plus other constraints not illustrated (such as
ensuring correct data movement and that tasks scheduled together
do not require too many total resources) generally means adopting



RISTRA FY20/21 MILESTONE REPORT 67

simple strategies that leave a great deal of potential performance
untapped.

Figure 47: A task dependency diagram
of a very small high-performance
computing application that requires
the application developer to manage
and optimally schedule these tasks.
Task scheduling can quickly become
overwhelming for an individual,
especially as the size of the application
increases. Each box represents a piece
of independent work (a task), with
data flowing from left to right, and
connecting lines represent data flowing
from one task to another.

Adding to the application developer’s burden is the fact that they

are scheduling these tasks across a variety of supercomputing archi-
tectures, including many-core processors, graphics processing units
(GPU), and central processing units (CPU), which are distributed
across thousands to ten thousands of compute nodes. It’s a massive
amount of parallelism to track, let alone optimize for efficiency.

As the complexity of the application grows, the developer must
spend more time recoding the application to perform well on each
new computing system. This diagram illustrates a much larger num-
ber of independent tasks, represented by blocks in the same vertical
column. These independent tasks must be scheduled to run at the
same time to ensure optimal performance. Additionally, task place-
ment must be optimized to minimize data movement (Figure 48).

The idea that a human (application developer) can optimize these
tasks with high fidelity to fully realize the computing potential of
supercomputers is clearly problematic. Application developers must
put forth a heroic level of effort in writing application code, perfor-
mance analysis, and performance tuning to realize the full capabil-
ities of these systems. Furthermore, the cost of moving data within
supercomputing architectures is starting to dominate the overall cost
of computation, both in terms of power and performance. Managing



68 THE RISTRA TEAM

ottt L IRl
+
T
T
l e
; el

data movement within these supercomputers can be as challenging
as managing tasks, and requiring a human to optimize data move-
ment as well as tasks with high fidelity is simply not feasible. An
automated solution for system programming is needed immediately.

Researchers at Los Alamos National Laboratory along with col-
laborators at Stanford University, NVIDIA, University of California-
Davis, Sandia National Laboratories, and SLAC National Accelerator
Laboratory have sought to address this problem. Legion automates
task parallelism, data movement, and scheduling of execution, free-
ing up the application developer to focus on what is important for
their domain of expertise and improving productivity of application
development and the supercomputer. The capabilities of Legion and
its impact across both scientific computing and machine learning was
recently recognized with a 2020 R&D 100 award.

Legion solves three of the top programming system issues for
next-generation exascale computing:

¢ High performance — Legion makes computing fast by automating
task scheduling and data movement

¢ Performance portability — Legion automates scheduling across
many kinds of machines (GPU, CPU, etc.) over many generations

¢ Programmability — Legion automates parallel execution of appar-
ently sequential application code

In multi-physics applications the challenge of schedule task exe-
cution and data movement can be substantially more difficult than
single physics. Recent work in the PSAAP-II Center at Stanford has
demonstrated how Legion can manage this complexity in the Soleil-X

Figure 48: A task dependency diagram
of a medium-sized high-performance
computing application.



RISTRA FY20/21 MILESTONE REPORT 69

multi-physics application which integrates radiation transport, fluid
dynamics, and particle packages all written using the Legion pro-
gramming system. Figure 49 illustrates this complexity and Legion’s
ability to see across multiple packages and manage data movement
and task dependencies across these packages.

Figure 49: Data flow task graph pro-
duced by Legion for one time step in
Soleil-X. The dashed boxes highlight
the tasks associated with each physics
solver.

Radiation

S R

Bl LT TS e e

The capability to manage data movement and task execution in
complex multi-physics applications is the primary motivation for
our use of Legion in the Ristra project. To this end, FleCSI was co-
designed with the Legion programming system and adopted both
its execution and data model. This has enabled FleCSI to establish
a separation of concerns of application developers and computer
scientists working within Ristra, freeing the application developer
from the intricacies of data movement and task scheduling.

Experiences with task parallelism

The Ristra team plan to produce a report on experiences and recom-
mendations for task-parallel approaches for computational physics
applications. Here we provide an example of the use of the software
analysis tools available with Legion and the challenges associated
with profiling in debugging in an asynchronous world.

USING LEGION TOOLS TO ANALYZE TASK PARALLELISM AND GEN-



70 THE RISTRA TEAM

ERAL APPLICATION PERFORMANCE

A Legion Prof analysis (Figure 50) of two iterations of the conju-
gate gradient solver in Puno reveals many things about its perfor-
mance bottlenecks.

diag scale Figure 50: Legion Prof profiling analy-
-3 Mg axpy_cell_alias sis graph
mat_veg e 3ms
6 ms
Compute
utilization — —4;—’/
core 1 = D

.
core 2 S
——
Runtime  driver —‘_’ﬁ:f_r/; ” | |
utilization <=1ms il I il | I I

core 3

map task
<= .6 ms

post task exec
<=1.2ms

To begin with, only one of the compute cores is being utilized.
The application is not taking advantage of task parallelism. Runtime
analysis tasks take 4X to 5X as long as computational tasks. Bigger
tasks are needed to mask runtime overhead. Immediately after the
mat_vec, dot_product, and diag_scale tasks, the driver (top-level task)
switches on. This is because Puno is evaluating the reduction futures
at the top level instead of passing them into the tasks that need them.
This prevents the runtime from queuing up and completing analysis
before the tasks themselves are run.

The reduction of dot_product is required to evaluate convergence,
but the futures from mat_vect and diag_scale can trivially be passed
into tasks instead of being evaluated at the top level. To determine
if we can make bigger tasks by merging our small tasks and why we
have no task parallelism will require a Legion Spy analysis.

The Legion Spy event graph analysis described in Figure 51 is
shown at Adobe Acrobat’s maximum zoom of 6400%. The event
graph indicates all dependencies of events/tasks on each other (in-
cluding futures). This is a small run for Puno, a few iterations and
only two groups, but it is not possible to zoom in enough to read the
output of this analysis. This should be improved.

The Legion Spy dataflow analysis (Figure 52) shows both applica-
tion tasks and copy operations. The lines show data dependencies.
For example, the bottom row shows a task that initializes data that is



RISTRA FY20/21 MILESTONE REPORT 71

Figure 51: Legion Spy event graph

Figure 52: Legion Spy dataflow graph




72 THE RISTRA TEAM

never used. This task is an artifact that can be safely removed from
the application and is an example of the ease of identifying orphaned
code with Legion Spy.

5.4 dot_product_cell_mg
mg_dfn_interfaceh: 589 5.8 dot_product_cell_mg
Tesk mg_f48 wd mg_dfn_interface h1589
resk_mg_=Fi wd
514, dot_product_cell
mg_dfn_interface hi11159
resk_=156_=yr0 WAR

Newton loop  7./Gi6UBIGER

7.3+ ¢g_solver()
mg_dfn_interface.h:L697

fradfn_mg_=f38r0

n1 siga_mg_= 33 10 o

7.5, Convergence log i sk mg_= 48 wd . dfn Inferface h:LETS
&

/
2. AGroup 1. copy_lac_res
d

ize_f1s5
mg_dfn_interface h:11114 i ol Y T

wt
TEERA |

"1
1HEL

3. evaluate_radFn_my

2RI mag/vec
me_dfn Jfiterface.niL1119

__ Newtonned

L. evaluate,_gray_sigma_radE
Newton n=1

1. evaluate_gray_sigma_racE
1523

\ et
| mme
| viaw

7.86. update_radE_Newton_mg
mg_dfn_interface.h: L701
G =760 ra WAR
fa0E_mg_=125 rw

mg.e
P15
& _+1592y 10 WAR
7. A6, update_radE_Newton_mg
mg_dfn_interface.h: L701
dE_=fE0 o WAR
radE_mg_eR25 rw

col_=f54 wd
row_size_~f55 wdl

Figure 53 is a zoom-in of the dataflow showing task names, field
numbers, and access permissions. This should be improved to show
actual field names, but a careful comparison with the code can match
numbers to names. From this analysis, we see that

e Each group has a write-after-read (WAR) dependency analysis that
forces them to serialize and makes task parallelism impossible.

¢ Tasks with serialized dependencies (B must run after A; C must
run after B; no other tasks use any of this data after A or before C)
are candidates for task merging.

We have merged five tasks from the conjugate gradient solver into
only two tasks as shown in the Figure 54 dataflow analysis. This
reduces overhead and results in a 25% speedup overall for Puno
(Figure 55).

It is not difficult to imagine the usefulness of these tools on a
multi-physics code where no one developer is familiar with the en-
tirety of the application. Indeed, these optimizations require knowl-
edge of neither the physics nor the algorithms and could be carried
out independent of the application development team.

Figure 53: Legion Spy dataflow graph
before task merging



RISTRA FY20/21 MILESTONE REPORT 73

Don'tlaunch more tasks K515, g g Figure 54: Legion Spy dataflow graph
If reduction residual is converged '“Uf" e 1203 N

=R after task merging

2k _=f5awd Don’t launch more tasks

' row_size_=f55 ra WAR LT AT

1. evaluate_residual_cell_mg | QEaians RSP,
mg_din_interface h566 ;

geom _cell_struct =120 0

geom_face_struct_= 21 1o

radE_mg_=f25 10

7RSI mat_vec If reduction residual is converged
m&dn interface hi1119
5.Adot_product_cell_mg 70
mg_dfn_interiace hil 589 nac -7 516, axpy_cell_allas
resk_mg_ =148 wd col_~f54 ra WiR .,g_gr,._\mﬂa;e nutfis” 7 EinitialiEe e e
oM Tk

3. evaluata_radfn_mg
e \mdm hi553

ua:_m;_ e

f26r0 - gamma_tell_be_mg_sfA1<ro,ro 0>
Tmat_= 2310 geom_cell_struct_=N20<ro,ro,10>
fradFn_me_= 138 ro0 Bzom_face_struc_sf2l<ro,ra,fo>

siga_mg_= 3310 sigmaR_mg_=f43<mo,ro,r0>

resk_mg_s 148 wdl fradFn_mg_38<rv ruros-

mat_sf23

fradFn_mg_= 138
6. create_lacoblan_mg
mg_dfn_interface hi1637
bes_= f4<o,r0,10>
radE_= R27<ro,ro 10>

Tmat_= 23 ro
density_= 35 ro
=B ,/

=
(3

- ™~ 4. evaluate_residual_cell_mg
fi5
Tmat_=f23
fradFn_mg_= 38
| Ll
. f55
57 WSl eonviterd | / =
59 break; | | o
sigmaP_= f3lro =T ‘I 6. create_lacoblan_mg
sigmak_= 30 ro 58 |
sigmaR_s "”ﬂ | sigmaR_sf42

siga_mg_= 13
sigmaR_mg_= o |

gamma_cell_be_mg_=f41ra 2. evaluats_material_temperature

mg_dfn_interface h-538
sigmaE_sf30<ro,ro, o>
sigma¥_» f31<ro,r0,10>

dansity_= faSeroyro,ro>

7. A6. updste_radE_Newton_mg
mg_dfn_interface h: 1701
dE_={60r0 WAR

geom_cell_struct_= 200

geom,_face,_struct_s 21 o

Jac_mg_=153 wd - ]
col =54 we

rowi_size_=f55 wd ‘

7 A Geoup 1, copy_ae_ s 7.A384. diag_scale_and_copy

e “Raa
Ll me_din_intarfaca 679 mg_dfn_interface. hl 1093 Tmat.sP<rururo>
row_size, {55 ro Tac 670
Jac_mg_=f53r0 resk_sfS6ra. 52,384, axpy_cell_allas2s_dat
resk_mg_=F8 ro 2k_=f50 wd me_dfn_interface hil1150 Newton =1
poogt g Apk_=fobxrs et —
resk_=f56 wd '::J'fssﬂ;v G mg_din_interface 1523
_-f57xr0 siga_mg_-fi3<rooro>
dE_=fG0=y rw sigmaR_mg_=fd3<ro,ro0,ro>

radE_mg_=f25<r0,10,10x
Tmat_=f23<ro,fo,re>
sigmak_=130<wd we wil>
sigmaP_sf31.cwd we wk>
sigmaR_sFa2<wd wd we>
radlE_=f27 <wd, wdl wid>

Other performance improvements for Puno

Only four of the tasks in the Newton loop shown above require
the exchange of ghost data. Removing the unnecessary communi-
cation from the other tasks will speed up the code.

Permissions are requested for data that is not actually used in a
task. This prevents task parallelism from being discovered. These
unused variables should be removed from the task signature.

Enable task-parallelism between groups.
Lessons learned and desired improvements

While FleCSI allows an application to run on either a bulk-synchronous
or a task-based backend, it is unlikely for a single source to be per-
formant on both.

- Maximizing task parallelism can create more work and/or more
cache misses for MPL.

- Insufficient exposed task parallelism results in extra overhead
for Legion with no benefits.

A programmer thinking of MPI can break the FleCSI program-
ming model in ways that only affect Legion.



74

time (s)

THE RISTRA TEAM

140 T T

& -A original code
m-m 3 fewer tasks

120

100

20 . . .
0

Figure 55: Performance graphs showing
the impact of changing task granularity



RISTRA FY20/21 MILESTONE REPORT

- Requesting permissions for variables that are not used but are
already local can keep other tasks that actually use that data
from running in parallel.

- Modifying data without requesting write permission can yield
incorrect results when task execution order is rescheduled.

- Blocking on reduction results in the top-level task forces the
application to be bulk-synchronous instead of task-parallel.

¢ As mentioned before, both of the Legion Spy analyses we used
could use readability improvements.

¢ In creating scaling studies, we discovered bottlenecks in Legion
itself (both are being addressed).

— One degrades performance as we scale and prevents runs using
hundreds of processes.

— The other excessively penalizes performance for poorly chosen
partitioning.

* Write-after-read dependence can prevent task parallelism from
occurring. Storage is required to break this dependence, either in
the application code or in the FleCSI mapper code.

¢ For some fields in some algorithms the ghost cell data can be
calculated solely with local data. Unnecessary ghost copies in-
troduced extra latency and slowed down the applications. FleCSI
now has a way to opt out of ghost exchanges but an opt in strat-
egy would encourage developers to pay attention to the costs of
data exchange.

* Large tasks (>10 ms) in an application, even if there are seperable
calculations, do not necessarily imply there will be an advantage
to introducing task parallelism. For example, cache utilization
could be affected or there could be a serial step in the overall
calculation. In some cases, we found nearly equal performance
on fewer ranks from a more task parallel implementation when
both implementations were given an entire hardware node. When
scaled out to hundreds of nodes, a factor of two reduction in the
number of ranks employed, could still be a useful speedup.

2 Kitsune & Tapir: Compiler Design, Parallelism, and Modern
Architectures
Kitsune & Tapir: Parallel-Aware Compilation

With the slowing of Moore’s Law and the end of Dennard scaling,
systems have transitioned to using many-core and accelerator de-

75



76 THE RISTRA TEAM

signs, and explicit parallel constructs have now become a given in
what was once entirely sequential application code. However, the ba-
sic design of compilers has remained mostly unchanged throughout
this transition. In particular, the optimization stages of compilation
remain focused on improving sequential code performance with
little to no awareness of the parallel semantics used today for pro-
gramming node-level applications. As part of this milestone, we
have explored the potential of expanding the compiler’s awareness
of parallelism throughout the full code generation pipeline. Before
describing the specifics of our approach, we quickly provide some
background on the fundamental design of today’s compiler archi-
tectures and discuss where it falls short in capturing the nature of
parallelism.

i

Front-end

2
CHt \%a@; IR Code

Program & ! Generation —m—
&
n |
- _____Middle-end
" Machine
LLVM IR Bopixﬁ“ L LLVM IR
o
) ot

?  Code

(executable)

o
\a@@: IR Code
£ | Generation

Fortran
Program

A compiler for a sequential programming language, such as C or
C++, can be viewed as three pipelined phases: a language-specific
front-end, a language and architecture-independent “middle-end”, and
an architecture-specific back-end. The front-end parses the program
syntax, performs semantic analysis checks, and translates the code
into a language-independent form called the intermediate represen-
tation (IR). The IR enables the reuse of the remaining stages of the
compiler across multiple programming languages. The middle-end
consists of several stages that analyze and optimize the IR by trans-
forming it into a more efficient form (in terms of performance, re-
ducing code size, etc.). These passes are generally independent of the
processor architecture and thus enable a layer of portability and gen-
erality. Finally, the back-end translates the optimized IR into machine
code, and performs the necessary low-level target-dependent trans-
formations and optimizations. For decades this design, as shown in
Figure 56, worked in concert with Moore’s Law to generate faster
sequential code and hide the growing architectural complexity from
application developers (e.g., vectorization and vector lengths, pre-
fetching, etc.). While processors have become increasingly parallel,
compilers have lagged behind, unable to analyze and optimize paral-
lelism.

Figure 56: The LLVM Compiler Infras-
tructure [10] uses the classic pipeline
design where the code passes through
a series of transformations in the front-
, middle-, and back-end stages. A
language-centric front-end transforms
the program into a common interme-
diate form that then proceeds into the
middle stage. Within the middle stage,
a series of architecture-independent
passes analyze and optimize (trans-
form) the IR given a general set of “best
practices” and a given set of goals (e.g.,
performance, code size, etc.). After the
optimization phase is complete, the IR
continues into the back-end responsible
for applying architecture-specific oper-
ations (e.g., register scheduling) and a
very focused set of optimizations dur-
ing the conversion of the IR to machine
code.



RISTRA FY20/21 MILESTONE REPORT 77

Instead of incorporating parallelism into the full compiler pipeline,
today’s designs have favored extending the front-end and leaving the
majority of the middle and back-end stages unchanged. This design
assumes that parallelism is a language-centric feature and assumes
that sequential performance is still the principal goal at an architec-
tural level — as shown in Figure 57, the design of Clang’s [6] imple-
mentation of OpenMP follows this approach. Although addressing
aspects of supporting parallelism, the implementation transforms the
code into a sequential IR form with specific parallel runtime system
function calls embedded within it (e.g., libomp). When the middle-
end begins to process the IR, all parallel semantics are lost, and the
OpenMP dependence has been “baked” into the code. In terms of
parallelism, the IR code is no longer independent of the program-
ming mechanisms. Adding any specific awareness of OpenMP into
the middle- or back-end taints the generality of the intermediate form
of the code.

Machine
Code
(executable)

CH++

L LLVM IR
Program

. A°

In today’s implementations
parallel semantics are lost
by the time the code is
lowered to IR. Specifically,

semantics and directives 5 .
Loss of parallel semantics and “generality”

are replaced with runtime-

centric APl calls that “bake-
in” in the nuances of the
programming paradigm.

To explore removing these limitations, we have modified both
Clang and LLVM to make parallelism explicit within the implementa-
tion. Two components support this capability:

1. Kitsune:Provides extensions and modifications to Clang that ad-
dress a portion of the shortcomings discussed above. We describe
the functionality of Kitsune in the sections that follow.

2. Tapir: An extension to LLVM’s intermediate representation (LLVM
IR) to support the representation of parallel constructs in the form
of fork-join operations. As we do not provide a detailed discussion
of Tapir in this report, interested readers can refer to the following
papers for more details [14, 15].

Both Kitsune and Tapir are packaged in an open-source fork of the
full LLVM Project and both development code and releases are avail-
able via GitHub at https://github.com/lanl/kitsune. Our current
implementation builds upon the version 10 release of LLVM/Clang.

Figure 57: Clang’s current implemen-
tations of OpenMP "bakes" parallelism
into the intermediate representation by
inserting methodology and runtime-
centric calls into the IR before the
middle-end optimizations. The loss of
parallel semantics impacts the general-
ity of the design and limits flexibility
and the potential of applying parallel-
centric optimizations to the code.


https://github.com/lanl/kitsune

78 THE RISTRA TEAM

This combination of Kitsune and Tapir maintains parallel seman-
tics in the IR throughout the middle-end’s passes. This design en-
ables supported runtime targets to become a middle-end code gener-
ation target versus being inserted into the IR by the front-end. From
our viewpoint, this maintains the design principle of separation of
language and syntax choices from code analysis, optimization, and
generation for the later stages of compilation. Figure 58 shows how
this approach changes the design of the compiler pipeline. It allows
for additional flexibility in code generation at both the software and
hardware levels during the middle- and back-end stages. This can
improve flexibility and portability and support specific enhancements
via runtime libraries without requiring modifications to the front-
end.

Front-end Middle-end Middle-end -4

""""" T TTTTTTTTTATT LLVM IR Tt T

2 { 0 Machine
CHe icode o . (R + (2
Program & {enerstionl T PR > o0 PO W T Runtime o P Code
Sz@* i p“«\\ﬂ | x\«e(\(\g Target N\‘Ms\ (executable)

b o IS

S i L

Parallel semantics are maintained in a fashion independent of the.
front-end syntax. Runtime code generation becomes a later stage and
front-end independent option.

As part of our milestone efforts, we have explored the design, im-
plementation, and use of the Kitsune+Tapir prototype compiler. The
following sections present the specific features we explored, provide
two example use cases, discuss the results and lessons learned, and
discuss future directions. Our initial approach has focused on mecha-
nisms that can have a minimal set of required changes to applications
written in C++.

THE FORALL-LOOP CONSTRUCT

During early design discussions with the FleCSI team, we de-
termined that introducing a new keyword to flag the semantics of
widely used data-parallel loops was likely to have a minimal impact
on the codebase. As a result, Kitsune supports the forall keyword
that follows C++’s existing for-loop statement. When not using
Kitsune, this approach provided a straightforward path of using a
simple macro to allow code to be compiled with traditional compil-
ers. However, when compiling with Kitsune+Tapir the construct has
an explicit set of semantics that the developer must be aware of:

e All loop iterations must be able to execute independently of all
others.

* Developers should make no assumptions about the ordering of the
iterations.

Figure 58: Kitsune and Tapir make
changes to the front- and middle-ends
of the LLVM compiler infrastructure to
maintain an awareness of parallelism
during compilation. This design allows
the analysis and optimization stages to
become aware of parallelism semantics
and maintain a more general design
versus a hard-coded set of mechanisms
dependent upon a particular language
or programming paradigm used in the
front-end.



RISTRA FY20/21 MILESTONE REPORT 79

Q/ Original for-loop construct:
or( auto ¢ : mesh.cells( flecsi::owned )) {

auto 1id = c.id();

<? / Required forall-loop modifications from existing code.

// 1. Keyword change ‘for’ —> ‘forall’.

// 2. Exceptions off in threaded code (for now).

// 3. Re-visit “global” vs. thread-local variables uses.

forall( auto ¢ : mesh.cells( flecsi::owned ))[&] () noexcept {
auto 1id = c.id();

10;

¢ The developer is responsible for ensuring any (data) state outside
of the loop body is read-only or safe.

¢ For best performance, C++ iterators used as loop induction vari-
ables should be random access.

¢ Currently, exceptions within the loop body (or code that surrounds
the loop) must be disabled. This lack of support is primarily
driven by exceptions in parallel code being poorly defined within
the compilers implementation — a solution will require some
careful implementation details and active efforts are underway to
explore solutions.

Figure 59 show an example of the steps needed to transform a
traditional C++ for-statement into a corresponding forall-statement.
If the semantics are followed, the change can be as simple as replac-
ing for with forall in either traditional C-style for loops or in C++
range-based loops. If exception handling is enabled, a more complex
set of changes may be required. For example, the example in Fig-
ure 59 shows a transformation into a lambda expression to allow the
use of the noexcept keyword.

USING FORALL STATEMENTS

We have experimented with using forall-statements in the FleCSI-
based flecsale and flescale-mm applications. In addition to the changes
discussed above the standard Clang compile line requires the addi-
tion of a single argument, -ftapir=<rt-target>. This flag serves
to enable the forall keyword and specifies which runtime will be
targeted during compilation. At present we have support for, or im-
plementing, the following runtime system targets:

Figure 59: The steps required to
transform a C++ for loop into a Kit-
sune+Tapir supported forall loop.
This example comes directly from the
Flecsale application and is complicated
by the main application code having
exceptions enabled and therefore re-
quires a more complex transformation
to disable them within the loop.



80 THE RISTRA TEAM

* cilk: The Intel Cilk Plus runtime.
¢ opencilk: The new OpenCilk runtime.
* gthreads: The Qthreads runtime system.

¢ cuda: NVIDIA CUDA runtime and PTX code generation. (in
progress)

* kitcuda: A wrapper around cuda meant to simplify code genera-
tion. (in progress)

¢ openmp: The OpenMP runtime library.

¢ opencl: The OpenCL runtime and SPRIV code generation. (in
progress)

* hip: AMD’s HIP layer and AMDGCN code generation. (in progress)

* realm: Legion’s low-level runtime. (in progress)

Figure 60: The performance of the

Tasks apply_update() Task: evaluate_flux() forall loop constructs within the
008 018 flecsale application on a many-core
CPU system. The sequential time
Bou reported is the unthreaded application
£ oo £ using Clang with -O3 optimizations
: enabled. The single threaded case is
o0 presented to reveal overheads from the
runtime system and associated code
sequentil 1 2 . 1 2 w0 sequential 1 2 s % w generation mechanisms.

8 4
Number of CPU cores Number of CPU cores

(a) (b)

Task: gradient() Task: time_step()
1M cells 0.05

sequential 1 2 4 8 16 3 0 sequential 1 2 a 8 16 2 40
Number of CPU cores Number of CPU cores

(o) (d)

With these code changes and the new compiler flag, we have re-
implemented four tasks within the flecsale applications to use the
forall keyword. Figure 60 presents the results of running these
applications using the cilk runtime target on 1, 2, ..., 40 cores. Im-
portantly, this approach allows developers to pick a runtime system
tailored to a target architecture or the specifics of an application’s
workload. Recall that the runtime target code is generated after the
code has passed through the compiler’s various optimization stages,



RISTRA FY20/21 MILESTONE REPORT

in contrast to adding complexity to adding the code before these
passes. Unfortunately, at the time of writing, we have not yet com-
pleted an analysis of the impact this has on the overall code gener-
ation characteristics of the flecsale and flecsale-mm applications. In
the following section, we briefly discuss the changes to Clang that are
required to support forall statements.

LOWERING FORALL TO TAPIR IR

Support forall requires a minimal introduction of new code into
Clang. At a fundamental level, a new keyword and corresponding
statement support can build directly on the same infrastructure used
by for statements (including C++’s range-based loops). Although
some of this code can be complex, it is reasonably straightforward to
maintain and keep up to date with the main LLVM project. The one
area where entirely new code is needed is the “lowering” of Clang’s
AST into the Tapir intermediate form. In this case, care must be taken
to avoid the introduction of race conditions, support the appropri-
ate handling of thread-local state, and maintain metadata for code
analysis in later stages of compilation (e.g., type-based alias analysis).
Overall, the required code to support forall is approximately 1,200
to 1,500 lines of code. Of that, roughly 600 lines are responsible for
the IR generation.

The very generality of forall loop constructs is both their power
and part of the complexity they introduce when used with advanced
C++ code. This complexity complicates the compiler’s analysis and
optimization via overheads and potentially lost opportunities for
better code generation and improved application performance. In the
next section, we explore an alternative and more aggressive path for
generating intermediate representations of parallel loops.

Kokkos-Centric Code Generation

Kokkos, Raja, and Kitsune+Tapir share some similar goals: they all
seek to capture parallel constructs via a combination of syntax and
semantics. The fundamental difference is that Kokkos and Raja rely
on C++ mechanisms to implement a code generation framework for
an underlying target programming system (e.g., OpenMP, pthreads,
CUDA, etc.). While this provides a path for portability, it potentially
adds layers of complexity to the code in addition to the lost paral-
lel semantics previously discussed. The C++ approach’s advantage
is its independence of any particular compiler, and one could ar-
gue, requires less effort to implement than a compiler. However, as
discussed below, the compiler implementation path provides some
distinct advantages. In addition, the wide adoption and design of
LLVM certainly support production-level compiler efforts in ways

81



82 THE RISTRA TEAM

that were not possible in the past. Following a similar set of moti-
vations to the introduction of the forall keyword, we explored the
potential of creating a Kokkos-aware version of Clang.

This approach allows Kokkos to be explicitly recognized by the
compiler — skipping the need to introduce new keywords into C++.
The implementation is achieved by recognizing Kokkos data types
and then circumventing Clang’s C++ code generation techniques by
directly lowering the code to Tapir’s parallel IR form. The funda-
mental structure of the IR is no different from the representation of
forall loops. For code generation, Kitsune replaces a Kokkos par-
allel_for with a simple loop — skipping template expansion, the
transformation of lambda expressions, and the generation of the tar-
geted runtime or programming system. An example of a supported
Kokkos parallel_for construct is presented in Figure 61.

float *A = new float [VEC_SIZE] ;
float *B = new float[VEC_SIZE];
float *C = new float [VEC_SIZE];

// A simple paralell vector element sum.

Kokkos: :parallel_for(VEC_SIZE, KOKKOS_LAMBDA(const int i) {
Cli] = A[i] + B[i]:

DR

USING KITSUNE'S KOKKOS MODE

Much like supporting forall, the Kokkos mode of compilation
requires two flags. The first, -fkokkos, puts the front-end of the com-
piler into a mode of operation that understands the details of Kokkos
constructs, data types, and semantics. The second flag enables Tapir
support via the previously discussed -ftapir command-line option.
At present, Kitsune only supports a limited subset of the possible
forms that Kokkos can represent. However, this initial feature set
has provided the opportunity to explore the impact on code and the
internal processes inside the compiler.

We used a small set of parallel_for examples to explore the
performance of the resulting code. These examples do not capture
the complexity of large scale applications but are suitable to explore
different target architectures, runtime targets, optimizations, and
additional features inside the compiler. The results of these bench-
marks are shown in Figure 62. Fundamentally, these results highlight
limitations of the underlying system architectures (e.g., memory
bandwidth limits in the case of the vector addition example), some
slight nuances in the behavior of the targeted runtime systems, and

Figure 61: A example of the lambda
form of the Kokkos parallel_for
construct that is currently supported by
Kitsune.



RISTRA FY20/21 MILESTONE REPORT 83

in many cases shows where the the compiler was able to apply the
same optimizations to either code representation. However, there is

a distinct advantage of the parallel form'’s explicit nature that did
allow for better optimizations to be applied to the code. The clearest
example of this occurs in the case of the “normalization” benchmark
were the implementation of C++ lambdas, aggressive (early) inlin-
ing, early runtime transformation, and other details obscured the fact
that a very expensive function call could be hoisted outside of the
parallel_for body. Given that small (1-2%) improvements in the
performance of a compiler’s set of optimizations are viewed as a pos-
itive result, we believe there are benefits in further exploring analysis
and optimization enhancements using LLVM and the Tapir IR.

Figure 62: A set of simple Kokkos
ety aareele Normalization Bxample parallel_for benchmarks used to
L s explore our initial steps of code op-
timization passes with the Tapir in-
termediate representaiton. Several of
the benchmarks actually end up being
constrained by the runtime system or
o ] I R R E N charateristics of the underl}_ring hard-
L, 4 6 s w0 b o w T, s 6 s 1 b»  ouw o ware (e.g., memory bandwidth). In
mberofthreads Humberof Threads some cases we see distinct advantages
where traditional C++ inlining and
(@) (b) complexity of the code structure gen-
erated by template metaprogramming
Complex Number Example Element-Wise Vector Addition Example — 256M Elements end up at a disadvantage of the parallel
fomiecn ) o (compleanin ) representation. The “normalize” bench-
02 mark highlights one such case where
inlining obscured the fact that an entire

ol J function call could be hoisted outside of
- ]]]Ji]]] thEIOOPbOdy.

n time (secs)

xecution time (secs)

2
2

mkokkos M kitsunestapir (opencilk) M kitsune+tapir (qthreads) miokkos M kitsune+tapir (opencilk) M kitsune+tapir (qthreads)

Execution time (secs)
Execution time (secs)

1 2 4 6 8 10 12 14 16
Number of Threads. Number of Threads

mkokkos M kitsune+tapir (opencilk) kitsune+tapir (qthreads) Wkokkos W kitsune+tapir (opencilk) kitsune+tapir (qthreads)
(© (d)
LOWERING KOKKOS TO TAPIR IR

The changes to Clang to support Kokkos-centric compilation di-
rect follow the motivations behind domain-specific approaches and
techniques. Given that we maintain the original form of the C++
code, the changes require adding around 500 lines of code to Clang’s
IR generation library. The implementation also follows many sim-
ilar steps as those used by the forall implementation. The overall
process of replacing the lambda construct with an explicit loop, sig-
nificantly reducing the complexity of the code sent to the compiler’s
middle stages.

Many of the optimization passes in the compiler are complicated
and expensive computations. This complexity directly impacts com-
pile times, which reduces productivity in terms of developer time



84 THE RISTRA TEAM

spent waiting for the compiler, the turn around time and resource
utilization of continuous integration operations, and the amount of
time the compiler has to search for potentially beneficial optimiza-
tions to apply." Therefore, it is not surprising to find that the time
required to compile a program is directly related to the number of
lines of IR produced by the front-end. Figure 63 shows some compar-
isons between the full C++ path of compilation and the results when
using the Tapir IR with Kitsune.

Comparison of Kokkos Initial IR Size

Comparison of Kokkos Executable Sizes
(pre-optimization)

Kitsune+Tapir vs. Clang (compiled with -03, stripped)

o 160000

§ 1600 140000
1400 T 120000
1200
1000
800
600 40000
400 20000
200 o 1 1 1 ||

o complex (48lines)  matmult (s6lines)  normalize (47 lines)  vecadd (49 lines)

e

Number of lines of intermediat

complex (48lines)  matmult (s6lines)  normalize (47 lines)  vecadd (49 lines)
Simple Benchmarks

Simple Benchmarks

mkokkos (clang 10x) cilk (kitsune+tapir 10x)

(@)
Pass Timings
(matrix multiply example w/ -03)
6.00
5.00 m kokkos m kitsune+tapir
. .
2 4.00
o
$ 3.00
@
= 2.00
] l.
1.00
0.00 = | -
5 )
2 % % g S, 3
% Y %, % E 3
) » =3 > B %
¢4 () < B ey <.
E % % % 2
= Lo ° < (%
s & K 2 )
° Z € ) >
: 2 ® > El
e 3 ‘ g
o, > G4
)

Passes

O

In general, the results show that the Tapir IR is roughly 4-times
smaller than Clang’s LLVM IR for the example benchmarks. What
turns out to be significant is the observation that executable sizes
are approximately 10-times smaller for Tapir-based code generation.
We have yet to fully dissect the full cause for this but suspect part of
the issue has to do with template expansion and the way the target
runtime system code is generated (note that the results shown reflect
the use of the pthreads runtime in Kokkos). Fortunately, this initial
size difference does not continue to grow at a similar rate with the

*Some compilers have the notion of an
internal “time quota” that attempts to
maintain productivity. After meeting
the quota, the compiler stops optimiza-
tions and proceeds to code generation
— often resulting in under-performing
code.

Figure 63: The smaller and more
concise intermediate form leads to a
smaller number of lines of IR code,
smaller executable sizes, and overall
faster optimization and compilation
times.



RISTRA FY20/21 MILESTONE REPORT

introduction of new constructs. However, the initial difference in
size does not seem to significantly reduce over time between the two
compilation paths nor over separate compilation units.

As mentioned above, the difference in size between the two com-
piler paths leads directly to longer compilation times that are par-
tially driven by the “short circuit” of C++ code generation with Kit-
sune and the duration of optimization phases within the middle-
and back-end stages of the compiler. Some of the more noticeable
differences in the optimization times are highlighted in the bottom
portion of Figure 63. While these examples might seem minuscule
given their millisecond durations, it is important to remember that
this is for a 56-line program and full-sized applications are likely to
see significant growth in these costs.

Lessons Learned and Future Directions

Working within the full LLVM toolchain has been a rewarding and
challenging effort. We have gained a broader and more significant
understanding of some of the complexities our codes face and some
of the impact advanced C++ features have on our application codes
and their interactions with the supporting compiler. Given that a
vast majority of the industry has, or will soon, transition to using
the LLVM infrastructure for their production compilers provides

a significant opportunity for addressing some of our challenges as
well as opportunities for broader collaborations across academia and
industry.

These opportunities come with a set of corresponding challenges
that have made our experimentation and development activities
complex and often met by a significant learning curve. In addition,
keeping up with the broader community and the six-month release
cycle of LLVM places additional pressure on ever improving fea-
ture sets and capabilities. Finally, as the entire LLVM infrastructure
(LLVM, Clang, Flang, libc++, 11d, 1ldb, etc.) is approaching well over
four-million lines of code. These challenges aside there are numerous
activities we are actively working on that we believe will continue to
improve the capabilities of both Kitsune and Tapir.

The following two sections highlight two activities that we were
unable to fully complete in a stable fashion by the end of the mile-
stone. We continue to actively implement these capabilities so we can
take advantage of them within both Kitsune and Tapir.

GPU BACKEND DEVELOPMENT

One of the substantial advantages of a uniform representation
of parallelism is that we can analyze and optimize across hardware
boundaries. One place this applies is for GPU development. In a

85



86 THE RISTRA TEAM

conventional model, there is a hard boundary in code between CPU
and GPU: the GPU kernel is compiled by a separate pass, often a
separate compiler altogether. This approach prevents any analyses
and optimizations from reasoning across these program boundaries.
As we move more of our programs to run on GPUs, these boundaries
become more and more costly for program performance. An example
of such a lost opportunity is loop invariant code motion (LICM).

If there is an invariant in code meant to run on a GPU, we would
generally prefer to precompute it on the CPU, then share the result
across the GPU warps. This is not possible in the conventional setting
but comes for free with Kitsune and Tapir.

For these reasons we have developed preliminary GPU targets in
Kitsune. The core of the approach is to take canonical Tapir parallel
loops and compile them to GPU kernels, inserting the necessary run-
time calls automatically. We currently have three targets. For AMD,
we compile the body of the parallel loop to AMDGCN, then insert
the necessary HIP runtime calls. For Nvidia, we generate PTX and
insert Cuda runtime calls. For Intel, we generate SPIRV kernels and
insert OpenCL runtime calls. These backends are preliminary, but
initial tests confirm that we get optimizations and analyses across
CPU-GPU boundaries, as desired. In some cases we are seeing op-
timizations that provide potential improvements beyond the vendor
provided compilers.

DOMINATOR DAGS

The semantics of LLVM are based on a theory called Single Static
Assignment (SSA). The theory uses an always-happens-before re-
lation called a dominance relation to reason about what memory
locations can be promoted into immutable values safely. These im-
mutable values are then where all scalar optimizations occur. One
limitation of existing theory is that it uses a tree data structure to
efficiently approximate the dominance relation. This prevents pre-
cise reasoning about dominance, and therefore scalar optimizations,
in a number of classes of programs. One such class of programs,
an example of which is shown in Figure 64, is where the order of
execution of two basic blocks is controlled by a single condition vari-
able. In current LLVM, both the CFG, and therefore the dominator
tree, badly approximate the possible behaviors. By extending the
dominance relation to be a directed acyclic graph (DAG), using data-
sensitive analysis to construct it, we're able to achieve a more precise
dominance relation, enabling more optimizations.

Concurrent programs can be seen as a special case of the class of
program shown here: the two branches commute, so we can treat the
condition variable as non-deterministic and still preserve soundness.
The key insight is that fully optimizing parallel codes is infeasible



RISTRA FY20/21 MILESTONE REPORT 87

without this improvement on the theory: without it values generated
in concurrent blocks will be not to be optimized.

We currently have a preliminary implementation of this exten-
sion, extending the existing dominator tree data structure with DAG
edges. These are populated by an analysis pass, and used in register
promotion. Future work will involve formalizing this approach to en-
sure confidence in it’s correctness, as it touches parts of the compiler
that are absolutely crucial. In addition, the asymptotics of the algo-
rithms can likely be improved. Once these two concerns have been
addressed, we hope to not only use these changes in Kitsune+Tapir
but also upstream the changes to the LLVM project.

define f(x){ CFG DomTree DomDAG Figure 64: Dominator DAG Example.
entry : There are two valid paths through the

program, meaning that both a and
cond = and x, 1 entry entry entry b both dominate ¢, something not

br cond, @@, &b& \ / l / \ captured in the current state of the art.
LN )

y = mul 4 X b a

call g() \ \ /
br cond, @@, &c&C C

z = add x, x

call h()
br cond, @@, &a&

r =add vy, z
ret r



88 THE RISTRA TEAM

3 The role of Ristra at LANL post-ATDM

LANL has used the opportunity provided by ATDM funding to as-
sess how multi-physics code development could be done differently.
Over its 6 year history, the Ristra project has had an appreciable tech-
nical and cultural impact, and there have been many lessons learned
with respect to the implementation of modular capabilities with well-
defined interfaces, allowing increasing code sharing and reuse, and
an increased separation of concerns between compuational physicists
and computer scientists.

As ATDM funding ends, during FY21 LANL is integrating Ristra
into mainstream ASC funding, with plans in place to sustain and
build upon the foundations established under three projects that will
fully take off in FY22:

1. ASC CSSE: consolidated software and infrastructure for ASC codes

2. ASC IC: new physics capabilities building on the Ristra technolo-
gies

3. Next-Generation Platform project: use FleCSI-based codes to pro-
totype and co-design advanced architectures and novel hardware
together with new physics methods

These topics are the subject of more detailed discussion during the
final session of the review.



RISTRA FY20/21 MILESTONE REPORT

Appendix

A Glossary

Caliper A program instrumentation and performance measurement
framework from LLNL

Capsaicin An S, radiation solver

CartaBlanca++ A FleCSI-based software environment for prototyping
physical models and simulation of a wide variety of physical sys-
tems, using an ALE finite-volume method and the Material Point
Method (MPM)

Cl Continuous integration system: a tool which automatically runs
code tests upon code commit or pull request submission

FleCSALE A FleCSI-based open-source, unstructured-mesh, single-
material, gas dynamics code (direct Eulerian, and Lagrangian plus
in-line remap via Portage)

FleCSALE-mm An extension of FleCSALE to multi-materials with
strength

FleCSI The Flexible Computational Science Infrastructure is a compile-
time configurable framework designed to support multi-physics
application development, and is the key abstraction layer in Ristra
codes

FUEL A FLeCSI-based multi-material ALE hydrodynamics code with
SGH (staggered grid) and CCH (cell centered) solvers, targeting
low energy density physics

GitLab A web-based DevOps lifecycle tool that provides a Git-
repository manager providing wiki, issue-tracking and continuous
integration

HO LO A class of multi-scale (scale-bridging) algorithmic accelera-
tion techniques that couple low-order (LO), coarse-grained models
with high-order (HO), fine-grained descriptions, in order to re-
solve macroscopic effects based on microscopic behaviors

Kitsune An LLVM-based parallel-aware compiler (LANL)

Kokkos A programming model in C++ for writing performance
portable applications targeting all major HPC platforms

Legion A data-centric task-based parallel programming model for
distributed, heterogeneous machines from Stanford, NVIDIA and
LANL

89



90 THE RISTRA TEAM

libristra A set of support utilities for ristra codes, including mathe-
matical operations (geometry, small matrix operations, and so on),
physical units, and input parsing

LLVM A modern, modular compiler toolchain

Portage A modular, extensible framework for general purpose data
remapping - between meshes, between particles, or between
meshes and particles - in computational physics applications

Puno A P; unstructured-mesh radiation solver

Spack Spack is a package manager for supercomputers, Linux, and
macOS developed by LLNL.

Symphony A FleCSI-based radiation hydrodynamics code based
on FleCSALE-mm and Puno, with optional multi-scale (HO LO)
radiation transport through coupling to

Tangram A framework for interface reconstruction in computational
physics applications that is used by Portage for multi-material
remap

Tapir Task-based Asymmetric Parallel Intermediate Representation
is an extension of LLVM compilers to allow for efficient parallel
execution on multicore architectures from MIT; used by Kitsune

tide A Lua-based input and setup tool for Ristra codes

Wonton A library of wrappers to various unstructured mesh and
data (state) managers used by Portage



RISTRA FY20/21 MILESTONE REPORT

B ATDM charter

The ATDM sub-program was established towards the end of FY14,
with the following goals [NNSA web site, January 2015]:

The Advanced Technology Development and Mitigation (ATDM) sub-
program includes laboratory code and computer engineering and
science projects that pursue long-term simulation and computing goals
relevant to the broad national security missions of the NNSA. It ad-
dresses the need to adapt current integrated design codes and build
new codes that are attuned to emerging computing technologies. Per-
forming this work within the scope of the DOE Exascale Computing
Initiative (ECI) allows for broader engagement in co-design activities
and provides a conduit to HPC vendors to enable next-generation, ad-
vanced computing technologies to be of service to the stockpile stew-
ardship mission. Applications developers, along with computational
and computer scientists, are to build a computational infrastructure
and develop a new generation of weapon design codes that will effi-
ciently utilize the hardware capabilities anticipated in exascale-class
systems. As part of this subprogram’s work scope, the ASC Program
has engaged with the DOE Office of Advanced Scientific Computing
Research to address the barriers to exascale and evolving architectures.

Further, ATDM called for each laboratory to establish a Next-
Generation Code Development and Applications (ATDM CDA)
project that

...is focused on developing new simulation tools that address emerg-
ing HPC challenges of massive, heterogeneous parallelism using novel
programming models and data management. Modern codes will be de-
veloped through co-design of applications by laboratory scientists and
engineers and co-design of computer systems by computer vendors.
The end product of this work is a next-generation set of simulation
tools that may complement and/or replace the current set of produc-
tion tools for the Nuclear Security Enterprise (NSE).



92 THE RISTRA TEAM

C Advanced Technology Development and Mitigation (ATDM)
Target (Level 1 Milestone Definition)

The ATDM subprogram was created to mitigate the risks of applica-
tion code portability and performance on future HPC architectures.
ATDM includes two basic elements: development of new codes that
are more architecture agnostic than existing codes, and the under-
lying hardware and software issues associated with future architec-
tures. Full implementation, verification, and validation of the new
codes will likely take a decade or more; however, five years is a suf-
ficient length of time to make substantial progress. This milestone
focuses on the new codes and is meant to take stock of the ongo-
ing progress, document lessons learned, and identify programmatic
investments needed for the next phase of development.

The results of this ATDM L1 milestone shall reflect how each
team established their baseline of performance and capture an
initial set of acceptance criteria for end users.

Action

Each laboratory shall do the following:

1. Perform a series of NW relevant calculations in 3D using up to
and including at least 25% Sierra

and either 50% Trinity or 100% Astra.

2. Perform a calculation of the same scenario including the same
physics but with a current production code on one of the chosen
platforms at one of the chosen scales.

3. Develop a set of metrics for evaluation based on the criteria
described below.

4. Assess both the new codes and existing codes (modulo scaling
capability) with those metrics.

5. Compare the results.

Assessment

The labs shall develop qualitative and quantitative metrics and
assess the ATDM and existing codes on the basis of the following
criteria:

1. Mission Impact: Define a metric(s) that will express the status
of both new and existing codes in terms relevant to end users. Areas
to consider in the assessment include: problem set up times, code
robustness, turn-around time, storage requirements, post-processing
capabilities, visualization capabilities, degree of verification and
validation, solution accuracy, workflow, etc.

2. Portability: Evaluate code portability by running the same
application source code on different platforms and assessing the
results. Identify the relative amount of source code that is platform
agnostic vice the source code that is unique to a specific platform.



RISTRA FY20/21 MILESTONE REPORT

3. Developer Productivity: Document and describe the ease of
improving, modifying, or extending the codes, and training of staff.
Some points to consider include: relative ease of implementing new
models/methods/algorithms into the codes; improvements in soft-
ware quality; maintenance and reuse of code in existing production
capabilities; knowledge transfer, education, and training of develop-
ers.

4. Code Performance: Define and describe code capability in
terms of computational performance. Measures to consider include:
time-to-solution, percentage of peak FLOPs, strong and weak scaling,
efficiency using the computational platform, etc.

Reporting Requirements

Document the results of the assessment, discuss lessons learned,
and propose changes to address performance gaps for the next 5
years starting in FY 2021. Possible topics to consider include:

1. What has been accomplished up to the completion of this mile-
stone? What were the significant innovations? What new science
and/or mission impact has ATDM made possible? Have the new
achieved advances in terms of the assessment relative to existing
codes. The latter may be communicated to NNSA independently.

2. What work remains to for the codes to reach complete pro-
duction status? What are the requirements and plans to meet these
requirements to achieve this status? How will this work be carried
into the planning cycle for IC or for ASC writ large?

3. Are there any high risk/high reward efforts that failed? If so,
are there potential mitigation strategies that should be considered
moving forward?

93



94 THE RISTRA TEAM

D Project timeline (selected highlights)

FY14
¢ ATDM sub-program created

¢ Task force established at LANL to provide recommendations for
the new code effort

* Project leadership and high-level goals established

¢ Initial plans presented at HQ

FY15

* Project kickoff, initial plan for the first FY to focus on prototyping
and co-design discussions and experiments

¢ Initial software development processes established, initially based
on Atlassian tools with Jenkins for CI (continuous integration)
testing

* Automated mirroring of Ristra repositories between LANL net-
works

¢ Requirements gathering based on foundational physics V&V prin-
ciples established through discussions with subject matter experts

* Assessment of the state-of-the-art of variety of mesh-based and
mesh-free methods

® Decision to focus on unstructured ALE methods, and subsequent
emergence of sub-teams to focus future development:

- Integration across the project

— FleCSI developing foundational compile-time-configurable
multi-physics infrastructure

— Portage developing a stand-alone remap and link capability

— ALE team focusing on modern hydrodynamic methods on
general polyhedral meshes

— Scalable methods focusing on new multi-scale methods and
multi-physics couplings beyond the traditional operator split



RISTRA FY20/21 MILESTONE REPORT

FY16

Integration

- ATDM falls under aegis of Exascale Computing Project: presen-
tations to national ECP leadership, and LANL Director McMil-
lan

- Hosted Git and Gitlab training for a broad LANL audience
FleCSI

— Data and execution model design and code review; initial un-
structured mesh and particle topologies; initial sparse data
layout support

— Initial FleCSI backends for Legion and MPI
— Open source licensed

— First co-design iteration of dynamic polymorphism for multi-
physics applications in FleCSI

Portage

— Adoption of existing Jali mesh library for protyping phase. Jali
enhanced with a tile capability to support multi-material and
multi-scale studies.

— Initial 3D capability with 1% and 2"4 order remap schemes
- Early explorations on GPUs

— Initial distributed memory mode using third-party DTK library
for parallel search

- Support for FleCSI unstructured mesh format
ALE

— Proxy application FIleCSALE solves the 2D Euler equations on a
fixed mesh, and using the cell-centered method of Maire on a
Lagrangian mesh

- Existing Cercion multi-physics proxy used for multi-material
data structure requirements

Scalable methods

— Puno low-order (P1) radiation model developed for a multi-
scale prototype that will use Sn for the higher-order method.
Building on HOLO work in the CoCoMANS LDRD project
and lessons learned integrating that capability in xRAGE, the

95



96 THE RISTRA TEAM

code uses the Jali mesh model and Trillinos to explore structural
challenges for integrating multi-scale methods and 3™ party
libraries.

- Exploration time-explicit radiation transport methods

First ASC ATDM Level 2 milestone passed

FY17

Integration

— Established plans for problem setup (workflow), visualization
and data analysis, and 1/O

— Cross-project multi-material data structure co-design

— libristra cross-project utility library established
FleCSI

— FleCSI/Legion integration starts in earnest in collaboration with
Legion developers at Stanford and NVIDIA

— Initial FleCSI/Legion demonstration of a hydrodynamics method;
performance improvements for FleCSI/MPI and FleCSI/Legion

— Initial support for sparse multi-material data structures

- In situ visualization using Paraview/Catalyst demonstrated in
FleCSALE

Portage

— Open source license

— Tangram interface-reconstruction, and Wonton mesh wrapper
libraries intiated

— Mesh-mesh remap through an intermediate particle representa-
tion

ALE

— FleCSALE refactor implemented to include stress tensor

- Export-controlled FleCSALE-mm code forked supporting multi-
material hydrodynamics with strength. FUEL code forked to
support advanced material model research.

- Five-material cylindrical implosion demonstrated in 2D RZ
Lagrangian, with sparse multi-physics model support and 3D
Lagrangian with a dense multi-physics model support

- 3D Taylor-Anvil impact experiment simulation



RISTRA FY20/21 MILESTONE REPORT

Strength models in FleCSALE-mm: Hyper- and hypo-elastic
models; investigations of VPSC (Visco-Plastic Self-Consistent)
grain-structure-aware strength model

e Scalable methods

Investigation of task parallel methods for exploration of explicit
radiation flow schemes with simple TN burn, and alternative
operator split algorithms in ICF problems

Improved the LO part of the SN-HO LO scheme for radiation
hydrodynamics by adopting a Discontinuous Galerkin in place
of a Finite Volume. Adopted by EAP and Ristra projects

¢ Second ASC ATDM Level 2 milestone passed

FY18

Integration

Open source license for libristra

Rad-hydro code design iterations including members across the
project

Symphony radiation hydrodynamics code initiated through cou-
pling of FleCSALE-mm and Puno P1 radiation. HO LO capability
demonstrated by coupling with 3" party Capsaicin Sn library
for the HO solve.

FleCSI

Scaling limitations in current Legion implementation addressed
in the short term, with plans for long-term “control replication”
solution discussed with Legion developers

Co-design of sparse/ragged data layouts and MPI interoperabil-
ity within Symphony multi-physics code
Runtime selectable physics methods enabled through FleCSI

Initial discussions for integration of Legion control replication
into FleCSI

Portage

Open source licenses for Tangram and Wonton
Suite of challenging remap validation tests developed

2D and 3D VOF and MOF interface reconstruction demon-
strated in Tangram; 2D and 3D multi-material remap demon-
strated with Tangram called from Portage

97



98 THE RISTRA TEAM

Performance improvements in intersection algorithms

e ALE

FleCSALE-mm supports Sesame EOS tables

Advanced material models

+ A material point method (MPM) algorithm implemented
through a particle/mesh topology prototype in FleCSALE-mm

+ VPSC strength model interfaced to FUEL; targeting a CUDA
rewrite of VPSC for a GPU multi-scale demonstration prob-
lem

e Scalable methods

Puno P1 radiation code refactored on FleCSI unstructured mesh

Scalable methods team folded into Integration effort for FY19

e Third ASC ATDM Level 2 milestone passed

FY19

Integration

Symphony: Puno solver updated to use improved lumped dis-
continuous Galerkin method

Initial coupled (self-consistent IMEX) rad hydro method added
to Symphony
Simple reactive burn model in Symphony

Integration of HED and LED capabilities (rad hydro + multi-
material strength)

Checkpoint/restart in Symphony

Consolidating on Spack for managing Ristra’s complex and
diverse build environment

Migration of many SW repositories to Gitlab for improved CI
testing

FleCSI

New sparse/ragged data layouts integrated into FleCSI Initial
plan outlined for Kokkos integration into FleCSI, and demon-
strated for OpenMP and CUDA targets

Simple meshing tools, for mesh generation and parallel mesh
I/0

Integration of LLNL Caliper performance counters



RISTRA FY20/21 MILESTONE REPORT

— Major refactor (“FleCSI 2.0”) started, based on lessons learned,
feedback from developers

Portage

— Portage 2.0 released
— Multi-material validation tests for Portage/Iangram

— Improved FleCSI support in Portage

ALE

First Portage-based remap capability in FleCSALE-mm
Reference ALE capability in FUEL
Legion + VPSC: improved CUDA VPSC implementation

FleCSALE-mm demonstrated on Sierra-architecture nodes with
MPI and Legion backends

Fourth ASC ATDM Level 2 milestone passed

FY>2o0

Integration

— Consolidation of FY19 codes as the basis for milestone demon-
strations Multi-group diffusion radiation solver in Puno and

Symphony

— Multi-material ALE using Portage/Tangram for remap demon-
strated in Symphony

- All additional required physics integrated and demonstrated in
an integral problem

- TIDE, a Lua-based, compile-time/run-time problem setup tool
developed

— Spack-generated modules for Ristra development deployed on
production platforms

— Crosslink/ParMesh parametric scalable meshing tool targeted for
Symphony

— Build system improvements with better integration of Paraview/-
Catalyst, Kokkos, Legion

— Integral tests included in CI testing

- Optimization of performance and scaling in Symphony

FleCSI

99



100

THE RISTRA TEAM

Identified stable FleCSI 1.4 branch as target for milestone
demonstrations

FleCSI 2.0 development continues

N to M HDF35-based checkpoint/restart prototypes demon-
strated for MPI and Legion

FleCSPH smoothed particle hydrodynamics code used to proto-
type FleCSI tree topology

CartaBlanca++, a FleCSI-based code featuring the MPM (Mate-
rial Point Method) demonstrated in additive manufacturing and
fragmentation field applications

FleCSI/Kokkos improvements, in collaboration with Kokkos team
at SNL

Memory and scaling issues in FleCSI/Legion: still awaiting reso-
lution via Legion refactor

Kitsune FleCSI-aware parallel compiler successfully compiling
and running FleCSALE-mm on NVIDIA GPUS

® Portage

- Part-by-part remapping

- Example FleCSI-based driver for Portage; New Tangram release

— Co-design of improved interface for inline remap in FleCSI-

based codes

— Refactor of build system based on modern CMake best practices

e ALE

Multi-material ALE using Portage for inline remap demon-
strated in Symphony

Improved VPSC model for robustness in high-deformation
applications

Demonstrations of multi-scale methods using advanced hydro-
dynamic algorithms and high-fidelity material models

¢ ASC ATDM Level 1 milestone mid-cycle review

e ASC ATDM Level 1 milestone postponed due to covid-19 pan-

demic

FY21

¢ Final preparation for ASC ATDM Level 1 milestone, with large-

scale physics demonstrations on Trinity, Sierra, and Astra

e FleCSI 2.0 released

* Portage 3.0 released



RISTRA FY20/21 MILESTONE REPORT

References

[1]

[2]

[3]

[4]

[5]

6]

[7]

(8]

[9]

[10]

Andrew Barlow, Pierre-Henri Maire, William Rider, Robert
Rieben, and Mikhail Shashkov. Arbitrary lagrangian-eulerian
methods for modeling high-speed compressible multimaterial
flows. Journal of Computational Physics, 322(c):603—665, 2016. doi:
10.1016/j.jcp.2016.07.001.

Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken.
Legion: expressing locality and independence with logical re-
gions. In Proceedings of the international conference on high perfor-
mance computing, networking, storage and analysis, page 66. IEEE
Computer Society Press, 2012.

J. F. Bingert, R. M. Suter, J. Lind, S. F. Li, R. Pokharel, and C. P.
Trujillo. High-Energy Diffraction Microscopy Characterization of
Spall Damage. In Dynamic Behavior of Materials, Volume 1, pages
397—403. Springer International Publishing, 2014.

S. Chen, G. Gray III, and S. Bingert. Mechanical properties and
constitutive relations for tantalum and tantalum alloys under
high-rate deformation. Technical Report No. LA-UR-96-0602,
CONF-960202-24, Los Alamos National Laboratory, 1996.

V. Chiravalle and N. Morgan. A 3D finite element ALE method
using an approximate Riemann solution. International Journal for
Numerical Methods in Fluids, 83:642-663, 2016.

Clang. Clang: a C language family frontend for LLVM. http:
//clang.1lvm.org, November 2020.

S.S. Dhinwal, L. S. Toth, R. Lapovok, and P. D. Hodgson.
Tailoring one-pass asymmetric rolling of extra low carbon
steel for shear texture and recrystallization. Materials, 12
(12), 2019. ISSN 1996-1944. doi: 10.3390/ma12121935. URL
https://www.mdpi.com/1996-1944/12/12/1935.

Gary Dilts. Estimation of integral operators on random data.
Technical Report LA-UR-17-23408, Los Alamos National Labora-
tory, 2017.

H. Lim, J. D. Carroll, C. C. Battaile, S. R. Chen, A. P. Moore, and
J. M. D. Lane. Anisotropy and strain localization in dynamic
impact experiments of tantalum single crystals. Scientific Reports,
8(1):5540, 2018. doi: 10.1038/541598-018-23879-1. URL https:
//doi.org/10.1038/s41598-018-23879-1.

LLVM. The LLVM Compiler Infrastructure. http://www.1llvm.
org, November 2020.

101


http://clang.llvm.org
http://clang.llvm.org
https://www.mdpi.com/1996-1944/12/12/1935
https://doi.org/10.1038/s41598-018-23879-1
https://doi.org/10.1038/s41598-018-23879-1
http://www.llvm.org
http://www.llvm.org

102

[11]

[13]

[14]

[15]

[16]

THE RISTRA TEAM

P. J. Maudlin, ]J. F. Bingert, ]. W. House, and S. R. Chen. On
the modeling of the taylor cylinder impact test for orthotropic
textured materials: experiments and simulations. Interna-
tional Journal of Plasticity, 15(2):139 — 166, 1999. ISSN 0749-
6419. doi: https://doi.org/10.1016/50749-6419(98)00058-8.
URL http://www.sciencedirect.com/science/article/pii/
S50749641998000588.

R. T. Olson, E. K. Cerreta, C. Morris, A. M. Montoya, E. G.
Mariam, A. Saunders, R. S. King, E. N. Brown, G. T. Gray, and

J. E. Bingert. The effect of microstructure on Rayleigh-Taylor in-
stability growth in solids. Journal of Physics: Conference Series, 500
(11):112048, May 2014. doi: 10.1088/1742-6596/500/11/112048.
URL https://doi.org/10.1088%2F1742-6596%2F500%2F 11
2F112048.

C. N. Reid. Deformation Geometry for Materials Scientists. Inter-
national Series on Materials Science and Technology. Pergamon,

1973.

Tao B. Schardl, William S. Moses, and Charles E. Leiserson.
Tapir: Embedding fork-join parallelism into llvi’s intermediate
representation. In Proceedings of the 22nd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Progr amming, PPoPP "17,
page 249—265, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450344937. doi: 10.1145/3018743.
3018758. URL https://doi.org/10.1145/3018743.3018758.

George Stelle, William S. Moses, Stephen L. Olivier, and Patrick
McCormick. Openmpir: Implementing openmp tasks with
tapir. In Proceedings of the Fourth Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM-HPC’17, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450355650.
doi: 10.1145/3148173.3148186. URL https://doi.org/10.1145/
3148173.3148186.

J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments.
In Proceedings of PSTI2010, the First International Workshop on
Parallel Software Tools and Tool Infrastructures, San Diego CA,
2010.

Steven Zalesak. Fully multidimensional flux-corrected transport
algorithms for fluids. Journal of Computational Physics, 31(3):
335-362, 1979. doi: 10.1016/0021-9991(79)90051-2.


http://www.sciencedirect.com/science/article/pii/S0749641998000588
http://www.sciencedirect.com/science/article/pii/S0749641998000588
https://doi.org/10.1088%2F1742-6596%2F500%2F11%2F112048
https://doi.org/10.1088%2F1742-6596%2F500%2F11%2F112048
https://doi.org/10.1145/3018743.3018758
https://doi.org/10.1145/3148173.3148186
https://doi.org/10.1145/3148173.3148186

RISTRA FY20/21 MILESTONE REPORT 103

[18] M. Zecevic and M. Knezevic. A new visco-plastic self-consistent
formulation implicit in dislocation-based hardening within im-
plicit finite elements: application to high strain rate and impact
deformation of tantalum. Computer Methods in Applied Mechanics
and Engineering, 341:888-916, 2018.



	I Milestone completion
	Mission impact
	Portability
	Developer productivity
	Code performance

	II Introduction to Ristra
	Timeline
	Goals
	Ristra software architecture: planning for flexibility in a volatile future

	III Deep dives
	FleCSI
	Portage
	Multiscale Material Dynamics on Modern Computer Architectures

	IV Productivity in the Ristra Environment
	The physics developer experience
	The CS developer experience
	The user experience
	A zoo of FleCSI-based codes

	V Preparing for the future
	Legion and task parallelism
	Kitsune & Tapir: Compiler Design, Parallelism, and Modern Architectures
	The role of Ristra at LANL post-ATDM

	Appendix
	Glossary
	ATDM charter
	Advanced Technology Development and Mitigation (ATDM) Target (Level 1 Milestone Definition)
	Project timeline (selected highlights)

	References

