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ABSTRACT Many soil microorganisms have evolved catabolic strategies to utilize
phenolic compounds arising from depolymerized lignin. We report the complete ge-
nome sequences of four Pseudomonas sp. isolates that demonstrated robust growth
on a wide range of aromatic monomers and dimers that are relevant to the valoriza-
tion of lignin into value-added chemicals.

Lignin, a major structural component of plant cell walls, is one of the most abundant
natural polymers. There is a growing interest in exploiting lignin as a renewable feed-

stock to produce a variety of value-added products, including bioplastics (1, 2), fungible
fuels (3), and commodity chemicals (4), through chemical and biological valorization (5, 6).
However, due to the complex nature of this heterogeneous aromatic polymer, a diverse
range of enzymatic activities is required for depolymerization, aromatic ring opening, and
conversion to target products (7–9). No bacterium has yet been isolated that can catabo-
lize all components of depolymerized lignin. Instead, efficient valorization will likely require
the isolation of additional bacteria with novel aromatic catabolism pathways, the rapid
identification of the associated enzymes (10), and the heterologous expression of these
enzymes in a production host (11).

To isolate new aromatic-catabolizing microbes, 50- to 100-ml broth enrichments
were established by adding soils and river sediments as a source of inoculum at
approximately 1.0% (wt/vol). These enrichments were grown in minimal M9 basal
medium supplemented with 50mg/liter cycloheximide and 0.1% (wt/vol) either feru-
late (strains H1F5C and H1F10A) or dehydrodivanillic acid (strains B10D7D and
B11D7D) at 30°C with shaking until turbidity was observed. Serial dilutions were
plated onto M9 agar plates containing 0.1% (wt/vol) aromatic enrichment substrate
as the sole carbon and energy source. Visible colonies were restreaked several times
on the same medium for purification, and then a single colony was inoculated into
5ml LB medium for DNA isolation, which was performed using a Quick-DNA fungal/
bacterial microprep kit (Zymo Research, Irvine, CA). For strain identification, 16S rRNA
genes were PCR amplified using primers 27F and 1492R (12), and the purified prod-
ucts were sequenced via the Sanger method (Eurofins Genomics, Louisville, KY). The
sequences were aligned and compared to known sequences in the NCBI (nonredun-
dant [nr]) and Greengenes databases using BLAST (13–15). Pseudomonas sediminis
B10D7D and Pseudomonas sp. strain B11D7D were isolated from sediments (pH 7.0)
collected from the Hiwassee River near Calhoun, TN (35.30000, 284.76397).
Pseudomonas protegens H1F5C and H1F10A were isolated from acidic soil samples
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(pH 2.5) collected in the 100 Spring Plain area within Yellowstone National Park
(YNP), WY (44.73323, 2110.70976).

High-molecular-weight genomic DNA for genome sequencing was prepared from
cells grown in LB broth using a protocol provided by the Joint Genome Institute (JGI)
(https://jgi.doe.gov/wp-content/uploads/2014/02/JGI-Bacterial-DNA-isolation-CTAB-Protocol
-2012.pdf). Pacific Biosciences (PacBio) SMRTbell library preparation (.10 kb, multi-

TABLE 1 Relevant genome sequencing and annotation statistics for Pseudomonas isolates

Species Isolation location
Genome size
(bp)

GC content
(%) Coverage (×)

No. of raw
reads

No. of genes
(PGAP)a

Raw read
N50 (bp)b

SRA accession
no.

Pseudomonas sediminis
B10D7D

Calhoun, TN 4,934,017 62.4 194.0 674,756 4,612 63,091 SRX8889211

Pseudomonas sp.
B11D7D

Calhoun, TN 5,387,171 62.5 180.0 219,370 4,985 62,275 SRX8889223

Pseudomonas protegens
H1F5C

YNP, WY 6,818,519 63.1 330.0 498,582 6,214 51,295 SRX7717610

Pseudomonas protegens
H1F10A

YNP, WY 6,817,972 63.1 213.0 219,370 6,213 56,328 SRX9016362

a PGAP, Prokaryotic Genome Annotation Pipeline.
b The N50 value was calculated based on genome size for each isolate.

FIG 1 Maximum likelihood phylogeny of Pseudomonas isolates from this study and other relevant
Pseudomonas strains and E. coli K-12. Numbers above nodes represent bootstrap values, which were
calculated from 1,000 replicates with 10% burn-in.
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plexed) and long-read sequencing using the PacBio Sequel platform (Menlo Park, CA,
USA) were performed by the Department of Energy Joint Genome Institute. Within the
PacBio SMRT Analysis platform v5.0.1.9585, genomes were assembled from reads of .5
kb long using the Hierarchical Genome Assembly Process (HGAP) v4 (16) using the
default settings. The modified sites that were detected were grouped into methylated
motifs using MotifFinder (17) with default parameters. Genomes were annotated using
the NCBI Prokaryotic Genome Annotation Pipeline (18), also with default parameters. All
four Pseudomonas HGAP genome assemblies represent single, circular chromosomes
with no plasmids (Table 1).

Methylated motifs were found in two of the genomes. Two methylated motifs were
found in Pseudomonas sp. B11D7D—TGGANNNNNNNRTNGC, consistent with type I
restriction-modification (RM) systems (19), and CATGRAG. The P. sediminis B10D7D
methylome also includes one type I RM, CAANNNNNTCGC, and a second motif,
CCGCGAG. Underlined bases represent adenine methylation on the forward or reverse
strand.

Using the single-copy gyrase B (gyrB) gene, we constructed a maximum likelihood
phylogeny of the Pseudomonas isolates and RAxML and the GTR1GAMMA model with
1,000 replicates for bootstrapping (20), showing the relationship between our isolates
and commonly studied species (Fig. 1). Complete genome assemblies enable systems
biology studies and genetic engineering, facilitating future studies of these lignin-
degrading isolates.

Data availability. The complete genomes for strains B10D7D, B11D7D, H1F5C, and
H1F10A were deposited in GenBank under accession numbers CP060009, CP060008,
CP060201, and CP060289, respectively.
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