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Abstract  

Deep eutectic solvents (DESs) constitute a rapidly emerging class of sustainable liquids that have 
been widely studied and employed in chemical separations, catalysis, and electrochemistry. The 
unique physico-chemical and solvation properties of DESs can be highly tailored by choosing 
the appropriate hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). Understanding 
the role of the HBA and HBD on the multiple solvation interactions in DESs is important to 
enable their judicious selection for particular applications. This work constitutes the first study to 
exploit chromatography to measure solute-solvent interactions of DESs using a wide array of 
known probe molecules. The constituent components of 20 DESs, formed by ammonium and 
phosphonium-based salts and carboxylic acids, are systematically modulated to delineate the 
contribution of the HBA and HBD towards individual solvation properties. Solute-solvent 
interactions measured in this study are used to interpret and explain the performance of DESs in 
desulfurization of fuels and extraction of natural products. The results from this study can be 
used to predict and understand the performance of DESs in various chemical processes where 
solvation interactions heavily influence outcomes. 
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Introduction 

 Deep eutectic solvents (DESs) are homogenous mixtures formed through the combination 

of a hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA).1-3 The resulting compound 

has a lower melting point than both individual components.4 The majority of HBAs are quaternary 

ammonium or phosphonium salts,5-6 while HBDs are typically comprised of metal halides, 

carbohydrates, amides, alcohols, or carboxylic acids.3, 7 DESs have been applied in a number of 

applications such as solvents in the extraction of metals,8-9 bio-catalysis,10-13 carbon dioxide 

capture,14-15 biodiesel production,16-18 extraction of natural compounds,19-21 and desulfurization of 

fuels.22-24 They have garnered considerable attention over the last decade and a half as potential 

alternatives to ionic liquids (ILs). ILs are molten organic salts comprised of a cation and anion 

with melting points below 100 ℃. Like ILs, DESs also possess negligible vapor pressure a broad 

liquid range. The physico-chemical properties of DESs can generally be modulated by tailoring 
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the chemical structure and/or the relative molar ratio of HBA/HBD.25-27 Their hydrophobicity and 

hydrophilicity can also be varied by altering functional group substituents of the HBA and HBD.5, 

14, 28 Moreover, low cost starting materials and solventless/purification-free synthesis make DESs 

more attractive than ILs in certain applications.6, 29  

To better predict the performance of DESs when they are used in chemical separations and 

catalysis, an understanding of their solvation interactions (i.e., hydrogen bonding, dispersion, 

dipolarity/polarizability, n-π, and π-π interactions) with dissolved molecules is essential. DESs 

have been employed as co-solvents for bio-catalysis to enhance the activity and stability of lipases 

in aqueous reactions. Those with high hydrogen bond acidity have been observed to impart a 

stabilizing effect on lipases through hydrogen bond formation between the lipase and DES.11-12
 

Until now, various empirical polarity scales based on solvatochromic probes have been used to 

characterize DESs.17, 26, 30-32 Reichardt’s polarity index, based on the negative solvatochromism of 

betaine dye 30, has been used to measure the polarity of DESs.17, 30, 32-36 The normalized solvent 

polarity parameter (ETN) is obtained from the dye’s absorption maximum in the solvent and 

provides a weighted average of all solvation interactions between the probe and DES.35 Similarly, 

Kamlet-Taft solvent parameters have been used to describe the solvation properties of DESs.26, 31-

32, 34-38 The hydrogen bond donating ability (α), hydrogen bond accepting ability (β), and 

dipolarity/polarizability (π*) of the solvent are determined based on the shift in absorption bands 

of different probes, such as betaine dye 30, 4-nitroaniline, and N,N-diethyl-4-nitroaniline.32 

Kamlet-Taft parameters describe these three interactions separately and generally provide more 

detail compared to the single normalized polarity parameter offered by the Reichardt dye alone. 

However, no single probe molecule provides a suitable measure of all solvation interactions that 

occur within complex solvents such as DESs.39 Moreover, DESs comprised of acidic HBDs are 
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known to interfere with the solvatochromic behavior of betaine dye 30 due to its zwitterionic 

nature.30, 32 The polarity values measured by solvatochromic probes usually fall within a narrow 

range and do not adequately explain experimental observations when examining DESs with 

different chemical make-up. For example, the hydrogen bond basicity (β value) of DESs comprised 

of the tetrabutylammonium bromide ([N4444
+][Br-]) HBA and the butanoic acid HBD were found 

to be almost identical (i.e., 0.81, 0.84, and 0.82) for different relative molar ratios.31 However, for 

this same DES, a 10-fold increase in extraction efficiency of Cynaropicrin was observed when the 

HBA:HBD molar ratio was varied from 1:1 to 1:2.40  

Limitations of solvatochromic methods necessitate approaches that use a broad array of 

probe molecules to measure solute-solvent interactions. Inverse gas chromatography (IGC) 

employs a solvent as the chromatographic stationary phase and the extent to which known probe 

molecules interact provides an indirect measure of the strength of individual solvation interactions. 

This approach requires very small amounts of the DES (15-20 mg) and permits the solvation 

properties to be examined as a function of temperature.41 Individual solvation interactions are 

determined using a linear free energy relationship, such as the Abraham solvation parameter model 

(equation 1), which describes the contribution of each individual solvation interaction based on 

the chromatographic retention of probe molecules.42-43  

Log k = c + eE + sS + aA + bB + lL           (1) 

As shown in equation 1, k refers to the retention factor of each probe molecule for the DES 

stationary phase at a specific temperature. The retention factor is calculated chromatographically 

by measuring the retention time of each solute as well as the column dead volume. The solute 

descriptors (E, S, A, B, and L) have been experimentally determined by Abraham,42 and are defined 

as: E, excess molar refraction calculated from the solute’s refractive index; S, solute 



5 
 

dipolarity/polarizability; A, solute hydrogen bond acidity; B, solute hydrogen bond basicity; and 

L, solute gas-hexadecane partition coefficient at 298 K.42 Retention factors and solute descriptors 

are used to measure the system constants (c, e, s, a, b, l) which characterize the multiple solvation 

interactions of the solvent. The system constants include, e is the ability of solvent to interact with 

π- and n-electrons of the solute; s describes the dipolarity/polarizability of the solvent; a defines 

the hydrogen bond basicity (i.e., interaction of basic solvent with acidic solutes); b is the measure 

of the hydrogen bond acidity; and l describes dispersive interactions. This model has been utilized 

to characterize the solvation properties for various classes of solvents.44-46  

 In this study, an extensive series of twenty DESs formed by ammonium and phosphonium-

based salts and carboxylic acids are characterized by IGC. This class of DESs has been employed 

in a number of interdisciplinary fields of chemistry,8, 13, 47-48 but efforts toward fully characterizing 

their solvation  properties have been met with limited success. This represents the first study to 

measure chromatographically solute-solvent interactions of DESs. The breadth of DES 

combinations was chosen to examine the effect of the following features on solvation interactions: 

(a) molar ratio of HBA:HBD, (b) length of HBA and HBD alkyl chain substituent, (c) structure 

and combination of HBA cation and anion, and (d) pKa of HBD. An enhanced understanding of 

HBA and HBD interactions and their overall effect on solvation interactions aids in the 

development of a molecular model that can ultimately be used to interpret and possibly predict the 

performance of DESs in applications such as chemical separations and catalysis. 

Experimental 

Materials 
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 Compounds used for the preparation of DESs including tetraethylammonium chloride 

([N2222
+][Cl-], >98%), tetrabutylammonium chloride ([N4444

+][Cl-], >97%), [N4444
+][Br-] (>99%), 

allyl(triphenyl)phosphonium bromide ([PAl(Ph)3
+][Br-], 99%), tetrabutylphosphonium chloride 

([P4444
+][Cl-], 96%), hexanoic acid (HA, >98%), octanoic acid (OA, >99%), para-toluenesulfonic 

acid monohydrate (TSA, >98.5%), levulinic acid (LvA, 98%), benzene sulfonic acid (BSA, 98%) 

were purchased from MilliporeSigma (St. Louis, MO, USA). Tetrapropylammonium chloride 

([N3333
+][Cl-], >97%) was purchased from Tokyo Chemical Industry (Portland, OR, USA) and 

trihexyl(tetradecyl)phosphonium chloride ([P66614
+][Cl-], >93%) was purchased from Strem Chemical 

(Newburyport, MA, USA). Malonic acid (MA, 99%) was purchased from Acros Organics (Morris 

Plains, NJ, USA) and L-Lactic acid (LcA, 98%) was purchased from Alfa Aesar (Ward Hill, MA, 

USA). 

 The following compounds were used for IGC measurements. Butyraldehyde (99%), 1-

chlorobutane (99%), ethyl acetate (99.5%), methyl caproate (99%), naphthalene (99%), 

cyclopentanol (99%), nitromethane (99%), and 2-nitrophenol (99%) were purchased from Acros 

Organics. Bromoethane (98%) was purchased from Alfa Aesar and ethyl benzene was purchased 

from Eastman Kodak Company (Rochester, NJ, USA). Acetic acid (99.9%), N,N-

dimethylformamide (99.9%), 1-hexanol (98%), cycloheptanol (98%), and toluene (99.8%) were 

purchased from Fisher Scientific (Pittsburgh, PA, USA). 2-chloroaniline (98%), p-cresol (99%), 

o-xylene (97%), p-xylene (99.5%), methyl acetate (98%), phenylethyne (98%), and 1-

bromohexane (98%) were purchased from Fluka (Steinheim, Germany). Benzaldehyde (99%), 5-

bromoacenapthene (90%), 2-nitronapthalene (85%), 1-chlorohexane (99%), 1-chlorooctane 

(99%), cyclohexanol (99%), cyclohexanone (99.8%), 1-iodobutane (99%), iodoethane (99%), 1-

nitropropane (98%), octylaldehyde (99%), 1-pentanol (99%), 2-pentanone (99%), propionitrile 
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(99%), 1-decanol (99%), acetophenone (99%), aniline (99.5%), benzonitrile (99%), benzyl alcohol 

(99%), 1-bromooctane (99%), 2-butanol (98%), 1-butanol (99.8%), 1,2-dichlorobenzene (99%), 

dichloromethane (99.8%), 1,4-dioxane (99.5%), 1-octanol (99%), phenol (99%), pyridine (99%), 

pyrrole (98%), m-xylene (99.5%), 1-propanol (99.9%) 2-propanol (99.9%), methanol (99%), 

ethanol (99%), benzylamine (99%), benzamide (99%), and propionic acid (99%) were purchased 

from MilliporeSigma (St. Louis, MO, USA).  

 Deuterated dimethyl sulfoxide (d6-DMSO) and chloroform (CDCl3) were obtained from 

Cambridge Isotope Laboratories (Andover, MA, USA). Deactivated capillary (5 m × 250 µm) was 

obtained from MEGA (Legnano, MI, Italy) and used for the preparation of chromatographic 

columns. 

Methods 

Preparation of DESs 

 DESs examined in this study (Figure 1) have been previously reported and their preparation 

involved the use of similar protocols.8, 18, 31-32, 48 Firstly, equimolar amounts of the HBD and HBA 

were weighed in a 20 mL vial containing a magnetic stirrer. The vial was then heated for three 

hours at 60 ℃, after which a uniform and homogenous mixture of DES formed. The DES was 

placed to dry in a vacuum oven at room temperature for two days. Water content of all DESs, 

provided in Table S1, was measured by a Metrohm 831 Karl Fischer coulometric titrator. Melting 

point and/or glass transition temperatures for all DESs are provided in Table S2 and a 

representative phase diagram for the [N4444
+][Cl-] : OA DES is shown in Figure S1. Differential 

scanning calorimetry (DSC) measurements were performed using a DSC Q2000 calorimeter (TA 

Instruments). All samples were cooled from 40 ℃ to -120 ℃ at a rate of 20 K/min-1 and then 
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heated to 80 ℃ at a rate of 20 K/min-1. DESs examined in this study were characterized by 13C 

and 1H NMR and all spectra are provided in the supporting information. 

Chromatographic column preparation using DES as stationary phase 

 All GC columns were prepared by coating a thin layer of DES on the inner wall of five-

meter deactivated fused silica capillaries using the static coating method. All DESs were dissolved 

in dichloromethane to prepare a coating solution (0.45% w/v) that produced an approximate film 

thickness of 0.28 µm.49 The coated columns were conditioned at 60 °C for 30 min under a constant 

flow of helium. Column efficiencies were determined using naphthalene at 60 °C and all columns 

possessed efficiencies above 2200 plates/meter.  

For the IGC study, all probe molecules were dissolved in dichloromethane at a 

concentration of 1 mg/mL. A total of 49 probe molecules, shown in Table S3, were used in this 

study and were injected individually at 40, 50, and 60 ºC. Analytes possessing lower boiling points 

exhibited little to no retention on the stationary phase while other analytes were retained more 

strongly. Therefore, not all probe molecules were subjected to the solvation parameter model at 

some temperatures.  

GC measurements were carried out on an Agilent Technologies 7890B gas chromatograph 

employing a flame ionization detector (GC-FID). Helium was used as a carrier gas at a flow rate 

of 1 mL/min. The injector and detector temperatures were held at 150 °C using a split ratio of 20:1 

and an injection volume of 1 µL was used in all experiments. Hydrogen was utilized as the makeup 

gas at a flow rate of 30 mL/min while the air flow was held at 400 mL/min. Propane was used to 

measure the dead volume of each column. Multiple linear regression analysis and statistical 

calculations were performed using the program Analyze-it (Microsoft, USA). Figure S2 



9 
 

demonstrates a typical regression line consisting of all probe molecules with a correlation 

coefficient (R) value of 0.99. 

Results and Discussion 

This study examines DESs comprised of ammonium and phosphonium-based salts as 

HBAs and a series of carboxylic acids as HBDs with pKa values ranging from -6.7 to 4.86. The 

chemical structures of the HBAs and HBDs, as well as the DES abbreviation and numbering, are 

shown in Figure 1. DESs 1-19 were prepared using two different molar ratios of HBA:HBD (i.e., 

1:1 and 1:2) and DES 20 was prepared using a 1:3 molar ratio to study the effect of this variable 

on the overall solvation characteristics.  

At the onset of this study, several challenges were encountered in measuring solute-solvent 

interactions of DESs by IGC. To obtain chromatographic columns with high separation efficiency, 

it is critical that a uniform thin film of solvent be maintained on the inner wall of the capillary. 

Furthermore, the thin film must retain its integrity and should not flow when subjected to varying 

temperatures. When injector/detector temperatures of 250 ℃ and oven temperatures exceeding 80 

℃ were employed in initial GC separations, it was observed that the retention times of probe 

molecules varied significantly indicating disruption to the DES stationary phase. Retention times 

were found to be reproducible on newly coated capillaries when the injector/detector and oven 

temperatures were maintained at 150 ℃ and 60 ℃, respectively, under a constant flow of dry 

carrier gas. These temperatures permitted the probe molecules to be volatilized for 

chromatographic analysis while preventing loss of the DES stationary phase.  The system constants 

of all DESs were examined at 40 ℃, 50 ℃, and 60 ℃ using a diverse and broad range of probe 

molecules (see Table S3). The retention characteristics of each probe were measured at three 

different temperatures to ensure soundness of the solvation models and to examine the variation 
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in solvation interactions with temperature. Figure 2 shows the GC separation of alcohols and 

haloalkanes on three ammonium-based DES stationary phases. The structural features and 

composition of each DES resulted in varying solvation interactions and different separation 

behavior for the ten probe molecules. 

Values for the system constants at the three temperatures are shown in Tables 1 and 2 for 

the ammonium and phosphonium-based DESs, respectively. All of the developed models are 

statistically sound based on the correlation coefficients of the multiple linear regression fit and the 

magnitude of the Fisher F-statistics. As expected, the majority of system constants exhibited a 

smooth drop with increasing temperature. The [N4444
+][Cl-] and [P66614

+][Cl-] ILs were used as 

HBAs to form many of the DESs in this study and their system constants are also provided.  

Comparison of solvation interactions for ammonium and phosphonium-based DESs 

Among the thirteen ammonium-based DESs studied (DESs 1-13, see Table 1), they were 

all found to exhibit strong hydrogen bond basicity (a), dipolarity (s), and dispersive-type 

interactions (l). Dipolar interactions ranged from 1.97 to 2.52 at 50 ℃ and all ammonium-based 

DESs were less dipolar than the [N4444
+][Cl-] IL. Dispersion interactions at 50 ℃ ranged from 0.62 

to 0.73 for DESs 1-11 and were considerably lower for the [N2222
+][Cl-] : 2LcA and [N2222

+][Cl-] : 

2LvA DESs. Phosphonium-based DESs (14-20) examined in this study also possessed strong 

hydrogen bond basicity, dipolarity, and dispersive-type interactions. Dipolar interactions for these 

DESs ranged from 1.86 to 2.56 at 50 ℃ and generally exhibited similar (DESs 14-17, 20) or higher 

(DESs 18-19) dipolarity than the [P66614
+][Cl-] IL. Overall, phosphonium-based DESs exhibited 

considerably higher dispersive-type interactions compared to the ammonium-based DESs.  
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To classify the twenty DESs examined in this study based on two dominant interactions, 

their hydrogen bond basicity and dispersion interaction values from the model were plotted. For 

comparison purposes, the [N4444
+][Cl-] and [P66614

+][Cl-] ILs are also included. Using k-means 

clustering (Figure S3), six groupings were attained. As shown in Figure 3, DESs in group A 

consists of the [N4444
+][Cl-] and [P66614

+][Cl-] HBDs and higher pKa HBAs (OA and HA). Group 

B is made up exclusively of the [P66614
+][Cl-] HBA with different molar ratios of the BSA HBD. 

DESs generally composed of HBAs with moderate to long alkyl chains ([N4444
+][Cl-], [N4444

+][Br-

], ([N3333
+][Cl-]), [P4444

+][Cl-], [P66614
+][Cl-]) and OA and TSA HBAs comprise group C. DESs in 

group D include the [N4444
+][Cl-] and [PAl(Ph)3

+][Cl-] HBAs and low pKa HBDs (LcA, MA, TSA, 

and BSA). Groups E and F include the [N2222
+][Cl-]: 2LvA and [N2222

+][Cl-]: 2LcA DESs, 

respectively. Figure 3 provides a chemically useful means to differentiate the solvents from one 

another for use in specific applications and demonstrates the important role that the HBA and HBD 

have in modulating these solvation interactions. 

In a previous study comparing the solute-solvent interactions of ILs measured by the 

solvation parameter model and Kamlet-Taft study,50 it was proposed that the solvation parameter 

model tended to report lower hydrogen bond acidity when evaluating ILs with highly basic anions 

whereas Reichardt dye interacts exclusively with the cation. According to Tables 1 and 2, this is 

clearly the case for the hydrogen bond acidity parameter, where moderate to high negative values 

are observed. However, two previous studies have reported contradictory Kamlet-Taft parameter 

data for the [N4444
+][Cl-]: 2OA and [N4444

+][Cl-]: 2Decanoic acid  DESs. Florindo et. al.32 reported 

a hydrogen bond donating ability ( of 1.41 and 1.36 and hydrogen bond acceptor ability ( of 

0.99 and 0.97 for the [N4444
+][Cl-]: 2OA and [N4444

+][Cl-]: 2Decanoic acid  DESs, respectively, 

while Teles et. al.31 report  of 0.84 and 0.85 and  of 1.19 and 1.28, respectively, for the same 
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DESs.  The following sections discuss the effects of hydrogen bond acceptor and hydrogen bond 

donor on overall DES solvation characteristics. 

Effect of the hydrogen bond acceptor 

In the case of ammonium-based DESs, four HBAs ([N4444
+][Cl-], [N4444

+][Br-], [N3333
+][Cl-

], and [N2222
+][Cl-]) were evaluated to study the effect that the length of alkyl chain substituent as 

well as anion have on individual solvation interactions. The hydrogen bond basicity (a-term) for 

the [N4444
+][Cl-] IL was 8.03 at 50 ℃ and was higher than that of [P66614

+][Cl-] (see Tables 1 and 

2). This is consistent with previously reported system constants for these two ILs.45, 51  When the 

length of alkyl chain substituent in the cation was varied while maintaining the chloride anion with 

the same HBD, the hydrogen bond basicity of [N4444
+][Cl-] : 2OA, [N3333

+][Cl-] : 2OA, and 

[N2222
+][Cl-] : 2OA decreased from (6.80±0.14), (5.43±0.14), and (5.02±0.11) at 50 ℃, 

respectively. A similar trend of decreasing hydrogen bond basicity was observed in the study of 

Teles et al. where the hydrogen bond basicity (β-parameter) of DESs decreased in order of  1.19, 

0.96, and 0.87 for the [N4444
+][Cl-]: 2OA, [N3333

+][Cl-]: 2OA, and [N2222
+][Cl-]: 2OA DESs, 

respectively.31 When the chloride anion in the [N4444
+][Cl-]: 2OA DES was changed to [Br-] in the 

[N4444
+][Br-]: 2OA DES, the hydrogen bond basicity and dipolarity were both observed to decrease 

by nearly 20% and 10%, respectively, due to stronger hydrogen bonding interactions offered by 

the chloride anion.31, 45 Teles et al. have also reported a drop in the hydrogen bond basicity of DESs 

when the anion of [N4444
+][Cl-]: 2OA DES (β= 1.19) was changed to [Br-] (β= 1.09).31 The ability 

to tune the hydrogen bonding capability of DESs could be highly beneficial in the solubilization 

and stabilization of viruses.52 The dipolarity of DESs with a 1:2 ratio of HBA to octanoic acid was 

observed to increase gradually from 1.97±0.07 (DES 11), 2.05±0.09 (DES 10), 2.15±0.09 (DES 

8), 2.34±0.10 (DES 2) at 50 ℃ when comparing the [N2222
+][Cl-], [N3333

+][Cl-], [N4444
+][Br-], 
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[N4444
+][Cl-] HBAs, respectively. Overall, dispersion interactions did not vary significantly when 

the structure of the HBA was varied. 

Three different HBAs (i.e., [P66614
+][Cl-], [P4444

+][Cl-], [PAl(Ph)3
+][Br-]) were used to prepare 

the phosphonium-based DESs in this study. A comparison of the hydrogen bond basicity and 

dipolarity for the [P66614
+][Cl-]: TSA and [P4444

+][Cl-]: TSA DESs reveals that the HBA had very 

little effect on these two solvation interactions. The most dramatic effect was observed for the 

[PAl(Ph)3
+][Br-]: 3TSA DES, which contains one allyl and three phenyl substituents appended to the 

phosphonium cation. The presence of aromatic moieties in the HBA and HBD gave rise to 

enhanced π-π interactions and an “e” term of 0.27 at 50℃. Dispersion interactions were similar 

for the [P66614
+][Cl-]: TSA and [P4444

+][Cl-]: TSA DESs, but were considerably smaller for the 

[PAl(Ph)3
+][Br-]: 3TSA DES.  

Effect of hydrogen bond donor 

Seven different HBDs possessing a broad range of pKa values were evaluated in the 

ammonium-based DESs and paired with HBAs at different molar ratios. For DESs formed using 

the [N4444
+][Cl-] HBA, the hydrogen bond basicity decreases significantly when combined with 

lower pKa acids. The neat [N4444
+][Cl-] IL afforded the highest hydrogen bond basicity of 8.03 at 

50 °C. Combining the [N4444
+][Cl-] HBA with one molar equivalent of octanoic acid (pKa = 4.86) 

resulted in a drop to (7.60±0.16) for the [N4444
+][Cl-]: OA DES. When stronger acids, such as para-

toluenesulfonic acid (pKa = -2.8) and benzenesulfonic acid (pKa = -6.7), were employed as HBDs 

the hydrogen bond basicity underwent another significant decrease to (5.66±0.13) for [N4444
+][Cl-

]: TSA and (5.23±0.11) for [N4444
+][Cl-]: BSA at 50 ℃, respectively, as shown in Figure 4(a). 

Examining the effect of DESs formed using a 1:2 molar ratio of HBA:HBD, Figure 4(b) shows 

that the hydrogen bond basicity dropped by nearly 10% and 18% when comparing [N4444
+][Cl-] : 
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OA/[N4444
+][Cl-] : 2OA and [N4444

+][Cl-] : BSA/[N4444
+][Cl-] : 2BSA DESs, respectively. Malonic 

acid, a dicarboxylic acid (pKa1 = 2.83), and lactic acid (pKa = 3.86) were particularly effective at 

lowering the hydrogen bond basicity in the case of the [N4444
+][Cl-] : 2MA (4.41±0.10) and 

[N4444
+][Cl-] : 2LcA (4.64±0.10) DESs compared to that of the [N4444

+][Cl-] : 2OA (6.80±0.14) 

DES at 50 ℃.  This data is further illustrated in Figure 2(a) and (b) where alcohols are observed 

to retain significantly longer on the [N4444
+][Cl-] : OA DES compared to the [N4444

+][Cl-] : 2OA 

DES due to stronger hydrogen bond basicity interactions. In addition, it can also be observed that 

chlorohexane and chlorooctane interact more strongly with the [N4444
+][Cl-] : 2OA DES due to 

higher dispersive-type interactions. These separations are contrasted by the [N4444
+][Cl-] : 2LcA 

DES in Figure 2(c) where alcohols exhibit very low retention (less than 13 minutes) and different 

separation selectivity due to lower hydrogen bond basicity and dispersion interactions. The trend 

of decreasing hydrogen bond basicity upon shortening the alkyl chain length of HBD in the 

[N4444
+][Cl-] : 2OA (6.80±0.14 at 50 ℃) and [N4444

+][Cl-] : 2HA (6.44±0.15 at 50 ℃) DESs was 

observed to be consistent with the Kamlet-Taft hydrogen bond basicities, where a hydrogen bond 

basicity (β-parameter) of 1.19 and 1.02 was reported for the [N4444
+][Cl-] : 2OA DES and 

[N4444
+][Cl-] : 2HA DESs, respectively.31 Phosphonium-based DESs consisting of three different 

HBDs (octanoic acid, benzenesulfonic acid, and para-toluenesulfonic acid) exhibited similar 

trends observed previously for the ammonium-based DESs. The neat [P66614
+][Cl-] IL possessed 

the highest hydrogen bond basicity of (7.36±0.15) at 50 °C. The hydrogen bond basicity dropped 

to (6.92±0.14) for [P66614
+][Cl-] : OA, (5.96±0.14) for [P66614

+][Cl-] : TSA, and (5.04±0.11) for the 

[P66614
+][Cl-] : BSA DES. A comparison of [P66614

+][Cl-] : OA and [P66614
+][Cl-] : 2OA as well as 

[P66614
+][Cl-] : BSA and [P66614

+][Cl-] : 2BSA reveals that two molar equivalents of the HBD 

resulted in compounds with lower hydrogen bond basicity, with the effect being more pronounced 
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for benzenesulfonic acid. Dispersion interactions were largely unchanged when using different 

molar equivalents of HBD while maintaining the same HBA. Retention factors for fifteen probe 

molecules on thirteen DES stationary phases is provided in Table S4 and allows for a comparison 

among DESs belonging to the two different groups. 

To further understand the hydrogen bond acidic nature of the DESs, chromatographic 

retention of N,N-DMF and N,N-DMAC was studied on 6 ammonium-based DES stationary phases 

with 1:1 and 1:2 molar ratios of HBD:HBA. These probes were chosen due to the fact that they 

are sufficiently volatile and their retention should vary depending upon the acidity of the DES 

(e.g., the more acidic the DES results in increased retention of basic probes). Considering the 

[N4444
+][Cl-]: OA, [N4444

+][Cl-]: TSA, and [N4444
+][Cl-]: BSA DESs, the retention factors of N,N-

DMF and N,N-DMAC increased significantly moving from OA (15.27 and 17.40, respectively) to 

the more acidic BSA HBD (19.50 and 42.17), indicating an enhancement in hydrogen bond acidity 

interactions as the hydrogen bond basicity of the DES decreases (Table 3). The retention factors 

on the [N4444
+][Cl-]: OA and [N4444

+][Cl-]: 2OA DESs were unchanged for N,N-DMF and slightly 

higher for N,N-DMAC on the [N4444
+][Cl-]: 2OA DES. The difference was much more pronounced 

for the [N4444
+][Cl-]: BSA and [N4444

+][Cl-]: 2BSA DESs, where the retention factor for N,N-

DMAC increased dramatically from 42.17 to 1611.42. Clearly, the hydrogen bond donating 

capability of DESs in this class can be enhanced by using low pKa HBDs and employing higher 

molar ratios of HBD to HBA.  

DES solvation model 

 DESs have been increasingly applied as green solvents in chemical separations since their 

multiple solvation interactions can be tuned compared to conventional organic solvents.53 The 

system constants determined for the DESs in this study provide insight into the magnitude of 
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individual solvation interactions and how they can be tailored using different HBA and HBDs. 

This section will focus on using the solvation data from this study to understand qualitative 

observations and results from previously published studies involving DESs. 

Desulfurization of fuels with DESs 

 DESs have been used as efficient extraction solvents for the desulfurization of fuels.22-24, 

54 Organosulfur compounds are a major source of SOx produced from fuel combustion and 

contribute significantly towards environmental pollution.24 DESs consisting of ammonium halide-

based HBAs and carboxylic acid-based HBDs have been shown to exhibit high extraction 

efficiencies in the extractive desulfurization of fuels.22-25, 55  Li et al. reported an approximate 25% 

decrease in extraction efficiency moving from the [N4444
+][Cl-] : 2OA to [N4444

+][Cl-] : 2MA DES. 

It was concluded that the main driving force for the desulfurization process is hydrogen bonding 

between the DES and the thiol functional group of sulfur containing compounds in fuels.22 Table 

1 shows a considerable difference in hydrogen bond basicity between [N4444
+][Cl-] : 2OA 

(6.80±0.14)  and [N4444
+][Cl-] : 2MA (4.41±0.10) with both DESs falling into different groups 

within Figure 3. It has also been shown that extraction efficiencies further decreased when the 

length of alkyl chain substituent within the HBA was reduced from [N4444
+][Cl-] to 

tetramethylammonium chloride [N1111
+][Cl-].22  A similar trend can be observed in Table 1 when 

the HBA is varied from [N4444
+][Cl-] (6.80±0.14), [N3333

+][Cl-] (5.43±0.14), and [N2222
+][Cl-] 

(5.02±0.11) at 50 ℃ with octanoic acid as HBD. As shorter alkyl substituents are incorporated 

within the HBA or the number carboxyl or hydroxyl functional groups within the HBD is 

increased, the capability of the DES to undergo hydrogen bonding interactions with organosulfur 

compounds decreases.  

Extraction of natural products by DESs  
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 DESs containing tetraalkylammonium halide-based HBAs and carboxylic acid-based 

HBDs have been used for the extraction of cynaropicrin, a bioactive compound of great potential 

for its applications in nutraceuticals.40, 56 The hydroxyl groups within the chemical structure of 

cynaropicrin make it especially prone to undergo hydrogen bonding interactions with the class of 

DESs examined in this study. An extraction efficiency of 2.4% has been reported using the 

[N4444
+][Cl-] : 2HA as extraction solvent while a 0.4% extraction efficiency was observed when 

the HBA was shortened to the [N2222
+][Cl-] : 2HA DES.40 This observation is supported by the 

results in the solvation model where decreasing the alkyl chain substituent from butyl to ethyl 

within the cation of HBA resulted in a significant drop in the capability of DES to undergo 

hydrogen bonding interactions with solute molecules (see Table 1). Figure S4 shows the extraction 

yield (blue bar) of cynaropicrin using DESs [N4444
+][Cl-]: 2OA, [N4444

+][Cl-]: 2HA, and [N4444
+][Br-

]: 2OA as well as the hydrogen bond basicity values (red bar) determined in this study at 40 ℃ for 

the same DESs. The system constants reveal a direct relation to the hydrogen bond basicity of the 

solvent and the extraction yield of cynaropicrin. When the chloride anion was replaced with 

bromide while maintaining the same HBD, as in the case of [N4444
+][Cl-]: 2OA and [N4444

+][Br-]: 

2OA, the extraction yield decreased from 2.7% to 1.7%.40 The hydrogen bonding basicity values 

determined for the [N4444
+][Cl-]: 2OA and [N4444

+][Br-]: 2OA DESs at 40 ℃ were (7.13±0.15) and 

(5.88±0.13), respectively.   

Conclusions 

 Deep eutectic solvents (DESs) have demonstrated great potential as sustainable solvents 

due to the fact that they generally involve cheap and environmentally-benign starting materials. 

Because many of their properties can be tuned and modulated by using different HBA and HBD 

combinations, they are among the most complex solvent systems and can undergo a multitude of 
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different interactions. Single parameter polarity scales often provide a weighted average of all 

solute-solvent interactions and do not distinguish between dominant and less influential 

interactions. The solvation parameter model employs chromatographic retention data obtained for 

many different probe molecules to determine individual solvation interactions of DESs possessing 

different HBA/HBD composition.  

 For DESs evaluated in this study, the hydrogen bond basicity can be modulated by (1) 

choosing more acidic (lower pKa) carboxylic acids as HBDs and using larger molar ratios of HBD 

compared to the HBA, (2) decreasing the length of alkyl chain substituents within HBA, and (3) 

varying the halide anion within the HBA. By using highly basic probes to examine the acidity of 

DESs, it was found that DESs formed with larger molar ratios of low pKa HBAs result in solvents 

with higher hydrogen bond acidity. Dispersive interactions were found to be higher for the 

phosphonium-based DESs and were heavily influenced by the type of HBD as well as the molar 

ratio. Based upon hydrogen bond basicity and dispersion interactions, DESs can be clustered into 

six groups. Classifying DESs in terms of their multiple solvation interactions aids in their rational 

design and enhances our understanding of the complex interplay between the HBA and HBD.  
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Table 1. System constants for thirteen ammonium-based DESs with varying HBAs and HBDs obtained from 
the solvation parameter model. The [N4444

+][Cl-] IL is included for comparison purposes 

No. DES 
Temp. 
(°C) 

 System constants 
c e s a b l n a R2 b F c 

  40 
-3.38 
(0.10) 

-0.14 
(0.09) 

2.67 
(0.12) 

8.11 
(0.18) 

-0.43 
(0.14) 

0.76 
(0.02) 

39 0.99 774 

1 [N4444
+][Cl-] : OA 50 

-3.31 
(0.09) 

-0.10 
(0.08) 

2.52 
(0.11) 

7.60 
(0.16) 

-0.40 
(0.14) 

0.70 
(0.02) 

39 0.99 803 

  60 
-3.35 
(0.09) 

-0.13 
(0.08) 

2.50 
(0.11) 

7.41 
(0.16) 

-0.53 
(0.13) 

0.68 
(0.02) 

39 0.99 776 

  40 
-3.16 
(0.08) 

-0.18 
(0.08) 

2.41 
(0.10) 

7.13 
(0.15) 

-0.36 
(0.13) 

0.77 
(0.02) 

39 0.99 884 

2 [N4444
+][Cl-] : 2OA 50 

-3.18 
(0.07) 

-0.16 
(0.07) 

2.34 
(0.10) 

6.80 
(0.14) 

-0.38 
(0.12) 

0.73 
(0.02) 

39 0.99 960 

  60 
-3.19 
(0.07) 

-0.14 
(0.06) 

2.26 
(0.09) 

6.48 
(0.13) 

-0.38 
(0.11) 

0.69 
(0.02) 

39 0.99 1037 

 

[N4444
+][Cl-] : BSA 

40 
-3.10 
(0.07) 

-0.20 
(0.07) 

2.48 
(0.08) 

5.34 
(0.12) 

-0.38 
(0.11) 

0.72 
(0.02) 

41 0.99 1015 

3 50 
-3.12 
(0.06) 

-0.20 
(0.06) 

2.46 
(0.08) 

5.23 
(0.11) 

-0.44 
(0.10) 

0.68 
(0.01) 

41 0.99 1134 

 60 
-3.19 
(0.06) 

-0.17 
(0.06) 

2.38 
(0.08) 

4.94 
(0.11) 

-0.38 
(0.10) 

0.66 
(0.01) 

41 0.99 1029 

 

[N4444
+][Cl-] : 2BSA 

40 
-3.23 
(0.06) 

-0.14 
(0.06) 

2.52 
(0.08) 

4.54 
(0.13) 

-0.12 
(0.11) 

0.70 
(0.01) 

40 0.99 1111 

4 50 
-3.19 
(0.06) 

-0.11 
(0.06) 

2.40 
(0.07) 

4.29 
(0.11) 

-0.17 
(0.10) 

0.65 
(0.01) 

40 0.99 1225 

 60 
-3.22 
(0.05) 

-0.08 
(0.05) 

2.31 
(0.06) 

4.00 
(0.10) 

-0.13 
(0.09) 

0.62 
(0.01) 

40 0.99 1337 

 

[N4444
+][Cl-] : TSA 

40 
-3.20 
(0.07) 

-0.32 
(0.07) 

2.58 
(0.09) 

5.99 
(0.14) 

-0.59 
(0.12) 

0.78 
(0.02) 

38 0.99 968 

5 50 
-3.20 
(0.07) 

-0.28 
(0.07) 

2.49 
(0.09) 

5.66 
(0.13) 

-0.58 
(0.11) 

0.73 
(0.02) 

38 0.99 988 

 60 
-3.16 
(0.07) 

-0.24 
(0.07) 

2.42 
(0.09) 

5.50 
(0.13) 

-0.60 
(0.11) 

0.68 
(0.02) 

38 0.99 892 

 

[N4444
+][Cl-] : 2LcA 

40 
-2.93 
(0.07) 

0 
(0) 

2.20 
(0.09) 

5.03 
(0.14) 

0 
(0) 

0.68 
(0.02) 

38 0.99 832 

6 50 
-3.06 
(0.05) 

-0.06 
(0.05) 

2.16 
(0.06) 

4.64 
(0.10) 

0 
(0) 

0.66 
(0.01) 

38 0.99 1351 

 60 
-3.02 
(0.05) 

0 
(0) 

2.08 
(0.06) 

4.25 
(0.09) 

0 
(0) 

0.61 
(0.01) 

38 0.99 1467 

  40 
-3.09 
(0.06) 

0 
(0) 

2.31 
(0.07) 

4.78 
(0.11) 

0 
(0) 

0.66 
(0.01) 

39 0.99 1302 

7 [N4444
+][Cl-] : 2MA 50 

-3.11 
(0.05) 

0 
(0) 

2.24 
(0.06) 

4.41 
(0.10) 

0 
(0) 

0.62 
(0.01) 

38 0.99 1330 

  60 
-3.15 
(0.05) 

0 
(0) 

2.17 
(0.06) 

4.04 
(0.10) 

0.09 
(0.08) 

0.58 
(0.01) 

39 0.99 1422 

  40 
-3.18 
(0.07) 

-0.21 
(0.07) 

2.24 
(0.09) 

5.88 
(0.13) 

-0.46 
(0.11) 

0.79 
(0.02) 

36 0.99 1026 
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8 [N4444
+][Br-] : 2OA 50 

-3.13 
(0.07) 

-0.17 
(0.07) 

2.15 
(0.09) 

5.57 
(0.13) 

-0.42 
(0.11) 

0.73 
(0.02) 

35 0.99 914 

  60 
-3.13 
(0.05) 

-0.19 
(0.05) 

2.05 
(0.06) 

5.05 
(0.09) 

-0.43 
(0.08) 

0.71 
(0.01) 

36 0.99 1621 

  40 
-3.17 
(0.09) 

-0.13 
(0.08) 

2.36 
(0.11) 

7.00 
(0.17) 

-0.32 
(0.14) 

0.75 
(0.02) 

38 0.99 739 

9 [N4444
+][Cl-] : 2HA 50 

-3.14 
(0.08) 

-0.14 
(0.07) 

2.25 
(0.10) 

6.44 
(0.15) 

-0.32 
(0.12) 

0.71 
(0.02) 

38 0.99 840 

  60 
-3.11 
(0.07) 

-0.14 
(0.07) 

2.17 
(0.09) 

5.92 
(0.13) 

-0.36 
(0.11) 

0.67 
(0.02) 

38 0.99 849 

  40 
-3.04 
(0.08) 

-0.16 
(0.08) 

2.15 
(0.10) 

5.96 
(0.16) 

-0.47 
(0.13) 

0.77 
(0.02) 

37 0.99 705 

10 [N3333
+][Cl-] : 2OA 50 

-3.06 
(0.07) 

-0.13 
(0.07) 

2.05 
(0.09) 

5.43 
(0.14) 

-0.45 
(0.11) 

0.75 
(0.01) 

37 0.99 822 

  60 
-2.99 
(0.07) 

-0.22 
(0.07) 

1.91 
(0.09) 

5.09 
(0.14) 

-0.55 
(0.12) 

0.73 
(0.01) 

37 0.99 658 

  40 
-3.32 
(0.06) 

-0.10 
(0.06) 

2.04 
(0.08) 

5.30 
(0.12) 

-0.29 
(0.10) 

0.78 
(0.02) 

38 0.99 1155 

11 [N2222
+][Cl-] : 2OA 50 

-3.22 
(0.06) 

-0.08 
(0.06) 

1.97 
(0.07) 

5.02 
(0.11) 

-0.23 
(0.09) 

0.72 
(0.01) 

37 0.99 1204 

  60 
-3.07 
(0.05) 

0 
(0) 

1.93 
(0.07) 

4.86 
(0.10) 

-0.26 
(0.09) 

0.66 
(0.01) 

38 0.99 1306 

  40 
-3.12 
(0.05) 

0.45 
(0.05) 

2.41 
(0.06) 

4.73 
(0.10) 

0.37 
(0.08) 

0.48 
(0.01) 

38 0.99 1601 

12 [N2222
+][Cl-] : 2LcA 50 

-3.14 
(0.05) 

0.44 
(0.05) 

2.35 
(0.06) 

4.49 
(0.09) 

0.35 
(0.08) 

0.45 
(0.01) 

38 0.99 1709 

  60 
-3.18 
(0.04) 

0.43 
(0.05) 

2.29 
(0.06) 

4.25 
(0.09) 

0.36 
(0.07) 

0.42 
(0.01) 

38 0.99 1730 

  40 
-3.30 
(0.08) 

0.13 
(0.08) 

2.44 
(0.10) 

4.80 
(0.16) 

-0.19 
(0.13) 

0.59 
(0.02) 

38 0.99 604 

13 [N2222
+][Cl-] : 2LvA 50 

-3.38 
(0.09) 

0.12 
(0.09) 

2.40 
(0.11) 

4.61 
(0.17) 

-0.18 
(0.14) 

0.56 
(0.02) 

38 0.99 476 

  60 
-3.34 
(0.07) 

0.16 
(0.07) 

2.28 
(0.09) 

4.36 
(0.14) 

-0.20 
(0.12) 

0.52 
(0.02) 

38 0.99 644 

  40 d 
-2.33 
(0.10) 

0.22 
(0.10) 

1.14 
(0.14) 

4.81 
(0.19) 

0 
(0) 

0.66 
(0.03) 

26 0.99 372 

 [N4444
+][Cl-] 50 

-3.24 
(0.12) 

-0.17 
(0.11) 

2.72 
(0.15) 

8.03 
(0.22) 

-0.53 
(0.18) 

0.71 
(0.03) 

35 0.99 501 

  60 
-3.24 
(0.10) 

0 
(0) 

2.60 
(0.13) 

7.70 
(0.19) 

-0.44 
(0.16) 

0.67 
(0.02) 

39 0.99 609 

 

a n, number of probe analytes subjected to multiple linear regression; bR2, correlation coefficient; cF, Fisher F-
statistic. dAt 40 °C, the stationary phase becomes a solid resulting in a significant decrease in retention of 
analytes due to a prevailing gas-solid chromatography mechanism. System constants are observed to deviate 
from the two other temperatures due to the different separation mechanism. The melting point of [N4444

+][Cl-] is 
reported to be 41 °C and 52-54 °C in two different studies.57-58  
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Table 2. System constants for seven phosphonium-based DESs obtained from the solvation parameter model. 
The [P66614

+][Cl-] IL is included for comparison purposes 

No. DES 
Temp. 
(°C) 

 System constants 
c e s a b l n a R2 b F c 

  40 
-3.10 
(0.08) 

-0.28 
(0.08) 

2.09 
(0.10) 

7.20 
(0.15) 

-0.56 
(0.13) 

0.85 
(0.02) 

39 0.99 952 

14 [P66614
+][Cl-] : OA 50 

-3.19 
(0.08) 

-0.22 
(0.07) 

1.98 
(0.09) 

6.92 
(0.14) 

-0.44 
(0.12) 

0.81 
(0.02) 

38 0.99 924 

  60 
-3.12 
(0.08) 

-0.15 
(0.08) 

1.79 
(0.10) 

6.51 
(0.15) 

-0.45 
(0.12) 

0.76 
(0.02) 

38 0.99 847 

  40 
-3.05 
(0.10) 

-0.23 
(0.09) 

2.00 
(0.12) 

6.98 
(0.18) 

-0.57 
(0.14) 

0.82 
(0.02) 

37 0.99 571 

15 [P66614
+][Cl-] : 2OA 50 

-3.16 
(0.08) 

-0.20 
(0.07) 

1.92 
(0.10) 

6.83 
(0.15) 

-0.50 
(0.11) 

0.81 
(0.02) 

37 0.99 825 

  60 
-3.12 
(0.08) 

-0.18 
(0.07) 

1.83 
(0.09) 

6.45 
(0.14) 

-0.48 
(0.11) 

0.77 
(0.02) 

37 0.99 812 

 

[P66614
+][Cl-] : BSA 

40 
-2.98 
(0.07) 

-0.46 
(0.07) 

2.04 
(0.08) 

5.34 
(0.12) 

-0.68 
(0.10) 

0.86 
(0.02) 

41 0.99 1077 

16 50 
-2.98 
(0.06) 

-0.43 
(0.06) 

1.97 
(0.08) 

5.04 
(0.11) 

-0.67 
(0.10) 

0.82 
(0.02) 

41 0.99 1181 

 60 
-2.97 
(0.06) 

-0.34 
(0.06) 

1.82 
(0.07) 

4.72 
(0.10) 

-0.59 
(0.09) 

0.77 
(0.01) 

41 0.99 1147 

 

[P66614
+][Cl-] : 2BSA 

40 
-3.01 
(0.06) 

-0.40 
(0.06) 

2.03 
(0.08) 

4.28 
(0.13) 

-0.39 
(0.11) 

0.83 
(0.02) 

39 0.99 917 

17 50 
-3.07 
(0.07) 

-0.35 
(0.06) 

1.91 
(0.08) 

4.04 
(0.12) 

-0.39 
(0.10) 

0.80 
(0.01) 

40 0.99 1068 

 60 
-2.95 
(0.05) 

-0.26 
(0.05) 

1.72 
(0.07) 

3.56 
(0.10) 

-0.30 
(0.09) 

0.74 
(0.01) 

39 0.99 1112 

  40 
-3.23 
(0.07) 

-0.32 
(0.07) 

2.62 
(0.09) 

6.20 
(0.15) 

-0.58 
(0.12) 

0.77 
(0.02) 

37 0.99 1004 

18 [P66614
+][Cl-] : TSA 50 

-3.27 
(0.07) 

-0.30 
(0.07) 

2.56 
(0.09) 

5.96 
(0.14) 

-0.62 
(0.12) 

0.74 
(0.02) 

37 0.99 972 

  60 
-3.26 
(0.06) 

-0.33 
(0.06) 

2.51 
(0.08) 

5.63 
(0.13) 

-0.60 
(0.11) 

0.69 
(0.01) 

37 0.99 1015 

  40 
-3.18 
(0.07) 

-0.35 
(0.07) 

2.58 
(0.10) 

6.06 
(0.14) 

-0.56 
(0.12) 

0.78 
(0.02) 

37 0.99 915 

19 [P4444
+][Cl-] : TSA 50 

-3.25 
(0.07) 

-0.32 
(0.07) 

2.52 
(0.10) 

5.83 
(0.14) 

-0.57 
(0.12) 

0.74 
(0.02) 

37 0.99 855 

  60 
-3.17 
(0.07) 

-0.30 
(0.07) 

2.41 
(0.09) 

5.48 
(0.13) 

-0.60 
(0.11) 

0.69 
(0.02) 

37 0.99 864 

  40 
-3.29 
(0.06) 

0.27 
(0.06) 

1.91 
(0.08) 

5.12 
(0.12) 

0.70 
(0.10) 

0.67 
(0.01) 

36 0.99 1144 

20 [PAl(Ph)3
+][Br-] : 3TSA 50 

-3.29 
(0.06) 

0.27 
(0.06) 

1.86 
(0.07) 

4.80 
(0.11) 

0.63 
(0.09) 

0.64 
(0.01) 

36 0.99 1160 

  60 
-3.32 
(0.06) 

0.28 
(0.06) 

1.82 
(0.07) 

4.49 
(0.11) 

0.59 
(0.09) 

0.60 
(0.01) 

36 0.99 1086 

  40 
-2.92 
(0.09) 

-0.16 
(0.08) 

2.11 
(0.11) 

7.72 
(0.17) 

-0.69 
(0.14) 

0.80 
(0.02) 

37 0.99 814 
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a n, number of probe analytes subjected to multiple linear regression; b R2, correlation coefficient;  
c F, Fisher F-statistic. 
 

 [P66614
+][Cl-] 50 

-3.07 
(0.09) 

-0.26 
(0.08) 

2.06 
(0.10) 

7.36 
(0.15) 

-0.59 
(0.13) 

0.81 
(0.02) 

39 0.99 845 

  60 
-3.12 
(0.07) 

-0.22 
(0.07) 

1.99 
(0.10) 

6.94 
(0.14) 

-0.54 
(0.12) 

0.77 
(0.02) 

40 0.99 970 
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Table 3 Retention factors of N,N-Dimethylformamide and N,N-Dimethylacetamide on 
ammonium-based DESs possessing various acidic HBDs at 60 °C. For clarity purposes, DESs 
comprised of 1:1 and 1:2 molar ratio of HBA:HBD are separated from one another. The [N4444

+][Cl-

] IL is included for comparison purposes. Note: retention factor (k) is determined by the following 
equation: k = (tR – t0 / t0) where tR is the retention time of the probe and t0 is the dead time of an unretained 
molecule, propane. 

Probe 

Neat IL HBA : HBD (1:1) HBA : HBD (1:2) 

[N4444
+] 

[Cl-] 

[N4444
+] 

[Cl-] 
: OA 

[N4444
+] 

[Cl-] 
: TSA 

[N4444
+] 

[Cl-] 
: BSA 

[N4444
+] 

[Cl-] 
: 2OA 

[N4444
+] 

[Cl-] 
: 2LcA 

[N4444
+] 

[Cl-] 
: 2BSA 

N,N-Dimethylformamide 
(N,N-DMF) 

26.21 15.27 17.05 19.50 15.87 30.50 49.68 

N,N-Dimethylacetamide 
(N,N-DMAC) 

27.38 17.40 22.85 42.17 20.67 36.38 1611.42 
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Figure 1. Chemical structures, relative ratios of HBA:HBD, abbreviations, and numbering 
scheme used for the twenty DESs evaluated in this study. 
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Figure 2. Chromatographic separation of alcohols and haloalkanes on (a) [N4444
+][Cl-] : OA, (b) 

[N4444
+][Cl-] : 2OA, and (c) [N4444

+][Cl-] : 2LcA DES stationary phases at 60 ℃. The inset within 
each chromatogram shows the first 4.5 minutes of the separation so that all chromatographic peaks 
can be observed. Analytes: 1, chlorohexane; 2, chlorooctane; 3, methanol; 4, ethanol; 5, 2-butanol; 
6, propanol; 7, butanol; 8, pentanol; 9, cyclohexanol; 10, hexanol 
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Figure 3. Grouping of 20 DESs based on hydrogen bond basicity and dispersive interactions 
using k-means clustering. For comparison and benchmarking purposes, the [N4444

+][Cl-] and 
[P66614

+][Cl-] ILs are also included. Red circles (  ) represent the ammonium-based DESs with 
HBA:HBD of 1:1 and neat [N4444

+][Cl-] IL and red triangles (  ) represent the ammonium-based 
DESs with HBA:HBD of 1:2. Blue circles (  ) represent the phosphonium-based DESs with 
HBA:HBD of 1:1 and neat [P66614

+][Cl-] IL while blue triangles (  ) represent the phosphonium-
based DESs with HBA:HBD of 1:2 and 1:3 HBA:HBD for DES 20. 1, [N4444

+][Cl-]:OA; 2, 
[N4444

+][Cl-]:2OA; 3, [N4444
+][Cl-]:BSA; 4, [N4444

+][Cl-]:2BSA; 5, [N4444
+][Cl-]:TSA; 6, 

[N4444
+][Cl-]:2LcA; 7, [N4444

+][Cl-]:2MA; 8, [N4444
+][Br-]:2OA; 9, [N4444

+][Cl-]:2HA; 10, 
[N3333

+][Cl-]:2OA; 11, [N2222
+][Cl-]:2OA; 12, [N2222

+][Cl-]:2LcA; 13, [N2222
+][Cl-]: 2LvA; 14, 

[P66614
+][Cl-]:OA; 15, [P66614

+][Cl-]:2OA; 16, [P66614
+][Cl-]:BSA; 17, [P66614

+][Cl-]:2BSA; 18, 
[P66614

+][Cl-]:TSA; 19, [P4444
+][Cl-]:TSA; 20, [PAl(Ph)3

+][Br-]:3TSA.  
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Figure 4. Plot illustrating the change in DES hydrogen bond basicity (a-term) upon changing the 
pKa of HBD at temperatures of 40 ℃ (  ), 50 ℃ (  ), and 60 ℃ (  ). Panel (a) shows the 
[N4444

+][Cl-] : BSA, [N4444
+][Cl-] : TSA, and [N4444

+][Cl-] : OA DESs with HBA:HBD of 1:1. Panel 
(b) plots the [N4444

+][Cl-] : 2BSA, [N4444
+][Cl-] : 2MA, [N4444

+][Cl-] : 2LcA, [N4444
+][Cl-] : 2HA, and 

[N4444
+][Cl-] : 2OA DESs with HBA:HBD of 1:2. The inset within panel (b) eliminates overlap of 

[N4444
+][Cl-] : 2OA and [N4444

+][Cl-] : 2HA by plotting them on a different scale for better 
visualization.  
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