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Abstract: Thermodynamics of plutonium monocarbide is studied from first-principles theory that
includes relativistic electronic structure and anharmonic lattice vibrations. Density-functional
theory (DFT) is expanded to include orbital-orbital coupling in addition to the relativistic spin-orbit
interaction for the electronic structure and it is coupled with anharmonic, temperature-dependent,
lattice dynamics derived from self-consistent ab initio lattice dynamics (SCAILD) calculations. The
so obtained thermodynamics is compared to results from simpler quasi-harmonic theory and
experimental data. Formation enthalpy, specific heat, and Gibbs energy calculated from the
anharmonic model are validated by a CALPHAD (CALculation of PHAse Diagram) assessment of
PuC and sub-stochiometric PuCosss. Overall, the theory reproduces CALPHAD and measured data
for PuC rather well but the comparison is hampered by the sub-stoichiometric nature of plutonium
monocarbide. It is shown that a bare approach that ignores spin-orbit and orbital-orbital coupling
(orbital polarization) of the plutonium 5f electrons promotes too soft phonons and free energies that
are incompatible with that of the CALPHAD assessment of the experimental data. The investigation
of PuC suggests that the electronic structure is well described by plutonium 5f electrons as “band
like” and delocalized, but correlate through spin polarization, orbital polarization, and spin-orbit
interaction, in analogy to our previous findings for plutonium metal.

Keywords: PuC; DFT; CALPHAD; Electron correlation, Anharmonic phonons, Thermodynamics,
Nuclear fuel

1. Introduction

The physics of the actinides and their compounds is fascinating but also somewhat controversial.
The controversy is primarily focused on the nature of the actinide 5f electrons and the degree of the
electron correlation. Strong electron correlation manifests itself as localization of the 5f electrons on
the actinide atom and for the actinide-oxide compound this localization leads to band gaps in the
electronic structure [1,2]. On the other hand, one finds weaker electron correlation for the early
elemental actinide metals, thorium through plutonium. Particularly for the first four, there is now
consensus that they are well described by band-like 5f electrons [3,4]. In terms of theoretical
approaches, weak or intermediate electron correlation implies that density-functional theory is an
appropriate starting point and methods aimed for stronger electron correlations, assuming explicitly
an intra-atomic Coulomb interaction with a Hubbard U parameter (DFT + U), is not necessary. When
it comes to plutonium metal the electronic structure is still debated in the literature. There are
viewpoints that the 5f electrons are not strongly correlated and that no Hubbard U (U = 0) [5,6], or a
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small value (U ~ 1 eV) [7], is appropriate. But there are also those who believe that the 5f electrons are
strongly correlated, essentially localized, and suitably described by a very large U parameter (U ~ 4-
4.5 eV) [8,9]. Some of these models are very convoluted and require assumptions of parameters such
as the debated U. One cannot ignore, however, that a more transparent and less complicated model
(U = 0) describes plutonium very well [5] including its magnetic profile [10].

Regarding the actinide mononitrides and monocarbides, they appear to lie between the oxides
and the elemental metals in terms of the 5f-electron correlation [11]. In the nitrides and carbides, one
does not encounter band gaps as is the case for the oxides and they are also not insulators but metallic.
In analogy with the actinide oxides they are magnetic but the detailed magnetic structures are not
known for all of them. They form in the rock-salt (B1 or NaCl) structure that is simple cubic with two
types of atoms in the (000) and (Y2 %2 %) positions, respectively. Their simple crystal structure and the
fact that the 5f electrons are less correlated than in their oxide counterparts make them well suited
for DFT-type studies. One complication for modeling, however, is that they tend to be nitride and
carbide deficient, resulting from vacancies and imperfections of the material. Consequently, they
form as AnNix or AnCix (An is actinide) compounds, where x is small (~ 0.1) but significant. The
electronic structure for several AnC compounds were recently studied with quantum-chemical
calculations by Pogany et al. [12].

In addition to the fundamental-science interest in the actinide mononitrides and monocarbides
they are compelling from a practical and applications perspective. The technological interest arises
from their potential use as advanced nuclear fuels for fast-breeder reactors. These materials have
good mechanical characteristics but also possess superior thermophysical properties [13] such a high
melting temperatures, high density of heavy atoms, and high thermal conductivity. In spite of the
interest, there is not as much experimental data available for them as there are for the actinide oxides
and robust theoretical modeling, particularly at elevated temperatures, is certainly welcomed. In the
present report we focus specifically on the thermodynamical high-temperature properties of
plutonium monocarbide, PuC, from first-principles theory.

Recently, we undertook an analogous study on uranium mononitride [14] and here the
thermodynamic modeling was founded on density-functional-theory electronic structure coupled
with lattice dynamics that allowed for anharmonic lattice vibrations. For UN, we compared and
validated our first-principles model directly with experiments in addition to results from a
CALPHAD assessment of the available measured data. Here, we adopt the same modeling approach
for plutonium monocarbide but we recognize that the plutonium 5f electrons provide a greater
challenge for the theory. Therefore, we go beyond our previous treatment of the electronic structure
in UN and now include relativistic effects and an extension to DFT that addresses orbital-orbital
moment coupling (orbital polarization) that is known to be important for accurately describing
plutonium metal [5]. It turns out that these additional electron correlations for PuC are necessary for
realistic Gibbs energies. For comparison, and to confirm our first-principles model for PuC, we carry
out CALPHAD calculations of the Gibbs energies, heat capacities, and formation enthalpy, utilizing
a thermodynamic database and the Thermo-Calc software.

In the following sections, 2-4, we detail our density-functional-theory implementations and
CALPHAD method and continue by showing our results and provide context in a summary and
discussion section.

2. Computational methods

2.1. Electronic structure methods

We are applying three methods, each with their own advantages, for calculating the electronic
structure of PuC. Two all-electron approaches that in one case is implemented with a so-call “full
potential”, i.e., where no geometrical-structural approximations exist, and the other with a Green’s
function technique that allows for a realistic alloy and disorder treatment. The third is a plane-wave
pseudopotential method that is fast and efficient for calculating forces on cells with many atoms. All
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three methods rely on density-functional theory and the generalized gradient approximation (GGA)
[15] for the electron exchange and correlation energy functional.

One method is the all-electron full-potential linear muffin-tin orbital (FPLMTO) method and this
implementation has been explained in the literature [16]. It adopts no approximations for the core
states that exist at deeper energy levels than the valence states. This is a more accurate treatment than
that of the plane-wave methods where the core electrons are a replaced by a pseudopotential.

Some quantities are expanded in series (basis functions, electron densities, and potentials) of
spherical harmonics inside non-overlapping spheres centered at each atomic position. The radial part
of the basis functions inside these spheres are calculated from a wave equation that includes all
relativistic corrections including spin-orbit coupling for d and f states but not for the p states, as is
appropriate [6]. The orbital-orbital coupling (orbital polarization) is only operating on the f states
[6,17] and is not explicit in conventional density-functional theory but has been shown to be
important for some f-electron systems, particularly plutonium [5]. Generally, the set-up parameters
of the present calculations for PuC are close to those for plutonium metal [5]. The FPLMTO method
is applied for calculating the PuC formation enthalpy, the elastic constants, and the so-called “cold
curve”, i.e., the total-energy variation with atomic volume, that is the fundamental input to the
Debye-Griineisen quasi-harmonic simulations. The elastic constants are calculated applying
conventional strains for cubic crystals while the shear modulus is the Voigt-Hill-Reuss average [18]
of the single-crystal moduli. Also, the presented electronic density of states and the related simulated
photoelectron spectra are obtained from this method. Lastly, the Racah 5f parameters within the
orbital-polarization formalism [17] are self-consistently calculated with FPLMTO for use as a fixed
(majority spin band) parameter in our plane-wave calculations.

For the computationally more demanding supercell calculations or the self-consistent-phonon
method (SCAILD, self-consistent ab inito lattice dynamics) [19], we utilize an efficient electronic-
structure approach. Namely, the pseudopotential plane-wave Vienna ab initio simulation package
(VASP) with the projector-augmented-wave method with plane-wave basis set as implemented in
VASP [20-22]. The computational set-up is defined by an energy cut-off of 400 eV and an energy
convergence of 100 eV. The VASP calculations furthermore include non-collinear magnetism with
spin-orbit coupling and orbital polarization as implemented recently by us [6].

PuC is sub-stoichiometric, as mentioned, and the sensitivity to the deviation of the Pu/C ratio
from unity has been explored by VASP but also utilizing a technique that incorporates accurate alloy
theory within the coherent-potential approximation (CPA) [23]. The exact muffin-tin orbital (EMTO)
method relies on Green’s function formalism where the one-electron potential is represented by
optimized overlapping muffin-tin potential spheres [24]. The EMTO-CPA [25] is thus well suited to
explore computational disorder and sub-stoichiometric conditions. It can also be used to study the
influence of randomly distributed vacancies on a sub-lattice (see the Summary and discussion section
below). Other relevant details of the EMTO calculations are similar to those we have reviewed for
other plutonium-alloy systems [5]. Presently, we restrict ourselves to EMTO calculations without
spin-orbit coupling. As with the VASP method, EMTO is compared to FPLMTO for perfect sub-
stoichiometric PuC to validate the robustness and accuracy of the method.

2.2. Lattice dynamics methods

Our main tool for lattice dynamics is the self-consistent ab initio lattice dynamics (SCAILD)
methodology [19] that we often refer to as the self-consistent phonon method. The idea of the scheme
is to employ the small-displacement method to calculate the phonons in a first step and then apply
thermally induced (fixed finite temperature) “frozen” phonons on the atoms and calculate
corresponding DFT atomic forces. The next step is to recalculate new phonons utilizing these DFT
forces and repeat until convergence [19]. This self-consistent-phonon approach is appealing because
it couples different displacements of all atoms with each other (unlike the frozen-phonon method)
and therefore it can account for strong phonon-phonon coupling and anharmonic behavior. We have
used SCAILD successfully for both uranium mononitride as well as for the cubic phases of uranium
and plutonium metals in the past [5,13,26,27] with good success. For SCAILD one needs to specify a
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supercell of the crystal structure and for PuC we define a 3 x 3 x 3 supercell for a total of 54 atoms.
The DFT forces are gathered from VASP calculations and the SCAILD iterative scheme requires a
little more than 200 iterations to strictly converge the lattice-vibration contribution to the free energy
(meV). We perform several simulations: For each temperature (T = 600, 800, 1000, 1200, 1500, and
2000 K), we chose three to five (depending on temperature) lattice constants in order to determine
the equilibrium volume on the basis of the Gibbs-energy minimum. To assess the importance of 5f-
electron correlations beyond conventional DFT-GGA, we employ methods that either include spin-
orbit coupling and orbital polarization (DFT+5O+OP) or not (DFT).

In Figure 1 we show results from SCAILD for PuC at a temperature of 800 K, for the two levels
of electronic-structure theory. The lattice constants are held fixed, corresponding to their zero-
temperature equilibrium volumes (16.2 and 15.6 A3).

T I T I T I T

o

2 -1.0 T =800 K — DFT+SO+OP|

o — DFT

L -1.01

-

86 -1.02

Q

g -1.03

Q

qg -1.04

S -1.05

=

= -1.06

S

IS -1.07

A .

d 1.08

< -1.09

Q

77 | . 1 1 | 1 | ,
50 100 150 200

SCAILD iterations

Figure 1. SCAILD vibrational free energies (eV/cell) as functions of iterations for VASP force
calculations that include spin-orbit coupling and orbital polarization (DFT+SO+OP) and not (DFT).
The atomic volumes are kept constant and equal to 16.2 Asand 15.6 A3, respectively (see main text).

One can judge the importance of anharmonic phonons by comparing calculated thermal
properties from anharmonic and quasi-harmonic theory. For this reason, we conduct a limited set of
calculations from two implementations of the Debye-Griineisen quasi-harmonic approach [28]. It is
a very efficient scheme that only requires the cold curve as input in addition to the atomic mass of
the atoms in the material. There are, however, some assumptions within this model that must be
made. First, Moruzzi et al. [28] suggest that the Debye temperature can be derived from this simple
relationship:

= L
0p = Const\/; 1)

where r is the atomic Wigner-Seitz radius in atomic units, B is the bulk modulus in kbar, and M the
atomic mass (u). They studied non-magnetic transition metals and argued that an appropriate value
for Const is 41.63, but the best value for this constant is generally unknown. Second, there are two
philosophies regarding the formulation of the Griineisen parameter. One that is supposedly [28]
better at higher temperatures, yur, and one that is more suitable when comparing to experimental
specific-heat data at lower temperatures, yr. They are referred to as Slater (yur) and Dugdale-
MacDonald (yrr) [29,30], respectively, and are defined as:
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Here, P is the pressure and V the atomic volume. Third, the necessary analytical representation of the
DFT-calculated cold curve is an approximation in itself. Moruzzi et al. [28] applied a Morse function
[31] for this purpose but other forms can be considered and the actual choice will influence the results
of the Debye-Griineisen model to an extent. In our quasi-harmonic calculations of the specific heat
we utilize the Gibbs2 package [32] and our own implementation [33]. For Gibbs2, referenced below
as “quasi-harmonic (a)”, we use Const =58.03, s.r, and a third-order Birch-Murnaghan analytical form
[34]. The alternative treatment [33] is referred to as “quasi-harmonic (b)”. In this case the scaling
factor, Const =57.23, is determined from the calculated Poisson’s ratio (v = 0.256, see table below). The
latter implementation [33] assumes yur and a Morse function representing the DFT total energies.

2.3. CALPHAD method

We apply the thermodynamic CALPHAD technique to compute the heat of formation, heat
capacity, and Gibbs energy of PuC as functions of temperature. The CALPHAD results are then
compared to our first-principles thermodynamic data and in the case of the specific heat and
formation enthalpy also experimental data. Importantly, CALPHAD is able to also interrogate the
significance of the sub-stoichiometric formation of PuCix. Generally, the fundamental objective for
the CALPHAD scheme is to model the Gibbs energy of individual phases pertaining to binary and
ternary systems to optimally reproduce carefully reviewed phase diagrams and thermodynamic
properties. From the Gibbs energy one computes phase stability and thermodynamic properties of
multicomponent systems [35-37]. CALPHAD self-consistently generates functions and parameters
representing phase dependent Gibbs energies that are collected in a database that can be utilized for
simulation of thermodynamical properties of multi-component systems.

The CALPHAD data is compared to the first-principles modeling, but additionally, we
understand that the interaction between CALPHAD and theory improves the thermodynamic-
modeling capability particularly for materials with many unknown variables. For example, ab initio
results such as heats of formation can directly provide important constraints to the CALPHAD
modeling framework in the absence of experimental data. Furthermore, we note that optimization of
parameters and minimizing errors within in the CALPHAD technique is an inverse problem with
infinite degrees of freedom [38]. As a consequence, many combinations of parameters chosen by the
user can produce coinciding phase diagrams. The use of DFT-predicted properties related to the
CALPHAD assessment constrains the optimization and certifies the resulting thermodynamical
database, both in terms of phase stability and energetics. This has in recent years become customary
and first-principles-informed CALPHAD assessments for actinide systems are available [39-41].

Specifically, for the plutonium-carbide system we apply the CALPHAD assessment [42] for ideal
stoichiometry PuC as well as PuCoss when comparing to the specific heat. In the case of the Gibbs
energies we only consider PuC for an appropriate comparison with the first-principle results.

3. Results

3.1. Elecronic structure

As mentioned in the introduction, one of the central questions regarding the electronic structure
of any actinide compound is the nature of the actinide 5f electrons. For the elemental metals, up to
americium, the 5f electrons can be regarded as bonding and itinerant and not localized as they are in
americium and the following actinides. For plutonium there is still a debate on this, but our view is
that the 5f electrons are more delocalized than not and that opinion is supported by a wealth of
evidence [5]. Specifically, for plutonium monocarbide, it has been argued that the 5f electrons are less
correlated than both plutonium oxides as well as nitrides [11]. No theoretical method is currently able
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224 to predict the nature of the 5f electrons in these systems but comparisons with experimental data
225  provide clues.

226 In Figure 2 we show the calculated, with spin-orbit coupling and orbital polarization, total
227  electronic density of states (e-DOS) for PuC.
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230 Figure 2. FPLMTO total electronic density of states for PuC. The vertical dashed line indicates the
231 location of the Fermi level (at zero energy). The calculations include spin-orbit coupling and orbital
232 polarization and the atomic volume is equal to 16.2 As,

233 The PuC e-DOS is quantitatively similar to that of both the o and & phases of plutonium [5] because
234  ithassignificant occupation of 5f states at the Fermi level. This similarity suggests that the 5f electrons
235  are delocalized as we believe they are in o and 8 plutonium, but a comparison with experimental
236  photoelectron spectra will help the interpretation. The photoelectron spectra for sub-stoichiometric
237  PuCoss has been measured by Gouder et al. [43] and in Figure 3 we compare that result with our e-
238  DOS for PuC that has been broadened and convoluted to simulate instrumental resolution and
239  photon lifetimes [44]. We also include, for comparison, the corresponding simulated photoemission
240  for 3-plutonium [44].
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Figure 3. FPLMTO electronic density of states for PuC that has been convoluted due to instrumental
resolution and photon lifetime broadening. The experimental data points for PuCoss are from
photoemission by Gouder et al. [43] and the simulation for §-Pu from Ref. [44]. The curves are shifted
relative to each other to make the plot more readable.

The experimental PuCoss photoelectron result actually looks quite similar to our simulation for
PuC. One would not necessarily expect a perfect agreement because the stoichiometries are different
and the calculated spectral density do not include photoexcitation matrix elements. Nevertheless, the
favorable comparison supports the interpretation that the 5f electrons, that dominate the spectra for
the plutonium-carbide system, are indeed delocalized as treated by the theory. We further notice in
Figure 3 that the result for §-plutonium is quantitatively comparable to PuC, indicating that the 5f
electrons behave similarly for these systems.

Plutonium monocarbide (PuCi) is known to be anti-ferromagnetic (AF) at temperatures below
100 K [45] but to date, the size of the magnetic moments has not been determined. Previous DFT
calculations within the local density approximation [46] reproduce the AF configuration for PuCozs
but for ideal PuC a ferromagnetic (FM) configuration was predicted with magnetic moments ~ 2
us/atom. The present calculations for PuC, that are based on GGA and the aforementioned spin-orbit
and orbital-polarization correlations, predict the FM state but it is only weakly stable over the AF
configuration (~ 1 mRy/atom). Both configurations have total magnetic moments that are small (~ 0.1
us) because of the effective compensation between the spin and anti-parallel orbital components (both
close to 3.7 ps in absolute magnitude). The orbital-orbital coupling tends to enhance the orbital
moment in metallic plutonium systems [5] and ignoring this interaction in the model produces a
much smaller orbital moment (~ 2.7 ps). In addition to the magnetic moments, the bonding properties
of the AF and FM configurations are nearly identical, meaning that the atomic volume and bulk
modulus are essentially the same. Because the energetics and bonding between these two magnetic
states are so similar and that the magnetic ordering only occurs below 100 K, we only consider the
FM state as we proceed by focusing on thermodynamics at high temperatures.

3.2. Ground-state properties and thermodynamics

Next, we discuss our predicted ground-state properties, including the elastic constants, and our
lattice-dynamics results. In Table 1 we show calculated equilibrium volumes and elastic constants for
PuC from the full theoretical treatment (DFT+5SO+0OP) and for the simpler theory that excludes spin-
orbit coupling and orbital polarization (DFT). Elastic moduli obtained from Born-Mayer and
Coulomb model potentials have been reported for PuC [47], but their zero-temperature values are
considerably smaller (Ci: = 63.9, C12 =27.2, C« = 27.2 GPa) than ours presented in Table 1.

Method 1% B B’ Cn Cn2 Cu G v
DFT+SO+OP 16.2 125 2.7 218 78.0 75.0 73.0 0.256
DFT 15.6 141 0.65 177 123 141 73.9 0.277

Table 1. Ground-state properties obtained from the full theoretical treatment (DFT+SO+OP) and for
a treatment that ignores spin-orbit coupling and orbital polarization. The atomic volume (V) is given
in units of A3, while the bulk (B), shear (G) and elastic (Cj) moduli are given in units of GPa. The shear
modulus is a Voigt-Reuss-Hill average and the Poisson’s ratio, v, is obtained from B and G (see main
text).

We expect that our theoretical elastic moduli in Table 1 are good because we know they are rather
accurately calculated for the phases of elemental plutonium metal [48]. The Poisson’s ratio, v, in the
table is obtained from the standard formula for cubic crystals:

3B-26
T 2(3B+G) 3)
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Unfortunately, there are no published experimental data on the single-crystal elastic constants (Cy)
that could help distinguish between the present and previous [47] modeling. For the isothermal bulk
modulus (B), however, an experimental value has been reported (118 GPa) [49] that is in better
agreement with our best theory (125 GPa) than the model-potential result (39.4 GPa) [47].

In regards to our first-principle results in Table 1 we find some differences between the full
theory (DFT+50+OP) and the scalar-relativistic (no SO or OP) approach (DFT). The former produces
a somewhat larger atomic volume and a correspondingly softer bulk modulus, while the shear
modulus is about the same. Most notably is the fact that the tetragonal shear constant, C" = (C11-C12)/2,
is very small for the scalar-relativistic approximation (27 vs. 70 GPa). This very small C’ indicates that
the crystal is relatively close to a mechanical instability that is linked to softer phonons for the related
phonon branches. Softer phonon modes imply more entropy and a greater contribution to the free
energy, and that is exactly observed in our calculated free energies shown in Figure 1.

Moving on to thermodynamics and our lattice-dynamics results, we show in Figure 4 our
calculated phonon density of states (p-DOS) at 1200 K. The p-DOS clearly suggests that including
spin-orbit coupling and orbital polarization (DFT+SO+OP) in the electronic structure stiffens the
lattice dynamics resulting in more weight of the phonon modes at higher energies.

T | T I T I T

| T
G55 T=1200K _

0.20|- DFT

e

il

W
I

|\ DFT+s0+0P .

Phonon DOS (meV ™)
o
=
[

0.05—

0 5 10 15 20 ' 25
Energy (meV)

Figure 4. SCAILD phonon density of states (states/meV) at 1200 K from electronic structure that
include spin-orbit coupling and orbital polarization (DFT+SO+OP) and not (DFT). The atomic
volumes are 15.6 A% (DFT) and 16.2 A3 (DFT+SO+OP), respectively.

The consequence of the results shown in Figure 1 and 4 is that when the temperature dependent
part of the electronic structure (Fermi-Dirac distribution and electronic entropy) is added to the Gibbs
energies of the two models, the “DFT” is below that of the full “DFT+50+0OP” theory because the
lattice-vibration contribution is greater.

In Figure 5 we show the Gibbs energies obtained from adding the electronic and lattice-
vibration contributions at constant volumes (16.2 A3 and 15.6 A3) together with our CALPHAD Gibbs
energy for PuC. The lesser (DFT) theory lies below the full (DFT+SO+OP) theory and appears to be
in better agreement with the CALPHAD result.
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Figure 5. Free energies from SCAILD lattice contribution and electronic structure at volumes of 15.6
(DFT) and 16.2 A3 (DFT+SO+OP), respectively. Dashed line shows the CALPHAD Gibbs energy.

This is accidental because important contributions to the Gibbs energy are still missing in the first-
principles modeling. First, removing the constraint of a fixed atomic volume, i.e., by accounting for
thermal expansion, lowers the Gibbs energies a substantial amount. It comes with a significant
computational cost to calculate this contribution, however, because SCAILD needs to be repeated for
at least two more volumes (for each temperature) so that the equilibrium volume can be determined.
In addition, since we are studying magnetically disordered PuC (over 100 K [45]), there is a simple
magnetic contribution due to magnetic disorder [50,51] that we can include:

Frnag(V,T) = —kpTin(2u + 1) @)

In this equation, ks is the Boltzmann constant and xthe total (spin and orbital) magnetic moment.
Because orbital polarization, that enhances the magnitude of the orbital moment [5], is addressed in
the model the total magnetic moment is small (~ 0.1 ps). As mentioned, this is due to a near complete
compensation between the spin and orbital contributions. Lastly, there is an electron-phonon-
coupling term that we are not considering in the free energy. Accounting for all energy excitations
from electrons and phonons and their distributions in a universal fashion is difficult and to our
knowledge there is no efficient procedure to accurately determine this contribution.

When we add the missing terms (except the electron-phonon term) to the Gibbs energy, the
scalar-relativistic (DFT) energy is significantly below CALPHAD and in our opinion erroneous (not
shown). The full theoretical treatment (DFT+SO+OP), on the other hand, produces energies that are
above but near that obtained from CALPHAD. In Figure 6 we show our best theory of the Gibbs
energy together with CALPHAD for PuC. They are quite close, with the first-principles result slightly
above CALPHAD, consistent with the fact that electron-phonon interaction is neglected in the ab
initio model.
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357  Here, D(Er) is the electronic density of states at the Fermi level that is extracted from the first-
358  principles electronic structure (DFT+SO+QOP).
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Figure 7. Measured and calculated specific heats at constant pressure, Cp. The solid square (red),
diamond (blue), and circle (black) are experimental data sets from Refs. [52-54]. Dashed lines refer to
results from CALPHAD. The solid black, blue, and red lines without symbols refer to our best
anharmonic theory and two parameterizations of quasi-harmonic Debye-Griineisen theory. The solid
black line with triangles shows the calculated free-electron contribution to Cp.

Perhaps the most glaring aspect of Figure 7 is that the three experimental data sets deviate strongly
above 1000 K. To a degree, the difference may be explained by different stoichiometry of the samples,
but two of samples have the same stoichiometry. Contradictory experimental data complicates the
CALPHAD assessments and the corresponding results become more uncertain. The CALPHAD data
show, consistent with experiments, that the stoichiometry does influence Cp to an extent. Our
anharmonic theory agrees fairly well with all experimental and CALPHAD data up to 1000 K, but
only with the Kruger and Savage [52] and the PuC-specific CALPHAD results above 1000 K. Not
surprisingly, it agrees somewhat less favorably with CALPHAD for PuCose. Furthermore, Figure 7
suggests that the quasi-harmonic treatments, both the (a) and (b) variants (see Computational
Methods section 2.2), deviate from CALPHAD and anharmonic theory for PuC above 1000 K. This is
consistent with our findings for UN where the quasi-harmonic approach was shown to be
increasingly inaccurate at temperatures above 1000 K [14].

4. Summary and discussion

We calculate thermodynamical properties; lattice dynamics, free energies, and heat capacities
for ideal-stoichiometry plutonium monocarbide. The highest level of theory includes spin-orbit
coupling and orbital-orbital coupling (orbital polarization) for the DFT-GGA electronic structure.
This approach assumes delocalized (band) 5f electrons on plutonium and a direct comparison with
the experimental photoelectron spectroscopy confirms that this is appropriate for PuC. This
interpretation of the 5f electrons is consistent with the calculated Pu-C and Pu-Pu distances (2.52 and
3.57 A, respectively). Namely, the Pu-Pu distance is close to the Hill limit (~ 3.4 A) [56] that is an
approximate criteria for 5f-band formation.

The thermal properties are obtained from combining our advanced DFT to a temperature-
dependent self-consistent phonon scheme that includes strong anharmonic lattice dynamics. We
show that this level of electronic-structure theory and lattice dynamics are necessary to reproduce
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the CALPHAD Gibbs energy and produce consistent specific-heat data. The consistency between our
first-principles modeling, CALPHAD, and experiment is further explored by comparing PuC
formation enthalpies. The formation enthalpy for PuC is calculated as the DFT+50O+OP total energy
difference between the compound and its solid-form constituents, i.e., carbon (a-C, graphite) and -
plutonium; E(PuC) - E(a-Pu) — E(a-C) = -21 kJ/mol. Here, all phases are carefully relaxed (not a trivial
task for a-plutonium [5]). The first-principles formation enthalpy is in reasonable agreement with
results from CALPHAD (-26.4 kJ/mol) and the experimental values, that range from -15.4 to -25.3
kJ/mol [42,54]. Hence, there is favorable coherence in the thermodynamical properties between
modeling and experiments.

The correlation between theoretical and experimental specific heats is obscured by the fact that
plutonium monocarbide forms with a deficiency of carbon atoms, i.e., PuCix, where x is ~ 0.1. One
can capture this carbon deficiency in supercell calculations by removing carbon atoms and creating
vacancies on the carbon sites. Specifically, by removing one carbon atom from a 16-atom supercell,
we can study the PusCr compound, i.e., PuCi~, where x = 0.125. The calculation is performed with
VASP and the full SO+OP treatment, allowing for structural relaxation of the supercell with the
vacancy. It turns out that the relaxation effects are small but the atomic volume increases significantly
with a corresponding softening of the bulk modulus. Complementary to these supercell calculations,
we conduct an EMTO-CPA investigation of a disordered PuCi« system where C/Pu = 0.90, and 10%
of the carbon atoms are replaced by vacancies but without structural relaxation. In other words, the
carbon atoms and vacancies are randomly distributed on the carbon-type sub-lattice with 10%
probability of being a vacancy and 90% probability of being a carbon atom. Consistent with the
supercell results, our disorder EMTO-CPA model finds an increase in atomic volume and a decrease
of the bulk modulus when carbon is eliminated. This behavior is also in agreement with a recent
theoretical study [57] of the stoichiometry in PuC. From the computed bonding energetics of the
carbon-deficient system we apply the quasi-harmonic treatment [33] and compare that with an
analogous calculation for the ideal PuC system for VASP and EMTO (not shown). The difference in
the specific heats, due to sub-stoichiometry, proves to be small for both methods and it cannot fully
explain the sensitivity to the stoichiometry reflected in the experimental heat capacity.
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