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Introduction and Motivation 

 

We report on the development of machine learning models for classifying C100 superconducting radio 

frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson 

Lab [1]. CEBAF is a continuous-wave recirculating linac utilizing 418 SRF cavities to accelerate electrons 

up to 12 GeV through 5-passes. Of these, 96 cavities (12 cryomodules) are designed with a digital low-

level RF system configured such that a cavity fault triggers waveform recordings of 17 RF signals for each 

of the eight cavities in the cryomodule. Subject matter experts (SME) can analyze the collected time-series 

data, identify which of the eight cavities faulted first, and classify the type of fault. This information is used 

to find trends and strategically deploy mitigations to problematic cryomodules. However, manually labeling 

the data is laborious and time-consuming. By leveraging machine learning, near real-time – rather than 

post-mortem – identification of the offending cavity and classification of the fault type has been 

implemented. We discuss the performance of the ML models during a recent physics run.  

 

Machine Learning Model Development 

 

To train models, we consider a dataset comprised of faults recorded during CEBAF beam operations 

between January 18, 2019, and March 9, 2020. The dataset contains 2,375 labeled, C100 cavity fault events. 

Each event is comprised of 17 time-series signals per cavity for each of the eight cavities in the cryomodule 

[2]. 

The primary challenge for machine learning applications utilizing time-series data is feature extraction, 

in which statistical parameters (or features) are computed from the raw data signals. These features serve 

as an intermediate representation of the data and are used as model inputs. For our data, six autoregressive 

coefficients are computed for each signal. 

Prior to training, we split the labeled events into a train (70%) and test (30%) set with stratification to 

ensure that the train and test sets have approximately the same percentage of samples of each target class 

as the complete set. We withhold the test data as the unseen data that we use for the final model evaluations. 

A variety of classification models from the scikit-learn [3] library were trained, including k-Nearest 

Neighbors, Decision Tree, Support Vector, and Gaussian Naive Bayes. We also included ensemble models 

such as the Bagging Classifier, Random Forest, Extra Trees, and Gradient Boosting. For each model, we 
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use k-fold cross-validation to estimate the performance, ensuring the test data remains untouched. Figure 1 

displays the results of training models for fault classification. The accuracy plotted on the vertical axis 

refers to the ability of the models to reproduce labels given in the training set data.  

 

 
 

FIG. 1: Boxplots showing accuracy scores from a 10-fold cross-validation analysis of several algorithms for 

cavity fault classification. The blue line denotes the median, the box spans the interquartile range (IQR), the 

upper (lower) whiskers indicate values 1.5×IQR above (below) the upper (lower) box boundary, with data 

beyond the whiskers represented as open markers. Ensemble models (four rightmost boxplots) exhibit the 

best performance. 

 

The Random Forest Classifier was chosen to model both the cavity identification and fault classification 

because of its good performance but also for its robustness against overfitting. The next step is to optimize 

the model through hyperparameter tuning. After optimization, the 10-fold cross-validation score (based on 

training data) is compared with predictions from the withheld test set. Table 1 summarizes the results and 

indicates that overfitting, and the inability of a model to generalize learning to data outside the training set, 

is avoided. 

 
TABLE 1: Cross-validation and accuracy scores for each Random Forest model. The accuracy scores were 

generated by applying the model on the withheld test data set. 

 

 Cavity 

Identification 

Fault 

Classification 

10-fold cross-validation (%) 87.97 ± 1.81 85.52 ± 3.65 

Accuracy (test data) (%) 87.94 87.66 

 

Results 

 

We deployed fully functional machine learning models to the CEBAF’s control system software 

environment on March 10.  Following a C100 cavity fault event, the software automatically collects RF 

signals and saves the data to disk.  The machine learning models use this data to label the cavity and fault 

type, and save their outputs to a database.  This information is presented to operators via a web-based RF 

waveform viewer (see Fig. 2), and to SME through routine email-based reports.  Thus far, the operational 

models have labeled 4,217 fault events, and have informed a number of mitigations. 

 

We analyzed the 312 labeled fault event occurring in March, prior to the COVID shutdown, for model 

performance against an independent SME labeling.  The models identified the first cavity to fault and the 

type of fault with accuracies of 84.9% and 78.2%, respectively. Though the performance is lower than 

during testing, the effectiveness of the system does not depend on the ability to accurately classify a 

single, standalone event. Rather, it is used to look for trends over time. 
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FIG. 2: Online interface to display results of the ML model outputs. The top plot is a timeline that displays 

fault events where the markers are color-coded according to type and the cavity identifier is represented by 

its placement on the vertical axis. Heat maps capture the spatial, rather than temporal distribution, of fault 

events for each cryomodule. 
 

Deep Learning Model Development 

 

We also investigated replacing current machine learning models with their deep learning counterparts. 

Deep learning is a sub-field of machine learning that is based on learning successive layers of increasingly 

meaningful representations of the data using a large scale artificial neural network (ANN) architectures. 

The primary advantage of methods based on learning data representations is that it avoids the extensive 

hand engineering of feature extraction and feature selection steps that require subject matter expertise. 

Rather than human developed feature extraction algorithms, the recorded data serves as examples and the 

model learns the necessary features for inference.  

A variety of deep learning architectures were analyzed; including a recurrent neural network model based 

on long-short term memory (LSTM), a recurrent autoencoder (AE) [4], and two variations of a deep 

convolutional neural network (CNN) [5]. All deep learning architectures are developed to perform both 

cavity recognition and fault recognition tasks simultaneously. Fig 3 represents the deep bidirectional LSTM 

based cavity and fault classification architecture [4].  

 

 
FIG. 3: Deep bidirectional LSTM with simultaneous cavity and fault classification architecture 
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The LSTM is a variety of ANNs that are specifically designed to learn temporal features in time series 

signals. Consequently, the deep LSTM architecture in Fig 3 uses raw RF signals as input to determine the 

failed cavity and fault type of the event. Fig 4 represents the deep CNN architecture developed for cavity 

and fault classification [5]. 

 
FIG. 4: Deep CNN with simultaneous cavity and fault classification architecture 

 

CNNs are particularly designed to process image data and have shown to be quite successful at many 

image-processing tasks encountered in computer vision applications. The convolutional layers with 

trainable weight kernels allow CNNs to efficiently learn complex features that extend through the image 

space. As CNN are tailored to process images, we must convert the RF signals into image representations 

for compatibility. Consequently, we experiment with two image representation methods as shown in Fig 4. 

The image representations are subsequently processed by our CNN architecture to determine the failed 

cavity and fault type of the event.  

Table 2 summarizes the performance of the above deep models obtained with the same dataset utilized 

for the machine learning models.  

 

TABLE 2: Training, validation, and testing accuracy scores for each deep learning model. The testing 

accuracy scores were generated by applying the model on the withheld test data set. 

 

DL Model Cavity Classification Fault Classification 

Input Size Train/Validat

ion Accuracy 

(%) 

Test 

Accuracy (%) 

Input Size Train/Validat

ion Accuracy 

(%)  

Test  

Accuracy (%) 

Deep LSTM 

(Raw 

Signals) 

136 × 1024 86.4% / 

84.97% 

84.6% 136 × 1024 77.1% / 

73.4% 

74.1% 

CNN (Direct 

Mapping) 

136 × 1024 86.4% / 

84.97% 

84.6% 136 × 1024 77.1% / 

73.4% 

74.1% 

CNN  

(Scalogram) 

32 × 256 × 

1024 

97.0% / 

45.3% 

45.0% 32 × 256 × 

1024 

97.4% / 

59.7% 

58.9% 

 

Most deep learning models perform adequately for both tasks with over 80% accuracy for cavity 

classification and over 70% accuracy for fault classification. However, we observe that the DL model 

performance is consistently lower than that of the machine learning model (compare with table 1). This is 

in large part due to the relatively small training set. The expectation is that as more labeled data becomes 

available, the performance of these data-hungry deep learning models will improve. 
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Unsupervised Learning Analysis 

 

The motivation for using unsupervised machine learning techniques in the context of the C100 cavity 

data is to identify fault types. At present, a SME determines the fault classes. Therefore, when presented 

with unfamiliar patterns in the data, it raises the question of whether it is a variant of a known fault type or 

if it represents something completely new. Invoking dimensionality reduction techniques and then applying 

clustering algorithms may provide a data-driven method for identifying the number of fault types 

represented in the data, and potentially reveal new fault types. 

Initial results of applying unsupervised learning to the C100 cavity fault data provide interesting clues about 

the underlying nature of the fault types, raise additional questions, and motivate further investigation [6]. 

This is an important analysis, the results of which can be used as feedback to help SME and identify possible 

variants of a fault type (i.e. “microphonics type A”, “microphonics type B”) or identify a new fault 

altogether.  Consequently, a more rigorous unsupervised learning technique based on a shapelet learning 

schemes currently being developed. Shapelets are essentially a category of learnable temporal features that 

describe important aspects of a given time series signal. The framework under development aims to learn 

the best shapelets that represent RF faults and perform unsupervised clustering simultaneously. The final 

shapelets obtained after the learning cycles will be used to cluster the input data into distinct categories and 

may help to differentiate between RF fault types present in the input data  

 

 

 

 

Summary 

 

We have described the development and implementation of machine learning and deep learning models 

at CEBAF to automate the task of classifying C100 SRF cavity faults. The ability to automatically label 

fault events immediately reduces the burden on SMEs and the time-consuming task of inspecting and 

labeling data manually. Having a labeled dataset is of interest at two different timescales. On the one hand, 

near real-time results after a fault event provide guidance to control room operators for appropriate 

responses (i.e. one type of fault might necessitate a reduction in cavity gradient, while another type of fault 

may indicate a larger problem and require intervention from the system experts). On the other hand, using 

the aggregate statistics and breaking down faults according to cryomodule and cavity provides data-driven 

guidance for maintenance and/or upgrade activities.  

 

Work is continuing on a variety of fronts.  We have deployed our machine learning models into CEBAF’s 

control system environment with software tools that help inform decisions around C100 fault mitigations.  

Over 4000 fault events have been classified by the models over months of beam operations. We stand ready 

to update our models with an additional 4275 SME labeled fault events, and are working with our SRF 

SME to develop standard procedures for responding to trends reported by the operational machine learning 

models. 
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