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FOURTH ORDER FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION1

WITH MESH REFINEMENT INTERFACES2

SIYANG WANG ∗ AND N. ANDERS PETERSSON †3

Abstract. We analyze two types of summation-by-parts finite difference operators for approximating the second4
derivative with variable coefficient. The first type uses ghost points, while the second type does not use any ghost points.5
A previously unexplored relation between the two types of summation-by-parts operators is investigated. By combining6
them we develop a new fourth order accurate finite difference discretization with hanging nodes on the mesh refinement7
interface. We take the model problem as the two-dimensional acoustic wave equation in second order form in terms of8
acoustic pressure, and prove energy stability for the proposed method. Compared to previous approaches using ghost9
points, the proposed method leads to a smaller system of linear equations that needs to be solved for the ghost point values.10
Another attractive feature of the proposed method is that the explicit time step does not need to be reduced relative to the11
corresponding periodic problem. Numerical experiments, both for smoothly varying and discontinuous material properties,12
demonstrate that the proposed method converges to fourth order accuracy. A detailed comparison of the accuracy and the13
time-step restriction with the simultaneous-approximation-term penalty method is also presented.14

Key words. Wave equation, Finite difference methods, Summation-by-parts, Ghost points, Non-conforming, Mesh15
refinement16

AMS subject classifications. 65M06, 65M1217

1. Introduction. Based on the pioneering work by Kreiss and Oliger [12], it is by now well known18

that high order accurate (≥ 4) numerical methods for solving hyperbolic partial differential equations19

(PDE) are more efficient than low order methods. While Taylor series expansion can easily be used to20

construct high order finite difference stencils for the interior of the computational domain, it is in general21

difficult to find stable boundary closures that avoid spurious growth in time of the numerical solution.22

Finite difference operators that satisfy the summation-by-parts (SBP) identity, first introduced by Kreiss23

and Scherer [14], provide a recipe for achieving both stability and high order accuracy.24

An SBP operator is constructed such that the energy estimate of the continuous PDE can be carried25

out discretely for the finite difference approximation, with summation-by-parts replacing the integration-26

by-parts principle. As a consequence, a discrete energy estimate can be obtained to ensure that the27

discretization is energy stable. When deriving a continuous energy estimate, the boundary terms result-28

ing from the integration-by-parts formula are easily controlled through the boundary conditions. The29

fundamental benefit of using SBP operators is that a discrete energy estimate can be derived in a similar30

way. Here, the summation-by-parts identities result in discrete boundary terms. These terms dictate31

how the boundary conditions must be discretized to guarantee energy stability for the finite difference32

approximation.33

We consider the SBP discretization of the two-dimensional acoustic wave equation on Cartesian grids,34

and focus on the case when the material properties are discontinuous in a semi-infinite domain. To obtain35

high order accuracy, one approach is to decompose the domain into multiple subdomains, such that the36

material is smooth within each subdomain. The governing equation is then discretized by SBP operators37

in each subdomain, and patched together by imposing interface conditions at the material discontinuity.38

For computational efficiency, the mesh size in each subdomain should be chosen inversely proportional39

to the wave speed [9, 14], leading to mesh refinement interfaces with hanging nodes.40

We develop two approaches for imposing interface conditions in the SBP finite difference framework.41

In the first approach, interface conditions are imposed strongly by using ghost points. In this case, the42

SBP operators also utilize ghost points in the difference approximation. We call this the SBP-GP method.43

In the second approach, the SBP-SAT method, interface conditions are imposed weakly by adding penalty44

terms, also known as simultaneous-approximation-terms (SAT) [3]. The addition of penalty terms in the45

SBP-SAT method bears similarities with the discontinuous Galerkin method [10]. A high order accurate46

SBP-SAT discretization of the acoustic wave equation in second order form was previously developed by47
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2 S. WANG AND N. A. PETERSSON

Wang et al. [31]. Petersson and Sjögreen [22] developed a second order accurate SBP-GP scheme for the48

elastic wave equation in displacement formulation with mesh refinement interfaces. We note that the49

projection method [20, 21] could in principle also be used to impose interface conditions, but will not be50

considered here.51

In this paper, we present two ways of generalizing the SBP-GP method in [22] to fourth order52

accuracy. The first approach is a direct generalization of the second order accurate technique. It imposes53

the interface conditions using ghost points from both sides of the mesh refinement interface. The second54

approach is based on a previously unexplored relation between SBP operators with and without ghost55

points. This relation allows for an improved version of the fourth order SBP-GP method, where only56

ghost points from one side of the interface are used to impose the interface conditions. This approach57

reduces the computational cost of updating the solution at the ghost points and should also simplify the58

generalization to three-dimensional problems.59

Even though both the SBP-GP and SBP-SAT methods have been used to solve many kinds of PDEs,60

the relation between them has previously not been explored. An additional contribution of this paper is61

to connect the two approaches, provide insights into their similarities and differences, as well as making62

a comparison in terms of their efficiency.63

The remainder of the paper is organized as follows. In Section 2, we introduce the SBP methodology64

and present the close relation between the SBP operators with and without ghost points. In Section 3,65

we derive a discrete energy estimate for the wave equation in one space dimension with Dirichlet or66

Neumann boundary conditions. Both the SBP-GP and the SBP-SAT methods are analyzed in detail and67

their connections are discussed. In Section 4, we consider the wave equation in two space dimensions,68

and focus on the numerical treatment of grid refinement interfaces with the SBP-GP and SBP-SAT69

methods. Numerical experiments are conducted in Section 5, where we compare the SBP-GP and SBP-70

SAT methods in terms of their time-step stability condition and solution accuracy. Our findings are71

summarized in Section 6.72

2. SBP operators. Consider the bounded one-dimensional domain x ∈ [0, 1] =: Ω and the uniform73

grid on Ω,74

x = [x1, · · · , xn]T , xj = (j − 1)h, j = 1, 2, · · · , n, h = 1/(n− 1).75

The grid points in x are either in the interior of Ω, or on its boundary. We also define two ghost points76

outside of Ω: x0 = −h and xn+1 = 1 + h. Let the vector x̃ = [x0, · · · , xn+1]T denote the grid with ghost77

points. Throughout this paper, we will use the tilde symbol to indicate that ghost points are involved in78

a grid, a grid function, or in a difference operator.79

We consider a smooth function u(x) in the domain Ω, and define the grid function uj := u(xj). Let80

(2.1) u = [u1, · · · , un]T and v = [v1, · · · , vn]T81

denote real-valued grid functions on x, and let82

(2.2) ũ = [u0,u
T , un+1]T and ṽ = [v0,v

T , vn+1]T83

denote the corresponding real-valued grid functions on x̃.84

We denote the standard discrete L2 inner product by85

(u,v)2 = h

n∑
j=1

ujvj .86

For SBP operators, we need the weighted inner product87

(2.3) (u,v)h = h

n∑
j=1

wjujvj , wj ≥ δ > 0,88

where δ is a constant, wj = 1 in the interior of the domain and wj 6= 1 at a few grid points near89

each boundary. The number of grid points with wj 6= 1 is independent of n, but depends on the order90
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 3

of accuracy of the SBP operator. Let ‖ · ‖h be the SBP norm induced from the inner product (·, ·)h.91

Furthermore, let the diagonal matrix W have entries Wjj = hwj > 0. Then, in matrix-vector notation,92

(u,v)h = uTWv.93

The SBP methodology was introduced by Kreiss and Scherer in [14], where the first derivative SBP94

operator D ≈ ∂/∂x was also constructed. The operator D does not use ghost points, and satisfies the95

first derivative SBP identity.96

Definition 2.1 (First derivative SBP identity). The difference operator D is a first derivative SBP97

operator if it satisfies98

(2.4) (u, Dv)h = −(Du,v)h − u1v1 + unvn,99

for all grid functions u and v.100

We note that (2.4) is a discrete analogue of the integration-by-parts formula101 ∫ 1

0

u
dv

dx
dx = −

∫ 1

0

du

dx
v − u(0)v(0) + u(1)v(1).102

Centered finite difference stencils are used on the grid points away from the boundaries, where the103

weights in the SBP norm are equal to one. To retain the SBP identity, special one-sided boundary stencils104

must be employed at a few grid points near each boundary. Kreiss and Scherer showed in [14] that the105

order of accuracy of the boundary stencil must be lower than in the interior stencil. With a diagonal norm106

and a 2pth order accurate interior stencil, the boundary stencil can be at most pth order accurate. The107

overall convergence rate can be between p + 1/2 and 2p, depending on the equation and the numerical108

treatment of boundary and interface conditions [8, 29, 30]. In the following we refer to the accuracy of109

an SBP operator by its interior order of accuracy (2p).110

It is possible to construct block norm SBP operators with 2pth order interior stencils and (2p− 1)th111

order boundary stencils. Despite their superior accuracy, the block norm SBP operators are seldomly112

used in practice because of stability issues related to variable coefficients. However, in some cases the113

block norm SBP operators can be stabilized using artificial dissipation [16].114

For second derivative SBP operators, we focus our discussion on discretizing the expression115

(2.5)
d

dx

(
µ(x)

dv

dx
(x)

)
.116

Here, the smooth function µ(x) > 0 may represent a variable material property or a metric coefficient.117

In the following we introduce two different types of second derivative SBP operators that are based on118

a diagonal norm. The first type uses one ghost point outside each boundary, while the second type does119

not use any ghost points. We proceed by explaining the close relation between these operators. To make120

the presentation concise, we exemplify the relation for the case of fourth order accuracy (2p = 4).121

2.1. Second derivative SBP operators with ghost points. Sjögreen and Petersson [26] derived122

a fourth order accurate SBP discretization G̃(µ)ṽ for approximating (2.5). This discretization was orig-123

inally developed for solving the seismic wave equations and is extensively used in the software package124

SW4 [24]. The formula is based on a five-point centered difference stencil of fourth order accuracy in125

the interior of the domain. Special one-sided boundary stencils of second order accuracy are used at the126

first six grid points near each boundary. Note, in particular, that G̃(µ)ṽ uses the ghost point values127

of ũ to approximate (2.5) on the boundary itself, as illustrated in Figure 1. As will be shown below,128

the difference approximation of the wave equation is energy stable because the difference operator G̃(µ)129

satisfies the second derivative SBP identity.130

Definition 2.2 (Second derivative SBP identity). The difference operator G̃(µ) is a second deriva-131

tive SBP operator if it satisfies132

(2.6) (u, G̃(µ)ṽ)h = −Sµ(u,v)− u1µ1b̃
T

1 ṽ + unµnb̃
T

n ṽ,133
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Fig. 1: The non-zero coefficients of the SBP operator G̃(µ) in matrix form, for a grid with 30 grid
points. Blue circles: standard five-point difference stencil. Red triangles: special boundary stencil. Black
squares: ghost points. The structure of G(µ) is the same, but without the black squares. Note that the

grid function G̃(µ)ṽ is defined at the same grid points as v.

for all grid functions u and ṽ. Here, µ1 = µ(x1), µn = µ(xn) and the bilinear form Sµ(·, ·) is symmetric134

and positive semi-definite. The boundary difference formulas b̃
T

1 ṽ and b̃
T

n ṽ approximate dv/dx at x1 and135

xn, making use of the ghost point values v0 and vn+1, respectively.136

We remark that the boundary difference operators, b̃
T

1 and b̃
T

n , are constructed with fourth order accuracy137

in [26]. Note that (2.6) is a discrete analogue of the integration-by-parts formula138 ∫ 1

0

u
d

dx

(
µ
dv

dx

)
dx = −

∫ 1

0

µ
du

dx

dv

dx
− u(0)µ(0)

dv

dx
(0) + u(1)µ(1)

dv

dx
(1).139

2.2. Second derivative SBP operators without ghost points. The second type of second140

derivative SBP operator, denoted by G2p(µ), does not use any ghost points. This type of operator was141

constructed by Mattsson [15] for the cases of second, fourth and sixth order accuracy (2p = 2, 4, 6). In142

the following discussion we focus on the fourth order case and define G(µ) = G4(µ).143

In the interior of the domain, the operator G(µ) uses the same five-point wide, fourth order accurate144

stencil as the operator with ghost points, G̃(µ). At the first six grid points near the boundaries, the145

two operators are similar in that they both use a second order accurate one-sided difference stencil that146

satisfies an SBP identity of the form (2.6), but without ghost points,147

(2.7) (u, G(µ)v)h = −Sµ(u,v)h − u1µ1b
T
1 v + unµnb

T
nv.148

Similar to (2.6), the bilinear form Sµ(·, ·) is symmetric and positive semi-definite. In this case, the149

boundary difference operators bT1 and bTn are constructed with third order accuracy, using stencils that150

do not use any ghost points. The structure of G(µ) is the same as shown in Figure 1, but without the151

two black squares representing the ghost points.152

2.3. The relation between SBP operators with and without ghost points. When using153

the SBP operator G̃(µ) with ghost points, boundary conditions are imposed in a strong sense by using154

the ghost point values as additional degrees of freedom. On the other hand, for the SBP operator G(µ)155

without ghost points, boundary conditions are imposed weakly by using a penalty technique. Though156

these two types of SBP operators are used in different ways, they are closely related to each other. In157

fact, an SBP operator with ghost points can easily be modified into a new SBP operator that does not158

use any ghost points, and vice versa. The new operators preserve the SBP identity and the order of159
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 5

accuracy of the original operators. In the following, we demonstrate this procedure for the fourth order160

accurate version of G̃(µ) [26] and G(µ) [15]. For simplicity, we only consider the stencils near the left161

boundary. The stencils near the right boundary can be treated in a similar way.162

To discuss accuracy, let us assume that the grid function ṽ is a restriction of a sufficiently smooth163

function V (x) on the grid x̃. The boundary difference operator associated with G̃(µ) satisfies164

(2.8) b̃
T

1 ṽ =
1

12h
(−3v0 − 10v1 + 18v2 − 6v3 + v4) =

dV

dx
(x1) +O(h4).165

Let’s consider the modified boundary difference operator,166

(2.9) b̃
T

1 ṽ + βh4d̃
T

5+ṽ,167

where168

(2.10) d̃
T

5+ṽ =
1

h5
(−v0 + 5v1 − 10v2 + 10v3 − 5v4 + v5) =

d5V

dx5
(x1) +O(h)169

is a first order accurate approximation of the fifth derivative at the boundary point x1. Both the approx-170

imations (2.8) and (2.9) are exact at x1 if V (x) is a polynomial of order at most four. For any (finite)171

value of β, (2.9) is a fourth order accurate approximation of dV
dx (x1).172

We note that the coefficient of v0 in (2.8) is -1/4. To eliminate the dependence on v0 in (2.9), we173

choose β = −1/4 and define a new boundary difference operator by174

b̃
T

1 v =
1

12h
(−25v1 + 48v2 − 36v3 + 16v4 − 3v5) = Vx(x1) +O(h4).175

This stencil does not use the ghost point value v0. Instead, it uses the value v5, which is not used by176

b̃
T

1 ṽ. Here and throughout the paper, we use an underbar to indicate operators that have been modified177

by adding/removing ghost points.178

To retain the SBP identity (2.6), the operator G̃(µ) must be changed accordingly. We can maintain179

the same bilinear form Sµ(·, ·) if we only modify G̃(µ) on the boundary itself. We make the ansatz180

(2.11) G̃1(µ)v = G̃1(µ)ṽ + ãT ṽ,181

where G̃1(µ)ṽ should be interpreted as the first element of vector G̃(µ)ṽ. To see the relation between182

G̃1(µ)v and G̃1(µ)ṽ in the SBP identity (2.6), we pick a particular grid function u in (2.6) satisfying183

u1 = 1 and uj = 0, for j ≥ 2. The balance between the left and right hand sides of that equation is184

maintained if185

hw1ã
T ṽ = −βh4µ1d̃

T

5+ṽ ⇒ ãT ṽ =
12

17
h3µ1d̃

T

5+ṽ.186

Here we have used that β = −1/4 and that w1 = 17/48 is the weight of the SBP norm at the first grid187

point. The ghost point value v0 is only used by G̃(µ)ṽ on the boundary itself. It satisfies188

(2.12) G̃1(µ)ṽ =
1

h2

8∑
k=1

8∑
m=1

βk,mµmvk +
12

17

µ1

h2
v0,189

where βk,m are constants [26] (the numerical values can be found in the open source code of SW4 [24]).190

Because the coefficient of v0 in d̃
T

5+ṽ is −1/h5, the dependence on v0 cancels in (2.11). This cancellation191

is a consequence of the operators G̃(µ) using ghost points only from b̃
T

1 but not Sµ(·, ·), see [26] for details.192

The new SBP difference operator that does not use ghost points can be written as193

G̃1(µ)v =
1

h2

8∑
k=1

8∑
m=1

βk,mµmvk +
12

17

µ1

h2
(5v1 − 10v2 + 10v3 − 5v4 + v5) ,194

G̃j(µ)v = G̃j(µ)ṽ, j = 2, 3, . . . .195196
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6 S. WANG AND N. A. PETERSSON

Note that the second equation is satisfied independently of the ghost point value, v0.197

To emphasize that G̃(µ) is modified from G̃(µ), we keep the tilde symbol on G̃(µ), even though the198

operator does not use any ghost points. The new operator pair (G̃(µ), b̃1) shares important properties199

with the original operator pair (G̃(µ), b̃1). In particular, both pairs satisfy the SBP identity 2.2 and have200

the same orders of accuracy in the interior and near each boundary. Even though the SBP operator G̃(µ)201

does not use any ghost points, it is not the same as the SBP operator G(µ) constructed by Mattssson [15].202

The dissimilarity arises because the corresponding boundary difference operators are constructed with203

different orders of accuracy.204

For the SBP operator pair (G(µ), b1) that does not use ghost points, we can reverse the above205

procedure to derive a new pair of SBP operator that uses a ghost point. The boundary difference206

operator associated with G(µ) is207

(2.13) bT1 v =
1

6h
(−11v1 + 18v2 − 9v3 + 2v4) =

dV

dx
(x1) +O(h3).208

Another third order approximation of dV/dx(x1) is given by the difference formula209

(2.14) bT1 v + γh3d̃
T

4+ṽ,210

where211

(2.15) d̃
T

4+ṽ =
1

h4
(v0 − 4v1 + 6v2 − 4v3 + v4) =

d4V

dx4
(x1) +O(h).212

The boundary operator (2.13) is exact for any polynomial V (x) of order at most three and d̃
T

4+ṽ = 0 for213

such polynomials. Therefore, (2.14) is third order accurate for any value of γ. By choosing γ = −1/3,214

we obtain a new boundary difference operator that uses the ghost point value v0, but does not depend215

on v4,216

(2.16) bT1 ṽ := bT1 v −
1

3
h3d̃

T

4+ṽ =
1

6h
(−2v0 − 3v1 + 6v2 − v3) =

dV

dx
(x1) +O(h3).217

As a result, the new boundary difference operator has the minimum stencil width for a third order218

accurate approximation of a first derivative.219

To satisfy the SBP identity (2.6) for difference operators that include ghost points, we must modify220

G(µ) to be compatible with the new boundary difference operator bT1 . As before, we consider a grid221

function u with u1 = 1 and uj = 0, for j ≥ 2. To maintain the balance between the left and right hand222

sides of (2.6), the following must hold223

(2.17) G1(µ)ṽ := G1(µ)v − γh3

w1h
µ1d̃

T

4+ṽ = G1(µ)v +
16

17
h2µ1d̃

T

4+ṽ.224

The new SBP operator that uses a ghost point becomes225

Gj(µ)ṽ =

{
G1(µ)v + 16

17h
2µ1d̃

T

4+ṽ, j = 1,

Gj(µ)v, j = 2, 3, 4, . . . .
226

Even though the new difference operators use a ghost point, we have not added tilde symbols on (G(µ), b1).227

This is to emphasize that they are modified from the operators without ghost points, (G(µ), b1).228

3. Boundary conditions. To present the techniques for imposing boundary conditions with and229

without ghost points, and to highlight the relation between the SBP-GP and SBP-SAT approaches, we230

consider the one-dimensional wave equation,231

ρUtt = (µ(x)Ux)x, x ∈ [0, 1], t ≥ 0,(3.1)232233
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 7

subject to smooth initial conditions. Here, ρ(x) > 0 and µ(x) > 0 are material parameters. The234

dependent variable U(x, t) could, for example, represent the acoustic overpressure in a linearized model235

of a compressible fluid. Utt is the second derivative with respect to time and the subscript x denotes236

differentiation with respect to the spatial variable.237

We have for simplicity not included a forcing function in the right-hand side of (3.1). This is because238

it has no influence on how boundary conditions are imposed. We only consider imposing the boundary239

condition on the left boundary, x = 0. Consequently, boundary terms corresponding to the right boundary240

are omitted from the description below. Furthermore, the initial conditions are assumed to be compatible241

with the boundary conditions.242

3.1. Neumann boundary conditions. We start by considering the Neumann boundary condition243

(3.2) Ux(0, t) = f(t), t ≥ 0.244

In the SBP-GP method, the semi-discretization of (3.1)-(3.2) is245

ρutt = G̃(µ)ũ, t ≥ 0,(3.3)246

b̃
T

1 ũ = f(t), t ≥ 0,(3.4)247248

where ρ is a diagonal matrix with the jth diagonal element ρj = ρ(xj), ũ = ũ(t) is a time-dependent grid249

function on x̃ and u = u(t) is the corresponding grid function on x. By using the SBP identity (2.6), we250

obtain251

(ut,ρutt)h =
(
ut, G̃(µ)ũ

)
h

= −Sµ(ut,u)− (u1)tµ1b̃
T

1 ũ,
252

which can be written as,253

(3.5) (ut,ρutt)h + Sµ(ut,u) = −(u1)tµ1b̃
T

1 ũ.254

We define the discrete energy255

Eh := (ut,ρut)h + Sµ(u,u),256

and note that the left-hand side of equation (3.5) equals the rate of the discrete energy,257

(3.6)
d

dt
Eh = −2(u1)tµ1b̃

T

1 ũ.258

To obtain energy stability, we need to impose the Neumann boundary condition such that the right-hand259

side of (3.6) is non-positive when f = 0. The key in the SBP-GP method is to use the ghost point as260

the additional degree of freedom for imposing the boundary condition. Here, the Neumann boundary261

condition (3.2) is approximated by enforcing b̃
T

1 ũ(t) = f(t). From (2.8), it is satisfied if262

(3.7) u0 =
1

3
(−10u1 + 18u2 − 6u3 + u4 − 12hf(t)), t ≥ 0.263

This relation gives the ghost point value u0 as function of the interior values uj , j = 1, 2, 3, 4. The264

resulting approximation is energy conservative because265

(3.8)
d

dt
Eh = 0, f(t) = 0.266

Next, consider the semi-discretization of (3.1) by the SBP-SAT method in [15],267

(3.9) ρutt = G(µ)u+ pN ,268
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8 S. WANG AND N. A. PETERSSON

where pN is a penalty term for enforcing the Neumann condition (3.2). By using the SBP identity (2.7),269

we obtain270

(ut,ρutt)h = (ut, G(µ)u)h + (ut,pN )h

= −Sµ(ut,u)− (u1)tµ1b
T
1 u+ (ut,pN )h,

271

which can be written as272

(3.10)
d

dt
[(ut,ρut)h + Sµ(u,u)] = −2(u1)tµ1b

T
1 u+ 2(ut,pN )h.273

To obtain energy conservation, the right hand side of (3.10) must vanish when f(t) = 0. This property274

is satisfied by choosing275

(3.11) pN = µ1h
−1w−1

1

(
bT1 u− f(t)

)
e1,276

where e1 = [1, 0, 0, · · · ]T . On the boundary, (3.9) can therefore be written as277

278

ρ1(u1)tt = G1(µ)u+
µ1

hw1

(
bT1 u− f(t)

)
= G1(µ)u+

µ1

hw1

(
bT1 ũ+

1

3
h3d̃4+ũ− f(t)

)
279

= G1(µ)ũ+
µ1

hw1

(
bT1 ũ− f(t)

)
,280

281

where we have used (2.16) and (2.17) to express the relations between SBP operators with and without282

ghost points. For j ≥ 2, the penalty term pN is zero and Gj(µ)ũ = Gj(µ)u. Thus, we can write the283

SBP-SAT discretization as,284

ρutt = G(µ)ũ, t ≥ 0,(3.12)285

bT1 ũ = f(t), t ≥ 0,(3.13)286287

which is of the same form as the SBP-GP discretization (3.3)-(3.4). Thus, for Neumann boundary288

conditions, the SAT penalty method is equivalent with the SBP-GP method. An interesting consequence289

is that, if both formulations are integrated in time by the same scheme, (3.9) and (3.12)-(3.13) will290

produce identical solutions. Thus, solutions of the SBP-SAT method will satisfy the Neumann boundary291

condition strongly, in the same point-wise manner as the SBP-GP method.292

Since bT1 u is a third order approximation of dudx (x1), the penalty term introduces a truncation error of293

O(h2) at the boundary, that is, bT1 u = du
dx (x1) +O(h2). This error is of the same order as the truncation294

error of the SBP operator G(µ) at the boundary. Therefore, the order of the largest truncation error in295

the discretization is not affected by the penalty term. Because of the equivalence between the methods,296

the boundary approximation (2.8) used by the SBP-GP method could be replaced by a third order297

approximation. This modification would result in a method with the same order of truncation error in298

the discretization.299

3.2. Dirichlet boundary conditions. Consider the wave equation (3.1) subject to the Dirichlet300

boundary condition,301

(3.14) U(0, t) = g(t), t ≥ 0.302

The most obvious way of discretizing (3.14) would be to set u1 = g(t) for all times. However, that303

condition is not directly applicable for the SBP-GP method because it does not involve the ghost point304

value u0. Instead, we can differentiate (3.14) twice with respect to time and use (3.3) to approximate305

Utt(0, t) = gtt(t),306

(3.15) (u1)tt =
1

ρ1
G̃1(µ)ũ = gtt(t), t ≥ 0.307
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From (2.12), the above condition is satisfied if the ghost point value is related to the interior values308

according to309

(3.16) u0 =
17

12µ1

(
h2ρ1gtt(t)−

8∑
k=1

8∑
m=1

βk,mµmuk

)
, t ≥ 0.310

This relation corresponds to (3.7) for Neumann boundary conditions. Because the initial conditions311

are compatible with the boundary condition, we can integrate (3.15) once in time to get (u1)t = gt(t).312

Therefore, when gt = 0, the approximation is energy conserving because the right hand side of (3.6)313

vanishes and the solution satisfies (3.8).314

Because we impose the Dirichlet condition through (3.15), we see that (3.3) is equivalent to315

ρutt|j =

{
ρ1gtt, j = 1,

G̃j(µ)ũ, j = 2, 3, . . . .
316

Since the ghost point value is only used by G̃ on the boundary itself, this approximation is independent317

of the ghost point value and can be interpreted as injection of the Dirichlet data, u1(t) = g(t), and318

the energy stability follows. Injection can also be used to impose Dirichlet data for the SBP operators319

without ghost point. Here, energy stability can be proved from a different perspective by analyzing the320

properties of the matrix representing the operator G(µ), see [4]. While the injection approach provides321

the most straightforward way of imposing Dirichlet data, it does not generalize to the interface problem.322

For SBP operators without ghost points, it is also possible to impose a Dirichlet boundary condition323

by the SAT penalty method. In this case, the penalty term has a more complicated form than in the324

Neumann case, but the technique sheds light on how to impose grid interface conditions. Replacing the325

penalty term in (3.9) by pD, an analogue of the energy rate equation (3.10) is326

(3.17)
d

dt
[(ut,ρut)h + Sµ(u,u)] = −2µ1(u1)tb

T
1 u+ 2(ut,pD)h.327

It is not straightforward to choose pD such that the right-hand side of (3.17) is non-positive. However,328

we can choose pD so that the right-hand side of (3.17) becomes part of the energy. For example, if329

(3.18) pD = −µ1(u1 − g(t))W−1(b1 +
τ

h
e1),330

where e1 = [1, 0, 0, · · · ]T andW is the diagonal SBP norm matrix. With homogeneous boundary condition331

g(t) = 0, we have332

(ut,pD)h = −µ1u1b
T
1 ut −

τ

h
µ1(u1)tu1,333

and (3.17) becomes334

(3.19)
d

dt

[
(ut,ρut)h + Sµ(u,u) + 2µ1u1b

T
1 u+

τ

h
µ1u

2
1

]
= 0.335

We obtain an energy estimate if the quantity in the square bracket is non-negative.336

In Lemma 2 of [27], it is proved that the following identity holds337

(3.20) Sµ(u,u) = Sµ(u,u) + hαµmin(bT1 u)2,338

where both the bilinear forms Sµ(·, ·) and Sµ(·, ·) are symmetric and positive semi-definite, α is a constant339

that depends on the order of accuracy of G(µ) but not h, and340

µmin = min
1≤j≤r

µj .341

The integer constant r depends on the order of accuracy of G(µ) but not on h. As an example, the fourth342

order accurate SBP operator G(µ) constructed in [15] satisfies (3.20) with r = 4 and α = 0.2505765857.343
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Any α > 0.2505765857 can make Sµ(·, ·) indefinite. Identities corresponding to (3.20) have been used in344

several other SBP related methodologies, e.g. [2, 5, 18].345

By using (3.20),346

347

Sµ(u,u) + 2µ1u1b
T
1 u+

τ

h
µ1u

2
1 = Sµ(u,u) + hαµmin(bT1 u)2 + 2µ1u1b

T
1 u+

τ

h
µ1u

2
1348

= Sµ(u,u) +

(√
hαµmin(bT1 u) +

1√
hαµmin

µ1u1

)2

− 1

hαµmin
µ2

1u
2
1 +

τ

h
µ1u

2
1349

= Sµ(u,u) +

(√
hαµmin(bT1 u) +

1√
hαµmin

µ1u1

)2

+

(
τ

h
µ1 −

µ2
1

hαµmin

)
u2

1.350
351

Thus, the quantity in the square bracket of (3.19) is an energy if,352

τ

h
µ1 −

µ2
1

hαµmin
≥ 0 ⇒ τ ≥ µ1

αµmin
.353

We note that the penalty parameter τ has a lower bound but no upper bound. Choosing τ to be equal354

to the lower bound gives large numerical error in the solution [29]. However, an unnecessarily large τ355

causes stiffness and leads to stability restrictions on the time-step [18]. In computations, we find that356

increasing τ by 10% to 20% from the lower bound is a good compromise for accuracy and efficiency.357

The energy estimate (3.19) contains two more terms than the corresponding estimate for the SBP-GP358

method. The additional terms are approximately zero up to the order of accuracy because of the Dirichlet359

boundary condition u(x1) = 0.360

3.3. Time discretization with the SBP-GP method. Let ũk denote the numerical approxi-361

mation of U(x̃, tk), where tk = kδt for k = 0, 1, 2, . . . and δt > 0 is the constant time step. We start362

by discussing the update procedure for the explicit Strömer scheme, which is second order accurate in363

time. For simplicity we only consider the boundary conditions at x = 0. The time-stepping procedure is364

described in Algorithm 3.1.

Algorithm 3.1 Second order accurate time stepping with ghost points for Neumann or Dirichlet bound-
ary conditions.

Given initial conditions ũ0 and ũ−1 that satisfy the discretized boundary conditions.
1. Update the solution at all interior grid points,

(3.21) uk+1 = 2uk − uk−1 + δ2
t ρ
−1G̃(µ)ũk, k = 0, 1, 2, . . .

2a. For Neumann boundary conditions, assign the ghost point value uk+1
0 to satisfy

(3.22) b̃
T

1 ũ
k+1 = f(tk+1).

2b. For Dirichlet boundary conditions, assign the ghost point value uk+1
0 to satisfy

(3.23) G̃1(µ)ũk+1 =
ρ1

δ2
t

(g(tk+2)− 2uk+1
1 + uk1).

365

For Neumann conditions, it is clear that (3.22) enforces the semi-discrete boundary condition (3.4)366

at each time level. This condition must also be satisfied by the initial data, ũ0.367

For Dirichlet conditions, we proceed by explaining how (3.23) is related to the semi-discrete boundary368

condition (3.15). Assume that the initial data satisfies the Dirichlet boundary conditions, that is, u0
1 =369

g(t0) and u−1
1 = g(t−1). Also assume that (3.23) is satisfied for ũ0,370

G̃1(µ)ũ0 =
ρ1

δ2
t

(g(t1)− 2u0
1 + u−1

1 ) =
ρ1

δ2
t

(g(t1)− 2g(t0) + g(t−1)).371
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The solution at time level t1 is obtained from (3.21). In particular, on the boundary,372

u1
1 = 2u0

1 − u−1
1 +

δ2
t

ρ1
G̃1(µ)ũ0 = 2g(t0)− g(t−1) +

δ2
t

ρ1

ρ1

δ2
t

(g(t1)− 2g(t0) + g(t−1)) = g(t1).373

Thus, the Dirichlet boundary condition is also satisfied at time level t1. Assigning the ghost point u1
0374

such that (3.23) is satisfied for ũ1 thus ensures that ũ2 will satisfy the Dirichlet boundary condition at375

the next time level, after (3.21) has been applied. By induction, the Dirichlet boundary condition will376

be satisfied for any time level tk. The boundary condition (3.23) is therefore equivalent to377

G̃1(µ)ũk+1 = ρ1
g(tk+2)− 2g(tk+1) + g(tk)

δ2
t

,378

which is a second order accurate approximation of the semi-discrete boundary condition (3.15). Another379

interpretation of (3.23) is that the ghost point value for ũk+1 is assigned by “looking ahead”, i.e., such380

that the Dirichlet boundary condition will be satisfied for ũk+2.381

The Strömer time-stepping scheme can be improved to fourth (or higher) order accuracy in time by382

a modified equation approach [6, 26]. To derive the scheme, we first notice that383

(3.24)
uk+1 − 2uk + uk−1

δ2
t

= utt(tk) +
δ2
t

12
utttt(tk) +O(δ4

t ).384

By differentiating (3.3) twice in time,385

(3.25) utttt = ρ−1G̃(µ)ũtt.386

We can obtain a second order (in time) approximation of ũtt from387

(3.26) ṽk :=
ũ∗,k+1 − 2ũk + ũk−1

δ2
t

= ũtt +O(δ2
t ).388

Here, ũ∗,k+1 is the second order (in time) predictor,389

(3.27) u∗,k+1 = 2uk − uk−1 + δ2
t ρ
−1G̃(µ)ũk,390

augmented by appropriate boundary conditions that define the ghost point value u∗,k+1
0 . By using (3.26)391

and (3.25) to approximate utttt in (3.24), we obtain392

(3.28) uk+1 = 2uk − uk−1 + δ2
t ρ
−1G̃(µ)ũk +

δ4
t

12
ρ−1G̃(µ)ṽk,393

where ṽk is given by (3.26). By subtracting (3.27) from (3.28) and re-organizing the terms, we arrive at394

the corrector formula,395

uk+1 = u∗,k+1 +
δ4
t

12
ρ−1G̃(µ)ṽk.396

The resulting fourth order predictor-corrector time-stepping procedure is described in Algorithm 3.2.397

Similar to the second order algorithm, it is straightforward to impose Neumann boundary conditions,398

but the Dirichlet boundary conditions require some further explanation. The basic idea is to enforce the399

same boundary condition for both the predictor and the corrector, i.e.,400

u∗,k1 = uk1 = g(tk), k = 0, 1, 2, . . . .401

As before, the Dirichlet condition are enforced by “looking ahead”. We assume that the initial data402

satisfies the compatibility conditions u−1
1 = g(t−1), u0

1 = g(t0) and403

G̃1(µ)ũ0 = ρ1
g(t1)− 2g(t0)− g(t−1)

δ2
t

.404

This manuscript is for review purposes only.



12 S. WANG AND N. A. PETERSSON

Similar to the second order time-stepping algorithm, the first predictor step updates the solution on the405

boundary to be406

u∗,11 = 2u0
1 − u−1

1 +
δ2
t

ρ1
G̃1(µ)ũ0 = 2g(t0)− g(t−1) +

δ2
t

ρ1

ρ1

δ2
t

(g(t1)− 2g(t0) + g(t−1)) = g(t1).407

Thus, the compatibility condition for the initial condition ũ0 ensures that the first predictor satisfies the408

Dirichlet boundary condition u∗,11 = g(t1). The boundary condition for the predictor (3.31) assigns the409

ghost point value u∗,10 such that410

G̃1(µ)ũ∗,1 = 2G̃1(µ)ũ0 − G̃1(µ)ũ−1 ⇒ G̃1(µ)ṽ0 = 0.411

As a result, the corrector formula (3.33), evaluated at the boundary point, gives412

u1
1 = u∗,11 +

δ4
t

12ρ1
G̃1(µ)ṽ0 = g(t1).413

This shows that both the predictor and the corrector satisfy the Dirichlet boundary condition after the414

first time step. By enforcing the boundary condition (3.35) for the corrector, we guarantee that the next415

predictor satisfy the Dirichlet boundary condition after (3.29) has been applied. An induction argument416

shows that the Dirichlet conditions are satisfied for all subsequent time steps.417

Both the second order Strömer scheme and the fourth order predictor-corrector schemes are stable418

under a CFL condition on the time step. Furthermore, the time-discrete solution satisfies an energy419

estimate, see [13, 26] for details.420

4. Grid refinement interface. To obtain high order accuracy at a material discontinuity, we421

partition the domain into subdomains such that the discontinuity is aligned with a subdomain boundary.422

The multiblock finite difference approximation is then carried out in each subdomain where the material423

is smooth, and adjacent subdomains are connected by interface conditions.424

As an example, we consider the two-dimensional acoustic wave equation in a composite domain425

Ωf ∪ Ωc, where Ωf = [0, 1] × [0, 1] and Ωc = [0, 1] × [−1, 0]. The governing equation in terms of the426

acoustic pressure can be written as427

ρfFtt = ∇ · (µf∇F ), (x, y) ∈ Ωf , t ≥ 0,

ρcCtt = ∇ · (µc∇C), (x, y) ∈ Ωc, t ≥ 0,
(4.1)428

with suitable initial and boundary conditions. We assume that the material properties µf and ρf are429

smooth in Ωf , and µc and ρc are smooth in Ωc. However, the material properties may not vary smoothly430

across the interface between Ωf and Ωc.431

We consider the case where the interface conditions prescribe continuity of pressure and continuity432

of normal flux [7]:433

F (x, 0, t) = C(x, 0, t),

µf (x, 0)
∂F

∂y
(x, 0, t) = µc(x, 0)

∂C

∂y
(x, 0, t),

0 ≤ x ≤ 1, t ≥ 0.(4.2)434

With the above set of interface conditions, the acoustic energy is conserved across the interface [17, 22].435

If the wave speeds are different in the two subdomains, for computational efficiency, different grid436

spacings are desirable so that the number of grid points per wavelength becomes the same in both437

subdomains [9, 12]. This leads to a mesh refinement interface with hanging nodes along y = 0. Special438

care is therefore needed to couple the solutions along the interface. In the following, we consider a grid439

interface with mesh refinement ratio 1:2, and focus on the numerical treatment of the interface conditions440

(4.2). Other ratios can be treated analogously.441

For simplicity, we consider periodic boundary conditions in x. For the spatial discretization, we use a442

Cartesian mesh with mesh size h in the (fine) domain Ωf and 2h in the (coarse) domain Ωc, see Figure 2.443
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Algorithm 3.2 Fourth order accurate predictor-corrector time stepping with ghost points for Neumann
or Dirichlet boundary conditions.

Given initial conditions ũ0 and ũ−1 that satisfy the discretized boundary conditions. Compute ũ∗,k+1

and ũk+1 for k = 0, 1, 2, . . . according to
1. Compute the predictor at the interior grid points,

(3.29) u∗,k+1 = 2uk − uk−1 + δ2
t ρ
−1G̃(µ)ũk.

2a. For Neumann boundary conditions, assign the ghost point value u∗,k+1
0 to satisfy

(3.30) b̃
T

1 ũ
∗,k+1 = f(tk+1).

2b. For Dirichlet boundary conditions, assign the ghost point value u∗,k+1
0 to satisfy

(3.31) G̃1(µ)ũ∗,k+1 = 2G̃1(µ)ũk − G̃1(µ)ũk−1.

3. Evaluate the acceleration at all grid points,

(3.32) ṽk :=
ũ∗,k+1 − 2ũk + ũk−1

δ2
t

.

4. Compute the corrector at the interior grid points,

(3.33) uk+1 = u∗,k+1 +
δ4
t

12
ρ−1G̃(µ)ṽk.

5a. For Neumann boundary conditions, assign the ghost point value uk+1
0 to satisfy

(3.34) b̃
T

1 ũ
k+1 = f(tk+1).

5b. For Dirichlet boundary conditions, assign the ghost point value uk+1
0 to satisfy

(3.35) G̃1(µ)ũk+1 =
ρ1

δ2
t

(g(tk+2)− 2uk+1
1 + uk1).

The number of grid points in the x direction is n in Ωc, and 2n in Ωf , where h = 1/(2n). We have444

excluded grid points on the periodic boundary x = 1, because the solution at x = 1 is the same as at445

x = 0. The grid points (xf ,yf ) in Ωf and (xc,yc) in Ωc are defined as446

(4.3)

{
xfi = (i− 1)h, i = 1, 2, · · · , 2n,
yfj = (j − 1)h, j = 0, 1, 2, · · · , 2n+ 1

and

{
xci = 2(i− 1)h, i = 1, 2, · · · , n,
ycj = 2(j − n)h, j = 0, 1, 2, · · · , n+ 1

,447

respectively. There are 2n ghost points448

(4.4) (xfi , y
f
0 ), i = 1, 2, · · · , 2n449

in Ωf and n ghost points450

(4.5) (xci , y
c
n+1), i = 1, 2, · · · , n451

in Ωc.452

Notations for the two-dimensional SBP operators are introduced in Section 4.1. The SBP-GP method453

for the problem (4.1)-(4.2) is introduced in Section 4.2. A second order accurate method was originally454
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Fig. 2: A sketch of the grids xf and xc.

developed in [22], where ghost points from both subdomains are used to impose the interface conditions.455

Here, we generalize the technique to fourth order accuracy. In Section 4.3, we propose a new SBP-GP456

method that only uses ghost points from the coarse domain. This reduces the amount of computational457

work for calculating the numerical solution at the ghost points and improves the structure of the associated458

linear system. We end this section with a discussion of the SBP-SAT method and its relation to the SBP-459

GP method.460

4.1. SBP identities in two space dimensions. The one-dimensional SBP identities with ghost461

points (2.6) are on exactly the same form as those without ghost points, (2.7). In the discussion of SBP462

identities in two space dimensions, we use the notations for SBP operators with ghost points in Ωf . The463

same notational convention of the tilde symbol is used to indicate that the corresponding variable uses464

ghost points.465

Let u and v be grid functions in Ωf . We define the two-dimensional scalar product466

(u,v)h = h2
2n∑
i=1

2n−1∑
j=1

wjuijvij .467

The weights wj do not depend on the index i because of the periodic boundary condition in x. In addition,468

we define the scalar product for grid functions on the interface469

(4.6) 〈uΓ,vΓ〉h = h

2n∑
i=1

uivi,470

where the subscript Γ denotes the grid function on the interface.471

The SBP identity in two space dimensions in the fine domain Ωf can be written as472

(u, Gx(µ)v)h = −Sx(u,v),(4.7)473

(u, G̃y(µ)ṽ)h = −Sy(u,v)− 〈uΓ, ṽ
′
Γ〉h,(4.8)474475

where the subscripts x and y denote the spatial direction that the operator acts on. The bilinear forms476

Sx(·, ·) and Sy(·, ·) are symmetric and positive semi-definite. There is no boundary term in (4.7) for477

Gx(µ) because of the periodic boundary condition. For simplicity, we have omitted the boundary term478

from the boundary at y = 1. The last term on the right hand side of (4.8) corresponds to the boundary479

term from the interface, where the ith element of ṽ′Γ is480

(4.9) (v′Γ)i = µfi,1b̃
T

1 ṽi,:.481

Here we use Matlab’s colon notation, i.e., : denotes all grid points in the corresponding index direction.482

To condense notation, we define483

G̃f (µ) = Gx(µ) + G̃y(µ), Sf = Sx + Sy,484

This manuscript is for review purposes only.



FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 15

so that (4.7)-(4.8) can be written as485

(4.10) (u, G̃f (µ)ṽ)h = −Sf (u,v)− 〈uΓ, ṽ
′
Γ〉h.486

The SBP identity for the operators in the coarse domain Ωc are defined similarly.487

4.2. The fourth order accurate SBP-GP method. We approximate (4.1) by488

ρff tt = G̃f (µ)f̃ ,(4.11)489

ρcctt = G̃c(µ)c̃,(4.12)490491

where the grid functions f and c are finite difference approximations of the functions F (x, y, t) and492

C(x, y, t) in (4.1), respectively. The diagonal matrices ρf and ρc contain the material properties ρf493

and ρc evaluated on the fine and coarse grids, respectively. Corresponding to the continuous interface494

condition (4.2), the grid functions f and c are coupled through the discrete interface conditions495

fΓ = PcΓ,(4.13)496

c̃′Γ = Rf̃
′
Γ.(4.14)497498

Here, P is an operator that interpolates a coarse interface grid function to an interface grid function on499

the fine grid. The operator R performs the opposite operation. It restricts an interface grid function500

on the fine grid to the coarse grid. Stability of the difference approximation relies on the compatibility501

between the operators P and R, as is specified in the following theorem.502

Theorem 4.1. The semi-discretization (4.11)-(4.14) satisfies the energy estimate503

(4.15)
d

dt

[
(f t,ρ

ff t)h + Sf (f ,f) + (ct,ρ
cct)2h + Sc(c, c)

]
= 0,504

if the interpolation and restriction operators are compatible,505

(4.16) P = 2RT .506

Proof. By using the SBP identity (4.10) in Ωf , we obtain507

(f t,ρ
ff tt)h + Sf (f t,f) = −

〈
(fΓ)t , f̃

′
Γ

〉
h
.508

Similarly, we have in Ωc509

(ct,ρ
cctt)2h + Sc(ct, c) =

〈
(cΓ)t , c̃

′
Γ

〉
2h
.510

Summing the above two equations yields511

(4.17)
d

dt

[
(f t,ρ

ff t)h + Sf (f ,f) + (ct,ρ
cct)2h + Sc(c, c)

]
= −2

〈
(fΓ)t , f̃

′
Γ

〉
h

+ 2
〈
(cΓ)t , c̃

′
Γ

〉
2h
.512

To prove that the right-hand side vanishes, we first differentiate (4.13) in time, and use (4.6) to obtain513 〈
(fΓ)t , f̃

′
Γ

〉
h

=
〈

(PcΓ)t , f̃
′
Γ

〉
h
.514

The compatibility condition (4.16), together with the scalar product (4.6), gives515 〈
(PcΓ)t , f̃

′
Γ

〉
h

=
〈

(cΓ)t ,Rf̃
′
Γ

〉
2h
.516

The second interface condition (4.14) leads to517

(4.18)
〈

(cΓ)t ,Rf̃
′
Γ

〉
2h

=
〈
(cΓ)t , c̃

′
Γ

〉
2h
.518

The energy rate relation (4.15) follows by inserting (4.18) into the right hand side of (4.17). This proves519

the theorem.520
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We note that the factor 2 in the compatibility condition (4.16) arises because of the 1:2 mesh refine-521

ment ratio in two dimension and the periodic boundary condition. The factor is 4 in the corresponding522

three dimensional case.523

For the mesh refinement ratio 1:2, the stencils in P and R can be easily computed by a Taylor series524

expansion. For example, a fourth order interpolation operator in (4.13) has the stencil525

(fΓ)2i = − 1

16
(cΓ)i−1 +

9

16
(cΓ)i +

9

16
(cΓ)i+1 −

1

16
(cΓ)i+2,526

(fΓ)2i−1 = (cΓ)i527528

on the hanging and coinciding nodes, respectively. Then, the compatibility condition (4.16) determines529

the restriction operator R, used by the second interface condition (4.14),530

(c′Γ)i = − 1

32
(f ′Γ)2i−4 +

9

32
(f ′Γ)2i−2 +

1

2
(f ′Γ)2i−1 +

9

32
(f ′Γ)2i −

1

32
(f ′Γ)2i+2.531

For other mesh refinement ratios, the interpolation and restriction operators can be constructed using532

the techniques in [11].533

Similar to Dirichlet boundary conditions for the one-dimensional problem, ghost points are not ex-534

plicitly involved in the first interface condition (4.13). However, by differentiating (4.13) twice in time535

and using the semi-discretized equations (4.11)-(4.12), we obtain536

(4.19)
(
ρf
)−1

G̃f (µ)f̃
∣∣∣
Γ

= P
(

(ρc)
−1
G̃c(µ)c̃

∣∣∣
Γ

)
.537

This condition depends on the ghost point values on both sides of the interface and is equivalent to538

(4.13) if the initial data also satisfies that condition. For this reason, we impose interface conditions539

for the semi-discrete problem through (4.14) and (4.19). When discretizing (4.11)-(4.12) in time by the540

predictor-corrector method, the fully discrete time-stepping method follows by the same principle as the541

predictor-corrector method in Algorithm 3.2. More precisely, for the predictor, step 2a is used to enforce542

(4.14) and step 2b is used for (4.13). Similarily, for the corrector, step 5a is used to enforce (4.14),543

combined with step 5b for (4.13).544

The grid function c̃′Γ in (4.14) has n elements. By writing (4.14) in element-wise form it becomes545

clear that it is a system of n linear equations that depends on 3n unknown ghost point values. Similarly,546

(4.19) is a system of 2n linear equations for the same 3n unknowns. In combination, the two interface547

conditions give a system of 3n linear equations, whose solution determines the 3n ghost point values.548

For the fully discrete problem, this linear system must be solved once during the predictor step and once549

during the corrector step.550

The coefficients in the linear equations are independent of time. As a consequence, an efficient551

solution strategy is to LU-factorize the interface system once, before the time stepping starts. Backward552

substitution can then be used to calculate the ghost point values during the time-stepping. For problems553

in three space dimensions, computations are performed on many processors on a parallel distributed554

memory machine. Then it may not be straightforward to efficently calculate the LU-factorization. As555

an alternative, iterative solvers can be used. For example, an iterative block Jacobi relaxation method is556

used in [22]. It has proven to work well in practice for large-scale problems.557

4.3. The improved SBP-GP method. In the improved SBP-GP method, the interface conditions558

are imposed through n linear equations that only depend on the n ghost point values in c̃, see Figure 3 (b).559

The key to the improved method is to combine SBP operators with and without ghost points. More560

precisely, in Ωc we use the SBP operator with ghost points. Thus, the semi-discretized equation in Ωc is561

the same as in the original SBP-GP method,562

(4.20) ρcctt = G̃c(µ)c̃.563

In Ωf , we use (4.11) only for the grid points that are not on the interface564

(4.21) (ρff tt):,j = (Gf (µ)f):,j , j = 2, 3, . . . .565
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(a) (b)

Fig. 3: A mesh refinement interface with ghost points denoted by filled circles. (a) ghost points from
both domains. (b) ghost points from the coarse domain.

For the grid points in Ωf that are on the interface, we enforce the interface condition (4.13) such that566

(4.22) f :,1 = (Pc):,n.567

Note that this equation does not depend on any ghost points values in Ωf .568

To write the semi-discretization in a compact form and prepare for the energy analysis, we differentiate569

(4.22) twice in time, and use (4.20) to obtain570

(4.23) (f tt):,1 = (Pctt):,n = P
(

(ρc)
−1
G̃c(µ)c̃

∣∣∣
Γ

)
.571

Equations (4.21) and (4.23) can be combined into572

(4.24)
(
ρff tt

)
:,j

:= (Lhf):,j =

{
(Gf (µ)f):,1 + η:, j = 1,

(Gf (µ)f):,j , j = 2, 3, . . . ,
573

where574

η = ρf |ΓP
(

(ρc)
−1
G̃c(µ)c̃

∣∣∣
Γ

)
− Gf (µ)f |Γ .575

We note that η is a zero vector up to truncation errors in the SBP operator and the interpolation operator.576

Therefore, η does not affect the order of accuracy in the spatial discretization.577

The semi-discretization (4.20) and (4.24) can be viewed as a hybridization of the SBP-GP method578

and the SBP-SAT method. The spatial discretization (4.24) in Ωf is on the SBP-SAT form, but the579

penalty term η depends on the ghost points values in c̃.580

Continuity of the solution is imposed by (4.22), in the same way as in the original SBP-GP method.581

But to account for the contribution from η, continuity of flux (the second interface condition in (4.2))582

must be imposed differently. Here we use583

(4.25) c̃′Γ = R
(
f ′Γ − hw1η

)
,584
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18 S. WANG AND N. A. PETERSSON

where h is the mesh size in Ωf , and w1 is the first entry in the scalar product (2.3). Note that ghost585

points are used to compute c̃′Γ but not f ′Γ.586

Compared with (4.14) in the original SBP-GP method, the condition (4.25) includes the term hw1η.587

Because it is on the order of the truncation error it does not affect the order of accuracy. As a consequence,588

(4.25) provides a valid way of enforcing flux continuity. The following theorem illustrates why the η-term589

is important for energy stability.590

Theorem 4.2. Assume that the interpolation and restriction operators satify (4.16). Then, the semi-591

discrete approximation (4.20), (4.24) and (4.25) is energy stable in the sense that (4.15) holds.592

Proof. From (4.24) , we have593 (
f t,ρ

ff tt
)
h

= (f t, Gf (µ)f)h + hw1 〈f t|Γ,η〉h594

= −Sf (f t,f)−
〈
f t|Γ,f

′
Γ

〉
h

+ hw1 〈f t|Γ,η〉h595

= −Sf (f t,f) +
〈
f t|Γ,−f

′
Γ + hw1η

〉
h
.596597

The contribution from the domain Ωc is598

(ct,ρ
cctt)2h = −Sc(ct, c) + 〈ct|Γ, c̃′Γ〉2h.599

Adding the two above equations gives600

601

d

dt

[
(f t,ρ

ff t)h + Sf (f ,f) + (ct,ρ
cct)2h + Sc(c, c)

]
= 2〈f t|Γ,−f

′
Γ + hw1η〉h + 2

〈
ct|Γ, c̃′Γ

〉
2h

602

= 2〈Pct|Γ,−f ′Γ + hw1η〉h + 2〈ct|Γ, c̃′Γ〉2h = 2〈ct|Γ,R(−f ′Γ + hw1η)〉2h + 2〈ct|Γ, c̃′Γ〉2h = 0.603604

With the predictor-corrector method for the time discretization of (4.20) and (4.24), the fully discrete605

algorithm can be adopted from Algorithm 3.2. We impose (4.25) in step 2a for the predictor, and in606

step 5a for the corrector. We note that (4.25) corresponds to a system of n linear equations. The right-607

hand sides are different in the linear systems in steps 2a and 5a, but the matrix is the same. It can608

therefore be LU-factorized once, before time integration starts. The linear systems can then be solved609

by backward substitution during the time stepping. The improved SBP-GP method presented in this610

section is evaluated through numerical experiments in Section 5.611

4.4. The SBP-SAT method. In the SBP-SAT method, the penalty terms for the interface condi-612

tions (4.2) can be constructed by combining the penalty terms for the Neumann problem in Section 3.1613

and the Dirichlet problem in Section 3.2. The semi-discretization can be written as614

ρff tt = Gf (µ)f + pf ,(4.26)615

ρcctt = Gc(µ)c+ pc.(4.27)616617

There are two choices of pf and pc. The first version, developed in [31], uses three penalty terms618

(pf )i,: = W−1
f

[
−µfi,1

1

2
bf1 (fΓ − PcΓ)i − µ

f
i,1

τf
h
ef1 (fΓ − PcΓ)i +

1

2
ef1
(
f ′Γ − Pc′Γ

)
i

]
,(4.28)619

(pc)i,: = W−1
c

[
−µci,1

1

2
bc1 (cΓ −RfΓ)i − µ

c
i,1

τc
2h
ec1 (cΓ −RfΓ)i +

1

2
ec1
(
c′Γ −Rf

′
Γ

)
i

]
,(4.29)620

621

where b1 and e1 act in the y direction. In both (4.28) and (4.29), the first two terms penalize continuity622

of the solution, and the third term penalizes continuity of the flux. The scheme (4.26)-(4.29) is energy623

stable when the penalty parameters satisfy624

(4.30) τf =
1

2
τc ≥ max

i,j

(
(µfi,1)2

2(µfmin)iα
,

(µcj,n)2

2(µcmin)jα

)
,625

where i = 1, 2, . . . , 2n and j = 1, 2, . . . , n.626
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The second choice of SATs uses four penalty terms [28], which has a better stability property for627

problems with curved interfaces. The method was improved further in [1] from the accuracy perspective628

when non-periodic boundary conditions are used in the x-direction. In addition, the penalty parameters629

in [1] are optimized and are sharper than those in [28]. As will be seen in the numerical experiments, the630

sharper penalty parameters lead an improved CFL condition.631

4.5. Computational complexity. In the next section, we test numerically the CFL condition of632

the improved SBP-GP method and the SBP-SAT method for cases with a grid refinement interface. To633

enable a fair comparison in terms of computational efficiency, in this section we estimate the computa-634

tional cost of the two methods for one time step. Since the interior stencils of the two SBP operators635

are the same, the main difference in computational cost comes from how the interface conditions are636

imposed at each time step. For simplicity, we only consider problems with constant coefficients when637

estimating the computational complexity. Also note that the number of floating point operations (flops)638

stated below depends on the implementation of the algorithms, and should not be considered exact.639

In the improved SBP-GP method, a system of n linear equations must be solved at each time step,640

where n is the number of grid points on the interface in the coarse domain. The system matrix is banded641

with bandwidth 7, so the LU factorization requires 49n flops, but it is only computed once before the642

time stepping begins. In each time step, updating the right hand side of the linear system and solving643

by backward substitution requires 173n and 5n flops, respectively. This results in a grand total of 178n644

flops at each time step.645

In the SBP-SAT method, the interface conditions are imposed by the SAT terms, which are updated646

at each time step. This calculation requires 157n flops. We conclude that imposing interface conditions647

with the SBP-GP and the SBP-SAT method require a comparable number of floating point operations per648

time step. Thus, the main difference in computational efficiency comes from the different CFL stability649

restrictions on the time step, which is investigated in the following section.650

5. Numerical experiments. In this section, we conduct numerical experiments to compare the651

SBP-GP method and the SBP-SAT method in terms of computational efficiency. Our first focus is CFL652

condition, which is an important factor in solving large-scale problems. We numerically test the effect653

of different boundary and interface techniques on the CFL condition with the predictor-corrector time654

stepping method. We then compare L2 error and convergence rate of the SBP-GP method and the655

SBP-SAT method with the same spatial and temporal discretizations. The convergence rate is computed656

by657

log

(
eh
e2h

)/
log

(
1

2

)
,658

where e2h is the L2 error on a grid x, and eh is the L2 error on a grid with grid size half of x in each659

subdomain and spatial direction.660

5.1. Time-stepping stability restrictions. We consider the scalar wave equation in one space661

dimension662

(5.1) ρUtt = (µUx)x + F,663

in the domain x ∈ [−π/2, π/2] with non-periodic boundary conditions.664

In [26], it is proved that for the predictor-corrector time stepping method, the time step constraint665

by the CFL condition is666

(5.2) δt ≤
2
√

3√
κ
,667

where κ is the spectral radius of the spatial discretization matrix. In general, we do not have a closed668

form expression for κ. In the special case of periodic boundary conditions and constant coefficients, κ is669

given by the following lemma.670

Lemma 5.1. Consider (5.1) with periodic boundary conditions, constant ρ, µ and zero forcing F = 0.671

If the equation is discretized with standard fourth order accurate centered finite differences, the spectral672
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radius becomes673

κ =
16µ

3h2ρ
,674

where h is the grid spacing.675

Proof. See Appendix 1.676

In the following numerical experiments, we choose ρ = µ = 1, which gives the estimated CFL677

condition δt ≤ 1.5h. This case is used below as a reference when comparing CFL conditions.678

First, we consider the Neumann boundary condition at x = ±π/2, and use the SBP-GP and the679

SBP-SAT method to solve the equation (5.1) until t = 200. For the SBP-GP method with the fourth680

order SBP operator derived in [26], we find that the scheme is stable when δt ≤ 1.44h. In other words,681

the time step needs to be reduced by about 4% when comparing with the reference CFL condition. For682

the SBP-SAT method with the fourth order SBP operator derived in [19], the scheme is stable up to the683

reference CFL condition δt ≤ 1.5h.684

Next, we consider the equation with Dirichlet boundary conditions at x = ±π/2. To test the injection685

method and the SAT method, we use the fourth order accurate SBP operator without ghost point [19].686

When using the injection method to impose the Dirichlet boundary condition, the scheme is stable with687

δt ≤ 1.5h. However, when using the SAT method to weakly impose the Dirichlet boundary condition and688

choosing the penalty parameter 20% larger than its stability-limiting value, the scheme is only stable if689

δt ≤ 1.16h. This amounts to a reduction in time step by 23%. If we decrease the penalty parameter so690

that it is only 0.1% larger than its stability-limiting value, then the scheme is stable with δt ≤ 1.25h, i.e.691

the time step needs to be reduced by 17%, compared to the injection method.692

In conclusion, for the Neumann boundary condition, both the SBP-GP and the SBP-SAT method693

can be used with a time step comparable to that given by the reference CFL condition. This is not694

surprising, given the similarity of the methods and in the discrete energy expressions. For the Dirichlet695

boundary condition, we need to reduce the time step by 23% in the SAT method. If we instead inject696

the Dirichlet data, then the scheme is stable with the time step given by the reference CFL condition.697

5.2. Discontinuous material properties. We now investigate the SBP-GP and SBP-SAT method698

for the wave equation with a mesh refinement interface. The model problem is699

(5.3) ρUtt = ∇ · (µ∇U) + F,700

in a two-dimensional domain Ω = [0, 4π]× [−4π, 4π], where ρ(x, y) > 0, µ(x, y) > 0, and the wave speed701

is c =
√
µ/ρ. Equation (5.3) is augmented with Dirichlet boundary conditions at y = ±4π, and periodic702

boundary conditions at x = 0 and x = 4π.703

The domain Ω is divided into two subdomains Ω1 = [0, 4π]× [−4π, 0] and Ω2 = [0, 4π]× [0, 4π] with704

an interface Γ at y = 0. The material parameter µ is a smooth function in each subdomain, but may be705

discontinuous across the interface. In particular, we consider two cases: µ is piecewise constant in Section706

5.2, and µ is a smooth function in Section 5.3. In each case, we test the fourth order accurate SBP-GP707

method and the SBP-SAT method, both in terms of the CFL condition and the convergence rate.708

When µ is piecewise constant, an analytical solution can be constructed by Snell’s law. We choose a709

unit density ρ = 1 and denote the piecewise constant µ as710

µ(x, y) =

{
µ1, (x, y) ∈ Ω1,

µ2, (x, y) ∈ Ω2,
711

where µ1 6= µ2.712

Let an incoming plane wave UI travel in Ω1 and impinge on the interface Γ. The resulting field713

consists of the incoming wave UI , as well as a reflected field UR and a transmitted field UT . With the714

ansatz715

UI = cos(x+ y −
√

2µ1t),

UR = R cos(−x+ y +
√

2µ1t),

UT = T cos(x+ ky −
√

2µ1t),

716
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Fig. 4: The exact solution at time t = 0 (left), and t = 11 (right) when the wave has propagated for
about 2.5 temporal periods. The solution is continuous at the material interface x = 0 but the normal
derivative is discontinuous due to the material discontinuity.

where k =
√

2µ1/µ2 − 1, the two parameters R and T are determined by the interface conditions717

UI + UR = UT ,

µ1
∂

∂x
(UI + UR) = µ2

∂

∂x
UT ,

718

yielding R = (µ1 − µ2k)/(µ1 + µ2k) and T = 1 +R.719

In the following experiments, we choose µ1 = 1 and µ2 = 0.25. As a consequence, the wave speed720

is c1 = 1 in Ω1 and c2 = 0.5 in Ω2. To keep the number of grid points per wavelength the same in two721

subdomains, we use a coarse grid with grid spacing 2h in Ω1, and a fine grid with grid spacing h in Ω2.722

We let the wave propagate from t = 0 until t = 11. The exact solution at these two points in time are723

shown in Figure 4.724

5.2.1. CFL condition. To derive an estimated CFL condition, we perform a Fourier analysis in725

each subdomain Ω1 and Ω2. Assuming periodicity in both spatial directions, the spectral radius of the726

spatial discretization in Ω1 and Ω2 is the same κ = 4/(3h2), given by Lemma 5.1. By using (5.2), we find727

that the estimated CFL condition is728

(5.4) δt ≤
1√
2

2
√

3√
4/(3h2)

=
3√
2
h ≈ 2.12h.729

We note that the restriction on time step is the same in both subdomains. The factor 1/
√

2 in (5.4),730

which is not present in (5.2), comes from (5.3) having two space dimensions.731

For the SBP-GP method, we have found numerically that the method is stable when the time732

step δt ≤ 2.09h. This indicates that the non-periodic boundary condition and the non-conforming grid733

interface do not affect time step restriction of the SBP-GP method. With δt = 2.09h and 6412 grid points734

in the coarse domain, we perform a long time simulation until t = 1000, and plot the L2 error in Figure735

5. We observe that the L2 error does not grow in time, which verifies that the discretization is stable.736

For the SBP-SAT method with three penalty terms, the stability limit appears to be δt ≤ 1.18h,737

which represents approximately a 45% reduction in the time step. When using four penalty terms and738

the sharper penalty parameters [1], the scheme is stable for δt ≤ 1.82h, which is an improvement from739

the scheme with three penalty terms, but not as good as the SBP-GP method.740

5.2.2. Conditioning and sparsity of the linear system for ghost points. In the SBP-GP741

method, a system of linear equations needs to be solved to compute the solution at the ghost points. To742
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Fig. 5: L2 error for the improved SBP-GP method for a long time simulation to time t = 1000 (∼ 225
temporal periods).

Nc condi condo nnzi nnzo

3212 1.26 778 2240 4160
6412 1.26 1680 4480 8320
12812 1.26 3425 8960 16640

Table 1: Condition number cond and number of nonzero elements nnz in the matrix for ghost points.
The subscript o and i correspond to the original and improved SBP-GP method, respectively. Nc denotes
the number of grid points in the coarse domain.

demonstrate the superiority of the improved SBP-GP method, we examine the conditioning and sparsity743

of the system on three meshes.744

In Table 1, we observe that for the improved SBP-GP method, the condition number is close to one745

and is independent of the mesh size. In contrast, the condition number in the original SBP-GP method746

is several magnitudes larger, and grows with mesh refinement. Furthermore, the number of nonzero747

elements in the improved SBP-GP matrix is approximately half the number of nonzero elements in the748

matrix in the original method. Hence, the system of linear equations in the improved SBP-GP method749

is both more sparse and better conditioned.750

5.2.3. Convergence rate. We now perform a convergence study for the SBP-GP method and the751

SBP-SAT method. We choose the time step δt = h so that both methods are stable. The L2 errors in the752

numerical solution with the SBP-GP method are shown in Table 2. Though the dominating truncation753

error is O(h2) at grid points near boundaries, the numerical solution converges to fourth order accuracy,754

i.e. two orders are gained in convergence rate [29].755

For the SBP-SAT method with three penalty terms (4.26)-(4.29), the L2 errors labeled as SAT3756

in Table 3 only converge at a rate of three. Because the dominating truncation error is O(h2) at grid757

points close to boundaries, we gain only one order of accuracy in the numerical solution. This suboptimal758

convergence behavior has also been observed in other settings [29].759
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2h L2 error (rate)

1.57×10−1 1.6439×10−3

7.85×10−2 1.0076×10−4 (4.02)
3.93×10−2 6.2738×10−6 (4.01)
1.96×10−2 3.9193×10−7 (4.00)
9.81×10−3 2.4344×10−8 (4.01)

Table 2: L2 errors (convergence rates) of the fourth order SBP-GP method for piecewise constant µ.

2h L2 error (rate) SAT3 L2 error (rate) SAT4 L2 error (rate) INT6

1.57×10−1 3.0832×10−3 2.1104×10−3 2.1022×10−3

7.85×10−2 3.4792×10−4 (3.15) 1.1042×10−4 (4.26) 1.1014×10−4 (4.25)
3.93×10−2 4.4189×10−5 (2.98) 6.6902×10−6 (4.04) 6.6815×10−6 (4.04)
1.96×10−2 5.6079×10−6 (2.98) 4.0374×10−7 (4.05) 4.0346×10−7 (4.05)
9.81×10−3 7.0745×10−7 (2.99) 2.4659×10−8 (4.03) 2.4651×10−8 (4.03)

Table 3: L2 errors (convergence rates) of the fourth order SBP-SAT method for piecewise constant µ.

We have found two simple remedies to obtain a fourth order convergence rate. First, when using760

the SBP-SAT method with four penalty terms, we obtain a fourth order convergence, as shown in the761

third column of Table 3 labeled as SAT4. Alternatively, we can use three penalty terms but employ a762

sixth order interpolation and restriction operators at the non-conforming interface. This also leads to763

a fourth order convergence rate, see the fourth column of Table 3, labeled INT6. In both approaches,764

the dominating truncation error is still O(h2) at a few grid points close to the boundaries. However,765

different penalty terms will give different boundary systems in the normal mode analysis for convergence766

rate. The precise rate of convergence can be analyzed by the Laplace-transform method, but is beyond767

the scope of this paper.768

We also observe that the L2 errors of the SBP-GP method is almost identical to that of the SBP-SAT769

method (SAT4 and INT6) with the same mesh size.770

5.3. Smooth material parameters. In this section, we test the two methods when the material771

parameters are smooth functions in the whole domain Ω. More precisely, we use material parameters772

ρ = − cos(x) cos(y) + 3,

µ = cos(x) cos(y) + 2.
773

The forcing function and initial conditions are chosen so that the manufactured solution becomes774

u(x, y, t) = sin(x+ 2) cos(y + 1) sin(t+ 3).775

We use the same grid as in Section 5.2 with grid size 2h in Ω1 and h in Ω2. The parameters ρmin = 2776

and µmax = 3 take the extreme values at the same grid point. Therefore, a Fourier analysis of the777

corresponding periodic problem gives the time step restriction778

δt ≤
1√
2

2
√

3√
16/(3h2)

√
µmax/ρmin

=

√
3

2
h ≈ 0.86h.779

Numerically, we have found that the SBP-GP method is stable when δt ≤ 0.86h. This shows again that780

the non–periodicity and interface coupling do not affect the CFL condition in the SBP-GP method. The781

SBP-SAT method is stable with δt ≤ 0.77h, which means that the time step needs to be reduced by782

approximately 10%.783
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2h L2 error (rate)

1.57×10−1 2.7076×10−4

7.85×10−2 1.6000×10−5 (4.08)
3.93×10−2 9.7412×10−7 (4.04)
1.96×10−2 6.0183×10−8 (4.02)
9.81×10−3 3.7426×10−9 (4.01)

Table 4: L2 errors (convergence rates) of the SBP-GP method for smooth µ.

2h L2 error (rate) SAT3 L2 error (rate) SAT4 L2 error (rate) INT6

1.57×10−1 3.8636×10−3 1.8502×10−3 1.8503×10−3

7.85×10−2 4.3496×10−4 (3.15) 9.4729×10−5 (4.29) 9.4736×10−5 (4.29)
3.93×10−2 5.3152×10−5 (3.03) 3.7040×10−6 (4.68) 3.7043×10−6 (4.68)
1.96×10−2 6.6271×10−6 (3.00) 2.0778×10−7 (4.16) 2.0779×10−7 (4.16)
9.81×10−3 8.2783×10−7 (3.00) 1.3372×10−8 (3.96) 1.3372×10−8 (3.96)

Table 5: L2 errors (convergence rates) of the fourth order SBP-SAT method for smooth µ.

To test convergence, we choose the time step δt = 0.7h so that both the SBP-GP method and SBP-784

SAT method are stable. The L2 errors at t = 11 are shown in Table 4 for the SBP-GP method. We785

observe a fourth order convergence rate.786

Similar to the case with piecewise constant material property, the standard SBP-SAT method only787

converges to third order accuracy, see the second column of Table 5 labeled as SAT3. We have tested the788

SBP-SAT method with four penalty terms, or with a sixth order interpolation and restriction operator.789

Both methods lead to a fourth order convergence rate, see the third and fourth column in Table 5.790

However, the L2 error is more than three times as large as the L2 error of the SBP-GP method with the791

same mesh size.792

6. Conclusion. We have analyzed two different types of SBP finite difference operators for solving793

the wave equation with variable coefficients: operators with ghost points, G̃(µ), and operators without794

ghost points, G(µ). The close relation between the two operators has been analyzed and we have presented795

a way of adding or removing the ghost point dependence in the operators. Traditionally, the two operators796

have been used within different approaches for imposing the boundary conditions. Based on their relation,797

we have in this paper devised a scheme that combines both operators for satisfying the interface conditions798

at a non-conforming grid refinement interface.799

We first used the SBP operator with ghost points to derive a fourth order accurate SBP-GP method800

for the wave equation with a grid refinement interface. This method uses ghost points from both sides801

of the refinement interface to enforce the interface conditions. Accuracy and stability of the method802

are ensured by using a fourth order accurate interpolation stencil and a compatible restriction stencil.803

Secondly, we presented an improved method, where only ghost points from the coarse side are used to804

impose the interface conditions. This is achieved by combining the operator G(µ) in the fine grid and the805

operator G̃(µ) in the coarse grid. Compared to the first SBP-GP method, the improved method leads806

to a smaller system of linear equations for the ghost points with better conditioning. In addition, we807

have made improvements to the traditional fourth order SBP-SAT method, which only exhibits a third808

order convergence rate for the wave equation with a grid refinement interface. Two remedies have been809

presented and both result in a fourth order convergence rate.810

We have conducted numerical experiments to verify that the proposed methods converge with fourth811

order accuracy, for both smooth and discontinuous material properties. With a discontinuous material,812

the domain is partitioned into subdomains such that discontinuities are aligned with subdomain bound-813

aries. We have also found numerically that the proposed SBP-GP method is stable under a CFL time-step814
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condition that is very close to the von Neumann limit for the corresponding periodic problem. Being able815

to use a large time step is essential for solving practical large-scale wave propagation problems, because816

the computational complexity grows linearly with the number of time steps. We have found that the817

SBP-SAT method requires a smaller time step for stability, and that the time step depends on the penalty818

parameters of the interface coupling conditions. In the case of smooth material properties, the SBP-SAT819

method was also found to yield to a larger solution error compared to the SBP-GP method, for the same820

grid sizes and time step.821

One disadvantage of the SBP-GP method is that a system of linear equations must be solved to822

obtain the numerical solutions at the ghost points. However, previous work has demonstrated that the823

system can be solved very efficiently by an iterative method [23, 25]. Furthermore, the proposed method824

only uses ghost points on one side of the interface and therefore leads to a linear system with fewer825

unknowns and a more regular structure than previously.826

Sixth order accurate SBP operators can be used in the proposed method in a straightforward way.827

However, sixth order SBP discretization often leads to a convergence rate lower than six, and it is an828

open question if a six order discretization is more efficient than a fourth order discretization for realistic829

problems. In future work we plan to extend the proposed method to the elastic wave equation in three830

space dimensions with realistic topography based on [23], and implement it on a distributed memory831

machine to evaluate its efficiency.832
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work on the SBP-GP method with ghost points on both sides of the grid refinement interface. This work836

was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National837

Laboratory under contract DE-AC52-07NA27344. This is contribution LLNL-JRNL-757334.838

Appendix 1: Proof of Lemma 5.1. By using the standard fourth order finite difference stencil,839

(5.1) can be approximated as840

d2uj
dt2

=

(
− 1

12
uj+2 +

4

3
uj+1 −

5

2
uj +

4

3
uj−1 −

1

12
uj−2

)
µ

ρ
.841

By using the ansatz uj = ûeiωxj , where ω is the wave number and xj = jh, we obtain842

d2û

dt2
=

(
− 1

12
eiω2h +

4

3
eiωh − 5

2
+

4

3
e−iωh − 1

12
e−iω2h

)
µ

ρ
û843

= − 4

h2
sin2 ωh

2

(
1 +

1

3
sin2 ωh

2

)
µ

ρ
û.844

845

Therefore, the Fourier transform of the fourth order accurate central finite difference stencil is846

(6.1) Q̂ = − 4

h2
sin2 ωh

2

(
1 +

1

3
sin2 ωh

2

)
µ

ρ
.847

Consequently, we have848

κ = max |Q̂| = 16µ

3h2ρ
.849
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