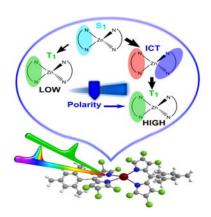
# Manipulating Triplet Yield Through Control Of Symmetry Breaking Charge Transfer

Saptaparna Das<sup>1,§</sup>, William G. Thornbury<sup>2,§</sup>, Andrew N. Bartynski<sup>2</sup>, Mark E. Thompson<sup>1</sup> and Stephen E. Bradforth,<sup>1,\*</sup>

§: these two authors contributed equally to this work; \*: author to whom correspondence should be addressed, stephen.bradforth@usc.edu


<sup>&</sup>lt;sup>1</sup>Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA

<sup>&</sup>lt;sup>2</sup>Department of Chemical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

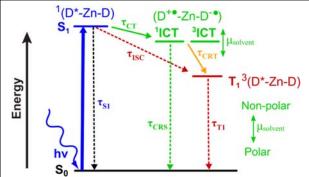
#### **ABSTRACT**

The efficiency of an organic solar cell depends on the efficacy of exciton diffusion and dissociation processes, and this can be enhanced by reducing the exciton binding energy and increasing the exciton lifetime. Zinc chlorodipyrrin (ZCl) complexes exhibit reduced exciton binding energy due to ultrafast generation of intramolecular charge transfer (ICT) states via symmetry breaking charge transfer in polar media. This paper explores the fate of the ICT states using nanosecond transient absorption. In cyclohexane, ZCl undergoes intersystem-crossing to produce triplets with ~8 ns time constant (~30% yield) and no ICT states are generated. However, in more polar solvents, triplets are generated within 1 ns via ICT state recombination with ~3 times higher yield than produced via ISC. This high triplet yield in toluene (89%) and acetonitrile (76%) via ICT state recombination is a beneficial pathway to spin-protect the excited state decay for additional charge generation from triplet excited states.

## **TOC GRAPHICS**



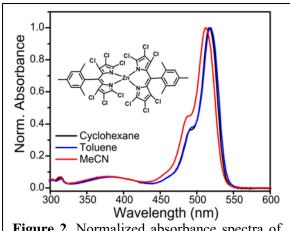
**KEYWORDS:** Nanosecond Transient Absorption, Triplet lifetime, Charge recombination, Photophysics, Zinc chlorodipyrrin.


Organic photovoltaics (OPVs) are an attractive alternative to conventional silicon solar cells due to their many desirable properties like mechanical flexibility, inexpensive processing costs, and a broad selection of device materials.<sup>1-4</sup> Over last three decades, OPVs have demonstrated high potential for solar cell technology with power conversion efficiency (PCE) reaching 13% from the first developed single heterojunction OPV reported in 1986 with PCE of ~1%.<sup>7-8</sup> Typical OPVs are comprised of an electron donor and acceptor material in separate phases, either in a bilayer structure or in a bulk-heterojunction phase.<sup>9,10</sup> Light is absorbed in either the donor or acceptor phase, forming a localized exciton which diffuses to the D/A interface where charge transfer and separation takes place. The localized exciton formed are typically 0.3-0.5 eV higher in energy compared to the charge transfer state; this large a driving force is typically required to achieve efficient charge transfer to form D<sup>+</sup>/A<sup>-</sup> by out-competing radiative and non-radiative recombination exciton losses.<sup>11-13</sup> Unfortunately, this 0.3-0.5 eV driving force for charge transfer reduces the available open circuit voltage (*Voc*), which is thermodynamically limited by the energetic offset between the constituent donor HOMO and acceptor LUMO (E<sub>DA</sub>).<sup>5, 14-15</sup>

Recent work by Bartynski *et. al.* shows that developing acceptor materials which exploit the symmetry-breaking charge transfer (SBCT) phenomena is a promising approach to move the *Voc* closer to the thermodynamic limit.<sup>5</sup> SBCT is typically observed in multi-chromophoric systems, where an exciton initially formed on a single chromophore or ligand undergoes intramolecular charge transfer (ICT) to create an ICT state with broken symmetry, facilitated by the surrounding dielectric medium.<sup>16-17</sup> This ICT state consists of an electron and hole pair localized on two different chromophores or ligands, with very little coupling between electron and hole.<sup>16-18</sup> Due to their spatial displacement, symmetry-broken electron-hole pairs (ICT excitons) are expected to possess lower exciton binding energy than typical Frenkel excitons generated in

organic materials.<sup>19</sup> Thus, charge transfer between electron donor and acceptor materials from these ICT excitons may proceed more efficiently with lower energetic requirements than that required for typical Frenkel excitons.<sup>20-22</sup> SBCT is an attractive strategy to achieve subsequent charge separation with negligible energetic driving force, directional specificity and a retarded back-recombination rate.<sup>5</sup> These advantages of the SBCT phenomena lowers recombination losses and potentially increases *Voc*.

Zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], is a promising SBCT material for OPV devices. Devices with ZCl acceptors show significantly larger  $V_{OC}$ 's and reduced recombination losses than equivalent devices using conventional fullerene acceptors with similar LUMO energies.<sup>5</sup> Specifically, OPVs with tetraphenyldibenzoperyflanthrene (DBP) as a donor and ZCl as an acceptor results in a Voc of 1.33 V compared to 0.88 V with analogous C<sub>60</sub>based devices. From Fourier-transform photocurrent spectroscopy and OPV electroluminescence measurements, the  $V_{OC}$  increase in DBP/ZCl analogs is attributed to the higher CT state energy  $(1.70 \pm 0.05 \text{ eV})$  of ZCl than C<sub>60</sub>  $(1.45 \pm 0.05 \text{ eV})$  with DBP donors. <sup>5</sup> Comparing the  $V_{OC}$  with the CT state energy for both DBP/ZCl and DBP/C60 complexes reveals that there are fewer recombination losses in the DBP/ZCl complex. Additionally, it was shown that the presence of SBCT can also channel some excitation to the triplet manifold for zinc dipyrrin complexes<sup>5,23</sup> as well as for covalently bridged BODIPY dimers. <sup>24-29</sup> The triplet excitation can serve as an additional charge transfer pathway in an OPV provided the triplet energy is higher or close (within kT) to the CT state energy for donor-ZCl complex. In the case of DBP/ZCl complexes the CT state energy is ~50 meV lower than the triplet state energy of ZCl, <sup>30</sup> implying that any triplet excitation will still be able to undergo charge separation. This triplet excitation is beneficial for any excitation generated in the bulk ZCl (away from the D/A interface) as triplet excitons typically possess higher lifetime and thus can diffuse with greater probability to the D/A interface to charge separate. In this paper we explore the triplet yields and lifetime for ZCl in different non-polar to polar solvents. It was observed that tuning the ICT state energy in solvents with different polarity can also influence the overall triplet yield.


Previously reported femtosecond transient absorption (TA) studies reveal ultrafast formation of ICT states in ZCl from the initially excited S<sub>1</sub> state due to SBCT in polar media.<sup>5</sup> Spin conservation leads to generation of singlet ICT (<sup>1</sup>ICT) state from S<sub>1</sub> state following SBCT with time constant τ<sub>CT</sub> in polar media (Figure 1). Once generated, the

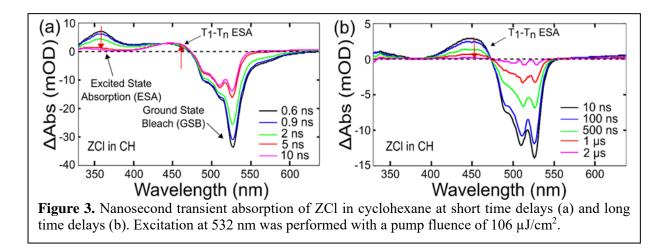


**Figure 1.** Simplified energy diagram showing the excited state decay pathways of ZCl in solvents of varied polarity. The energy of the ICT states is governed by solvent dipolar stabilization,  $\mu_{solvent}$ .

<sup>1</sup>ICT ( $^{1}$ [D<sup>+•</sup>-Zn-D<sup>••</sup>]) state can either undergo recombination to regenerate the ground state S<sub>0</sub> (via τ<sub>CRS</sub>) or can undergo recombination with intersystem crossing (ISC) to relax to the triplet manifold (via τ<sub>CRT</sub>). The involvement of ICT states implies a  $^{1}$ ICT or  $^{3}$ ICT states for the two spin alignments on the radical anion/cation pair. Typically, these two states are nearly degenerate (Figure 1) in organic semiconductors.  $^{31-33}$   $^{1}$ ICT state can undergo two inter-system crossing (ISC) mechanisms distinct from ordinary spin-orbit induced ISC typically observed for S<sub>1</sub> state. One mechanism, radical pair intersystem crossing (RP-ISC) involves mixing between  $^{1}$ ICT ( $^{1}$ [D<sup>+•</sup>-Zn-D<sup>-•</sup>]) and  $^{3}$ ICT ( $^{3}$ [D<sup>+•</sup>-Zn-D<sup>-•</sup>]) states induced by electron-nuclear hyperfine coupling to undergo  $^{1}$ ICT→ $^{3}$ ICT transformation followed by a rapid charge recombination to neutral lowest lying triplet state ( $^{3}$ ICT  $^{-1}$ 1).  $^{34-36}$  Alternatively, the intersystem crossing can also happen directly from  $^{1}$ ICT→ $^{-1}$ 1 state via spin-orbit coupling provided the orbital symmetries involved are such that the

spin flip is coupled with an accompanying orbital angular momentum change.  $^{36-38}$  This mechanism is known as SOCT-ISC (spin-orbit, charge-transfer intersystem crossing) and this dominates when there is strong electronic coupling between the donor (D<sup>+•</sup>) and acceptor (D<sup>-•</sup>) radical pairs. Previous theoretical calculations in radical pairs illustrates that SOCT-ISC increases with orthogonality between the orbitals involved and decreases with the distance between the orbitals.  $^{39-41}$  It is often difficult to distinguish between RP-ISC and SOCT-ISC mechanisms, however, the electronic coupling and thus the distance and orientation between the donor and acceptor plays an important role in determining the ISC mechanism.  $^{42-43}$  In non-polar solvents, generation of the  $^{1}$ ICT state is energetically unfavorable and thus the fate of  $S_1$  excitation is either to decay to ground state,  $S_0$  via  $\tau_{S1}$  or to undergo conventional intersystem crossing (ISC) to  $T_1$  via  $\tau_{ISC}$ . A simplified energy diagram with all different excited states and time constants connecting them are shown in Figure 1. This work explores the long time (ns- $\mu$ s) excited state dynamics of ZCl in non-polar, weakly polar, and polar solvents to quantify the entire triplet kinetic profile. These studies of ZCl



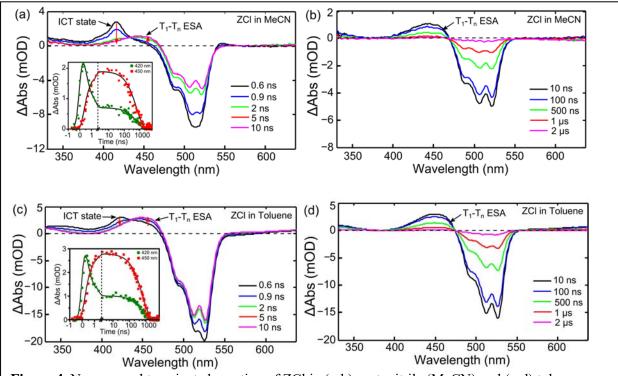

**Figure 2.** Normalized absorbance spectra of ZCl solution in cyclohexane, toluene and acetonitrile (MeCN). The inset shows the structure of the ZCl molecule.

in different polar media shows a dominance of triplet state photophysics with solvent polarity dependent triplet yield and generation rate.

The molecular structure of ZC1 is shown in Figure 2 (inset). The linear absorption of ZC1 in three solvents (Figure 2)—cyclohexane (non-polar with dielectric constant,  $\varepsilon$ ~2), toluene (weakly polar,  $\varepsilon$ ~2.4), and acetonitrile (polar,  $\varepsilon$ ~38)—

reveal nearly identical spectra except a 5 nm blue shift for acetonitrile, with main electronic transition at ~520 nm and a vibrational shoulder at ~490 nm. Nanosecond TA measurements were

performed on these three different solutions with 532 nm excitation. Nanosecond TA spectra for ZCI in cyclohexane (Figure 3) shows an immediate depopulation of the ground state (ground state bleach between 450-540 nm) along with the formation of the excited state absorption (ESA) from  $S_1$  at 360 nm and stimulated emission (SE) between 530-600 nm. These spectral features are consistent with previous fs TA analysis of ZCI in cyclohexane. Over the first 10 ns (Figure 3a) the  $S_1$  positive ESA and negative SE disappear with concurrent but only partial recovery (~60%) of the ground state bleach (GSB). The rate of relaxation from  $S_1$  state to  $S_0$  state was observed to occur with a time constant of  $\tau_{S1}$ ~ 3.2 ns. At longer delays a new transient absorption peak at ~450 nm is developed. This spectral feature at 450 nm is assigned to the triplet  $T_1$  state based on previous triplet sensitization measurements of ZCI in methyl iodide (Supporting Information, S4). The formation of the triplet state occurs as a result of ISC from the  $S_1$  state. The rate constant linking  $S_1$  to  $T_1$  via the ISC pathway ( $\tau_{ISC}$ ) was determined to be ~8.3 ns. The overall relaxation time constant ( $1/\tau_{S1}$ +  $1/\tau_{ISC}$ ) of  $S_1$  state corresponds to the time-resolved photoluminescence lifetime measured for ZCI in cyclohexane ( $\tau_{PL}$ : 2.5 ns, Supporting Information Figure S9).




As the triplet induced absorption rises, an additional structure appears to grow within the GSB region (prominently seen by a second peak at ~515 nm). Considering the growth rate for this

spectral feature is the same as that of the first triplet band at 450 nm, it is likely that this spectral absorption feature is another part of the  $T_1 \rightarrow T_n$  absorption spectra overlapping strongly with the GSB spectra. The nature of the  $T_1 \rightarrow T_n$  absorption spectrum and its overlap with  $S_0 \rightarrow S_1$  transition is discussed in Supporting information (Section S5). At longer delays (10 ns  $-2 \mu s$ ) (Figure 3b) the triplet excited state absorption decays with concomitant recovery of the ground state bleach with a time constant  $\tau_{T_1} \sim 630$  ns.

To understand the long time photophysics of ZCl in polar media, nanosecond TA of ZCl were performed in toluene and acetonitrile media. Nanosecond TA spectra for ZCl following excitation at 532 nm are presented in Figure 4. Unlike cyclohexane, in acetonitrile (Figure 4a) and toluene (Figure 4c) the ESA due to  $S_1 \rightarrow S_n$  is not observed and instead an induced absorption band at 420 nm is observed within the instrument response (≤500 ps, Figure S1). This induced absorption band has been previously assigned to the <sup>1</sup>ICT state from femtosecond TA measurements.<sup>5</sup> The absence of  $S_1 \rightarrow S_n$  ESA in ns TA spectra of ZCl in toluene and acetonitrile is due to ultrafast formation of the <sup>1</sup>ICT state in high polar/polarizable media.<sup>5</sup> This appearance of a <sup>1</sup>ICT state only in media with higher polarity/polarizability than cyclohexane indicates that dipolar stabilization is required to favor ICT state stabilization. Within 5ns, the <sup>1</sup>ICT absorption band decays with a concurrent rise of triplet absorption band at ~450 nm along with partial recovery of ground state bleach in both acetonitrile and toluene (Figure 4a & 4c). This is probably because the <sup>1</sup>ICT state can decay via two pathways to either regenerate S<sub>0</sub> state or to recombine to form T<sub>1</sub> state. The regeneration to S<sub>0</sub> state is more prominent in MeCN where ~50% of GSB recovery occurs within 2 ns (Figure 4a) versus 25% of GSB recovery in toluene (Figure 4c). This difference

in amount of  ${}^{1}ICT$  state recombination to regenerate  $S_{0}$  state could arise from the difference in the  ${}^{1}ICT$  state energy relative to the  $T_{1}$  state for these two solutions.



**Figure 4.** Nanosecond transient absorption of ZCl in (a-b) acetonitrile (MeCN) and (c-d) toluene over short time (a-c) and long time (b-d) delays. The insets in (a) and (c) show the dynamics at 420 nm and 450 nm (scaled by 2) with the fits (black line) over 6  $\mu$ s. The early time dynamics upto 2 ns (broken line) shows the two state kinetics between the ICT and  $T_1$  state. Excitation at 532 nm was performed at fluence of  $106 \mu J/cm^2$  for ZCl in acetonitrile and  $98 \mu J/cm^2$  for ZCl in toluene solutions.

Similar to cyclohexane, the triplet growth in both solvents occurred with a concurrent rise of a peak at 510 nm, leading to a distortion of the GSB over 2 ns. This distortion of the GSB shape into a doublet structure occurs at a rate correlated to the rate of triplet formation as monitored by the 450 nm absorption band. In acetonitrile and toluene the distortion becomes evident already from 900 ps; however, the distortion in cyclohexane ( $\tau_{ISC} = 8.3$  ns) only appears after 3 ns. This indicates a faster triplet formation rate likely due to a different triplet generation mechanism in polar media via the intermediate <sup>1</sup>ICT state. At longer delays, similar to cyclohexane, the triplet

feature in acetonitrile (Figure 4b) and toluene (Figure 4d) solutions completely decays (along with a concurrent recovery of the GSB signal) with a similar lifetime (within error) of ~630 ns.

Based on the nanosecond TA data reported here, no  $^{1}$ ICT state was observed in cyclohexane and only triplet state is generated.  $^{1}$ ICT states are observed only in toluene and acetonitrile because of the increased stabilization of the  $^{1}$ ICT state provided by the more polar environment. In cyclohexane, the  $^{1}$ ICT state energy is likely too high and so the  $S_{1}$  state can only form triplets directly via inter-system crossing ( $\tau_{ISC}$ ) or alternatively relax directly to the ground state ( $\tau_{S1}$ ). Nanosecond TA data in toluene and acetonitrile shows a faster generation of triplets (500-700 ps) indicating that the triplets are generated via ICT recombination ( $\tau_{CRT}$ ) and not by ordinary ISC. In addition, a part of the population from the ICT state recombine to generate the ground state ( $\tau_{CRS}$ ) for both toluene and MeCN solutions. On increasing the solvent polarity from toluene to acetonitrile, triplet recombination from ICT state ( $\tau_{CRT}$ ) slows with an accompanied acceleration of recombination to regenerate  $S_{0}$  ( $\tau_{CRS}$ ). However, once the triplets are generated,

**Table 1.** Summary of ZCl electronic state lifetimes in cyclohexane, toluene, methyl iodide (MeI) and acetonitrile solvents, using the excited state kinetic scheme shown in Fig.1

| Solvents (ε)            | τ <sub>CT</sub> (ps)* | τ <sub>CRT</sub> (ps)* | $\tau_{\rm CRS}$ (ns) | $\tau_{S1}$ (ns) | $\tau_{\rm ISC}(\rm ns)$ | $\tau_{T1}$ (ns) |
|-------------------------|-----------------------|------------------------|-----------------------|------------------|--------------------------|------------------|
| Cyclohexane (2)         |                       |                        |                       | 3.2±0.3          | 8.3±0.5                  | 630±30           |
| Toluene (2.4)           | 6±0.5                 | 520±10                 | 2.4±0.1               | 3.2ª             | 8.3ª                     | 630±30           |
| Acetonitrile (38)       | 1.5±0.3               | 720±10                 | 2.1±0.3               | 3.2ª             | 8.3ª                     | 620±30           |
| MeI <sup>b</sup> (6.97) | 2.8±0.3               | 70±2                   | 2.4±0.3               | 3.2ª             | 0.037±0.02               | n/a              |

<sup>\*</sup>  $\tau_{CT}$  values are from previous study by Bartynski et. al.<sup>5</sup> and  $\tau_{CRT}$  values are from previous study by Bartynski et. al. using better characterized model and more complete dataset. <sup>a</sup>These values were kept fixed based on the time constants extracted from ZCl in cyclohexane TA data. <sup>b</sup>The TA data and time constants for ZCl in MeI are shown in Supporting Information, S4 based on the triplet sensitization measurements performed in ref 5.

the triplet state decays with a lifetime ( $\tau_{T1}$ ) of ~630 ns in all three solvents irrespective of the solvent polarity. Based on the schematic representation of these pathways presented in Figure 1,

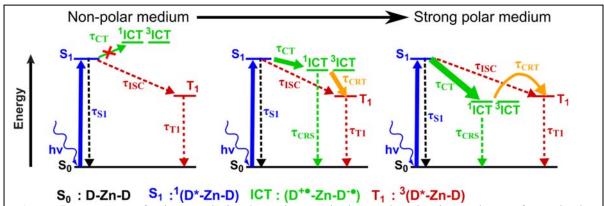
the fitted time constants for these pathways were estimated using a linear decomposition model (Supporting Information, S2) and are summarized in Table 1.

In addition to the excited state lifetime analysis, the ZCl triplet yields were calculated to compare the triplet yield via ISC versus ICT state recombination. The time dependent triplet concentrations are extracted by fitting the TA data (SI, Figure S7) with the species associated difference spectra (SADS) of the triplet state in extinction units. The SADS for triplet in extinction units is extracted from previously reported triplet sensitization TA data of ZCl in MeI (SI, section S4).<sup>5</sup> And the triplet yield is calculated by dividing the triplet concentration extracted with the initially excited singlet concentration. A more detailed explanation of the triplet yield calculations along with the initial excited singlet concentration is located in SI. The maximum triplet yields (Table 2) for ZCl in both toluene and acetonitrile appear to be ~2.5-3 times higher than the yield in cyclohexane. This illustrates that formation of <sup>1</sup>ICT state in polar solvents increases the overall excited state lifetime via T<sub>1</sub> generation and thus delays the back recombination to the ground state S<sub>0</sub>. The higher amount of T<sub>1</sub> generation can potentially facilitate excitons generated in the bulk to

reach D/A interface, which can undergo increased charge separation due to lowering of the ICT state energy by the polar D/A interface.

The ICT state recombination to form triplets is probably enhanced due to presence of Cl atoms at  $\alpha$  positions in the ZCl complex. The presence of Cl atoms can facilitate spin mixing between  $^1$ (ICT) and  $^3$ (ICT) states to undergo  $^1$ ICT

**Table 2.** Maximum triplet yields of ZCl in cyclohexane (measured at 15.5 ns), toluene (measured at 4.5 ns), and acetonitrile (measured at 4.5 ns).


| Solvent      | Maximum Triplet Yield |
|--------------|-----------------------|
| Cyclohexane  | 31 ± 5 %              |
| Toluene      | 89 ± 8 %              |
| Acetonitrile | 76 ± 7 %              |
| MeI*         | 97 ± 3%               |

<sup>\*</sup>The yield reported (at 1 ns) for ZCl in methyl iodide is based on triplet sensitization measurements.

<sup>→ &</sup>lt;sup>3</sup>ICT transformation and therefore can lead to faster generation of the triplet state via an RP-

ISC mechanism. Alternatively, the Cl atoms at α positions can better restrict the dihedral angle between the  $D^{+\bullet}$  and  $D^{-\bullet}$  units generating two orthogonally held  $\pi$ -orbitals; when undergoing recombination this orthogonality leads to higher spin-orbit coupling to directly generate neutral T<sub>1</sub> state via SOCT-ISC. 39-41 Therefore, both mechanisms are probably involved in the enhanced triplet generation of ZCl in weakly polar to polar media via the intermediate <sup>1</sup>ICT state. However, we note a ~13% lower triplet yield observed in acetonitrile compared to toluene. This lower yield along with the slower rate of triplet formation via ICT state recombination is probably due to stronger stabilization of the ICT states in acetonitrile compared to toluene, 44 bringing the <sup>1</sup>ICT and <sup>3</sup>ICT states closer or even lower than the T<sub>1</sub> state. This is reasonable because ZCl possesses a very small  $S_1$ - $T_1$  energy gap ( $\sim 0.6 \text{ eV}$ )<sup>30</sup>, which is comparable to the stabilization energies predicted for similar SBCT compounds in polar media. 17, 45 In toluene, the stabilization energy is less and therefore the ICT states are higher relative to T<sub>1</sub> state and still may favor a higher recombination fraction to T<sub>1</sub> state. The reduction in triplet yield via enhanced stabilization of ICT states in strong polar solvents has also been observed for BODIPY dimers<sup>29</sup>, perylenediimide dimers<sup>46</sup> and a variety of electron donor-acceptor systems. 47-48

Figure 5 summarizes the solvent polarity dependent excited state dynamics of ZCl and in general can be applied to any orthogonally coupled electron donor-acceptor system. In non-polar solvents the ICT state does not get stabilized and therefore the excited state S<sub>1</sub> undergoes ordinary ISC (in competition with internal conversion). With increasing solvent polarity, the ICT state gets stabilized and a new pathway to generate T<sub>1</sub> state develops via ICT state recombination. At higher polarity, the ICT state stabilization can be such that the ICT state act as an energetic trap and thus reduces the triplet yield.



**Figure 5.** Summary of solvent polarity dependent excited state deactivation pathways for ZCl. The relative energy of the ICT states with respect to the  $T_1$  state in weakly polar and strongly polar media have been deduced based on the ICT state kinetics and triplet yield observed. The ICT state energies has not been measured or calculated.

In conclusion, we extended our photophysical study of ZCl in different polar media now over sub-nanosecond to microsecond timescales. This revealed that triplets in nonpolar solvents are generated from the S<sub>1</sub> state via normal ISC whereas, in increasingly polar solvents, the triplet is produced more rapidly through charge recombination from the ICT states, by either RP-ISC and/or SOCT-ISC mechanisms. Additionally, triplet yield measurements reveal ~3 times as many triplets via ICT state recombination compared to conventional ISC. This observation opens up the possibility of a more controllable pathway for triplet formation via ICT state recombination rather than through conventional ISC while avoiding the use of rare elements like Pd, Pt, Ir, etc. Considering the exciton evolution in a ZCl containing device, the increased triplet yield induced by the ICT state not only increases the potential for the exciton to diffuse to the D/A interface but also allows for the unique possibility of subsequent regeneration of an ICT state when arriving at the interface, a region of increased dielectric. The manipulation of the triplet-ICT equilibrium in this manner can be used to improve overall charge separation in the device. Thus, systematic tuning of the ICT and triplet state populations within different phases of a device can be used to advantage in future OPVs.

#### **EXPERIMENTAL METHODS**

ZCl was synthesized and purified following a published procedure.<sup>30</sup> Nitrogen purged solutions of ZCl in cyclohexane, toluene and acetonitrile were prepared in 1 mm cuvette with absorbance of 0.18, 0.14 and 0.14, respectively at 532 nm. Nanosecond TA was performed with 532 nm pump generated from a Nd:YAG laser (Alphalas, 1kHz) externally triggered and synchronized with the femtosecond oscillator. White light continuum probe (350-650 nm) pulses are generated by pumping CaF<sub>2</sub> with a small portion of 800 nm ultrafast amplifier output (Coherent Legend, 1kHz). The white light generated is collimated and focused using a pair of off-axis parabolic mirrors at the sample while the 532 nm pump is focused using a 25 cm CaF<sub>2</sub> lens. After interacting with the sample, the white light is dispersed using a monochromator (Oriel MS127i) onto a 256-pixel Si array. The delay between pump and white light probe pulse was controlled using a Stanford Research Systems delay generator DG645. Nanosecond TA data was collected with an instrument response of ~500 ps (see SI Figure S1). The polarization of the 532 nm pump pulse was set up at a perpendicular polarization with respect to the white light polarization to reduce the pump scattering. The samples were translated perpendicular to the pump and probe path during data collection to avoid photodamage.

#### SUPPORTING INFORMATION

A description of the kinetic fitting model along with details of the triplet yield calculations, extinction spectra, triplet sensitization spectra, time-resolved photoluminescence and additional details for nanosecond time-resolved transient absorption are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

## **AUTHOR INFORMATION**

Corresponding author

\*stephen.bradforth@usc.edu

**Author Contribution** 

§S.D. and W.G.T. contributed equally.

Notes

The authors declare no competing financial interests.

# **ACKNOWLEDGEMENTS**

The authors would like to acknowledge the following agencies for funding of this work: Office of Basic Energy Sciences at the Department of Energy (DE-SC0016450, S.D., W.G.T., M.E.T., S.E.B.) and National Science Foundation (NSF CBET-1511757 to A.N.B., M.E.T.).

## **REFERENCES**

- 1. Khlyabich, P. P.; Burkhart, B.; Rudenko, A. E.; Thompson, B. C. Optimization and simplification of polymer–fullerene solar cells through polymer and active layer design. *Polymer* **2013**, *54*, 5267-5298.
- 2. Dou, L.; You, J.; Hong, Z.; Xu, Z.; Li, G.; Street, R. A.; Yang, Y. 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. *Adv. Mater. (Weinheim, Ger.)* **2013**, *25*, 6642-6671.
- 3. Beaujuge, P. M.; Fréchet, J. M. J. Molecular Design and Ordering Effects in  $\pi$ -Functional Materials for Transistor and Solar Cell Applications. *J. Am. Chem. Soc.* **2011**, *133*, 20009-20029.
- 4. Dennler, G.; Scharber, M. C.; Brabec, C. J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. *Adv. Mater.* (Weinheim, Ger.) **2009**, *21*, 1323-1338.
- 5. Bartynski, A. N.; Gruber, M.; Das, S.; Rangan, S.; Mollinger, S.; Trinh, C.; Bradforth, S. E.; Vandewal, K.; Salleo, A.; Bartynski, R. A.; Bruetting, W.; Thompson, M. E. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics. *J. Am. Chem. Soc.* **2015**, *137*, 5397-5405.
- 6. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. *J. Am. Chem. Soc.* **2017**, *139*, 7148-7151.
- 7. Tang, C. W. Two-layer organic photovoltaic cell. *Appl. Phys. Lett.* **1986**, 48, 183-185.
- 8. Spanggaard, H.; Krebs, F. C. A brief history of the development of organic and polymeric photovoltaics. *Sol. Energy Mater. Sol. Cells* **2004**, *83*, 125-146.
- 9. Schlenker, C. W.; Thompson, M. E. The molecular nature of photovoltage losses in organic solar cells. *Chem. Commun.* **2011**, *47*, 3702-3716.
- 10. Elumalai, N. K.; Uddin, A. Open circuit voltage of organic solar cells: an in-depth review. *Energy Environ. Sci.* **2016**, *9*, 391-410.
- 11. Bakulin, A. A.; Rao, A.; Pavelyev, V. G.; van Loosdrecht, P. H. M.; Pshenichnikov, M. S.; Niedzialek, D.; Cornil, J.; Beljonne, D.; Friend, R. H. The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors. *Science* **2012**, *335*, 1340-1344.
- 12. Dimitrov, S. D.; Bakulin, A. A.; Nielsen, C. B.; Schroeder, B. C.; Du, J.; Bronstein, H.; McCulloch, I.; Friend, R. H.; Durrant, J. R. On the Energetic Dependence of Charge Separation in Low-Band-Gap Polymer/Fullerene Blends. *J. Am. Chem. Soc.* **2012**, *134*, 18189-18192.

- 13. Schlenker, C. W.; Thompson, M. E. The molecular nature of photovoltage losses in organic solar cells. *Chem. Commun. (Cambridge, U. K.)* **2011**, *47*, 3702-3716.
- 14. Dennler, G.; Scharber, M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C.
- J. Design Rules for Donors in Bulk-Heterojunction Tandem Solar Cells Towards 15 % Energy-Conversion Efficiency. *Adv. Mater.* (Weinheim, Germany) **2008**, 20, 579-583.
- 15. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Origin of the Open Circuit Voltage of Plastic Solar Cells. *Adv. Funct. Mater.* **2001**, *11*, 374-380.
- 16. Ivanov, A. I.; Dereka, B.; Vauthey, E. A simple model of solvent-induced symmetry-breaking charge transfer in excited quadrupolar molecules. *J. Chem. Phys.* **2017**, *14*, 164306 (1)-164306 (7).
- 17. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. *Chem. Rev.* **2003**, *103*, 3899-4032.
- 18. Rettig, W. Charge Separation in Excited States of Decoupled Systems—TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Process of Vision and Photosynthesis. *Angew. Chem. Int. Ed.* **1986**, 25, 971-988.
- 19. Vandewal, K. Interfacial Charge Transfer States in Condensed Phase Systems. *Annu. Rev. Phys. Chem.* **2016**, *67*, 113-133.
- 20. Brédas, J.-L.; Cornil, J.; Heeger, A. J. The exciton binding energy in luminescent conjugated polymers. *Adv. Mater.* (Weinheim, Ger.) **1996**, 8, 447-452.
- 21. Alvarado, S. F.; Seidler, P. F.; Lidzey, D. G.; Bradley, D. D. C. Direct Determination of the Exciton Binding Energy of Conjugated Polymers Using a Scanning Tunneling Microscope. *Phys. Rev. Lett.* **1998**, *81*, 1082-1085.
- 22. Zhu, X. Y.; Yang, Q.; Muntwiler, M. Charge-Transfer Excitons at Organic Semiconductor Surfaces and Interfaces. *Acc. Chem. Res.* **2009**, *42*, 1779-1787.
- 23. Trinh, C.; Kirlikovali, K. O.; Das, S.; Ener, M. E.; Gray, H. B.; Djurovich, P. I.; Bradforth, S.; Thompson, M. E. Symmetry Breaking Charge Transfer of Visible Light Absorbing Systems: Zinc Dipyrrins. *J. Phys. Chem. C* **2014**, *118*, 21834–21845.

- 24. Ventura, B.; Marconi, G.; Broring, M.; Kruger, R.; Flamigni, L. Bis(BF2)-2,2[prime or minute]-bidipyrrins, a class of BODIPY dyes with new spectroscopic and photophysical properties. *New J. Chem.* **2009**, *33*, 428-438.
- 25. Cakmak, Y.; Kolemen, S.; Duman, S.; Dede, Y.; Dolen, Y.; Kilic, B.; Kostereli, Z.; Yildirim, L. T.; Dogan, A. L.; Guc, D.; Akkaya, E. U. Designing Excited States: Theory-Guided Access to Efficient Photosensitizers for Photodynamic Action. *Angew. Chem. Int. Ed.* **2011**, *50*, 11937-11941.
- 26. Duman, S.; Cakmak, Y.; Kolemen, S.; Akkaya, E. U.; Dede, Y. Heavy Atom Free Singlet Oxygen Generation: Doubly Substituted Configurations Dominate S1 States of Bis-BODIPYs. *J. Org. Chem.* **2012**, *77*, 4516-4527.
- 27. Wu, W.; Cui, X.; Zhao, J. Hetero Bodipy-dimers as heavy atom-free triplet photosensitizers showing a long-lived triplet excited state for triplet-triplet annihilation upconversion. *Chem. Commun.* **2013**, *49*, 9009-9011.
- 28. Zhang, X.-F.; Yang, X. Photosensitizer That Selectively Generates Singlet Oxygen in Nonpolar Environments: Photophysical Mechanism and Efficiency for a Covalent BODIPY Dimer. *J. Phys. Chem. B* **2013**, *117*, 9050-9055.
- 29. Epelde-Elezcano, N.; Palao, E.; Manzano, H.; Prieto-Castañeda, A.; Agarrabeitia, A. R.; Tabero, A.; Villanueva, A.; de la Moya, S.; López-Arbeloa, Í.; Martínez-Martínez, V.; Ortiz, M. J. Rational Design of Advanced Photosensitizers Based on Orthogonal BODIPY Dimers to Finely Modulate Singlet Oxygen Generation. *Chem. Eur. J* **2017**, *23*, 4837-4848.
- 30. Trinh, C.; Kirlikovali, K. O.; Bartynski, A. N.; Tassone, C. J.; Toney, M. F.; Burkhard, G. F.; McGehee, M. D.; Djurovich, P. I.; Thompson, M. E. Efficient Energy Sensitization of C60 and Application to Organic Photovoltaics. *J. Am. Chem. Soc.* **2013**, *135*, 11920-11928.
- 31. Rao, A.; Chow, P. C. Y.; Gelinas, S.; Schlenker, C. W.; Li, C.-Z.; Yip, H.-L.; Jen, A. K. Y.; Ginger, D. S.; Friend, R. H. The role of spin in the kinetic control of recombination in organic photovoltaics. *Nature* **2013**, *500*, 435-439.
- 32. Hu, B.; Yan, L.; Shao, M. Magnetic-Field Effects in Organic Semiconducting Materials and Devices. *Adv. Mater. (Weinheim, Ger.)* **2009**, *21*, 1500-1516.
- 33. Chang, W.; Congreve, D. N.; Hontz, E.; Bahlke, M. E.; McMahon, D. P.; Reineke, S.; Wu, T. C.; Bulović, V.; Van Voorhis, T.; Baldo, M. A. Spin-dependent charge transfer state design rules in organic photovoltaics. *Nat. Commun.* **2015**, *6*, 6415(1)-6415(6).

- 34. Weller, A.; Staerk, H.; Treichel, R. Magnetic-field effects on geminate radical-pair recombination. *Faraday Discuss Chem Soc.* **1984**, *78*, 271-278.
- 35. Hoff, A. J.; Gast, P.; van der Vos, R.; Vrieze, J.; Franken, E. M.; Lous, E. J., Magnetic Field Effects: MARY, MIMS and MODS\*. *Z. Phys. Chem. (Muenchen, Germany)* **1993**, *180*, 175-192.
- 36. Dance, Z. E. X.; Mickley, S. M.; Wilson, T. M.; Ricks, A. B.; Scott, A. M.; Ratner, M. A.; Wasielewski, M. R. Intersystem Crossing Mediated by Photoinduced Intramolecular Charge Transfer: Julolidine–Anthracene Molecules with Perpendicular π Systems. *J. Phys. Chem. A* **2008**, *112*, 4194-4201.
- 37. Okada, T.; Karaki, I.; Matsuzawa, E.; Mataga, N.; Sakata, Y.; Misumi, S. Ultrafast intersystem crossing in some intramolecular heteroexcimers. *J. Phys. Chem.* **1981**, *85*, 3957-3960.
- 38. Wasielewski, M. R.; Johnson, D. G.; Svec, W. A.; Kersey, K. M.; Minsek, D. W. Achieving high quantum yield charge separation in porphyrin-containing donor-acceptor molecules at 10 K. *J. Am. Chem. Soc.* **1988**, *110*, 7219-7221.
- 39. Salem, L.; Rowland, C. The Electronic Properties of Diradicals. *Angew. Chem. Int. Ed.* **1972**, *11*, 92-111.
- 40. Carlacci, L.; Doubleday, C.; Furlani, T. R.; King, H. F.; McIver, J. W. Spin-orbit coupling in biradicals. Ab initio MCSCF calculations on trimethylene and the methyl-methyl radical pair. *J. Am. Chem. Soc.* **1987**, *109*, 5323-5329.
- 41. Khudyakov, I. V.; Serebrennikov, Y. A.; Turro, N. J. Spin-orbit coupling in free-radical reactions: on the way to heavy elements. *Chem. Rev.* **1993**, *93*, 537-570.
- 42. van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.; Weiss, E. A.; Wasielewski, M. R. Charge Transport in Photofunctional Nanoparticles Self-Assembled from Zinc 5,10,15,20-Tetrakis(perylenediimide)porphyrin Building Blocks. *J. Am. Chem. Soc.* **2002**, *124*, 9582-9590.
- 43. Dance, Z. E. X.; Mi, Q.; McCamant, D. W.; Ahrens, M. J.; Ratner, M. A.; Wasielewski, M. R. Time-Resolved EPR Studies of Photogenerated Radical Ion Pairs Separated by p-Phenylene Oligomers and of Triplet States Resulting from Charge Recombination. *J. Phys. Chem. B* **2006**, *110*, 25163-25173.
- 44. Cruz, C. D.; Christensen, P. R.; Chronister, E. L.; Casanova, D.; Wolf, M. O.; Bardeen, C. J. Sulfur-Bridged Terthiophene Dimers: How Sulfur Oxidation State Controls Interchromophore Electronic Coupling. *J. Am. Chem. Soc.* **2015**, *137*, 12552-12564.

- 45. Vauthey, E. Photoinduced Symmetry-Breaking Charge Separation. *Chem. Phys. Chem.* **2012**, *13*, 2001-2011.
- 46. Veldman, D.; Chopin, S. M. A.; Meskers, S. C. J.; Groeneveld, M. M.; Williams, R. M.; Janssen, R. A. J. Triplet Formation Involving a Polar Transition State in a Well-Defined Intramolecular Perylenediimide Dimeric Aggregate. *J. Phys. Chem. A* **2008**, *112*, 5846-5857.
- 47. Chen, K.; Yang, W.; Wang, Z.; Iagatti, A.; Bussotti, L.; Foggi, P.; Ji, W.; Zhao, J.; Di Donato, M. Triplet Excited State of Bodipy Accessed by Charge Recombination and Its Application in Triplet-Triplet Annihilation Upconversion. *J. Phys. Chem. A* **2017**, *121*, 7550-7564.
- 48. Spenst, P.; Young, R. M.; Wasielewski, M. R.; Wurthner, F. Guest and solvent modulated photo-driven charge separation and triplet generation in a perylene bisimide cyclophane. *Chem. Sci.* **2016**, *7*, 5428-5434.