

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-812905

THERMODYNAMICS OF PLUTONIUM MONOCARBIDE FROM ANHARMONIC AND RELATIVISTIC THEORY

P. Soderlind, A. Landa, A. Perron, E. Moore, C. Wu

July 28, 2020

Applied Sciences

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 Article

2

Thermodynamics of plutonium monocarbide from 3 anharmonic and relativistic theory

4 **Per Söderlind** ^{1,*}, **Alexander Landa** ², **Aurélien Perron** ³, **Emily E. Moore** ⁴, **Christine Wu** ⁵5 ¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA; soderlind@llnl.gov6 ²Lawrence Livermore National Laboratory, Livermore, California 94550, USA; landa1@llnl.gov7 ³Lawrence Livermore National Laboratory, Livermore, California 94550, USA; perron1@llnl.gov8 ⁴Lawrence Livermore National Laboratory, Livermore, California 94550, USA; moore255@llnl.gov9 ⁵Lawrence Livermore National Laboratory, Livermore, California 94550, USA; wu5@llnl.gov10 * Correspondence: soderlind@llnl.gov

11 Received: date; Accepted: date; Published: date

12 **Abstract:** Thermodynamics of plutonium monocarbide is studied from first-principles theory that
13 includes relativistic electronic structure and anharmonic lattice vibrations. Density-functional
14 theory (DFT) is expanded to include orbital-orbital coupling in addition to the relativistic spin-orbit
15 interaction for the electronic structure and it is coupled with anharmonic, temperature-dependent,
16 lattice dynamics derived from self-consistent ab initio lattice dynamics (SCAILD) calculations. The
17 so obtained thermodynamics is compared to results from simpler quasi-harmonic theory and
18 experimental data. Formation enthalpy, specific heat, and Gibbs energy calculated from the
19 anharmonic model are validated by a CALPHAD (CALculation of PHAse Diagram) assessment of
20 PuC and sub-stoichiometric PuC_{0.896}. Overall, the theory reproduces CALPHAD and measured data
21 for PuC rather well but the comparison is hampered by the sub-stoichiometric nature of plutonium
22 monocarbide. It is shown that a bare approach that ignores spin-orbit and orbital-orbital coupling
23 (orbital polarization) of the plutonium 5f electrons promotes too soft phonons and free energies that
24 are incompatible with that of the CALPHAD assessment of the experimental data. The investigation
25 of PuC suggests that the electronic structure is well described by plutonium 5f electrons as “band
26 like” and delocalized, but correlate through spin polarization, orbital polarization, and spin-orbit
27 interaction, in analogy to our previous findings for plutonium metal.

28 **Keywords:** PuC; DFT; CALPHAD; Electron correlation, Anharmonic phonons, Thermodynamics,
29 Nuclear fuel

30

31

1. Introduction

32 The physics of the actinides and their compounds is fascinating but also somewhat controversial.
33 The controversy is primarily focused on the nature of the actinide 5f electrons and the degree of the
34 electron correlation. Strong electron correlation manifests itself as localization of the 5f electrons on
35 the actinide atom and for the actinide-oxide compound this localization leads to band gaps in the
36 electronic structure [1,2]. On the other hand, one finds weaker electron correlation for the early
37 elemental actinide metals, thorium through plutonium. Particularly for the first four, there is now
38 consensus that they are well described by band-like 5f electrons [3,4]. In terms of theoretical
39 approaches, weak or intermediate electron correlation implies that density-functional theory is an
40 appropriate starting point and methods aimed for stronger electron correlations, assuming explicitly
41 an intra-atomic Coulomb interaction with a Hubbard U parameter (DFT + U), is not necessary. When
42 it comes to plutonium metal the electronic structure is still debated in the literature. There are
43 viewpoints that the 5f electrons are not strongly correlated and that no Hubbard U ($U = 0$) [5,6], or a

44 small value ($U \sim 1$ eV) [7], is appropriate. But there are also those who believe that the 5f electrons are
45 strongly correlated, essentially localized, and suitably described by a very large U parameter ($U \sim 4$ -
46 4.5 eV) [8,9]. Some of these models are very convoluted and require assumptions of parameters such
47 as the debated U . One cannot ignore, however, that a more transparent and less complicated model
48 ($U = 0$) describes plutonium very well [5] including its magnetic profile [10].

49 Regarding the actinide mononitrides and monocarbides, they appear to lie between the oxides
50 and the elemental metals in terms of the 5f-electron correlation [11]. In the nitrides and carbides, one
51 does not encounter band gaps as is the case for the oxides and they are also not insulators but metallic.
52 In analogy with the actinide oxides they are magnetic but the detailed magnetic structures are not
53 known for all of them. They form in the rock-salt (B1 or NaCl) structure that is simple cubic with two
54 types of atoms in the (000) and ($\frac{1}{2} \frac{1}{2} \frac{1}{2}$) positions, respectively. Their simple crystal structure and the
55 fact that the 5f electrons are less correlated than in their oxide counterparts make them well suited
56 for DFT-type studies. One complication for modeling, however, is that they tend to be nitride and
57 carbide deficient, resulting from vacancies and imperfections of the material. Consequently, they
58 form as AnN_{1-x} or AnC_{1-x} (An is actinide) compounds, where x is small (~ 0.1) but significant. The
59 electronic structure for several AnC compounds were recently studied with quantum-chemical
60 calculations by Pogány et al. [12].

61 In addition to the fundamental-science interest in the actinide mononitrides and monocarbides
62 they are compelling from a practical and applications perspective. The technological interest arises
63 from their potential use as advanced nuclear fuels for fast-breeder reactors. These materials have
64 good mechanical characteristics but also possess superior thermophysical properties [13] such a high
65 melting temperatures, high density of heavy atoms, and high thermal conductivity. In spite of the
66 interest, there is not as much experimental data available for them as there are for the actinide oxides
67 and robust theoretical modeling, particularly at elevated temperatures, is certainly welcomed. In the
68 present report we focus specifically on the thermodynamical high-temperature properties of
69 plutonium monocarbide, PuC , from first-principles theory.

70 Recently, we undertook an analogous study on uranium mononitride [14] and here the
71 thermodynamic modeling was founded on density-functional-theory electronic structure coupled
72 with lattice dynamics that allowed for anharmonic lattice vibrations. For UN , we compared and
73 validated our first-principles model directly with experiments in addition to results from a
74 CALPHAD assessment of the available measured data. Here, we adopt the same modeling approach
75 for plutonium monocarbide but we recognize that the plutonium 5f electrons provide a greater
76 challenge for the theory. Therefore, we go beyond our previous treatment of the electronic structure
77 in UN and now include relativistic effects and an extension to DFT that addresses orbital-orbital
78 moment coupling (orbital polarization) that is known to be important for accurately describing
79 plutonium metal [5]. It turns out that these additional electron correlations for PuC are necessary for
80 realistic Gibbs energies. For comparison, and to confirm our first-principles model for PuC , we carry
81 out CALPHAD calculations of the Gibbs energies, heat capacities, and formation enthalpy, utilizing
82 a thermodynamic database and the Thermo-Calc software.

83 In the following sections, 2-4, we detail our density-functional-theory implementations and
84 CALPHAD method and continue by showing our results and provide context in a summary and
85 discussion section.

86 2. Computational methods

87 2.1. Electronic structure methods

88 We are applying three methods, each with their own advantages, for calculating the electronic
89 structure of PuC . Two all-electron approaches that in one case is implemented with a so-call “full
90 potential”, i.e., where no geometrical-structural approximations exist, and the other with a Green’s
91 function technique that allows for a realistic alloy and disorder treatment. The third is a plane-wave
92 pseudopotential method that is fast and efficient for calculating forces on cells with many atoms. All

93 three methods rely on density-functional theory and the generalized gradient approximation (GGA)
94 [15] for the electron exchange and correlation energy functional.

95 One method is the all-electron full-potential linear muffin-tin orbital (FPLMTO) method and this
96 implementation has been explained in the literature [16]. It adopts no approximations for the core
97 states that exist at deeper energy levels than the valence states. This is a more accurate treatment than
98 that of the plane-wave methods where the core electrons are replaced by a pseudopotential.

99 Some quantities are expanded in series (basis functions, electron densities, and potentials) of
100 spherical harmonics inside non-overlapping spheres centered at each atomic position. The radial part
101 of the basis functions inside these spheres are calculated from a wave equation that includes all
102 relativistic corrections including spin-orbit coupling for d and f states but not for the p states, as is
103 appropriate [6]. The orbital-orbital coupling (orbital polarization) is only operating on the f states
104 [6,17] and is not explicit in conventional density-functional theory but has been shown to be
105 important for some f-electron systems, particularly plutonium [5]. Generally, the set-up parameters
106 of the present calculations for PuC are close to those for plutonium metal [5]. The FPLMTO method
107 is applied for calculating the PuC formation enthalpy, the elastic constants, and the so-called “cold
108 curve”, i.e., the total-energy variation with atomic volume, that is the fundamental input to the
109 Debye-Grüneisen quasi-harmonic simulations. The elastic constants are calculated applying
110 conventional strains for cubic crystals while the shear modulus is the Voigt-Hill-Reuss average [18]
111 of the single-crystal moduli. Also, the presented electronic density of states and the related simulated
112 photoelectron spectra are obtained from this method. Lastly, the Racah 5f parameters within the
113 orbital-polarization formalism [17] are self-consistently calculated with FPLMTO for use as a fixed
114 (majority spin band) parameter in our plane-wave calculations.

115 For the computationally more demanding supercell calculations or the self-consistent-phonon
116 method (SCAILD, self-consistent ab initio lattice dynamics) [19], we utilize an efficient electronic-
117 structure approach. Namely, the pseudopotential plane-wave Vienna ab initio simulation package
118 (VASP) with the projector-augmented-wave method with plane-wave basis set as implemented in
119 VASP [20-22]. The computational set-up is defined by an energy cut-off of 400 eV and an energy
120 convergence of 100 eV. The VASP calculations furthermore include non-collinear magnetism with
121 spin-orbit coupling and orbital polarization as implemented recently by us [6].

122 PuC is sub-stoichiometric, as mentioned, and the sensitivity to the deviation of the Pu/C ratio
123 from unity has been explored by VASP but also utilizing a technique that incorporates accurate alloy
124 theory within the coherent-potential approximation (CPA) [23]. The exact muffin-tin orbital (EMTO)
125 method relies on Green’s function formalism where the one-electron potential is represented by
126 optimized overlapping muffin-tin potential spheres [24]. The EMTO-CPA [25] is thus well suited to
127 explore computational disorder and sub-stoichiometric conditions. It can also be used to study the
128 influence of randomly distributed vacancies on a sub-lattice (see the Summary and discussion section
129 below). Other relevant details of the EMTO calculations are similar to those we have reviewed for
130 other plutonium-alloy systems [5]. Presently, we restrict ourselves to EMTO calculations without
131 spin-orbit coupling. As with the VASP method, EMTO is compared to FPLMTO for perfect sub-
132 stoichiometric PuC to validate the robustness and accuracy of the method.

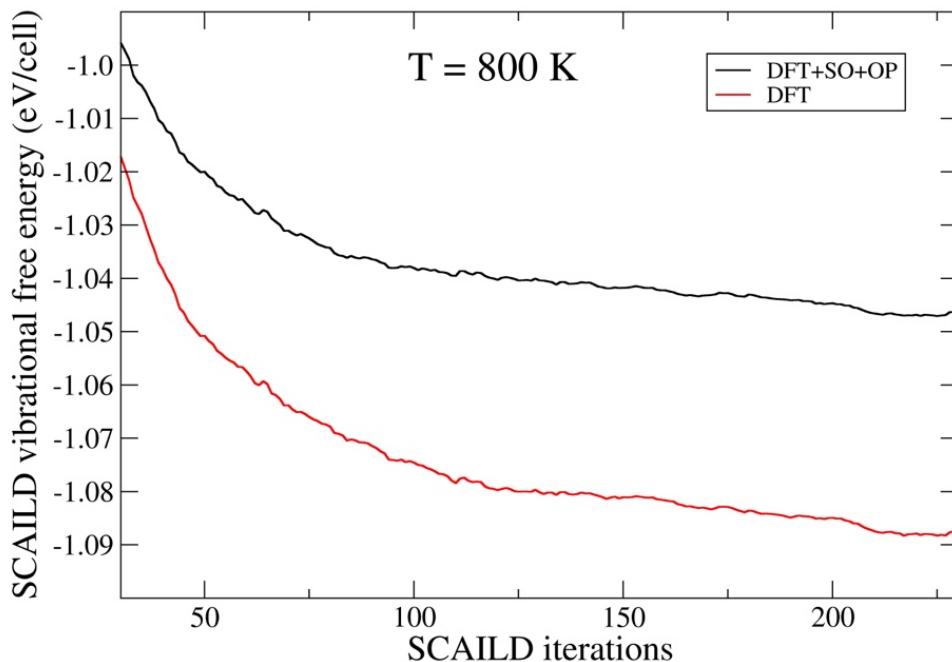
133 2.2. Lattice dynamics methods

134 Our main tool for lattice dynamics is the self-consistent ab initio lattice dynamics (SCAILD)
135 methodology [19] that we often refer to as the self-consistent phonon method. The idea of the scheme
136 is to employ the small-displacement method to calculate the phonons in a first step and then apply
137 thermally induced (fixed finite temperature) “frozen” phonons on the atoms and calculate
138 corresponding DFT atomic forces. The next step is to recalculate new phonons utilizing these DFT
139 forces and repeat until convergence [19]. This self-consistent-phonon approach is appealing because
140 it couples different displacements of all atoms with each other (unlike the frozen-phonon method)
141 and therefore it can account for strong phonon-phonon coupling and anharmonic behavior. We have
142 used SCAILD successfully for both uranium mononitride as well as for the cubic phases of uranium
143 and plutonium metals in the past [5,13,26,27] with good success. For SCAILD one needs to specify a

144 supercell of the crystal structure and for PuC we define a $3 \times 3 \times 3$ supercell for a total of 54 atoms.
 145 The DFT forces are gathered from VASP calculations and the SCAILD iterative scheme requires a
 146 little more than 200 iterations to strictly converge the lattice-vibration contribution to the free energy
 147 (meV). We perform several simulations: For each temperature ($T = 600, 800, 1000, 1200, 1500$, and
 148 2000 K), we chose three to five (depending on temperature) lattice constants in order to determine
 149 the equilibrium volume on the basis of the Gibbs-energy minimum. To assess the importance of 5f-
 150 electron correlations beyond conventional DFT-GGA, we employ methods that either include spin-
 151 orbit coupling and orbital polarization (DFT+SO+OP) or not (DFT).

152 In Figure 1 we show results from SCAILD for PuC at a temperature of 800 K, for the two levels
 153 of electronic-structure theory. The lattice constants are held fixed, corresponding to their zero-
 154 temperature equilibrium volumes (16.2 and 15.6 \AA^3).

155



156

157 **Figure 1.** SCAILD vibrational free energies (eV/cell) as functions of iterations for VASP force
 158 calculations that include spin-orbit coupling and orbital polarization (DFT+SO+OP) and not (DFT).
 159 The atomic volumes are kept constant and equal to 16.2 \AA^3 and 15.6 \AA^3 , respectively (see main text).

160 One can judge the importance of anharmonic phonons by comparing calculated thermal
 161 properties from anharmonic and quasi-harmonic theory. For this reason, we conduct a limited set of
 162 calculations from two implementations of the Debye-Grüneisen quasi-harmonic approach [28]. It is
 163 a very efficient scheme that only requires the cold curve as input in addition to the atomic mass of
 164 the atoms in the material. There are, however, some assumptions within this model that must be
 165 made. First, Moruzzi et al. [28] suggest that the Debye temperature can be derived from this simple
 166 relationship:

167

$$168 \quad \theta_D = \text{Const} \sqrt{\frac{rB}{M}} \quad (1)$$

169

170 where r is the atomic Wigner-Seitz radius in atomic units, B is the bulk modulus in kbar, and M the
 171 atomic mass (u). They studied non-magnetic transition metals and argued that an appropriate value
 172 for Const is 41.63, but the best value for this constant is generally unknown. Second, there are two
 173 philosophies regarding the formulation of the Grüneisen parameter. One that is supposedly [28]
 174 better at higher temperatures, γ_{HT} , and one that is more suitable when comparing to experimental
 175 specific-heat data at lower temperatures, γ_{LT} . They are referred to as Slater (γ_{HT}) and Dugdale-
 176 MacDonald (γ_{LT}) [29,30], respectively, and are defined as:

177

$$178 \quad \gamma_{HT} = \gamma_{LT} + \frac{1}{3} = -\frac{2}{3} - \frac{V \partial^2 P / \partial V^2}{2 \partial P / \partial V} \quad (2)$$

179

180 Here, P is the pressure and V the atomic volume. Third, the necessary analytical representation of the
 181 DFT-calculated cold curve is an approximation in itself. Moruzzi et al. [28] applied a Morse function
 182 [31] for this purpose but other forms can be considered and the actual choice will influence the results
 183 of the Debye-Grüneisen model to an extent. In our quasi-harmonic calculations of the specific heat
 184 we utilize the Gibbs2 package [32] and our own implementation [33]. For Gibbs2, referenced below
 185 as “quasi-harmonic (a)”, we use $Const = 58.03$, μ_T , and a third-order Birch-Murnaghan analytical form
 186 [34]. The alternative treatment [33] is referred to as “quasi-harmonic (b)”. In this case the scaling
 187 factor, $Const = 57.23$, is determined from the calculated Poisson’s ratio ($\nu = 0.256$, see table below). The
 188 latter implementation [33] assumes γ_{HT} and a Morse function representing the DFT total energies.

189

2.3. CALPHAD method

190 We apply the thermodynamic CALPHAD technique to compute the heat of formation, heat
 191 capacity, and Gibbs energy of PuC as functions of temperature. The CALPHAD results are then
 192 compared to our first-principles thermodynamic data and in the case of the specific heat and
 193 formation enthalpy also experimental data. Importantly, CALPHAD is able to also interrogate the
 194 significance of the sub-stoichiometric formation of PuC_{1-x} . Generally, the fundamental objective for
 195 the CALPHAD scheme is to model the Gibbs energy of individual phases pertaining to binary and
 196 ternary systems to optimally reproduce carefully reviewed phase diagrams and thermodynamic
 197 properties. From the Gibbs energy one computes phase stability and thermodynamic properties of
 198 multicomponent systems [35-37]. CALPHAD self-consistently generates functions and parameters
 199 representing phase dependent Gibbs energies that are collected in a database that can be utilized for
 200 simulation of thermodynamical properties of multi-component systems.

201 The CALPHAD data is compared to the first-principles modeling, but additionally, we
 202 understand that the interaction between CALPHAD and theory improves the thermodynamic-
 203 modeling capability particularly for materials with many unknown variables. For example, *ab initio*
 204 results such as heats of formation can directly provide important constraints to the CALPHAD
 205 modeling framework in the absence of experimental data. Furthermore, we note that optimization of
 206 parameters and minimizing errors within in the CALPHAD technique is an inverse problem with
 207 infinite degrees of freedom [38]. As a consequence, many combinations of parameters chosen by the
 208 user can produce coinciding phase diagrams. The use of DFT-predicted properties related to the
 209 CALPHAD assessment constrains the optimization and certifies the resulting thermodynamical
 210 database, both in terms of phase stability and energetics. This has in recent years become customary
 211 and first-principles-informed CALPHAD assessments for actinide systems are available [39-41].

212 Specifically, for the plutonium-carbide system we apply the CALPHAD assessment [42] for ideal
 213 stoichiometry PuC as well as $PuC_{0.869}$ when comparing to the specific heat. In the case of the Gibbs
 214 energies we only consider PuC for an appropriate comparison with the first-principle results.

215

3. Results

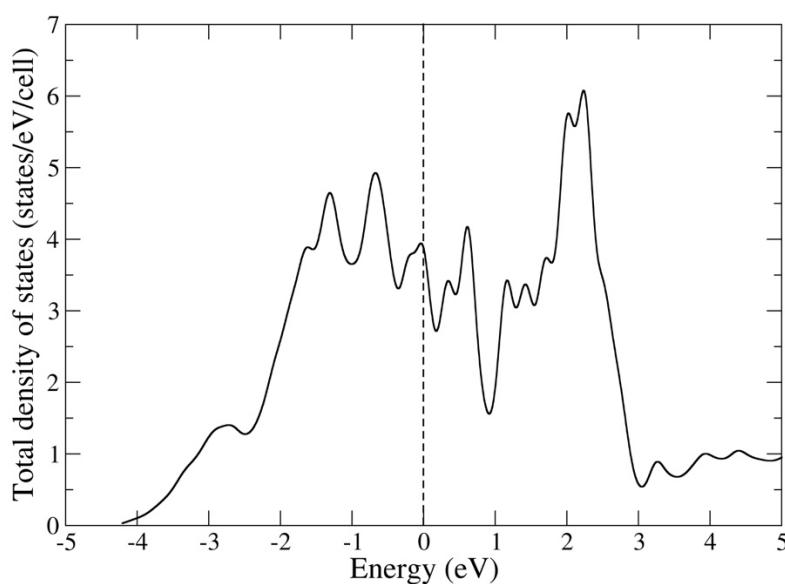
216

3.1. Electronic structure

217 As mentioned in the introduction, one of the central questions regarding the electronic structure
 218 of any actinide compound is the nature of the actinide 5f electrons. For the elemental metals, up to
 219 americium, the 5f electrons can be regarded as bonding and itinerant and not localized as they are in
 220 americium and the following actinides. For plutonium there is still a debate on this, but our view is
 221 that the 5f electrons are more delocalized than not and that opinion is supported by a wealth of
 222 evidence [5]. Specifically, for plutonium monocarbide, it has been argued that the 5f electrons are less
 223 correlated than both plutonium oxides as well as nitrides [11]. No theoretical method is currently able

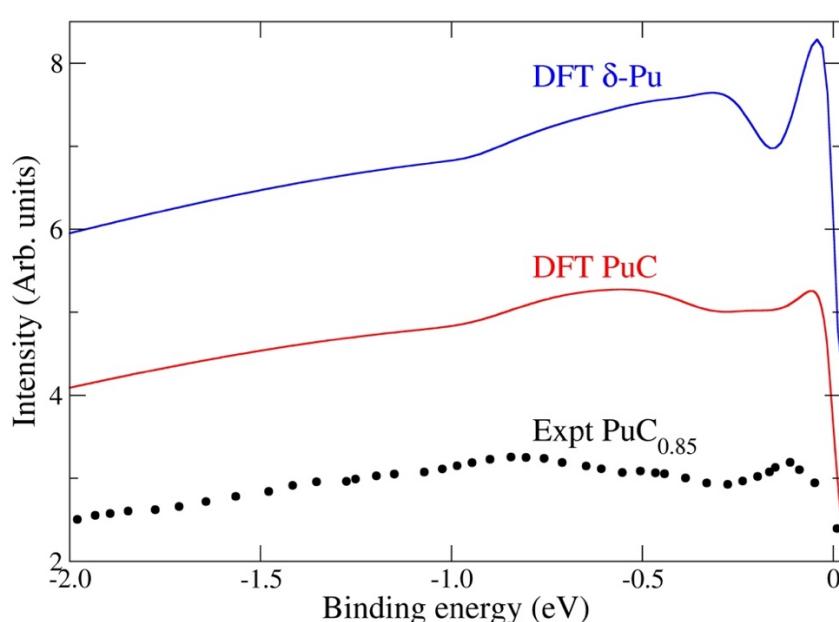
224 to predict the nature of the 5f electrons in these systems but comparisons with experimental data
 225 provide clues.

226 In Figure 2 we show the calculated, with spin-orbit coupling and orbital polarization, total
 227 electronic density of states (e-DOS) for PuC.
 228



229
 230 **Figure 2.** FPLMTO total electronic density of states for PuC. The vertical dashed line indicates the
 231 location of the Fermi level (at zero energy). The calculations include spin-orbit coupling and orbital
 232 polarization and the atomic volume is equal to 16.2 \AA^3 .

233 The PuC e-DOS is quantitatively similar to that of both the α and δ phases of plutonium [5] because
 234 it has significant occupation of 5f states at the Fermi level. This similarity suggests that the 5f electrons
 235 are delocalized as we believe they are in α and δ plutonium, but a comparison with experimental
 236 photoelectron spectra will help the interpretation. The photoelectron spectra for sub-stoichiometric
 237 PuC_{0.85} has been measured by Gouder et al. [43] and in Figure 3 we compare that result with our e-
 238 DOS for PuC that has been broadened and convoluted to simulate instrumental resolution and
 239 photon lifetimes [44]. We also include, for comparison, the corresponding simulated photoemission
 240 for δ -plutonium [44].
 241



243
244
245
246

Figure 3. FPLMTO electronic density of states for PuC that has been convoluted due to instrumental
resolution and photon lifetime broadening. The experimental data points for PuC_{0.85} are from
photoemission by Gouder et al. [43] and the simulation for δ-Pu from Ref. [44]. The curves are shifted
relative to each other to make the plot more readable.

247
248
249
250
251
252
253

The experimental PuC_{0.85} photoelectron result actually looks quite similar to our simulation for
PuC. One would not necessarily expect a perfect agreement because the stoichiometries are different
and the calculated spectral density do not include photoexcitation matrix elements. Nevertheless, the
favorable comparison supports the interpretation that the 5f electrons, that dominate the spectra for
the plutonium-carbide system, are indeed delocalized as treated by the theory. We further notice in
Figure 3 that the result for δ-plutonium is quantitatively comparable to PuC, indicating that the 5f
electrons behave similarly for these systems.

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

Plutonium monocarbide (PuC_{1-x}) is known to be anti-ferromagnetic (AF) at temperatures below
100 K [45] but to date, the size of the magnetic moments has not been determined. Previous DFT
calculations within the local density approximation [46] reproduce the AF configuration for PuC_{0.75}
but for ideal PuC a ferromagnetic (FM) configuration was predicted with magnetic moments ~ 2
 μ_B /atom. The present calculations for PuC, that are based on GGA and the aforementioned spin-orbit
and orbital-polarization correlations, predict the FM state but it is only weakly stable over the AF
configuration (~ 1 mRy/atom). Both configurations have total magnetic moments that are small (~ 0.1
 μ_B) because of the effective compensation between the spin and anti-parallel orbital components (both
close to $3.7 \mu_B$ in absolute magnitude). The orbital-orbital coupling tends to enhance the orbital
moment in metallic plutonium systems [5] and ignoring this interaction in the model produces a
much smaller orbital moment ($\sim 2.7 \mu_B$). In addition to the magnetic moments, the bonding properties
of the AF and FM configurations are nearly identical, meaning that the atomic volume and bulk
modulus are essentially the same. Because the energetics and bonding between these two magnetic
states are so similar and that the magnetic ordering only occurs below 100 K, we only consider the
FM state as we proceed by focusing on thermodynamics at high temperatures.

269 *3.2. Ground-state properties and thermodynamics*

270
271
272
273
274
275

Next, we discuss our predicted ground-state properties, including the elastic constants, and our
lattice-dynamics results. In Table 1 we show calculated equilibrium volumes and elastic constants for
PuC from the full theoretical treatment (DFT+SO+OP) and for the simpler theory that excludes spin-
orbit coupling and orbital polarization (DFT). Elastic moduli obtained from Born-Mayer and
Coulomb model potentials have been reported for PuC [47], but their zero-temperature values are
considerably smaller ($C_{11} = 63.9$, $C_{12} = 27.2$, $C_{44} = 27.2$ GPa) than ours presented in Table 1.

Method	V	B	B'	C_{11}	C_{12}	C_{44}	G	ν
DFT+SO+OP	16.2	125	2.7	218	78.0	75.0	73.0	0.256
DFT	15.6	141	0.65	177	123	141	73.9	0.277

276
277
278
279
280

Table 1. Ground-state properties obtained from the full theoretical treatment (DFT+SO+OP) and for
a treatment that ignores spin-orbit coupling and orbital polarization. The atomic volume (V) is given
in units of \AA^3 , while the bulk (B), shear (G) and elastic (C_{ij}) moduli are given in units of GPa. The shear
modulus is a Voigt-Reuss-Hill average and the Poisson's ratio, ν , is obtained from B and G (see main
text).

281
282
283
284

We expect that our theoretical elastic moduli in Table 1 are good because we know they are rather
accurately calculated for the phases of elemental plutonium metal [48]. The Poisson's ratio, ν , in the
table is obtained from the standard formula for cubic crystals:

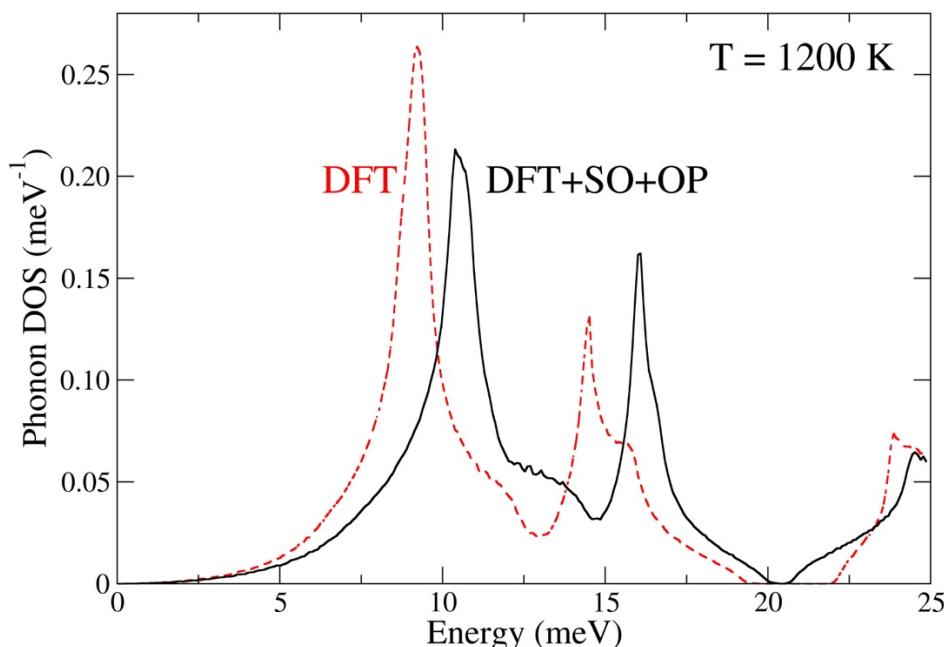
285
$$\nu = \frac{3B-2G}{2(3B+G)} \quad (3)$$

286

287 Unfortunately, there are no published experimental data on the single-crystal elastic constants (C_{ij})
 288 that could help distinguish between the present and previous [47] modeling. For the isothermal bulk
 289 modulus (B), however, an experimental value has been reported (118 GPa) [49] that is in better
 290 agreement with our best theory (125 GPa) than the model-potential result (39.4 GPa) [47].

291 In regards to our first-principle results in Table 1 we find some differences between the full
 292 theory (DFT+SO+OP) and the scalar-relativistic (no SO or OP) approach (DFT). The former produces
 293 a somewhat larger atomic volume and a correspondingly softer bulk modulus, while the shear
 294 modulus is about the same. Most notably is the fact that the tetragonal shear constant, $C' = (C_{11} - C_{12})/2$,
 295 is very small for the scalar-relativistic approximation (27 vs. 70 GPa). This very small C' indicates that
 296 the crystal is relatively close to a mechanical instability that is linked to softer phonons for the related
 297 phonon branches. Softer phonon modes imply more entropy and a greater contribution to the free
 298 energy, and that is exactly observed in our calculated free energies shown in Figure 1.

299 Moving on to thermodynamics and our lattice-dynamics results, we show in Figure 4 our
 300 calculated phonon density of states (p-DOS) at 1200 K. The p-DOS clearly suggests that including
 301 spin-orbit coupling and orbital polarization (DFT+SO+OP) in the electronic structure stiffens the
 302 lattice dynamics resulting in more weight of the phonon modes at higher energies.



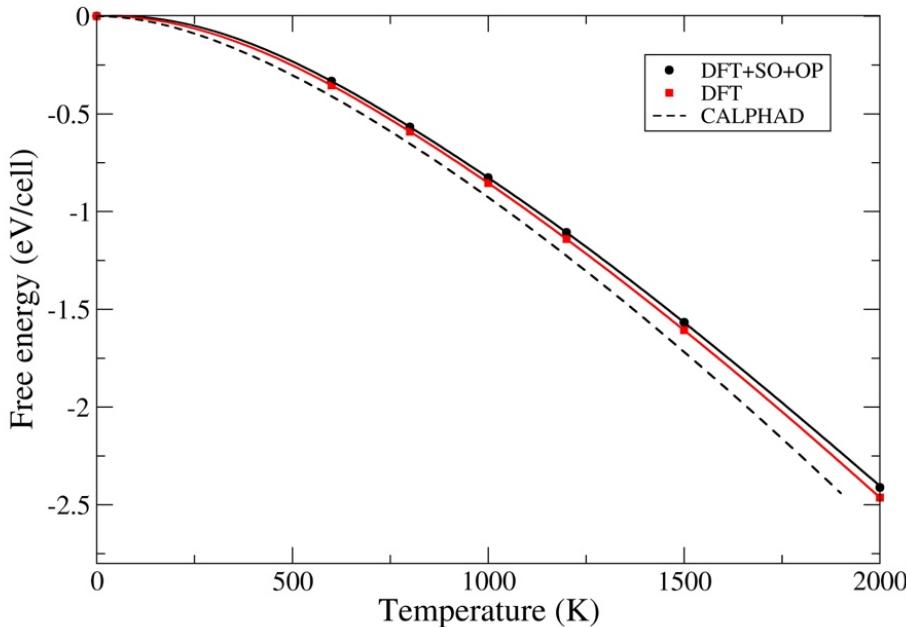
303

304 **Figure 4.** SCAILD phonon density of states (states/meV) at 1200 K from electronic structure that
 305 include spin-orbit coupling and orbital polarization (DFT+SO+OP) and not (DFT). The atomic
 306 volumes are 15.6 \AA^3 (DFT) and 16.2 \AA^3 (DFT+SO+OP), respectively.

307 The consequence of the results shown in Figure 1 and 4 is that when the temperature dependent
 308 part of the electronic structure (Fermi-Dirac distribution and electronic entropy) is added to the Gibbs
 309 energies of the two models, the “DFT” is below that of the full “DFT+SO+OP” theory because the
 310 lattice-vibration contribution is greater.

311 In Figure 5 we show the Gibbs energies obtained from adding the electronic and lattice-
 312 vibration contributions at constant volumes (16.2 \AA^3 and 15.6 \AA^3) together with our CALPHAD Gibbs
 313 energy for PuC. The lesser (DFT) theory lies below the full (DFT+SO+OP) theory and appears to be
 314 in better agreement with the CALPHAD result.

315



316

317
318

Figure 5. Free energies from SCAILD lattice contribution and electronic structure at volumes of 15.6 (DFT) and 16.2 Å³ (DFT+SO+OP), respectively. Dashed line shows the CALPHAD Gibbs energy.

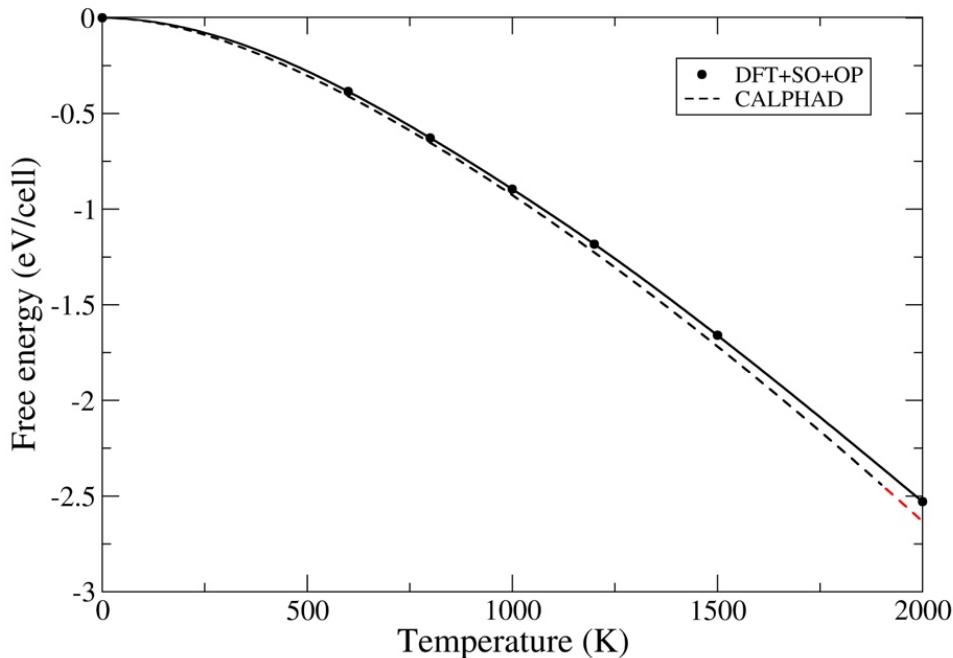
319 This is accidental because important contributions to the Gibbs energy are still missing in the first-
320 principles modeling. First, removing the constraint of a fixed atomic volume, i.e., by accounting for
321 thermal expansion, lowers the Gibbs energies a substantial amount. It comes with a significant
322 computational cost to calculate this contribution, however, because SCAILD needs to be repeated for
323 at least two more volumes (for each temperature) so that the equilibrium volume can be determined.
324 In addition, since we are studying magnetically disordered PuC (over 100 K [45]), there is a simple
325 magnetic contribution due to magnetic disorder [50,51] that we can include:
326

$$327 \quad F_{mag}(V, T) = -k_B T \ln(2\mu + 1) \quad (4)$$

328

329 In this equation, k_B is the Boltzmann constant and μ the total (spin and orbital) magnetic moment.
330 Because orbital polarization, that enhances the magnitude of the orbital moment [5], is addressed in
331 the model the total magnetic moment is small ($\sim 0.1 \mu_B$). As mentioned, this is due to a near complete
332 compensation between the spin and orbital contributions. Lastly, there is an electron-phonon-
333 coupling term that we are not considering in the free energy. Accounting for all energy excitations
334 from electrons and phonons and their distributions in a universal fashion is difficult and to our
335 knowledge there is no efficient procedure to accurately determine this contribution.

336 When we add the missing terms (except the electron-phonon term) to the Gibbs energy, the
337 scalar-relativistic (DFT) energy is significantly below CALPHAD and in our opinion erroneous (not
338 shown). The full theoretical treatment (DFT+SO+OP), on the other hand, produces energies that are
339 above but near that obtained from CALPHAD. In Figure 6 we show our best theory of the Gibbs
340 energy together with CALPHAD for PuC. They are quite close, with the first-principles result slightly
341 above CALPHAD, consistent with the fact that electron-phonon interaction is neglected in the ab
342 initio model.



343

344
345

Figure 6. Free energies from our best first-principles calculation and CALPHAD. Above about 1800 K the CALPHAD energy is extrapolated as shown by the red color of the dashed line.

346
347
348
349
350
351
352
353

In order to make direct contact with experimental data we also calculate the specific heat at constant pressure, C_p . We compare anharmonic theory (SCAILD and DFT+SO+OP) with lower-level quasi-harmonic theory within the Debye-Grüneisen model. This comparison allows us to evaluate the importance of anharmonicity at higher temperatures. In addition, we calculate CALPHAD C_p for ideal PuC and PuC_{0.869} for a better understanding of the possible significance of sub-stoichiometry. Three sets of experimental data [52-54] are collected for comparison with theory. These data sets are shown in Figure 7 where we also plot the free-electron contribution to C_p obtained from this simple Sommerfeld assumption [55]:

354

355
356

$$C_p^{el}(T) = \frac{\pi^2}{3} D(E_F) k_B^2 T \quad (5)$$

357
358

Here, $D(E_F)$ is the electronic density of states at the Fermi level that is extracted from the first-principles electronic structure (DFT+SO+OP).

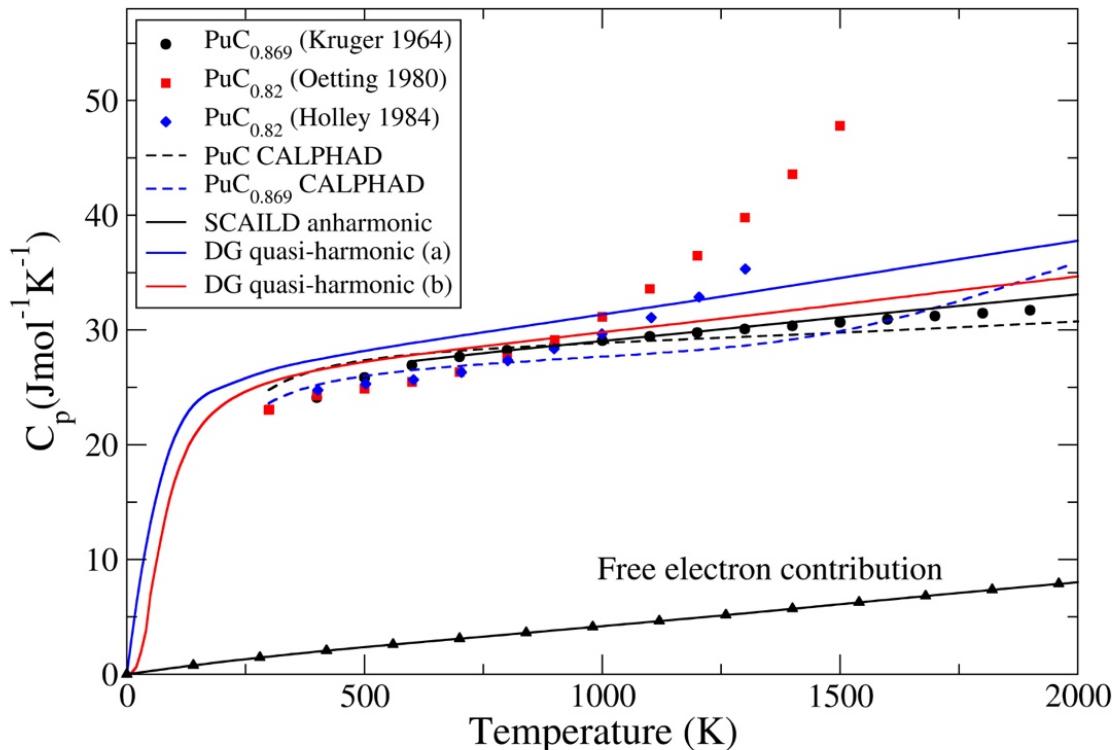


Figure 7. Measured and calculated specific heats at constant pressure, C_p . The solid square (red), diamond (blue), and circle (black) are experimental data sets from Refs. [52–54]. Dashed lines refer to results from CALPHAD. The solid black, blue, and red lines without symbols refer to our best anharmonic theory and two parameterizations of quasi-harmonic Debye–Grüneisen theory. The solid black line with triangles shows the calculated free-electron contribution to C_p .

Perhaps the most glaring aspect of Figure 7 is that the three experimental data sets deviate strongly above 1000 K. To a degree, the difference may be explained by different stoichiometry of the samples, but two of samples have the same stoichiometry. Contradictory experimental data complicates the CALPHAD assessments and the corresponding results become more uncertain. The CALPHAD data show, consistent with experiments, that the stoichiometry does influence C_p to an extent. Our anharmonic theory agrees fairly well with all experimental and CALPHAD data up to 1000 K, but only with the Kruger and Savage [52] and the PuC-specific CALPHAD results above 1000 K. Not surprisingly, it agrees somewhat less favorably with CALPHAD for $\text{PuC}_{0.869}$. Furthermore, Figure 7 suggests that the quasi-harmonic treatments, both the (a) and (b) variants (see Computational Methods section 2.2), deviate from CALPHAD and anharmonic theory for PuC above 1000 K. This is consistent with our findings for UN where the quasi-harmonic approach was shown to be increasingly inaccurate at temperatures above 1000 K [14].

4. Summary and discussion

We calculate thermodynamical properties; lattice dynamics, free energies, and heat capacities for ideal-stoichiometry plutonium monocarbide. The highest level of theory includes spin-orbit coupling and orbital-orbital coupling (orbital polarization) for the DFT-GGA electronic structure. This approach assumes delocalized (band) 5f electrons on plutonium and a direct comparison with the experimental photoelectron spectroscopy confirms that this is appropriate for PuC. This interpretation of the 5f electrons is consistent with the calculated Pu-C and Pu-Pu distances (2.52 and 3.57 Å, respectively). Namely, the Pu-Pu distance is close to the Hill limit (~ 3.4 Å) [56] that is an approximate criteria for 5f-band formation.

The thermal properties are obtained from combining our advanced DFT to a temperature-dependent self-consistent phonon scheme that includes strong anharmonic lattice dynamics. We show that this level of electronic-structure theory and lattice dynamics are necessary to reproduce

389 the CALPHAD Gibbs energy and produce consistent specific-heat data. The consistency between our
390 first-principles modeling, CALPHAD, and experiment is further explored by comparing PuC
391 formation enthalpies. The formation enthalpy for PuC is calculated as the DFT+SO+OP total energy
392 difference between the compound and its solid-form constituents, i.e., carbon (α -C, graphite) and α -
393 plutonium; $E(\text{PuC}) - E(\alpha\text{-Pu}) - E(\alpha\text{-C}) = -21 \text{ kJ/mol}$. Here, all phases are carefully relaxed (not a trivial
394 task for α -plutonium [5]). The first-principles formation enthalpy is in reasonable agreement with
395 results from CALPHAD (-26.4 kJ/mol) and the experimental values, that range from -15.4 to -25.3
396 kJ/mol [42,54]. Hence, there is favorable coherence in the thermodynamical properties between
397 modeling and experiments.

398 The correlation between theoretical and experimental specific heats is obscured by the fact that
399 plutonium monocarbide forms with a deficiency of carbon atoms, i.e., PuC_{1-x} , where x is ~ 0.1 . One
400 can capture this carbon deficiency in supercell calculations by removing carbon atoms and creating
401 vacancies on the carbon sites. Specifically, by removing one carbon atom from a 16-atom supercell,
402 we can study the Pu_8C_7 compound, i.e., PuC_{1-x} , where $x = 0.125$. The calculation is performed with
403 VASP and the full SO+OP treatment, allowing for structural relaxation of the supercell with the
404 vacancy. It turns out that the relaxation effects are small but the atomic volume increases significantly
405 with a corresponding softening of the bulk modulus. Complementary to these supercell calculations,
406 we conduct an EMTO-CPA investigation of a disordered PuC_{1-x} system where $\text{C}/\text{Pu} = 0.90$, and 10%
407 of the carbon atoms are replaced by vacancies but without structural relaxation. In other words, the
408 carbon atoms and vacancies are randomly distributed on the carbon-type sub-lattice with 10%
409 probability of being a vacancy and 90% probability of being a carbon atom. Consistent with the
410 supercell results, our disorder EMTO-CPA model finds an increase in atomic volume and a decrease
411 of the bulk modulus when carbon is eliminated. This behavior is also in agreement with a recent
412 theoretical study [57] of the stoichiometry in PuC. From the computed bonding energetics of the
413 carbon-deficient system we apply the quasi-harmonic treatment [33] and compare that with an
414 analogous calculation for the ideal PuC system for VASP and EMTO (not shown). The difference in
415 the specific heats, due to sub-stoichiometry, proves to be small for both methods and it cannot fully
416 explain the sensitivity to the stoichiometry reflected in the experimental heat capacity.

417 **Author Contributions:** Conceptualization, P.S.; methodology, P.S., A.L., A.P., E.E.M.; writing-review and
418 editing, P.S., A.L., A.P., E.E.M., C. Wu. All authors have read and agreed to the published version of the
419 manuscript.

420 **Funding:**

421 **Acknowledgments:** We thank B. Sadigh for helpful discussions. This work was performed under the auspices
422 of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344

423 **Conflicts of Interest:** The authors declare no conflict of interest.

424 **References**

1. Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W.M.; Stocks, G.M. Electronic structure and ionicity of actinide oxides from first principles. *Phys. Rev. B* **2010**, *81*, 045108(1)-045108(11). <https://doi.org/10.1103/PhysRevB.81.045108>
2. Wen, X.-D.; Martin, R.L.; Henderson, T.M.; Scuseria, G.E. Density functional theory studies of electronic structure of solid state actinide oxides. *Chem. Rev.* **2013**, *113*, 1063-1096. <https://doi.org/10.1021/cr300374y>
3. Moore, K.T.; van der Laan, G. Nature of the 5f states in the actinide metals. *Rev. Mod. Phys.* **2009**, *81*, 235-298. <https://doi.org/10.1103/RevModPhys.81.235>
4. Söderlind, P. First-principles phase stability, bonding, and electronic structure of actinide metals. *J. Electron Spectr. Rel. Phenom.* **2014**, *194*, 2-7. <https://doi.org/10.1016/j.elspec.2013.11.009>
5. Söderlind, P.; Landa, A.; Sadigh, B. Density-functional theory for plutonium. *Adv. Phys.* **2019**, *68*, 1-47. <https://doi.org/10.1080/00018732.2019.1599554>
6. Sadigh, B.; Kutepov, A.; Landa, A.; Söderlind, P. Assessing relativistic effects and electron correlation in the actinide metals Th to Pu. *Appl. Sci.* **2019**, *9*, 5020(1)-5020(14). <https://doi.org/10.3390/app9235020>

438 7. Amadon, B. First-principles DFT+DMFT calculations of structural properties of actinides: Role of Hund's
439 exchange, spin-orbit coupling, and crystal structure. *Phys. Rev. B* **2016**, *94*, 115148; Erratum in **2018**, *97*,
440 039903(1)-039903(14). <https://doi.org/10.1103/PhysRevB.94.115.148>

441 8. Savrasov, S.Y.; Kotliar, G. Ground-state theory of δ -Pu. *Phys. Rev. Lett.* **2000**, *84*, 3670-3673.
442 <https://doi.org/10.1103/PhysRevLett.84.3670>.

443 9. Marianetti, C.A.; Haule, K.; Kotliar, G.; Fluss, M.J. Electronic coherence in δ -Pu: A dynamical mean-field
444 theory study. *Phys. Rev. Lett.* **2008**, *101*, 056403(1)-056403(4).
445 <https://doi.org/10.1103/PhysRevLett.101.056403>

446 10. Söderlind, P.; Zhou, F.; Landa, A.; Klepeis, J.E. Phonon and magnetic structure in δ -plutonium from
447 density-functional theory. *Sci. Rep.* **2015**, *5*, 15958(1)-15958(6). <https://doi.org/10.1038/srep15958>

448 11. Wen, X.-D.; Martin, R.L.; Scuseria, G.E.; Rundin, S.P.; Batista, E.R. A screened hybrid DFT study of actinide
449 oxides, nitrides, and carbides. *J. Phys. Chem. C* **2013**, *117*, 13122-13128. <https://doi.org/10.1021/jp403141t>

450 12. Pogány, P.; Kovács, A.; Visscher, L.; Konings, R.J.M. Theoretical study of actinide monocarbides (ThC, UC,
451 PuC, and AmC). *J. Chem. Phys.* **2016**, *145*, 244310(1)-244310(9). <https://doi.org/10.1063/1.4972812>

452 13. Srivastava, D.; Garg, S.P.; Goswami, G.L. Thermodynamic analysis of mixed carbide, carbonitride, and
453 nitride fuels for fast breeder reactors. *J. Nucl. Matter* **1989**, *161*, 44-56. [https://doi.org/10.1016/0022-3115\(89\)90461-3](https://doi.org/10.1016/0022-3115(89)90461-3).

454 14. Söderlind, P.; Landa, A.; Perron, A.; Sadigh, B.; Heo, T.W. Ground-state and thermodynamical properties
455 of uranium mononitride from anharmonic first-principles theory. *Appl. Sci.* **2019**, *9*, 3914(1)-3914(11).
456 <https://doi.org/10.3390/app9183914>

457 15. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.*
458 **1996**, *77*, 3865-3868. <https://doi.org/10.1103/PhysRevLett.77.3865>

459 16. Wills, J.M.; Alouani, M.; Andersson, P.; Delin, A.; Eriksson, O.; Grechnev, O. *Full-Potential Electronic
460 Structure Method*; Publisher: Springer-Verlag, 2010.

461 17. Eriksson, O.; Brooks, M.S.S.; Johansson, B. Orbital polarization in narrow-band systems: Application to
462 volume collapses in light lanthanides. *Phys. Rev. B* **1990**, *41*, 7311-7314.
463 <https://doi.org/10.1103/PhysRevB.41.7311>

464 18. Hill, R. The elastic behaviour of a crystalline aggregate. *Proc. Phys. Soc.* **1952**, *A65*, 349-354.

465 19. Souvatzis, P.; Eriksson, O.; Katsnelson, M.I.; Rudin, S.P. The self-consistent ab initio lattice dynamical
466 method. *Com. Mat. Sci.* **2009**, *44*, 888-894. <https://doi.org/10.1016/j.commatsci.2008.06.016>.

467 20. Blöchl, P.E. Projector augmented-wave method. *Phys. Rev. B* **1994**, *50*, 17953-17979.
468 <https://doi.org/10.1103/PhysRevB.50.17953>

469 21. Kresse, G.; Furthmüller, J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-
470 wave basis set. *Phys. Rev. B* **1996**, *54*, 11169-11186. <https://doi.org/10.1103/PhysRevB.54.11169>

471 22. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys.
472 Rev. B* **1999**, *59*, 1758-1775. <https://doi.org/10.1103/PhysRevB.59.1758>

473 23. Faulkner, J.S. The modern theory of alloys. *Prog. Mater. Sci.* **1982**, *27*, 1-187. [https://doi.org/10.1016/0079-6425\(82\)90005-6](https://doi.org/10.1016/0079-
474 6425(82)90005-6)

475 24. Vitos, L. Total-energy method based on the exact muffin-tin orbital theory. *Phys. Rev. B* **2001**, *64*, 014107(1)-
476 014107(11). <https://doi.org/10.1103/PhysRevB.64.014107>

477 25. Vitos, L.; Abrikosov, I.A.; Johansson, B. Anisotropic lattice distortions in random alloys from first-
478 principles theory. *Phys. Rev. Lett.* **2001**, *87*, 156401(1)-156401(4).
479 <https://doi.org/10.1103/PhysRevLett.87.156401>

480 26. Söderlind, P.; Grabowski, B.; Yang, L.; Landa, A.; Björkman, T.; Souvatzis, P.; Eriksson, O. High-
481 temperature phonon stabilization of γ -uranium from relativistic first-principles theory. *Phys. Rev. B* **2012**,
482 *85*, 060301(1)-060301(4). <https://doi.org/10.1080/00018732.2019.1599554>

483 27. Söderlind, P. Lattice dynamics and elasticity for ϵ -plutonium. *Sci. Rep.* **2017**, *7*, 1116(10)-1116(6).
484 <https://doi.org/10.1038/s41598-017-01034-6>

485 28. Moruzzi, V.L.; Janak, J.F.; Schwarz, K. Calculated thermal properties of solids. *Phys. Rev. B* **1988**, *37*, 790-
486 799. <https://doi.org/10.1103/PhysRevB.37.790>

487 29. Slater, J.C. Introduction to chemical physics; Publisher: McGraw-Hill: New York, 1939.

488 30. Dugdale, J.S.; MacDonald, D.K.C. The thermal expansion of solids. *Phys. Rev.* **1953**, *89*, 832-834.
489 <https://doi.org/10.1103/PhysRev.89.832>

490

491 31. Morse, P.M. Diatomic molecules according to wave mechanics. II. Vibrational levels. *Phys. Rev.* **1929**, *34*,
492 57-64. <https://doi.org/10.1103/PhysRev.34.57>

493 32. Otero-de-la Roza, A.; Lúaña. Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment
494 of the static data. *Comput. Phys. Commun.* **2011**, *182*, 1708-1720. <https://doi.org/10.1016/j.cpc.2011.04.016>

495 33. Söderlind, P.; Nordström, L.; Yongming, L.; Johansson, B. Relativistic effects on the thermal expansion of
496 the actinide elements. *Phys. Rev. B* **1990**, *42*, 4544-4552. <https://doi.org/10.1103/PhysRevB.42.4544>

497 34. Birch, F. Finite elastic strain of cubic crystals. *Phys. Rev.* **1947**, *71*, 809-824.
498 <https://doi.org/10.1103/PhysRev.71.809>

499 35. Kaufman, L.; Bernstein, H. *Computer calculation of phase diagrams with special reference to refractory metals*;
500 Publisher: Academic Press, USA, 1970.

501 36. Saunders, N.; Miodownik, A. *CALPHAD calculation of phase diagrams: A comprehensive guide*; Publisher:
502 Elsevier Science, 1998.

503 37. Lukas, H.; Fries, S.; Sundman, B. *Computational thermodynamics: The CALPHAD method*; Publisher:
504 Cambridge University Press, 2007.

505 38. Bajaj, S.; Landa, A.; Söderlind, P.; Turchi, P.E.A.; Arroyave, R. The U-Ti system: Strengths and weaknesses
506 of the CALPHAD method. *J. Nucl. Mater.* **2011**, *419*, 177-185. <https://doi.org/10.1016/j.jnucmat.2011.08.050>

507 39. Perron, A.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F.; Kurata, M.
508 Thermodynamic re-assessment of the Pu-U system and its application to the ternary Pu-U-Ga system. *J.
509 Nucl. Mater.* **2014**, *454*, 81-95. <https://doi.org/10.1016/j.jnucmat.2014.07.051>

510 40. Perron, A.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay. The Pu-U-Am system:
511 an ab initio informed CALPHAD thermodynamic study. *J. Nucl. Mater.* **2015**, *458*, 425-441.
512 <https://doi.org/10.1016/j.jnucmat.2014.12.101>

513 41. Moore, E.E.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Oudot, B.; Belof, J.L.; Stout, S.A.; Perron, A.
514 Development of a CALPHAD thermodynamic database for Pu-U-Fe-Ga alloys. *Appl. Sci.* **2019**, *9*, 5040(1)-
515 5040(25). <https://doi.org/10.3390/app9235040>

516 42. Guéneau, C.; Dupin, S.; Sundman, B.; Martial, C.; Dumas, J.-C.; Gossé, S.; Chatain, S.; De Bruycker, F.;
517 Manara, D.; Konings, R.J.M. Thermodynamic modelling of advanced oxide and carbide nuclear fuels:
518 Description of the U-Pu-O-C systems. *J. Nucl. Mater.* **2011**, *419*, 145-167.
519 <https://doi.org/j.jnucmat.2011.07.033>

520 43. Gouder, T.; Havela, L.; Shick, A.B.; Huber, F.; Wastin, F.; Rebizant, J. Variability of 5f states in plutonium
521 carbides. *J. Phys.: Condens. Matter* **2007**, *19*, 476201(1)-476201(11). [https://doi.org/10.1088/0953-8984/19/47/476201](https://doi.org/10.1088/0953-
522 8984/19/47/476201)

523 44. Söderlind, P.; Landa, A.; Sadigh, B. Density-functional investigation of magnetism in δ -Pu. *Phys. Rev. B*
524 **2002**, *66*, 205109(1)-205109(6). <https://doi.org/10.1103/PhysRevB.66.205109>

525 45. Green, J.L.; Arnold, G.P.; Leary, J.A.; Nereson, N.G. Chrystallographic and magnetic ordering studies of
526 plutonium carbides using neutron diffraction. *J. Nucl. Mater.* **1970**, *34*, 281-289. [https://doi.org/10.1016/0022-3115\(70\)90194-7](https://doi.org/10.1016/0022-
527 3115(70)90194-7)

528 46. Yang, R.; Tang, B.; Gao, T.; Ao, B. Structural, magnetic, electronic and optical properties of PuC and $\text{PuC}_{0.75}$:
529 A hybrid density functional study. *J. Nucl. Mater.* **2016**, *473*, 54-60. <https://doi.org/j.jnucmat.2016.02.025>

530 47. Verma, A.K.; Kaushik, S.; Singh, D.; Yadav, R.R. Elastic and thermal properties of carbides of U, Pu, and
531 Am. *J. Phys. Chem. Sol.* **2019**, *133*, 21-27. <https://doi.org/10.1016/j.jpcs.2019.05.006>

532 48. Söderlind, P.; Landa, A.; Klepeis, J.E.; Suzuki, Y.; Migliori, A. Elastic properties of Pu metal and Pu-Ga
533 alloys. *Phys. Rev. B* **2010**, *81*, 224110(1)-224110(9). <https://doi.org/10.1103/PhysRevB.81.224110>

534 49. Krajewski, A.; D'Alessio, L.; De Maria, G. Physio-chemical and thermophysical properties of cubic binary
535 alloys. *Cryst. Res. Technol.* **1998**, *33*, 341-374. [https://doi.org/10.1002/\(SICI\)1521-4079\(1998\)33:3<341::AID-CRAT341>3.0.CO;2-I](https://doi.org/10.1002/(SICI)1521-4079(1998)33:3<341::AID-CRAT341>3.0.CO;2-I)

536 50. Grimvall, G. Spin disorder in paramagnetic fcc iron. *Phys. Rev. B* **1989**, *39*, 12300-123001.
537 <https://doi.org/10.1103/PhysRevB.39.12300>

538 51. Wang, Y. Classical mean-field approach for thermodynamics: Ab initio thermophysical properties of
539 cerium. *Phys. Rev. B* **2000**, *61*, R11863-R11866. <https://doi.org/10.1103/PhysRevB.61.R11863>

540 52. Kruger, O.L.; Savage, H. Heat capacity of plutonium monocarbide from 400° to 1300° K. *J. Chem. Phys.* **1964**,
541 40, 3324-3328. <https://doi.org/10.1063/1.1725001>

543 53. Oetting, F.L. The chemical thermodynamics of nuclear materials: IV. The high temperature enthalpies of
544 plutonium monocarbide and plutonium sesquicarbide. *J. Nucl. Mater.* **1980**, *88*, 265-272.
545 [https://doi.org/10.1016/0022-3115\(80\)90282-2](https://doi.org/10.1016/0022-3115(80)90282-2)

546 54. Holley, C.E.; Rand, M.H.; Storms, E.K. *The chemical thermodynamics of actinide elements and compounds. Part*
547 *6: the actinide carbides*; Publisher: IAEA, Vienna, 1984, pp. 53-72.

548 55. Grimvall, G. *Thermophysical properties of materials*; Publisher: Elsevier, New York, 1986, pp. 157-172.

549 56. Hill, H.H. in *Plutonium 1970 and other actinides*, Ed. Miner, W.D.; Publisher: The metallurgical society of the
550 AIME, New York, 1970, pp. 2-19.

551 57. Lai, C.; Hu, Y.; Qiu, R. Thermodynamical stability of substoichiometric plutonium monocarbide from first-
552 principles calculations. *Phys. Chem. Chem. Phys.* **2020**, *22*, 9009-9013. <https://doi.org/10.1039/c9cp06807d>

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).