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Summary

Peroxisomes~are small ubiquitous organelles delimited by a single membrane and
lacking genetic material. However, these simple-structured organelles are highly
versatile in_morphology, abundance and protein content in response to various
developmental and environmental cues. In plants, peroxisomes are essential for
growth and development and perform diverse metabolic functions, many of which are
carried out coordinately by peroxisomes and other organelles physically interacting

with peroxisomes. Recent studies have added greatly to our knowledge of
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peroxisomes, including the diverse proteome, regulation of division and protein
import, pexophagy, matrix protein degradation, solute transport, signaling, redox
homeostasis and various metabolic and physiological functions. This review
summarizes our current understanding of plant peroxisomes, focusing on recent
discoveries. Problems and future efforts needed to better understand these organelles
are also'diseussed. Knowledge gained will be important not only to the understanding
of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at

improving crep performance and defense.

Key words: peroxisomes, proteome, peroxisome protein import, division,

inter-organellar interaction, pexophagy, f-oxidation, metabolism

I. Introduction

Eukaryetic cells contain various subcellular compartments (organelles) that each host
a specifie’set of cellular activities. As one of the last discovered major organelles (De
Duve & Baudhuin, 1966), peroxisomes are approximately 0.1-1 um in diameter,
delimited,by,a single membrane and lacking genetic materials. Despite their small
size and simple structure, peroxisomes are highly dynamic morphologically and
metabolically, and play essential roles in the development of animals and plants.
Severe “impairment of peroxisome biogenesis and function can lead to embryo
lethalitydnsplants and infant fatality in mammals (Hu et al., 2012; Dasouki, 2017; Pan
et al., 2018a).

Plant peroxisomes contain at least 200 proteins involved in a wide range of
physiological functions, including primary and secondary metabolism, development,
and response to abiotic and biotic stresses (reviewed in Hu et al., 2012; Reumann &
Bartel, 2016; Kao et al., 2018; Pan & Hu, 2018a; Pan ef al., 2019). Peroxisomes are

physically and metabolically linked to various other organelles, such as chloroplasts,
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mitochondria and oil bodies (Wanders et al., 2016; Oikawa et al., 2019). The recent
decade witnessed a rapid expansion of our knowledge of plant peroxisomes, thanks to
advances in bioinformatics, mass spectrometry-based proteomics and advanced
microscopy, as well as traditional genetic and biochemical approaches. Here, we
present @n overview of plant peroxisomal proteome, biogenesis, quality control and
remodeling;“intéraction with other organelles, metabolic functions and transporters,
focusing more on recent progress. We also provide perspectives on future research
needed to fully understand these fascinating organelles. We apologize to researchers

whose work®we are unable to discuss in this review due to space limitation.

I1. Decodingithe peroxisomal proteome

Plant peroxisomes display a high level of functional complexity, plasticity and
specificity, as exemplified by the presence of numerous peroxisomal pathways unique
to plants.(teviewed in Pan & Hu, 2018a). Indexing the peroxisomal proteome is
prerequisitesto fully understanding their roles in plant physiology. Most peroxisomal
matrix'proteins contain one of the two types of peroxisome targeting signals: PTS1, a
C-termimal tripeptide, and PTS2, a nonapeptide near the N-terminus (Reumann &
Chowdhary, 2018). Studies using high throughput approaches, such as mass
spectrometry., (MS)-based proteomic analysis and algorithm prediction of
PTS1-containing proteins, have significantly expanded our knowledge of proteins and
biochemical reactions in plant peroxisomes. Many novel peroxisomal proteins, such
as those involved in methylglyoxal detoxification, phylloquinone biosynthesis,
pseudouridine catabolism, CoA biosynthesis, and putative regulatory proteins have

been discovered by peroxisomal proteome analysis (reviewed in Pan & Hu, 2018a).

Peroxisome proteome analyses have been performed on various plant species and
organs, including greening and etiolated Arabidopsis cotyledons (Fukao ef al., 2002,
2003), Arabidopsis green leaves (Reumann et al., 2007, 2009), non-green Arabidopsis
suspension cell cultures (Eubel et al., 2008), etiolated Arabidopsis seedlings (Quan et

al., 2013), etiolated soybean cotyledons (Arai et al., 2008) and spinach leaves
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(Babujee et al., 2010). A recent study extended the analysis to peroxisomes isolated
from Arabidopsis leaves undergoing dark-induced senescence, revealing a higher
number of proteins involved in the detoxification of reactive oxygen species (ROS)
and new peroxisomal proteins with potential roles in fatty acid metabolism and stress
response”(Pan, ef al., 2018a). These studies demonstrated that the core proteome of
plant peroxisomes is conserved throughout development. Therefore, as previously
proposed (Pracharoenwattana and Smith, 2008), all plant peroxisomal subtypes
should simply be named peroxisomes rather than individually as leaf peroxisome,
glyoxysome'in seed and germinating seedling, gerontosome in senescing tissue and so
on. In addition to experimental proteomics, plant-specific PTS1 prediction algorithms,
including=PredPlantPTS1 (Lingner et al, 2011) and PPero (Wang et al., 2017),
successfullypredicted hundreds of known plant peroxisomal proteins, as well as many

novel ones.

In vivo protein targeting analysis using fluorescence microscopy is usually needed to
confirmsthe localization of candidate proteins obtained from proteomic, bioinformatic,
geneties”and biochemical studies. Cautions should be taken when selecting
fluorophores. In transient expression systems using Arabidopsis seedlings and tobacco
leaves, certain fluorophore combinations that weakly heterodimerize can cause false
positives as airesult of the so-called piggy-back mechanism of peroxisomal protein
import (Falter et al., 2019). However, this phenomenon has not been observed in
Arabidopsis protoplasts, onion epidermal cells, or stable transgenic plants. In addition
to thespiggy=back mechanism, false positive targeting to peroxisomes may also occur
when the fluorophore tag affects protein folding or masks the true targeting signal,
exposing PTS-like sequences that are otherwise inactive. When overexpressed
proteins_saturate the import machinery of a non-peroxisomal organelle, the excess
proteins may also be redirected to peroxisomes. However, whether these speculated

mechanisms indeed occur in planta, especially in stable transgenic lines, is unclear.

Proteome studies followed by in vivo targeting verification discovered that plant
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peroxisomes contain at least 200 proteins that represent a larger proteome and more
diverse metabolic pathways than their counterparts in animals and yeasts (reviewed in
Pan & Hu, 2018a). This may be partially attributed to the existence of photosynthesis
and photorespiration in plants, which require a higher anti-oxidant capacity to achieve
oxidatiye’homeostasis. Alternatively, plants may depend more on peroxisome-derived
signals and"metabolites to respond to environmental changes. Despite these important
findings, the plant peroxisome proteome is still far from being completely understood
due to several reasons. First, most proteome analyses were performed with leaf tissue
or cotyledons, whereas many other tissues such as root, reproductive organs and seed,
have yet been analyzed. Second, peroxisomal proteome analyses have not been
performed=in"monocotyledon species, including major crops like rice, wheat and
maize, Which are not oilseeds and thus may contain functions different from those of
dicots. Third, existing algorithms still cannot accurately predict proteins containing
non-canonicaly PTS1 and those with PTS2. Fourth, identification of peroxisomal
membrane proteins (PMPs) remains technically challenging for both proteomics and

bioinformatics.

I11. Peroxisome protein import and proliferation/division

Since allyperoxisomal proteins are encoded in the nucleus, they need to be imported
into peroxisomes from the cytosol through a process mediated by peroxins (or PEX
proteins), most of which are conserved across kingdoms (Hu et al., 2012; Cross et al.,
2016). Recent molecular genetic studies have shed light on the function of plant PEX

proteins andsrevealed regulatory mechanisms.

Peroxisomal membrane proteins target to the peroxisome by direct insertion into the
peroxisomal membrane from the cytosol, or by trafficking via the ER. The import of
peroxisomal membrane proteins in Arabidopsis involves three well conserved
peroxins, PEX19 (AtPEX19A and AtPEX19B) as the chaperone for PMPs, PEX3
(AtPEX3A and AtPEX3B) as the membrane anchor for PEX19, and PEX16 that

recruits PEX3 to the ER prior to the formation of pre-peroxisomes (Figure 1) (Pan &

This article is protected by copyright. All rights reserved



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Hu, 2018a; Burkhart et al., 2019). Arabidopsis PEX16 also recruits PMPs to the ER in
an PEX3/PEX19-independent manner (Hua et al., 2015).

In plants, newly synthesized matrix proteins are recognized and bound by the
receptors” PEX5 and PEX7 in the cytosol, before the receptor-cargo complex is
docked on"the®membrane at the docking complex formed by PEX13 and PEX14
(Figuregl). PEXS can be recycled from the peroxisomal matrix back to the cytosol,
facilitated byythe cooperative efforts of the ubiquitin conjugating enzyme PEX4 and
its membrane anchor PEX22, three RING-type ubiquitin ligases PEX2, PEX10 and
PEX12, and two AAA ATPases PEX1 and PEX6 that are tethered to their membrane
anchor PEX26/APEMO (Figure 1) (reviewed in Reumann & Bartel, 2016; Cross et al.,
2016; Kao'efal., 2018; Pan & Hu, 2018a).

In Arabidopsis pex6 or pex26 mutants, the reduced level of PEXS protein can be
partiallyarestored by inhibiting activity of the proteasome or peroxisome-associated
ubiquitination machinery, indicating that PEXS5 is degraded by the
ubiquitinproteasome system when its export is impaired (Gonzalez et al., 2017).
Consistent with the role of the RING-type ubiquitin ligases in receptor ubiquitination
followed, by, degradation, the Arabidopsis pex/2-/ mutant has increased PEX5 and
PEX7 protein levels (Kao et al, 2016). Interestingly, proteasome-mediated
degradation of Arabidopsis PEXS5 can be increased by elevated temperature (Kao &
Bartel, 2015). Moreover, the pexI-1 allele partially rescued pex6-1 defects without
restoningmPEXS5 levels, but enhanced pex26 defects, implying that the plant
PEX1-PEX6 complex may have novel roles in peroxisome homeostasis and function
(Gonzalez et_al., 2018). Furthermore, Arabidopsis PEX14 plays a positive role in
drought tolerance through modulation of the expression of stress-responsive genes,
ROS metabolism, and metabolic homeostasis (Shi et al., 2015), which may reflect the

function of the entire peroxisome as PEX14 is required for matrix protein import.

Besides the RING peroxins, two homologous Arabidopsis E3 ubiquitin ligases, SP1
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(suppressor of plastid protein import locus 1) and SPL1, also modulate peroxisome
protein import (Figure 1). SP1 was shown to possess E3 ubiquitin ligase activity (Pan
& Hu, 2017) and promote the degradation of PEX13 and PEX14, most likely through
the ubiquitin-proteasome pathway, whereas SPL1 has an opposite effect on PEX13
degradation (in tobacco transient expression system) and on peroxisomal function
(Pan & Hu; 2016; Pan et al., 2018b). SP1 was also shown to negatively regulate
chloroplast protein import by targeting several TOC (translocon at the outer envelope
membrane of,chloroplasts) proteins for destabilization (Ling et al., 2012). Both 35S-
and nativesSP/ promoter-driven SP1-YFP showed clear localization to peroxisomes,
mitochondria and chloroplasts in multiple transgenic plants (Pan ef al., 2016; Pan &
Hu, 2018b)=In another study, SP1 was reported to only localize to chloroplasts when
transiently“expressed in protoplasts, and transgenic Arabidopsis plants expressing
35SproiSP1-YFP or SP1pro:SP1-YFP were unable to be obtained (Ling ef al., 2017).
These discrepancies may be partially due to the fact that SP1 may require certain
length of time or mechanism to accumulate in mitochondria and peroxisomes, which
could be,casier to detect in certain experimental systems than in others. MULI is the
mammalian homolog of SP1 and SPL1 that localizes to mitochondria and, via
mitochondrion-derived vesicles, to peroxisomes (Braschi et al., 2010). MULI1 is
involvedy,in.mitochondrial fission and hyperfusion, mitophagy, maintenance of
mitochondrialiintegrity, and mitochondrial antiviral response, as a SUMO or ubiquitin
ligase (summarized in Pan & Hu, 2018b). Therefore, this protein family may have a
conserved role in plants and animals in modulating protein import and/or dynamics of

multiple-organelles.

Peroxisomes_can also proliferate by division of pre-existing peroxisomes, which
consists of two stages: 1) elongation/tubulation mediated by PEX11 proteins; and 2)
membrane constriction and fission mediated by dynamin-related proteins DRP3A and
DRP3B, together with their probable membrane anchors FISSION 1A (FIS1A) and
FISIB (Figure 2) (Kaur & Hu, 2009). The DRP3-FIS1 complex is shared by

peroxisomes and mitochondria, whereas PMD1 (Peroxisomal and mitochondrial
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division 1) and DRP5B are two plant specific peroxisome fission factors that are
shared with mitochondria and chloroplasts, respectively (Figure 2) (Pan & Hu, 2011;
Kaur et al., 2014).

Regulatory “mechanisms by which peroxisomes proliferate in response to
environmental*¢ues are beginning to be uncovered. The transcription of Arabidopsis
PEXI11b is induced by the HY5S HOMOLOG (HYH) transcription factor in response
to light stimulation through phytochrome A (phyA), and repressed by another nuclear
protein, Forkhead-Associated Domain Protein 3 (FHA3) (Figure 2) (Desai & Hu,
2008; Hu & Desai, 2008; Desai et al., 2017). Arabidopsis PEX] e is up-regulated by
salt stress;7and both PEX] e overexpression and salt stress can increase peroxisome
number, but' PEX [e overexpression does not improve salt tolerance (Mitsuya et al.,
2010). {In contrast, rice seedlings overexpressing PEXI1 (0s03g0302000) have
increased. salttolerance compared to wild-type and OsPEX11-RNAi seedlings (Cui et
al., 2016b)..Hence, PEX11 may have acquired distinct functions in stress response in
different, plant lineages during evolution. PMD1 binds to actin and functions
genetically downstream of MAP kinase 17 (MPK17), a putative regulator of

salt-induced peroxisome proliferation (Figure 2) (Frick & Strader, 2017).

In summary, core proteins in peroxisome protein import, such as the major PEX
proteins, and proteins in peroxisome division, such as PEX11, FIS1 and DRP3, are
significantly conserved in eukaryotes. However, some lineage-specific factors also
exist,sandsthe regulatory mechanisms of peroxisome protein import and division in

plants seem to,be mostly unique.

IV. Peroxules and peroxisome interaction with other organelles

Oxidative stress promotes the formation of peroxules, which are extensions of the
peroxisome membrane (Sinclair et al., 2009). In Arabidopsis, peroxule formation can
be induced by cadmium or arsenic treatment in a PEXI11la- and ROS-dependent

manner, followed by peroxisome proliferation, suggesting the important role of
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PEX11a and peroxules in plant stress response (Rodriguez-Serrano et al., 2016).

Accumulating evidence has demonstrated convincingly that peroxules are key to the
interaction ofy peroxisomes with organelles known to have close metabolic and
physicalr“ties, with peroxisomes, including ER, oil bodies, mitochondria and
chloroplasts™(Sinclair et al., 2009; Thazar-Poulot et al., 2015; Gao et al., 2016;
Jaipargas et al., 2016). It is possible that during plant response to physiological
signals, peroxules serve as a platform to connect peroxisomes and other organelles to
facilitate‘the"exchange of metabolites and proteins. Such signals most likely include
reactive oxygen species (ROS), as shown in the case of peroxisomal interaction with

ER and'mitochondria (Sinclair ef al., 2009; Jaipargas ef al., 2016).

The interaction between peroxisomes and other organelles is controlled by
physiologicals and environmental signals. For example, peroxisome-oil body
interaction ‘isincreased in Arabidopsis seedlings deficient in fatty acid degradation,
while“exogenously applied sucrose can reduce this interaction, indicating that this
interaction facilitates lipid catabolism and is negatively regulated by cellular sugar
levels (Cui et al, 2016a). In photosynthetic tissues, the interaction between
peroxisomes,.mitochondria and chloroplasts is expected to be beneficial to the flow of
intermediates \in photorespiration, a carbon-recycling pathway that accompanies
photosynthesis (see VI. 4). Consistent with this view, the area and strength of the
interactions were found to be increased by light (Oikawa et al., 2015; Jaipargas et al.,
2016)=Direct'physical tethering between peroxisomes and chloroplasts has also been
verified in tobacco and Arabidopsis, using advanced optic technologies such as

femtosecond laser and optical tweezer (Oikawa et al., 2015; Gao et al., 2016).

In non-plant organisms, several molecular mechanisms are involved in the formation
of contact sites between peroxisomes and other organelles. In mammals, acyl-CoA
binding domain containing 4 (ACBD4), ACBDS5, vesicle-associated membrane

protein-associated proteins A (VAPA) and VAPB mediate ER-peroxisome interaction,
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and synaptotagmin 7 (SYT7) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]
are involved in lysosome-peroxisome interaction (reviewed in Castro et al., 2018). In
yeast cells, Pex3 and inheritance of peroxisomes 1 (Inpl) participate in
ER-perexisome interaction, and Pex34, fuzzy onions homolog 1 (Fzol), Pex11 and
mitochondrial, distribution and morphology 34 (Mdm34) participate in
mitochondrion=peroxisome interaction (reviewed in Castro et al., 2018). Although
physical contacts between peroxisomes and other organelles have been repeatedly
documentedrin microscopic studies (Oikawa et al., 2019), proteins that mediate these
interactionsrhave not been conclusively determined in plants. In mammalian and yeast
cells, vesi¢le carriers can mediate transportation of proteins and possibly other kinds
of cargo™from other organelles to peroxisomes (Neuspiel et al., 2008; Lam et al.,
2011). "This“type of transportation has not been directly demonstrated for plant

peroxisomes.

V. Peroxisomal quality control and proteome remodeling

The “development and maintenance of peroxisomes require protein maturation,
degradation and recycling as well as autophagic degradation of the whole organelle
(Baker & Paudyal, 2014). Arabidopsis peroxisomes contain several proteases and
peptidases,.such as LON2 (Lon protease 2), DEG15 (Degradation of periplasmic
protein/15), SCPL20 (Serine carboxypeptidase-like protein 20), RDL1 (Response to
drought2TA-like 1) and PXM16 (Peroxisomal M16 metalloprotease) (Figure 3)
(reviewed in van Wijk, 2015; Pan & Hu, 2018a). LON2 facilitates sustained matrix
proteins import in mature peroxisomes and the degradation of matrix proteins during
peroxisome remodeling (Lingard and Bartel, 2009; Farmer et al., 2013; Goto-Yamada
et al., 2014) (Figure 3). Analysis of watermelon DEG15 suggested that DEG15 can be
a processing peptidase as a dimer to cleave PTS2 from PTS2-containing proteins, or a
general protease in its monomeric form (Helm et al., 2007) (Figure 3). SCPL20 is
involved in B-oxidation and plant pathogen response (Floerl ef al., 2012; Quan et al.,
2013), and RDLI1 plays a role in B—oxidation, seed viability and stress response (Quan
et al., 2013). The exact role of RDL1, SCLP20 and PXM16 remains to be elucidated.
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Plant peroxisomal proteome varies to some extent in different developmental stages
and tissue types. During oil seed germination, the glyoxylate cycle enzymes are
replaced by photorespiration enzymes (Paudyal et al., 2017). This remodeling of the
plant peroxiSemal proteome most likely involves the simultaneous action of several
processes,suchas LON2-mediated degradation of the glyoxylate cycle enzymes and
pexophagy-mediated degradation of the obsolete peroxisomes (Figure 3). Dysfunction
of both L ON2 and pexophagy results in the stabilization of the glyoxylate cycle
enzymes,"which cannot be accomplished by removing only one of these two factors
(Farmer et al., 2013; Goto-Yamada et al., 2014). Besides its protease activity, LON2
also has*chaperone activity that suppresses pexophagy and peroxisome remodeling
(Goto-Yamada et al., 2014). Remodeling of the peroxisomal proteome is also
attributed to light- and sugar-dependent transcriptional changes, and possibly other
proteases,.therubiquitination system and proteins involved in peroxisome biogenesis

(Goto-Yamada et al., 2015).

Pexophagy is involved in peroxisomal quality control, as blocking pexophagy causes
accumulation of aggregates of damaged catalase, clustered peroxisomes and an
increased,number of peroxisomes in both stress and non-stress conditions (Kim et al.,
2013; Shibata et al., 2013; Yoshimoto et al., 2014; Calero Mufioz et al., 2019).
Excessive ROS accumulation and catalase deficiency are linked to peroxisome
damage and pexophagy (Hackenberg et al., 2013; Tyutereva et al., 2018; Luo &
Zhuang,»2018). The plant pexophagy receptor for ATGS8, a ubiquitin-like protein
connecting the condemned organelle to the autophagic machinery, is still elusive.
However, several ATGS8-interacting proteins have been identified. During
cadmium-induced pexophagy, ATGS8 co-localizes with catalase and NBR1 (Neighbor
of BRCA1 gene 1) in the electron dense peroxisomal core, suggesting that catalase
and NBR1 are involved in pexophagy and NBR1 may function as a pexophagy
receptor (Calero - Mufioz et al., 2019). A bioinformatics approach, named hfAIM

(high fidelity ATGS8 interacting motif), identified 9 peroxisomal PEX proteins in
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Arabidopsis that contain putative hfAIM, among which PEX6 and PEX10 were
further verified by BiFC (Bimolecular fluorescence complementation) (Xie et al.,
2016). An independent yeast two-hybrid screen also identified PEX10 as an
ATGS8-interacting protein, suggesting PEX10 to be a promising candidate for a
receptoriin pexophagy (Marshall ef al., 2019) (Figure 3). A recent study showed that
autophagy"mediates glucose-promoted peroxisomal degradation in roots, and that
ATGS physically interacts with a peptide that contains the Walker B motif of PXAI
(Peroxisemal, ABC transporter 1)/CTS (Comatose)/PED3 (Peroxisome defective 3)
(Huang “erwal., 2019) (Figure 3), making PXA1 another possible receptor for
pexophagy. Whether full-length PXA1 interacts with ATG8 in planta has not been
shown. "Mere rigorous studies are needed to determine directly whether any of these

ATGS-interacting proteins is a pexophagy receptor in plants.

VI. Peroxisomal metabolism

Plant peroxisomes have diverse functions, housing metabolic pathways such as fatty
acid 'degradation, the glyoxylate cycle, phytohormone biosynthesis, photorespiration
and ROS"catabolism. Fatty acid B-oxidation, which occurs exclusively in peroxisomes
in plants as opposed to in mitochondria and peroxisomes in animals, participates in
fatty acid,catabolism and the biosynthesis of several major phytohormones, including
jasmonie acid\(JA), indole-3-acetic acid (IAA) and salicylic acid (SA). Substrates of
B-oxidation, such as fatty acyl-CoA (FA-CoA), 12-oxo-phytodienoic acid (OPDA),
indole-3-butyric acid (IBA) and cinnamic acid (CA), are imported by the
ATP-dependent transporter PXA1. Recent studies linked more metabolic pathways to
peroxisomes, adding to the complexity of plant peroxisomal metabolism (reviewed in

Reumann & Bartel, 2016; Kao et al., 2018; Pan & Hu, 2018a).

1. Fatty acid breakdown
After import into the peroxisome, fatty acids are esterified with CoA and catabolized
into acetyl-CoA via [B-oxidation. Each B-oxidation cycle is a four-step cascade

catalyzed by three enzymes: acyl-CoA oxidase (ACX), multifunctional protein (MFP)

This article is protected by copyright. All rights reserved



383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

14

that catalyzes both a hydration and an oxidation step, and 3-ketoacyl-CoA thiolase
(KAT), producing an acetyl-CoA and a FA-CoA that is shortened by two carbons and
subjected to the next round of B-oxidation (Figure 4). Reducing FA import into the
peroxisome imy Arabidopsis does not affect peroxisomal size, whereas impairing the
FA B-oxidation pathway enlarges peroxisomes, possibly due to the accumulation of
B-oxidationintermediates inside peroxisomes (Graham et al., 2002; Rinaldi et al.,
2016). Arabidopsis mutants of FA degrading enzymes typically show reduced seed oil
mobilizationithat results in impaired seedling establishment, which can be ameliorated
by exogenously applied sucrose (reviewed in Hu et al., 2012). Some of these mutants
exhibit defects in pollen fertility, embryo development and germination, which may
not be solely”explained by deficiency in FA degradation (reviewed in Pan et al.,

2019).

Although the core B-oxidation pathway is sufficient to metabolize straight-chain
saturated, fatty acids, the metabolism of unsaturated fatty acids requires auxiliary
enzymes‘(reviewed in Graham, 2008). One of these auxiliary enzymes in Arabidopsis
is ECH2, which encodes an enoyl-CoA hydratase that, when mutated, leads to
accumulation.of 3-hydroxyoctenoate (C8:1-OH) and 3-hydroxyoctanoate (C8:0-OH),
putative hydrolysis products of the catabolism of a-linolenic acid and linoleic acid,
and poor seedling development due to toxic effects of the accumulated intermediates

(Li et al., 2019a).

FA degradation is an important part of plant primary metabolism, which, when
blocked, can. affect other carbon metabolic processes and lipid homeostasis.
Disrupting FA B-oxidation in Arabidopsis affects membrane lipid homeostasis in
leaves (Fan et al., 2014). Deficiencies in FA turnover in Arabidopsis starch
biosynthetic mutants results in strong growth defects, increased levels of membrane
lipids, triacylglycerol and soluble sugars, and altered fatty acid flux between the

chloroplast- and ER-localized lipid biosynthetic activities, indicating a role for FA
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breakdown in the crosstalk between starch and lipid metabolic pathways (Yu et al.,
2018). Disruption of Arabidopsis PEX16 causes decreased levels of oil, increased
levels of starch and accumulation of various soluble metabolites during seed
development, suggesting the role of peroxisomes in FA biosynthesis and in crosstalk
betweenlipid, and starch metabolism (Lin et al., 2004, 2006). FA B-oxidation also
affects nuelear"eépigenetic modifications, as Arabidopsis acx4 mutants have reduced
nuclearghistone acetylation and increased DNA methylation, and mfp2 and kat2
mutantssshow. DNA hyper-methylation (Wang et al., 2019). Hence, FA B-oxidation

seems to have a broader impact on plant cellular processes than previously known.

2. The glyoxylate cycle and acetate-malate shunt

The glyoxylate cycle is a major peroxisomal function in seeds and post-germinative
seedlings, where the peroxisomal enzymes citrate synthase (CSY), isocitrate lyase
(ICL) and.malate synthase (MLS) convert acetyl-CoA derived from FA B-oxidation
into 4-carben metabolites that can be consumed by gluconeogenesis and
mitochondrial respiration (reviewed in Graham, 2008) (Figure 4). Thus, mutants in
this pathway show typical phenotypes of mutants disrupted in FA degradation, e.g.,
impaired seedling establishment after germination that can be ameliorated by
exogenous,sucrose. Since peroxisomal MDHs do not seem to be involved in the
glyoxylate cye¢le (Pracharoenwattana et al., 2007), a cytosolic MDH was speculated to
oxidize malate from the glyoxylate cycle (Graham, 2008). The expression of maize
CSY is'induced during seed germination and by light in leaves, and both of these
changesinvolve methylation of the CSY promoter, suggesting epigenetic control of

the glyoxylate.cycle (Eprintsev et al., 2018).

Arabidopsis acetate non-utilizing 1 (ACN1) is a peroxisomal short-chain acyl-CoA
synthetase that produces acetyl-CoA from free acetate, thus also contributing to the
pool of acetyl-CoA to be fed into the glyoxylate cycle (Figure 4). ACN1 only
consumes a small fraction of the total cellular acetate, yet it affects primary

metabolism and prevents carbon leakage from peroxisomes during lipid mobilization
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in seedlings (Allen et al., 2011). ACNI1 was recently shown to be the starting point of
the acetate-malate shunt, a process that converts acetate to malate in peroxisomes and
very interestingly, modulates guard cell turgor and drought tolerance (Dong et al.,

2018).

3. Biosynthesis‘of phytohormones

The p<oxidation pathway also contributes to the production of several key
phytohormones, including IAA, JA and SA (Figure 5). IBA is an endogenous auxin
precursorsmthat is converted into the active auxin IAA in peroxisomes.
Peroxisome-originated auxin plays important regulatory roles in the development of
lateral root;"cotyledon, root hair and apical hook in seedlings (reviewed in Kao ef al.,

2018).

Benzoic.acid#(BA) is a precursor of the defense hormone SA. Dissection of BA
B-oxidativesin Petunia hybrida and Arabidopsis led to the model that cinnamic acid
(CA) issumported into the peroxisome by PXA1 (Arabidopsis) (Bussell et al., 2014),
followed”by the enzymatic cascade catalyzed by cinnamoyl-CoA ligase (CNL),
bifunctional CA-CoA hydratase/dehydrogenase (CHD), 3-ketoacyl thiolase 1 (KAT1)
and thigesterase 1 (TE1) (Petunia) (Moerkercke et al., 2009; Colquhoun ef al., 2012;
Qualley ef al, 2012; Klempien et al., 2012; Adebesin et al., 2018) (Figure 5).
Phenotypes of the rice aiml (abnormal inflorescence meristem 1) mutant in redox
gene expression and root development can be rescued by SA treatment, suggesting
that riee-AdM1, whose homolog in Arabidopsis (AtAIM1) is a multifunctional protein
(MFP) in B-oxidation, participates in SA biosynthesis to regulate ROS levels for

proper function of the root meristem (Xu et al., 2017).

JA is important for plant defense and reproduction (Wasternack & Strnad, 2018). In
the octadecanoid pathway for JA biosynthesis, the chloroplast-synthesized JA
precursors 12-oxo-phytodienoic acid (OPDA) and dnOPDA are imported into

peroxisomes, reduced by OPDA reductase (OPR), and activated to CoA esters that go
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through the B-oxidation cycles to produce JA (Figure 5) (reviewed in Pan et al., 2018a;
Wasternack & Strnad, 2018). A recent study in Arabidopsis revealed a peroxisomal
OPR-independent pathway for JA biosynthesis, where OPDA skips reduction by the
peroxisemal @PR and is directly converted to 4,5-didehydro-JA via B-oxidation in

peroxisemesbefore being reduced to JA by an OPR in the cytosol (Chini ef al., 2018).

Peroxisemal OPRs are conserved in Arabidopsis, tomato, rice, maize and wheat, but
show species-specific mutant phenotypes. The loss-of-function mutant of the rice
peroxisomal"OPR, OG1 (or OsOPR7), is fertile but impaired in carbohydrate transport
into lodicules during anthesis (Li et al., 2018b). By contrast, Arabidopsis opr3 mutant
is male=sterile (Sanders et al., 2000), and the maize opr7 opr8 double mutant is
defective™in“sex determination and defense (Yan et al.,, 2012). Moreover, maize
Silkless. 1 (SK1), a peroxisomal UDP-glycosyltransferase that suppresses JA

accumulationJis also involved in sex determination (Hayward et al., 2016).

The “first_enzyme in B-oxidation, Acyl-CoA oxidase (ACX), is encoded by a
multigen€ family. ACX isoforms important for wound-induced JA biosynthesis have
been identified in Arabidopsis, tomato and tea plants (Cruz Castillo et al., 2004; Xin
et al., 2019)..Other proteins involved in peroxisome biogenesis or B-oxidation, such
as Arabidopsis ACXS5, MFP2, KAT2 and PEX6, are also important for JA
biosynthesis and as a result, plant defense and reproduction (Wasternack & Strnad,

2018).

4. Photorespiration

When seedlings begin photosynthesis, photorespiration becomes the most prominent
function of peroxisomes. Photorespiration salvages and converts 2-phosphoglycolate
(2-PQG), a toxic product of the oxygenase activity of the photosynthetic enzyme
Rubisco, to 3-phosphoglycerate, which re-enters the Calvin-Benson cycle.
Photorespiration spans multiple subcellular compartments, with peroxisomes at the

center of this pathway. The peroxisome-localized photorespiratory enzymes include
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glycolate oxidase (GOX), glutamate:glyoxylate aminotransferase (GGT),
serine:glyoxylate aminotransferase (SGAT) and hydroxypyruvate reductase 1 (HPR1),
while the NADH-producing enzyme peroxisomal malate dehydrogenase (pMDH) and
the H,Op-degrading enzyme catalase (CAT) are indirectly involved. Disruption of the
peroxisemal“photorespiratory enzymes negatively affects growth, which can be
compensated to'various degrees by elevated CO,, under which conditions Rubisco’s

oxygenase activity is suppressed (reviewed Timm et al., 2016).

A high-threughput photometric screen of an Arabidopsis peroxisomal mutant library
found photorespiratory mutants to exhibit activated cyclic electron flow (CEF) around
photosystemil'and accumulate higher levels of H,O, under high light conditions. The
authors“speculated that impaired photorespiration disturbs the balance of ATP and
NADPH and causes the accumulation of H,O,, which activates CEF to produce ATP
to compensaté for the imbalance of ATP and NADPH (Li et al, 2018a). Using
dynamienlight conditions that are more mimicking the natural environment, this study
was able,to reveal photosynthetic deficiencies in some peroxisomal mutants, such as
goxl_J(glycolate oxidase 1) and pxnl (peroxisomal NAD™ transporter), which
otherwise show no apparent phenotypes in constant laboratory light conditions,
suggesting _the importance of these peroxisomal proteins in photosynthetic
performance under high/dynamic lights. A follow-up study showed that in Aprl
mutants, 2-PG accumulation inhibits the activity of triose phosphate isomerase (TPI),
an enzyme in the Calvin-Benson cycle, causing a Glc-6P-phosphate shunt and higher

rates of CEF«(L1i et al., 2019).

How photorespiratory glycolate enters the peroxisome is still unknown. In
peroxisomes, glycolate is oxidized to glyoxylate by glycolate oxidase (GOX), a flavin
mononucleotide (FMN)-containing enzyme belonging to a multi-member family of
(L)-2-hydroxy acid oxidases ((L)-2-HAOX) in various species, including Arabidopsis,
rice and maize (reviewed in Dellero et al., 2016). Arabidopsis has five GOX proteins,

with GOX1, GOX2 and GOX3 showing narrow substrate specificities against
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glycolate and I-lactate, and HAOX1 and HAOX2 displaying broader substrate
specificities (Esser et al., 2014). Mutant and gene expression analyses in Arabidopsis
showed that GOX1 and GOX2 function in photorespiration, whereas GOX3 is more
involved in metabolizing l-lactate to sustain low levels of l-lactate in roots (Engqvist
et al., 2015)and HAOXI and HAOX?2 are highly expressed in seeds (reviewed in
Delleroretal.,; 2016). .

Interestinglys GOX and GOX homologs in tobacco, Arabidopsis and rice are also
involved‘inspathogen-plant interaction, which is partially due to their H,O,-producing
capabilities (reviewed in Dellero et al., 2016). The yb protein of Barley Stripe Mosaic
Virus (BSMV) can hijack GOX via physical interaction and reduce peroxisome ROS
generationto facilitate infection (Yang et al., 2018). The P8 protein of rice dwarf
phytoreovirus (RDV) also interacts with rice GOX (Zhou et al., 2007). These data
suggest that GOX may be a preferred target for viral pathogens and hence potentially

useful for genetic engineering to improve plant virus resistance.

5. ROS*& RNS metabolism

Peroxisomes contain ROS and reactive nitrogen species (RNS) metabolism that
generatesshydrogen peroxide (H,0,) and nitrite oxide (NO) respectively (Corpas ef al.,
2019b)£H,05 can be generated by many peroxisomal metabolic processes, including
photorespiration, B-oxidation, superoxide dismutation, sulfite oxidation, polyamine
catabolism and others. Peroxisomes are also armed with a set of potent H,0,
scavengersyincluding catalases (CAT) in the matrix and ascorbate peroxidase (APX)
on the membrane. In normal conditions, peroxisomal ROS level is adequately
controlled. However, stresses like heavy metal cadmium (Cd) and xenobiotic 2,4-D,
and specific developmental stages like leaf senescence, can disrupt peroxisomal ROS
homeostasis (Del Rio & Lopez-Huertas, 2016). Peroxisomal morphology can change
in response to oxidative stress, and H,O, generated from peroxisomal
photorespiration can affect the expression of nuclear genes in responses to pathogen

and light changes (reviewed in Sandalio & Romero-Puertas, 2015). Interestingly,
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peroxisome-derived H,O, seems to show spatial signaling specificity, as it causes
transcriptional responses that are different from those induced by chloroplast-derived

H,0,; (Sewelam et al., 2014).

Superoxide radical and singlet oxygen can also occur in peroxisomes. The presence of
superoxiderdismutase (SOD) activity was confirmed biochemically in various species
(reviewed in Corpas et al., 2017), and a Cu—Zn superoxide dismutase (CSD3) was
identified insmultiple Arabidopsis peroxisome proteomic studies (reviewed in Pan &
Hu, 2018a)#Peroxisomes also generate RNS under stress conditions such as excess
Cd, and probably reactive sulfur species (RSS) as well (Corpas & Barroso, 2014;
Corpas feral;72019a). Proteome analysis revealed numerous peroxisomal proteins to
be S-nitrosylated or nitrated, implying a role of RNS in peroxisomal function

(Sandalio & Romero-Puertas, 2015).

As the majorH,0, scavenger in the peroxisome, CAT plays a role in autophagy and
programmed cell death (PCD) via modulating ROS levels (Hackenberg et al., 2013;
Zhou .efal., 2014). Arabidopsis CAT deficient lines lack pathogen-induced
autophagic PCD but contains normal basal and starvation-induced autophagy,
suggesting that CAT plays a specific role in activating pathogen-induced autophagy
and autophagic PCD (Hackenberg et al., 2013; Tyutereva et al., 2018). Arabidopsis
cat? mutant displays impaired growth and disturbed redox state, as well as leaf
necrotic,lesions under long days, which can be rescued by elevated CO, or reduced
peroxisomalsH,0O, generation, suggesting that CAT2 is the main catalase to degrade
photorespiration-derived H,O, in peroxisomes (Mhamdi et al., 2010; Kerchev et al.,
2016; Waszczak et al., 2016). Analysis of Arabidopsis double mutants between CAT?2
and genes that encode transcription factors, cell death regulators or proteins involved
in hormone functions discovered critical roles for some of these proteins in executing
cell death in cat2, indicating the important roles of stress hormones and other defense
regulators in peroxisomal H,0O,-mediated cell death (Kaurilind et al, 2015).

Simultaneous mutations of all three catalases in Arabidopsis resulted in severe redox
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disturbance, growth defects and transcriptional changes, suggesting a role of

peroxisomal H,0, in retrograde signaling (Su ef al., 2018).

CAT appears to be a key target for various regulatory mechanisms. In Arabidopsis,
CATI and €CAT2 gene expression can be regulated by physiological signals and
transcription factors, such as by ABIS in seed germination and GBF1 (G-box binding
factor &) in leaf senescence and pathogen defense (Smykowski et al., 2010; Bi et al.,
2017; Giri etyal., 2017). The expression of rice OsCATA, OsCATB, and OsCATC is
induced byxdifferent abiotic stresses through cis-elements in their promoters (Vighi et
al., 2016). Interactions between Arabidopsis CATs and the zinc finger protein Lesion
simulating=disease 1 (LSD1), RING-finger protein No catalase activity 1 (NCA1),
small heat'shock protein Hsp17.6CII and Calcium-dependent protein kinase 8 (CPKS),
are involved in plant resistance to various abiotic stresses (Li et al., 2013, 2015, 2017,
Zou et al.,.2015). Mutants of NCAI display strongly reduced activities of all three
Arabidopsis,€ATs and absence of autophagy-dependent cell death (Hackenberg et al.,
2013)-wAmong these CAT-interacting proteins, only Hspl7.6CII localizes to
peroxisemes (Li ef al., 2017), suggesting that CATs may also be present at other

subcellular locations in plant cells.

Peroxisomal membrane-associated APX proteins have a higher affinity to H,O, than
CATs and proposed function of preventing H,O, from leaking out of the peroxisome
(Kaur et al., 2009). Arabidopsis APX3 and APXS5 are both localized to peroxisomes
(Pan wefwalse2018a). Peroxisomal APX level can be induced by stress, and
overexpression of peroxisomal APXs confers stronger resistance to abiotic stresses in
various plant species (reviewed in Anjum et al., 2016). Knockdown of a peroxisomal
APXin rice cat ameliorates the oxidative stress caused by photorespiration-derived
H,0,, suggesting that APX and CAT are not redundantly involved in photorespiration
and removal of APX may trigger a mechanism to compensate for the lack of CAT
(Sousa et al., 2015). The functional relation between these two major H,0,

scavengers in the peroxisome remains a key question for future investigation.
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6. NADPH regeneration

NADPH is a critical cofactor required by several reductive biosynthetic and
detoxificationgpathways in peroxisomes. There are several sources of NADPH in the
peroxiseme, hincluding peroxisomal NADP-dependent isocitrate de-hydrogenase
(pICDH) and the'oxidative pentose phosphate pathway (OPPP), which in Arabidopsis
is catalyzed sequentially by glucose-6-phosphate dehydrogenase 1 (G6PD1),
6-phosphogluconolactonase 3 (PGL3) and 6-phosphogluconate dehydrogenase 2
(PGD2)"(Pan & Hu, 2018a). Arabidopsis pICDH, a NADPH-generating
dehydrogenase, is required for stomatal movement, and the stomatal opening defects
of picdhecan be reversed by scavengers of H,O, or NO, suggesting that
pICDH=derived NADPH may be involved in the homeostasis/signaling of
peroxisome-derived ROS and RNS in stomata (Leterrier et al, 2016). Defects in
PGD2 impair the guided growth of pollen tube and male-female gametophytic
interactionin Arabidopsis, suggesting a role of the OPPP-generated NADPH in
fertilization (Holscher et al, 2016). Other peroxisomal enzymes, such as NADH
kinase.3(NADK3) and possibly betaine aldehyde dehydrogenase (BADH), are also
postulated to produce NADPH (reviewed in Pan & Hu, 2018a).

7. Biosynthesis of phylloquinone, biotin, CoA and ubiquinone

Plant peroxisomes have an amazing metabolic diversity and intricate metabolic
connections with other organelles. The biosynthesis of several crucial cofactors, such
as phyllequinone (or vitamin K1), biotin (or vitamin B7), coenzyme A (CoA) and
ubiquinone (ecoenzyme Q), is also achieved by peroxisomes in concert with other

organelles (Figure 6).

Phylloquinone is an important cofactor for photosystem I as wells as a key vitamin for
humans. The biosynthesis of phylloquinone initiates in the plastid, goes through
intermediate steps in the peroxisome and finalizes in the plastid (Figure 6). Within

this pathway, 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA) thioesterases (DHNAT)
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and naphthoate synthase (NS) localize in peroxisomes, while o-succinylbenzoyl-CoA
(OSB-CoA) ligase (named AAE14 in Arabidopsis) is dual localized to chloroplasts
and peroxisomes (reviewed in Basset et al., 2017). The peroxisomal transporter of
phylloquinonesbiosynthetic intermediates has not been identified, and PXA1 has been

excluded(Basset et al., 2017).

Biotin 1§ a cofactor required in numerous carboxylation and decarboxylation reactions.
In plants; the first committed step of biotin synthesis (catalyzed by Biotin F) is
peroxisomal] whereas the later steps are mitochondrial (Figure 6). Pimeloyl-CoA, the
precursor for/ biotin synthesis, is also speculated to be generated in peroxisomes
(Figure'6)(Tanabe ef al., 2011). Dephospho-CoA kinase (CoAE), the enzyme for the
last step”of"CoA synthesis, was found in the peroxisomal proteome in Arabidopsis

leaves (Reumann et al., 2009).

Peroxisomes.are also involved in the biosynthesis of the benzenoid ring of ubiquinone,
a prenylated benzoquinone acting as a vital respiratory cofactor in mitochondria. A
member~of the 4-coumarate-CoA ligase-like (4CL) family of the acyl-activating
enzyme (AAE) super family, 4-Coumarate:CoA ligase 5 (4CL5), is involved in the
phenylalanine-related biosynthetic pathway of ubiquinone in Arabidopsis by
activating the propyl side chain of p-coumaric acid for subsequent [-oxidative
reactions, and PXA1 is the likely transporter of p-coumaric acid (Figure 6) (Block et
al.,2014).

8. The mevalenic acid (MVA) pathway

Peroxisomes contain several enzymes involved in the mevalonic acid (MVA) pathway,
one ‘of the two major routes in generating precursors for the biosynthesis of
isoprenoids (the other being the plastidic methylerythritol phosphate (MEP) pathway)
(McGarvey & Croteau, 1995). A splicing isoform of Arabidopsis acetoacetyl-CoA
thiolase 1 (AACT1.3), the enzyme catalyzing the first step of this pathway, is located

in the peroxisome, whereas other AACT1 isoforms and AACT?2 are cytosolic (Carrie
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et al., 2007) (Figure 7). The next three steps are catalyzed sequentially by the ER
associated hydroxymethylglutaryl-CoA synthase (HMGS) and two cytosolic enzymes,
hydroxymethylglutaryl-CoA reductase (HMGR) and mevalonate kinase (MVK),
generating S-phosphomevalonate (MVP) (Simkin et al., 2011) (Figure 7). The last
three stéps “are also peroxisomal, where MVP is converted to dimethylallyl
diphosphate™ (DMAPP) by the action of S5-phosphomevalonate kinase (PMK),
mevalonate 5-diphosphate decarboxylase (MVD) and isopentenyl diphosphate
isomerase (IRI), respectively (Simkin et al., 2011; Pulido et al., 2012) (Figure 7).
Male sterility of the Arabidopsis ipil ipi2 double mutant can be rescued by
application of squalene, a sterol precursor, suggesting a role of the MVA pathway in

plant reproduction (Okada et al., 2008).

9. Catabolism of polyamines, urate, pseudouridine, sulfite and methylglyoxyal
The metabolie diversity of plant peroxisomes is also exemplified by the degradation
of many-bioactive or toxic metabolites, such as polyamines (PA), urate, pseudouridine,

sulfite'and methylglyoxyal.

PAs, including the diamine putrescine (Put), triamine spermidine (Spd) and tetramine
sperminey(Spm), are regulatory molecules in plant development and stress response
(Alcazat ef al., 2006). PAs can be oxidatively deaminated in peroxisomes by
flavin-containing polyamine oxidases (PAOs) and copper-containing amine oxidases
(CuAOs) (Figure 8) (Kusano et al., 2015). PAO and CuAO are both encoded by
multisgenesfamilies that each contain peroxisomal members. In Arabidopsis, PAO2,
PAO3 and PAO4 catalyze the back-conversion of spermine to putrescine, and CuAO2
and CuAO3 catalyze the terminal oxidation of putrescine to 4-aminobutanal (ABAL)
(reviewed in Kusano ef al., 2015; Pan & Hu, 2018a) (Figure 8). The final step of PA
catabolism is catalyzed by BADH, which is also named aldehyde dehydrogenase
10A9 (ALDHI10A9), converting ABAL to 4-aminobutyrate (GABA) (Zarei et al.,
2016) (Figure 8). CuAO3 is involved in ABA-induced ROS generation and stomatal

closure (Qu et al., 2014), and auxin signaling and IBA-dependent lateral root
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development via H,O, production (Qu et al., 2017).

Plants fully catabolize purine nucleotides to remobilize nitrogen resources. The
enzymatic route of purine ring catabolism spans across several subcellular
compartments. The three peroxisomal steps are catalyzed sequentially by urate
oxidase"(UOX"ot uricase) and the dual-functional allantoin synthase (ALNS) (Werner
& Witte, 2011) (Figure 8). Accumulation of uric acid in Arabidopsis uox mutant
compromisesyperoxisome maintenance and seedling establishment, establishing a link

between uric’acid toxicity and peroxisomal fatty acid catabolism (Hauck et al., 2014).

Pseudouriding' is structurally similar to uridine and represents the most abundant
non-classical nucleoside in RNA (Charette & Gray, 2000). Arabidopsis peroxisomes
containi. PfkB and IndA, both of which presumably -catalyze pseudouridine
degradation. (Pan & Hu, 2018a). Sulfite is a toxic by-product of sulfur assimilation
that can'be exidized to sulfate by the peroxisomal sulfite oxidase (SO) (Nowak et al.,
2004) (Eigure 8). Methylglyoxal, a toxic by-product of glycolysis, can be removed by
the sequential action of glyoxalase I (GLX1) and GLX2, among which GLX1 was
found to be peroxisomal in Arabidopsis (Quan et al., 2010) but GLX2 has not been

identified,in peroxisomes.

10. Amino acid metabolism

Plant peroxisomes contain proteins involved in amino acid biosynthesis and
degradationsPeroxisomes isolated from mungbean hypocotyls exhibit the capability
to degrade various branched-chain amino acids (BCAAs), including valine, leucine
and isoleucine (Gerbling & Gerhardt, 1989). Arabidopsis peroxisomal
3-hydroxyisobutyryl (HIBYL)-CoA hydrolase 1 (CHY1), and probably its homologs
CHY1HI1 and CHY1H2 as well, can catabolize valine and possibly other BCAAs
(Zolman et al., 2001; Lingner et al., 2011). Although BCAA synthesis is known to
occur in chloroplasts, ALS-interacting protein 1 (AIP1) and AIP3 are dual localized to

peroxisomes and chloroplasts and interact with acetolactate synthase (ALS), the first
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enzyme in BCAA synthesis, indicating a possible role of peroxisomes in BCAA

synthesis besides degradation (Dezfulian et al., 2017).

Based on knewn activity of its bacterial and mammalian homologs, Arabidopsis
sarcosing oxidase (SOX) was speculated to oxidize secondary or tertiary amino acids
(Goyer "et™al.772004). Tomato OAS9, an O-acetylserine(thiol)lyase (OASTL)-like
proteingwas hypothesized to play a role in cysteine biosynthesis and leaf senescence
(Liu et al.,n2018). Arabidopsis aspartate aminotransferase isoform 3 (ASP3) and
cobalamin=independent met synthase 1 (ATMSI) are also potential players in amino

acid metabolism (reviewed in Pan & Hu, 2018a).

VII. Peroxisomal solute transporters

A number of metabolic pathways span across peroxisomes and other subcellular
compartmentsj therefore, metabolites and cofactors must move across the peroxisomal
membrane, yand at least some of these movements should rely on membrane
transporters. To date, several peroxisomal membrane proteins have been identified to
specifieally transport B-oxidation substrates - i.e. fatty acids, OPDA, CA and IBA,
and large cofactors - i.e. ATP, NAD" and CoA (Charton et al., 2019).

The Arabidopsis full-size ABC transporter PXA1/CTS/PED3 can cleave acyl-CoA
and import free FAs into the peroxisomal matrix. PXA1 also interacts with long-chain
acyl-CoA synthetases LACS6 and LACS7, which reactivate free FA to acyl-CoA to
feed mtosB=oxidation (De Marcos Lousa ef al., 2013). In addition, PXAT1 transports
precursors for the biosynthesis of IAA, JA, BA and the benzenoid moiety of
ubiquinone (Figures 5 & 6) (Block et al., 2014; Li et al, 2016). PXAI is also
important in acetate metabolism, as a loss-of-function PX4A/ mutant named acn2
(acetate non-utilizing 2) is compromised in metabolizing acetate in seedlings (Hooks
et al., 2007). PXA1 interacts with CGI-58, a regulator of lipid metabolism and
signaling (Park et al, 2013). Consistent with its broad function, PX4/ knockout

mutants have defects in lateral root development, seed dormancy and germination,
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fertilization and leaf necrosis (Li et al., 2016).

Besides transporters, Acyl-CoA-binding proteins (ACBPs) can also mediate lipid
transfergacrossy membranes (Xiao & Chye, 2011). Arabidopsis ACBPs have not been
found in"theyperoxisome, but rice ACBP6 is peroxisomal and its overexpression
partially récovered the B-oxidation defects of pxal, suggesting that rice ACBP6 can
contribute to the import of FA into peroxisomes for degradation (Meng et al., 2014).
Whethegpsthisydivergence in ACBP function between Arabidopsis and rice is due to

different'metabolic features of monocot and dicot species remains to be determined.

Arabidopsis"PNC (PNC1 and PNC2) and PXN proteins are peroxisomal ATP and
NAD" earriers, respectively. PNC1 and PNC2 can catalyze the counter-exchange of
ATP with ADP or AMP and complement yeast mutants deficient in peroxisomal ATP
import. The piac mutants are impaired in f—oxidation, suggesting that the proteins are
essentiabfor.supplying peroxisomes with ATP (Linka ef al., 2008). PXN can transport
many substrates in vitro, including NAD*, NADH, AMP, ADP, CoA and acetyl-CoA
(Bernhardt et al., 2012; Agrimi et al., 2012), and contributes to optimal fatty acid
degradation during seedling establishment, and photorespiration under fluctuating and
high light,conditions (Bernhardt et al., 2012; Li et al., 2018a). However, exogenously
expresséd AtPXN in yeast strains can import NAD™ into peroxisomes in exchange of
AMP but cannot transport CoA or mediate NAD*/NADH exchange (van Roermund et
al., 2016).

Non-selective,, peroxisomal membrane channels may allow the passage of small
solutes, such as organic acids. Yeast PEX11 has pore-forming function, but whether
plant PEX11s also possess this function has not been reported (Mindthoff et al., 2016).
Several additional peroxisomal membrane proteins, such as PMP22 (peroxisomal
membrane protein of 22 kDa), CDC (Ca?'-dependent carrier) and SMP2 (short
membrane protein 2), also have potential pore-forming activities (summarized in Pan

& Hu, 2018a).
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VIIL. Signaling events that involve Ca* and protein phosphorylation
Peroxisomes house many potential signaling elements, such as Ca?*, protein kinases
and phosphatases, which may contribute to the regulation of metabolic functions of

peroxisemes'by physiological and environmental cues.

Ca?" is @ne of the most prominent second messengers in the cell. In plant peroxisomes,
Ca’" and calmodulin (CaM) are important for protein import and function of
peroxisomal“enzymes involved in detoxification, photorespiration and NO production
(Corpas & Barroso, 2018). Arabidopsis calcium-dependent protein kinase 1 (CPK1) is
involved"in"SA signaling and pathogen resistance (Coca & San Segundo, 2010), and
the calmodulin-like protein CML3 is involved in DEGI5 dimerization and
peroxisomal protein import (Dolze et al., 2013). In Petunia inflata, peroxisomal
Ca?*"-dependent protein kinase 2 (CDPK2) and small CDPK-interacting protein 1
(SCP1) regulate pollen tube growth (Guo et al., 2013). Cotton peroxisomal CPK33
negatively regulates plant resistance to verticillium wilt, a destructive fungal disease,
as CPK33-mediated GhOPR3 phosphorylation destabilizes GhOPR3 and reduces JA
biosynthesis (Hu et al, 2018). Other peroxisomal protein kinases such as
glyoxysomal protein kinase 1 (GPK1), receptor-like protein kinase 1 (RPK1) and PPK
(a Protein kinase superfamily protein/Peroxisomal protein kinase), are still unknown

in function.

Arabidopsisseperoxisomes also contain protein phosphatase 2A B’h subunit
(PP2A-B’h), PP2A-C5, PP2A-A2, PP2A-C2, POL like phosphatase 2 (PLL2), PLL3,
purple acid phosphatase 7 (PAP7), PAPS, and MAP kinase phosphatases 1 (MKP1)
(Kataya et al., 2019). PP2A is involved in B-oxidation (Kataya et al., 2015a), whereas
MKPI1, which targets to peroxisomes in a stress dependent manner (Kataya et al.,
2015b), negatively regulates the production of ROS and SA in stress response (Bartels
et al., 2009; Anderson et al., 2011). Maintaining the optimal level of PAPS5, which

acts upstream of SA accumulation, is necessary for the complete basal resistance to
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Pseudomonas syringae (Ravichandran et al., 2013, 2015).

Taken together, protein phosphorylation/dephosphorylation is apparently an important
regulatory mechanism of peroxisome proteins and probably widely involved in
peroxiseme function, which will need to be further elucidated through in-depth and

systematic'studies.

IX. Conelusions

In the lastedecade, many milestones were reached in plant peroxisomal research.
Hundreds of proteins and numerous metabolic pathways have been identified in this
essentialvorganelle, which is highly versatile and contains many functions unique to
plants. Peroxisomes are highly dynamic in number, appearance and protein content in
a regulated manner, and function collaboratively with other organelles in various

metabolic pathways.

Despitesthese significant advances, there are still many knowledge gaps. We have
very limited knowledge about the transcriptional and post-translational mechanisms
that link peroxisome dynamics and metabolism to developmental and environmental
cues, and,the degradation of peroxisomal proteins. Key peroxisomal proteins in
pexophagy and interaction with other organelles remain to be determined.
Developmental defects caused by the disruption of peroxisomal proteins, such as
defects in germination and male-female gametophyte interaction for some B-oxidation
mutants,shave yet been clearly explained at the molecular level. The presence and
physiologicaliroles of novel RNS and RSS await elucidation, and our understanding
of the functional relations between different types of antioxidant enzymes needs to be
further,investigated. Finally, peroxisomes in monocotyledon species, especially cereal
crops, are poorly studied. Given the significant differences in development and
metabolism between monocots and dicots, peroxisomes very likely perform
monocot-specific functions that could be applicable to agriculture to improve crop

performance and vigor.
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Figure Legends

Figured. A model for peroxisomal protein import in Arabidopsis.

PEX19 48 a“chaperone for peroxisomal membrane proteins (PMPs), PEX3 is the
membraneé~anchor for PEX19, and PEX16 is involved in recruiting PEX3 to the
membrane. Matrix proteins containing PTS1 and PTS2 are recognized by the
receptors® PEXS5 and PEX7, respectively. PEX13 and PEX14 form the docking
complex for'the receptor-cargo and allow cargo import. After cargo release, PEXS is
presumably ubiquitinated and recycled, facilitated by the RING proteins PEX2,
PEX10rand"PEX12 and the ubiquitin conjugating enzyme PEX4. Ubiquitinated PEXS
is removed from the peroxisome by the PEX1-PEX6 AAA ATPase complex. PEX22
is the membrane anchor for PEX4, and PEX26 is the membrane anchor for PEX1 and
PEX6. The RING-type E3 ubiquitin ligase SP1 negatively regulates matrix protein
import by ‘destabilizing PEX13 and probably other peroxins, while SPL1 and SP1

destabilize each other.

Figure 2. A model for peroxisomal elongation and fission in Arabidopsis.

PEX11aythrough PEXI1le are involved in peroxisomal elongation. PEX11b is
transcriptionally activated by HYS homolog (HYH) in response to light and through
phytochrome A (phyA), and repressed by Forkhead-associated domain protein 3
(FHA3). Fission is mediated mainly by dynamin-related proteins DRP3A and DRP3B,
and theirsprobable membrane anchors Fission 1A (FIS1A) and FIS1B. Peroxisomal
and mitochondrial division 1 (PMD1) and DRP5B are two plant-specific peroxisome
fission factors, PMDI1 binds to actin and functions genetically downstream of MAP

kinase,17 (MPK17), a putative regulator of salt-induced peroxisome proliferation.

Figure 3. A model for peroxisome quality control and proteome remodeling in plants.
DEGI1S5 cleaves PTS2 peptide from PTS2-containing matrix proteins in its dimeric

form, and functions as a general protease in its monomeric form. LON2 mediates
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protein degradation during peroxisome remodeling and is involved in sustained
protein import and pexophagy. RDL1, PXM16 and SCPL20 are putative proteases
with undetermined functions. ROS can be eliminated by CAT, but ROS burst can also
damagey; CATy ROS and CAT deficiency are linked to pexophagy. In pexophagy,
ATGS is'the'key protein to recruit the autophagic machinery to the peroxisome, and
has been™found to physically interact with PXAl and PEXI10. During
cadmium-induced pexophagy, ATG8 co-localizes with catalase and NBR1 in the
electronsddense peroxisomal core. Peroxisome-specific receptor for the phagophore has

not been detérmined.

Figure 4:"Armodel for fatty acid degradation in Arabidopsis.

Seed storage oil is hydrolyzed by the lipase SUGAR-DEPENDENT (SDP) into fatty
acids (EAs). FA or FA-CoA is imported by PXAT1 into peroxisomes, activated by
long-chain.acyl-CoA synthetase (LACS) and degraded by the B-oxidation pathway
that consists<of three enzymes: acyl-CoA oxidase (ACX), multifunctional protein
(MFP)wand 3-ketoacyl-CoA thiolase (KAT). Each B-oxidation cycle generates one
molecule”of acetyl-CoA, which is utilized by the glyoxylate cycle that consists of
peroxisomal enzymes isocitrate lyase (ICL), malate synthase (MLS) and citrate
synthasey(CSY), and presumably non-peroxisomal enzymes malate dehydrogenase
(MDH)/and aconitase (ACO). Succinate, isocitrate and citrate produced can enter the
mitochondrial TCA cycle for cellular energy consumption. ACNT1 activates acetate to
produce.acetyl-CoA, which can be converted into malate by MLS, thus forming an

acetate=malate shunt.

Figure 5. Peroxisomal hormone biosynthesis in Arabidopsis. Precursors like
12-oxo-phytodien oic acid (OPDA), dinor-OPDA (dnOPDA), cinnamic acid (CA) and
indole-3-butyric acid (IBA) are imported into the peroxisome by PXAIl. Before
entering the B-oxidation cycle, OPDA and dnOPDA are reduced and activated, while
CA and IBA are simply activated into their CoA esters. Benzoic acid (BA) synthesis

lacks the dehydrogenation step of B-oxidation. CoA esters produced by B-oxidation
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are hydrolyzed to form free jasmonic acid (JA), BA and indole-3-acetic acid (IAA).
OPC6-CoA and OPCS8-CoA respectively undergo two and three rounds of

B-oxidation.

Figure 6. Biosynthesis of phylloquinone, biotin and ubiquinone in Arabidopsis.

Phylloquinene"biosynthesis begins in plastids, producing o-succinylbenzoate (OSB)
that is subsequently activated to OSB-CoA by AAE14, an enzyme dual targeted to
plastids sandsperoxisomes. OSB and/or OSB-CoA enter the peroxisome. OSB-CoA
undergoes=(1) ring cyclization by naphthoate synthase (NS) to form
1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), and (2) DHNA-CoA hydrolysis by
the DHNA=CoA thioesterases (DHNAT1 and DHNAT2) to form DHNA. DHNA is
transpofted “back to the plastids to complete phylloquinone biosynthesis. In biotin
biosynthesis, pimeloyl-CoA is speculated to form in peroxisomes. Biotin F catalyzes
the first..committed step of biotin synthesis to convert pimeloyl-CoA to
7-keto-8=aminopelargonic acid (KAPA), which is then transported to mitochondria for
the final_steps. In ubiquinone biosynthesis, p-coumaric acid is imported into
peroxisomes by PXA1, after which 4-coumarate:CoA ligase 5 (4CL5) activates the
propyl side chain of p-coumaric acid for the subsequent chain-shortening by
B-oxidative.to form 4-hydroxybenzoic acid (4-HB), which is then transported into

mitochondria for the final steps.

Figure 7. The mevalonic acid (MVA) pathway.

The firstwstep is catalyzed by acetoacetyl-CoA thiolase (AACT) to generate
acetoacetyl-CoA. In Arabidopsis, a splicing isoform of acetoacetyl-CoA thiolase 1
(AACT1.3) 1s peroxisomal, while other AACT]1 isoforms and AACT2 are cytosolic.
The subsequent steps are catalyzed by the ER hydroxymethylglutaryl-CoA synthase
(HMGS) to generate 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), and two
cytosolic proteins hydroxymethylglutaryl-CoA reductase (HMGR) and mevalonate
kinase (MVK) to generate MVA and 5-phosphomevalonate (MVP), respectively.

MVP is transported to peroxisomes for the final steps of the MV A pathway, in which
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5-phosphomevalonate kinase (PMK) generates 5-diphosphomevalonate (MVPP),
mevalonate 5-diphosphate decarboxylase (MVD) generates isopentenyl diphosphate
(IPP), and isopentenyl diphosphate isomerase (IDI) reversibly isomerizes IPP to form
dimethylallyl xdiphosphate (DMAPP). IPP and DMAPP can then be used for the
biosynthesis“of isoprenoids, including the synthesis of sterols in the ER via farnesyl

diphosphate (FPP). G3P, glycerol-3-phosphate.

Figure 8 Catabolism of polyamines, urate and sulfite in Arabidopsis.

Polyamines;™ including spermine, spermidine and putrescine, are oxidatively
deaminated in peroxisomes by flavin-containing polyamine oxidases (PAOs) and
copper-containing amine oxidases (CuAQOs), generating aminobutanal (ABAL).
Betaine"aldehyde dehydrogenase (BADH), also named aldehyde dehydrogenase 10A9
(ALDHI10AY9), catalyzes the conversion of ABAL to 4-aminobutyrate (GABA). Urate
is generated.in purine catabolism and transported to peroxisomes, in which it is
catalyzed by.urrate oxidase (UOX) to form 5-hydroxyisourate (HIU) and then by the
dual-functional enzyme allantoin synthase (ALNS) to form
2-0x0-4=hy-droxy-4-carboxy-5-ureidoimidazoline =~ (OHCU) and subsequently
S-allantoin. S-allantoin is transported to the ER to be converted to the end product
glyoxylate. Sulfite is a toxic by-product of sulfur assimilation in plastids and can enter

peroxisomes to be oxidized to sulfate by the peroxisomal sulfite oxidase (SO).
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