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FOURTH ORDER FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION
WITH MESH REFINEMENT INTERFACES

SIYANG WANG * AND N. ANDERS PETERSSON

Abstract. We analyze two types of summation-by-parts finite difference operators for approximating the second
derivative with variable coefficient. The first type uses ghost points, while the second type does not use any ghost points.
A previously unexplored relation between the two types of summation-by-parts operators is investigated. By combining
them we develop a new fourth order accurate finite difference discretization with hanging nodes on the mesh refinement
interface. We take the model problem as the two-dimensional acoustic wave equation in second order form in terms of
acoustic pressure, and prove energy stability for the proposed method. Compared to previous approaches using ghost
points, the proposed method leads to a smaller system of linear equations that needs to be solved for the ghost point values.
Another attractive feature of the proposed method is that the explicit time step does not need to be reduced relative to the
corresponding periodic problem. Numerical experiments, both for smoothly varying and discontinuous material properties,
demonstrate that the proposed method converges to fourth order accuracy. A detailed comparison of the accuracy and the
time-step restriction with the simultaneous-approximation-term penalty method is also presented.

Key words. Wave equation, Finite difference methods, Summation-by-parts, Ghost points, Non-conforming, Mesh
refinement

AMS subject classifications. 65M06, 656M12

1. Introduction. Based on the pioneering work by Kreiss and Oliger [12], it is by now well known
that high order accurate (> 4) numerical methods for solving hyperbolic partial differential equations
(PDE) are more efficient than low order methods. While Taylor series expansion can easily be used to
construct high order finite difference stencils for the interior of the computational domain, it is in general
difficult to find stable boundary closures that avoid spurious growth in time of the numerical solution.
Finite difference operators that satisfy the summation-by-parts (SBP) identity, first introduced by Kreiss
and Scherer [14], provide a recipe for achieving both stability and high order accuracy.

An SBP operator is constructed such that the energy estimate of the continuous PDE can be carried
out discretely for the finite difference approximation, with summation-by-parts replacing the integration-
by-parts principle. As a consequence, a discrete energy estimate can be obtained to ensure that the
discretization is energy stable. When deriving a continuous energy estimate, the boundary terms result-
ing from the integration-by-parts formula are easily controlled through the boundary conditions. The
fundamental benefit of using SBP operators is that a discrete energy estimate can be derived in a similar
way. Here, the summation-by-parts identities result in discrete boundary terms. These terms dictate
how the boundary conditions must be discretized to guarantee energy stability for the finite difference
approximation.

We consider the SBP discretization of the two-dimensional acoustic wave equation on Cartesian grids,
and focus on the case when the material properties are discontinuous in a semi-infinite domain. To obtain
high order accuracy, one approach is to decompose the domain into multiple subdomains, such that the
material is smooth within each subdomain. The governing equation is then discretized by SBP operators
in each subdomain, and patched together by imposing interface conditions at the material discontinuity.
For computational efficiency, the mesh size in each subdomain should be chosen inversely proportional
to the wave speed [9, 14], leading to mesh refinement interfaces with hanging nodes.

We develop two approaches for imposing interface conditions in the SBP finite difference framework.
In the first approach, interface conditions are imposed strongly by using ghost points. In this case, the
SBP operators also utilize ghost points in the difference approximation. We call this the SBP-GP method.
In the second approach, the SBP-SAT method, interface conditions are imposed weakly by adding penalty
terms, also known as simultaneous-approximation-terms (SAT) [3]. The addition of penalty terms in the
SBP-SAT method bears similarities with the discontinuous Galerkin method [10]. A high order accurate
SBP-SAT discretization of the acoustic wave equation in second order form was previously developed by
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2 S. WANG AND N. A. PETERSSON

Wang et al. [31]. Petersson and Sjogreen [22] developed a second order accurate SBP-GP scheme for the
elastic wave equation in displacement formulation with mesh refinement interfaces. We note that the
projection method [20, 21] could in principle also be used to impose interface conditions, but will not be
considered here.

In this paper, we present two ways of generalizing the SBP-GP method in [22] to fourth order
accuracy. The first approach is a direct generalization of the second order accurate technique. It imposes
the interface conditions using ghost points from both sides of the mesh refinement interface. The second
approach is based on a previously unexplored relation between SBP operators with and without ghost
points. This relation allows for an improved version of the fourth order SBP-GP method, where only
ghost points from one side of the interface are used to impose the interface conditions. This approach
reduces the computational cost of updating the solution at the ghost points and should also simplify the
generalization to three-dimensional problems.

Even though both the SBP-GP and SBP-SAT methods have been used to solve many kinds of PDEs,
the relation between them has previously not been explored. An additional contribution of this paper is
to connect the two approaches, provide insights into their similarities and differences, as well as making
a comparison in terms of their efficiency.

The remainder of the paper is organized as follows. In Section 2, we introduce the SBP methodology
and present the close relation between the SBP operators with and without ghost points. In Section 3,
we derive a discrete energy estimate for the wave equation in one space dimension with Dirichlet or
Neumann boundary conditions. Both the SBP-GP and the SBP-SAT methods are analyzed in detail and
their connections are discussed. In Section 4, we consider the wave equation in two space dimensions,
and focus on the numerical treatment of grid refinement interfaces with the SBP-GP and SBP-SAT
methods. Numerical experiments are conducted in Section 5, where we compare the SBP-GP and SBP-
SAT methods in terms of their time-step stability condition and solution accuracy. Our findings are
summarized in Section 6.

2. SBP operators. Consider the bounded one-dimensional domain = € [0, 1] =:  and the uniform
grid on €,
SC:[ZZ?l,“',;En]T, ‘IJ:(]_I)h’ j:1727"'7n7 hzl/(n_]‘)

The grid points in @ are either in the interior of 2, or on its boundary. We also define two ghost points
outside of Q: 29 = —h and 2,41 = 1+ h. Let the vector = [2¢, -+ ,2,41]7 denote the grid with ghost
points. Throughout this paper, we will use the tilde symbol to indicate that ghost points are involved in
a grid, a grid function, or in a difference operator.

We consider a smooth function u(x) in the domain €2, and define the grid function u; := u(x;). Let

(2.1) w=[ug, - ,u,)” and v = [v1,--- ,v,]T
denote real-valued grid functions on @, and let

(2.2) = [ug,u”, upi1)T and © = [vg, v7, vp41]"

denote the corresponding real-valued grid functions on .
We denote the standard discrete L? inner product by

n
(’LL, ’U)Q =h Z U;v;j.
j=1
For SBP operators, we need the weighted inner product

(23) (u,'v)h = thjujvj, wj >6>0,

j=1

where 6 is a constant, w; = 1 in the interior of the domain and w; # 1 at a few grid points near
each boundary. The number of grid points with w; # 1 is independent of n, but depends on the order
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 3

of accuracy of the SBP operator. Let || - ||, be the SBP norm induced from the inner product (-,-)p.
Furthermore, let the diagonal matrix W have entries W;; = hw; > 0. Then, in matrix-vector notation,
(u,v);, = uWo.

The SBP methodology was introduced by Kreiss and Scherer in [14], where the first derivative SBP
operator D ~ 9/0x was also constructed. The operator D does not use ghost points, and satisfies the
first derivative SBP identity.

DEFINITION 2.1 (First derivative SBP identity). The difference operator D is a first derivative SBP
operator if it satisfies

(2.4) (u, Dv)p, = —(Du,v)p — w101 + UpUn,

for all grid functions u and v.

We note that (2.4) is a discrete analogue of the integration-by-parts formula

' odv Y du
/0 u%d:ﬁ =— ; L u(0)v(0) + u(1)v(1).

Centered finite difference stencils are used on the grid points away from the boundaries, where the
weights in the SBP norm are equal to one. To retain the SBP identity, special one-sided boundary stencils
must be employed at a few grid points near each boundary. Kreiss and Scherer showed in [14] that the
order of accuracy of the boundary stencil must be lower than in the interior stencil. With a diagonal norm
and a 2p'" order accurate interior stencil, the boundary stencil can be at most p'* order accurate. The
overall convergence rate can be between p + 1/2 and 2p, depending on the equation and the numerical
treatment of boundary and interface conditions [8, 29, 30]. In the following we refer to the accuracy of
an SBP operator by its interior order of accuracy (2p).

It is possible to construct block norm SBP operators with 2p*" order interior stencils and (2p — 1)
order boundary stencils. Despite their superior accuracy, the block norm SBP operators are seldomly
used in practice because of stability issues related to variable coefficients. However, in some cases the
block norm SBP operators can be stabilized using artificial dissipation [16].

For second derivative SBP operators, we focus our discussion on discretizing the expression

(2.5) % (u(w)j;(x)) :

Here, the smooth function p(z) > 0 may represent a variable material property or a metric coefficient.
In the following we introduce two different types of second derivative SBP operators that are based on
a diagonal norm. The first type uses one ghost point outside each boundary, while the second type does
not use any ghost points. We proceed by explaining the close relation between these operators. To make
the presentation concise, we exemplify the relation for the case of fourth order accuracy (2p = 4).

th

2.1. Second derivative SBP operators with ghost points. Sjogreen and Petersson [26] derived
a fourth order accurate SBP discretization G(u)v for approximating (2.5). This discretization was orig-
inally developed for solving the seismic wave equations and is extensively used in the software package
SW4 [24]. The formula is based on a five-point centered difference stencil of fourth order accuracy in
the interior of the domain. Special one-sided boundary stencils of second order accuracy are used at the
first six grid points near each boundary. Note, in particular, that G(u)v uses the ghost point values
of u to approximate (2.5) on the boundary itself, as illustrated in Figure 1. As will be shown below,
the difference approximation of the wave equation is energy stable because the difference operator G (1)
satisfies the second derivative SBP identity.

DEFINITION 2.2 (Second derivative SBP identity). The difference operator G(u) is a second deriva-
tive SBP operator if it satisfies

~ ~T _ ~T _
(2.6) (w, G(p)v)n = =Su(w, v) = urpnby 0 + unpinb, v,
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4 S. WANG AND N. A. PETERSSON

d44444
ARRRRER]
ARERRR]
d44444
[EEEERR]

(X 2RRRRER]

[ XX EREERRR]
0000 qqqq«

20 -

251

ARRERER NN ]
444449000
AR AR R R R J
44444«
44444«
ARRERR]
r4dd4q444«

r4d4444q400

301,

o
o
o
o
n L
o
n
(&}
(&)
o

Fig. 1: The non-zero coefficients of the SBP operator é(ﬂ) in matrix form, for a grid with 30 grid
points. Blue circles: standard five-point difference stencil. Red triangles: special boundary stencil. Black
squares: ghost points. The structure of G(u) is the same, but without the black squares. Note that the
grid function G(p)¥ is defined at the same grid points as v.

for all grid functions w and v. Here, p1 = p(x1), pin = p(xy) and the bilinear form S, (-,-) is symmetric

~T_ ~T__
and positive semi-definite. The boundary difference formulas by v and b,,v approzimate dv/dx at 1 and
Ty, making use of the ghost point values vy and vy, 41, respectively.

~T ~T
We remark that the boundary difference operators, b; and b,,, are constructed with fourth order accuracy
in [26]. Note that (2.6) is a discrete analogue of the integration-by-parts formula

1 v L du do v v
[ g (n ) o == [ St~ w0 F0) + a0,

2.2. Second derivative SBP operators without ghost points. The second type of second
derivative SBP operator, denoted by Ga,(1t), does not use any ghost points. This type of operator was
constructed by Mattsson [15] for the cases of second, fourth and sixth order accuracy (2p = 2,4,6). In
the following discussion we focus on the fourth order case and define G(u) = G4(p).

In the interior of the domain, the operator G(u) uses the same five-point wide, fourth order accurate
stencil as the operator with ghost points, é(,u) At the first six grid points near the boundaries, the
two operators are similar in that they both use a second order accurate one-sided difference stencil that
satisfies an SBP identity of the form (2.6), but without ghost points,

(2.7) (u, G() ) = =S, (u,v)n — w1 p1b] v 4+ uppin bl v.

Similar to (2.6), the bilinear form S,(-,-) is symmetric and positive semi-definite. In this case, the
boundary difference operators b? and bz are constructed with third order accuracy, using stencils that
do not use any ghost points. The structure of G(u) is the same as shown in Figure 1, but without the
two black squares representing the ghost points.

2.3. The relation between SBP operators with and without ghost points. When using
the SBP operator G(u) with ghost points, boundary conditions are imposed in a strong sense by using
the ghost point values as additional degrees of freedom. On the other hand, for the SBP operator G(u)
without ghost points, boundary conditions are imposed weakly by using a penalty technique. Though
these two types of SBP operators are used in different ways, they are closely related to each other. In
fact, an SBP operator with ghost points can easily be modified into a new SBP operator that does not
use any ghost points, and vice versa. The new operators preserve the SBP identity and the order of

This manuscript is for review purposes only.
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION )

accuracy of the original operators. In the following, we demonstrate this procedure for the fourth order
accurate version of G(p) [26] and G(u) [15]. For simplicity, we only consider the stencils near the left
boundary. The stencils near the right boundary can be treated in a similar way.

To discuss accuracy, let us assume that the grid function v is a restriction of a sufficiently smooth
function V(x) on the grid . The boundary difference operator associated with G(u) satisfies

. d
(2.8) blT'v = (—3vg — 10v1 + 18vs — 6uz + v4) = %(3:1) + O(hY).

121

Let’s consider the modified boundary difference operator,

~T ~T
(2.9) b, v + Bh'ds v,
where
~T _ 1 v
(2.10) d;, 0= ﬁ(—vo + 5v1 — 10vy + 10v3 — Svg +v5) = I ——(x1) + O(h)

is a first order accurate approximation of the fifth derivative at the boundary point x;. Both the approx-
imations (2.8) and (2.9) are exact at x; if V(z) is a polynomial of order at most four. For any (finite)
value of 3, (2.9) is a fourth order accurate approximation of %(1’1).

We note that the coefficient of v in (2.8) is -1/4. To eliminate the dependence on vy in (2.9), we

choose = —1/4 and define a new boundary difference operator by
~T 1
byv= ﬁ(—%vl + 48vy — 36w3 + 16v4 — 3vs) = Vi (21) + O(h?Y).

This stencil does not use the ghost point value vg. Instead, it uses the value vs, which is not used by

5?5. Here and throughout the paper, we use an underbar to indicate operators that have been modified
by adding/removing ghost points.

To retain the SBP identity (2.6), the operator G(u) must be changed accordingly. We can maintain
the same bilinear form S, (-, -) if we only modify G(1) on the boundary itself. We make the ansatz

(2.11) G (pv =G (p)v+a's,

where G4 (1) should be interpreted as the first element of vector G(u)v. To see the relation between
G, (p)v and Gy(p)v in the SBP identity (2.6), we pick a particular grid function w in (2.6) satisfying
u; = 1 and u; = 0, for j > 2. The balance between the left and right hand sides of that equation is

maintained if

. ~T __ . 12 ~T _
hwlaT'u = —ﬂh4u1d5+v = alv= ﬁh3u1d5+v.

Here we have used that 8 = —1/4 and that w; = 17/48 is the weight of the SBP norm at the first grid
point. The ghost point value vg is only used by G(u)v on the boundary itself. It satisfies

8 8
~ - 1 12
(2.12) G1(M)’U 2 g E Br, mbmUs + = 17 h2

where Sy ., are constants [26] (the numerical values can be found in the open source code of SW4 [24]).
~T
Because the coefficient of vy in d5, ¥ is —1/h°, the dependence on v, cancels in (2.11). This cancellation

~ ~T
is a consequence of the operators G(u) using ghost points only from b, but not S,,(-,-), see [26] for details.
The new SBP difference operator that does not use ghost points can be written as

8 8
1 12
=72 E E Bl mMmVk + — - h2 (51}1 10v9 4+ 10v3 — bvg + v5) ,

This manuscript is for review purposes only.
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6 S. WANG AND N. A. PETERSSON

Note that the second equation is satisfied independently of the ghost point value, v.
To emphasize that G(u) is modified from G(u), we keep the tilde symbol on G(u), even though the

operator does not use any ghost points. The new operator pair (é(u),gl) shares important properties
with the original operator pair (6’ (u),gl). In particular, both pairs satisfy the SBP identity 2.2 and have
the same orders of accuracy in the interior and near each boundary. Even though the SBP operator é (1)
does not use any ghost points, it is not the same as the SBP operator G(u) constructed by Mattssson [15].
The dissimilarity arises because the corresponding boundary difference operators are constructed with
different orders of accuracy.

For the SBP operator pair (G(u),b1) that does not use ghost points, we can reverse the above
procedure to derive a new pair of SBP operator that uses a ghost point. The boundary difference
operator associated with G(u) is

(2.13) b?’v = —11vy + 18wy — 9u3g + 2?]4) = %(.’L‘l) + O(hs)

1
an'

Another third order approximation of dV/dx(xy) is given by the difference formula

~T
(2.14) bl v +yh*d,, v,
where
~r _ 1 ‘v
(2.15) d, v= ﬁ(vo — 4vy + 6vy — dvg + vg) = W(xl) + O(h).

~T _
The boundary operator (2.13) is exact for any polynomial V(z) of order at most three and d,, v = 0 for
such polynomials. Therefore, (2.14) is third order accurate for any value of 4. By choosing v = —1/3,
we obtain a new boundary difference operator that uses the ghost point value vy, but does not depend
on vy,

~ 1og~7 o 1 av .
(2.16) blv:=blv-— §h3d4+v = @(721)0 — 3v1 + 6vg —v3) = %(xl) +O(h3).

As a result, the new boundary difference operator has the minimum stencil width for a third order
accurate approximation of a first derivative.

To satisfy the SBP identity (2.6) for difference operators that include ghost points, we must modify
G(u) to be compatible with the new boundary difference operator QlT. As before, we consider a grid
function w with v; = 1 and u; = 0, for j > 2. To maintain the balance between the left and right hand
sides of (2.6), the following must hold

~ yh3  ~T _ 16 ~T
(2.17) G (W = Gr(uv = o pndy B = Gr(pv + o dy, .

The new SBP operator that uses a ghost point becomes
G ()5 = L LW+ hPmdy,  j=1,
- Gji(p)v, j=2,3.4,....

Even though the new difference operators use a ghost point, we have not added tilde symbols on (G(u), b;).
This is to emphasize that they are modified from the operators without ghost points, (G(u), b1).

3. Boundary conditions. To present the techniques for imposing boundary conditions with and
without ghost points, and to highlight the relation between the SBP-GP and SBP-SAT approaches, we
consider the one-dimensional wave equation,

(31) PUtt = (ﬂ(x)Uz)m T e [07 1]7 t >0,

This manuscript is for review purposes only.
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subject to smooth initial conditions. Here, p(z) > 0 and p(xr) > 0 are material parameters. The
dependent variable U(z,t) could, for example, represent the acoustic overpressure in a linearized model
of a compressible fluid. Uy is the second derivative with respect to time and the subscript x denotes
differentiation with respect to the spatial variable.

We have for simplicity not included a forcing function in the right-hand side of (3.1). This is because
it has no influence on how boundary conditions are imposed. We only consider imposing the boundary
condition on the left boundary, x = 0. Consequently, boundary terms corresponding to the right boundary
are omitted from the description below. Furthermore, the initial conditions are assumed to be compatible
with the boundary conditions.

3.1. Neumann boundary conditions. We start by considering the Neumann boundary condition
(3.2) U.(0,t) = f(t), t=>0.
In the SBP-GP method, the semi-discretization of (3.1)-(3.2) is
(3.3) puy = G(p)a, t>0,
(3.4 bia=f(t), t=0,

where p is a diagonal matrix with the j* diagonal element p; = p(x;), @ = @(t) is a time-dependent grid
function on  and u = u(t) is the corresponding grid function on x. By using the SBP identity (2.6), we
obtain

(we pun)y, = (s G()a)
~T _
= =S, (ug,uw) — (u1)ep1 by u,

which can be written as,

~T _
(3.5) (g, pugr)y, + Su(u, w) = —(u1)ep1 by .

We define the discrete energy

Eh = (utv Put)h + S}L(uv U),
and note that the left-hand side of equation (3.5) equals the rate of the discrete energy,

d ~T _
(3.6) %Eh = —2(uq)¢ 1 by w.

To obtain energy stability, we need to impose the Neumann boundary condition such that the right-hand
side of (3.6) is non-positive when f = 0. The key in the SBP-GP method is to use the ghost point as
the additional degree of freedom for imposing the boundary condition. Here, the Neumann boundary

=T
condition (3.2) is approximated by enforcing b, u(t) = f(¢). From (2.8), it is satisfied if
1
(37) Ug = g(—loul + 18ug — 6ug + ug — 12hf(t)), t>0.

This relation gives the ghost point value ug as function of the interior values u;, j = 1,2,3,4. The
resulting approximation is energy conservative because

(3.8) %Eh —0, f(t)=0.

Next, consider the semi-discretization of (3.1) by the SBP-SAT method in [15],

(3.9) puy = G(p)u + py,

This manuscript is for review purposes only.
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where py is a penalty term for enforcing the Neumann condition (3.2). By using the SBP identity (2.7),
we obtain
(ut7 Putt)h = (uta G(,U)'U/)h + (uta pN)h
= —Su(ur, w) = (ur)epab] w+ (wy, py)n,

which can be written as

d
(3.10) %[(utv pu)n + Sp(w, w)] = =2(uy)epa by w + 2wy, py)-
To obtain energy conservation, the right hand side of (3.10) must vanish when f(¢) = 0. This property
is satisfied by choosing
(3.11) py = mh wit (blu— () e,
where e; = [1,0,0,---]7. On the boundary, (3.9) can therefore be written as

prm)ee = Galu+ L (b w— (1)) = G (wu+ 2 (BT + Sh¥diii— (1)
hwy hwiy \™ 3
~ 1251 ~
= Gy + g (b - 1(0)).

where we have used (2.16) and (2.17) to express the relations between SBP operators with and without

ghost points. For j > 2, the penalty term py is zero and G,(u)u = G;(p)u. Thus, we can write the
SBP-SAT discretization as,

(3.13) biu=f(t), t>0,

which is of the same form as the SBP-GP discretization (3.3)-(3.4). Thus, for Neumann boundary
conditions, the SAT penalty method is equivalent with the SBP-GP method. An interesting consequence
is that, if both formulations are integrated in time by the same scheme, (3.9) and (3.12)-(3.13) will
produce identical solutions. Thus, solutions of the SBP-SAT method will satisfy the Neumann boundary
condition strongly, in the same point-wise manner as the SBP-GP method.

Since blTu is a third order approximation of Z—g (z1), the penalty term introduces a truncation error of

O(h?) at the boundary, that is, bl u = 44 (1) + O(h?). This error is of the same order as the truncation
error of the SBP operator G(u) at the boundary. Therefore, the order of the largest truncation error in
the discretization is not affected by the penalty term. Because of the equivalence between the methods,
the boundary approximation (2.8) used by the SBP-GP method could be replaced by a third order
approximation. This modification would result in a method with the same order of truncation error in

the discretization.

3.2. Dirichlet boundary conditions. Consider the wave equation (3.1) subject to the Dirichlet
boundary condition,

(3.14) U(0,t) = g(t), t>0.

The most obvious way of discretizing (3.14) would be to set u; = g(¢) for all times. However, that
condition is not directly applicable for the SBP-GP method because it does not involve the ghost point
value ug. Instead, we can differentiate (3.14) twice with respect to time and use (3.3) to approximate
Ui (0,t) = gue (1),

(3.15) () = =G ()it = gu(t), > 0.
P1
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FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION 9

From (2.12), the above condition is satisfied if the ghost point value is related to the interior values
according to

8 8
17
(3.16) Uy = ——— (thlgtt(t) - Z Z ﬁk,mumuk> , t2>0.

N 12M1 k=1m=1

This relation corresponds to (3.7) for Neumann boundary conditions. Because the initial conditions
are compatible with the boundary condition, we can integrate (3.15) once in time to get (u1): = g:+(t).
Therefore, when g; = 0, the approximation is energy conserving because the right hand side of (3.6)
vanishes and the solution satisfies (3.8).

Because we impose the Dirichlet condition through (3.15), we see that (3.3) is equivalent to

pu |: /Z}gtty J: 13
YT Gwa, j=2.3,.. ..

Since the ghost point value is only used by G on the boundary itself, this approximation is independent
of the ghost point value and can be interpreted as injection of the Dirichlet data, u;(t) = ¢(t), and
the energy stability follows. Injection can also be used to impose Dirichlet data for the SBP operators
without ghost point. Here, energy stability can be proved from a different perspective by analyzing the
properties of the matrix representing the operator G(u), see [4]. While the injection approach provides
the most straightforward way of imposing Dirichlet data, it does not generalize to the interface problem.

For SBP operators without ghost points, it is also possible to impose a Dirichlet boundary condition
by the SAT penalty method. In this case, the penalty term has a more complicated form than in the
Neumann case, but the technique sheds light on how to impose grid interface conditions. Replacing the
penalty term in (3.9) by pp, an analogue of the energy rate equation (3.10) is

d
(3.17) %[(uh pu)n + Su(u,w)] = —2p1 (u1):b] w + 2(us, Pp)h-

It is not straightforward to choose p such that the right-hand side of (3.17) is non-positive. However,
we can choose pp, so that the right-hand side of (3.17) becomes part of the energy. For example, if

_ T
(3.18) pp = —p(ur — g(®) W (by + 561)7
where e; = [1,0,0,---]7 and W is the diagonal SBP norm matrix. With homogeneous boundary condition

g(t) = 0, we have

-
(e, pp)n = —p1ur b u; — Eﬂl(ul)tulv

and (3.17) becomes

d

(3.19) -

’
(g, pug)p + Spu(u,u) + 2u1u1b1Tu + E,uluﬂ =0.

We obtain an energy estimate if the quantity in the square bracket is non-negative.
In Lemma 2 of [27], it is proved that the following identity holds

(3.20) Sulw,w) = S, (u, u) + hoinmin (67 w)?,

where both the bilinear forms S,,(-, ) and S, (-, -) are symmetric and positive semi-definite, « is a constant
that depends on the order of accuracy of G(u) but not h, and

in = min ;.
Hmin = S8, HI

The integer constant r depends on the order of accuracy of G(u) but not on h. As an example, the fourth
order accurate SBP operator G(u) constructed in [15] satisfies (3.20) with » = 4 and o = 0.2505765857.
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Any a > 0.2505765857 can make S, (-, -) indefinite. Identities corresponding to (3.20) have been used in
several other SBP related methodologies, e.g. [2, 5, 18].
By using (3.20),

S, w) + 2pu1 by w + %Ml“? = S, (u, ) + hapimin(b] w)® + 21 urb] u + %MU%
2
1 1 T
=5, (u,u)+ (v houhumin (b1 ) + }WminM1UI) - mlﬁu% + EMIU%
T 1 ? T pi 2
-3 et (T 0) + ———— Lo — .
S, (u,u) + ( Ofimin (b7 u) + /—ha/-//minulllLl) + (hm haﬂmin> uy

Thus, the quantity in the square bracket of (3.19) is an energy if,

2
i >0 = 712> L
ha:umm Qlhmin

T
h:“'l

We note that the penalty parameter T has a lower bound but no upper bound. Choosing 7 to be equal
to the lower bound gives large numerical error in the solution [29]. However, an unnecessarily large 7
causes stiffness and leads to stability restrictions on the time-step [18]. In computations, we find that
increasing 7 by 10% to 20% from the lower bound is a good compromise for accuracy and efficiency.

The energy estimate (3.19) contains two more terms than the corresponding estimate for the SBP-GP
method. The additional terms are approximately zero up to the order of accuracy because of the Dirichlet
boundary condition u(z1) = 0.

3.3. Time discretization with the SBP-GP method. Let @" denote the numerical approxi-
mation of U(&,ty), where tp = kd; for k = 0,1,2,... and J; > 0 is the constant time step. We start
by discussing the update procedure for the explicit Stromer scheme, which is second order accurate in
time. For simplicity we only consider the boundary conditions at = 0. The time-stepping procedure is
described in Algorithm 3.1.

Algorithm 3.1 Second order accurate time stepping with ghost points for Neumann or Dirichlet bound-
ary conditions.

Given initial conditions @” and @' that satisfy the discretized boundary conditions.
1. Update the solution at all interior grid points,

(3.21) utl = 2ub — Wb 4 2p G(at, k=0,1,2,...
2a. For Neumann boundary conditions, assign the ghost point value v, k41 o satisf:
y g g p 0 y
7T g1
(3.22) b,u = f(tks1)-

2b. For Dirichlet boundary conditions, assign the ghost point value u0+ to satisfy

(3.23) Gy (! = g’;( (trs2) — 2051 4 ub).

For Neumann conditions, it is clear that (3.22) enforces the semi-discrete boundary condition (3.4)
at each time level. This condition must also be satisfied by the initial data, a’.

For Dirichlet conditions, we proceed by explaining how (3.23) is related to the semi-discrete boundary
condition (3.15). Assume that the initial data satisfies the Dirichlet boundary conditions, that is, u{ =

g(to) and uyt = g(t_;). Also assume that (3.23) is satisfied for @’,

Cr()® = B3 9(12) ~ 20 + i) = G (9(0) = 29(00) + 9(11))
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The solution at time level ¢; is obtained from (3.21). In particular, on the boundary,

1, 0% o 5 ;1
up = 2uf —uyt + p*thl(M)u = 2g(to) — g(t-1) + p*tl(;*g (9(t1) = 2g(to) + g(t-1)) = g(t1).
t
Thus, the Dirichlet boundary condition is also satisfied at time level t. Assigning the ghost point u}
such that (3.23) is satisfied for &' thus ensures that %> will satisfy the Dirichlet boundary condition at
the next time level, after (3.21) has been applied. By induction, the Dirichlet boundary condition will
be satisfied for any time level ¢;. The boundary condition (3.23) is therefore equivalent to

~ - t — 2g(t + g(t
Gl(ﬂ)uk+1 . 9( k+2) 9§2k+1> 9( k),
t

which is a second order accurate approximation of the semi-discrete boundary condition (3.15). Another
interpretation of (3.23) is that the ghost point value for a s assigned by “looking ahead”, i.e., such
that the Dirichlet boundary condition will be satisfied for at

The Stromer time-stepping scheme can be improved to fourth (or higher) order accuracy in time by

a modified equation approach [6, 26]. To derive the scheme, we first notice that

bl ok 1 qgh1 52
(3.24) 52 = uy(tr) + T;utttt(tk) +0(8)).
¢

By differentiating (3.3) twice in time,

(325) Uttt — pflé(,u)ﬁtt.
We can obtain a second order (in time) approximation of u;; from

~x. k+1 ~k ~k—1
- u’ —2u +u -
(3.26) oF = = =y + O(57).
t

K+

Here, 1! is the second order (in time) predictor,

(3.27) w L = 2u — w4 2p G (p)at,

augmented by appropriate boundary conditions that define the ghost point value uz’kﬂ. By using (3.26)
and (3.25) to approximate wyyy in (3.24), we obtain

~ . OF =~
(3.28) uf = 20k — Wb 4 82p G ()t + T;pflG(u)vk,

where o is given by (3.26). By subtracting (3.27) from (3.28) and re-organizing the terms, we arrive at
the corrector formula,

54
k+1 :u*7k+1 + t

12
The resulting fourth order predictor-corrector time-stepping procedure is described in Algorithm 3.2.

Similar to the second order algorithm, it is straightforward to impose Neumann boundary conditions,
but the Dirichlet boundary conditions require some further explanation. The basic idea is to enforce the
same boundary condition for both the predictor and the corrector, i.e.,

U p LG ()"

uitF =ub =g(ty), k=0,1,2,....

As before, the Dirichlet condition are enforced by “looking ahead”. We assume that the initial data
satisfies the compatibility conditions u;! = g(t_1), u{ = g(t¢) and

plg(tl) - 29((;520) —g(t-1)

Gr(pya’ =
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12 S. WANG AND N. A. PETERSSON

Similar to the second order time-stepping algorithm, the first predictor step updates the solution on the
boundary to be

im
P1 5?

U?l==%ﬁ-—UI14-g§51ODﬁO==2gﬁw-—gﬁ—1) (9(t1) — 2g(to) + g(t_1)) = g(t1).

Thus, the compatibility condition for the initial condition % ensures that the first predictor satisfies the
Dirichlet boundary condition u}"* = g(t;). The boundary condition for the predictor (3.31) assigns the
ghost point value ué’l such that

Gi(wa"' =2G(Wa’ —Gi(wa™ = Gi(w)d°’ =0.

As a result, the corrector formula (3.33), evaluated at the boundary point, gives

04 -

1 *,1 t ~0

=u; + G pv = g(t1).
Uy Uy 12 1 1( ) g( 1)

This shows that both the predictor and the corrector satisfy the Dirichlet boundary condition after the
first time step. By enforcing the boundary condition (3.35) for the corrector, we guarantee that the next
predictor satisfy the Dirichlet boundary condition after (3.29) has been applied. An induction argument
shows that the Dirichlet conditions are satisfied for all subsequent time steps.

Both the second order Stromer scheme and the fourth order predictor-corrector schemes are stable
under a CFL condition on the time step. Furthermore, the time-discrete solution satisfies an energy
estimate, see [13, 26] for details.

4. Grid refinement interface. To obtain high order accuracy at a material discontinuity, we
partition the domain into subdomains such that the discontinuity is aligned with a subdomain boundary.
The multiblock finite difference approximation is then carried out in each subdomain where the material
is smooth, and adjacent subdomains are connected by interface conditions.

As an example, we consider the two-dimensional acoustic wave equation in a composite domain
Qf U Q°, where Qf = [0,1] x [0,1] and Q¢ = [0,1] x [~1,0]. The governing equation in terms of the
acoustic pressure can be written as

(4 ]-) ptht:v(vaF)v (x,y)GQf, tZO,
. pCCtt =V (Mcvc)’ (%y) € ch > 07
with suitable initial and boundary conditions. We assume that the material properties uf and pf are
smooth in Q7. and ;¢ and p¢ are smooth in Q°¢. However, the material properties may not vary smoothly
across the interface between 9/ and Q€.
We consider the case where the interface conditions prescribe continuity of pressure and continuity
of normal flux [7]:

F(z,0,t) = C(x,0,1),

F 0<z<1, t>0.
W20 @.0.0 = @@ 05 @00,

(4.2)

Jy

With the above set of interface conditions, the acoustic energy is conserved across the interface [17, 22].

If the wave speeds are different in the two subdomains, for computational efficiency, different grid
spacings are desirable so that the number of grid points per wavelength becomes the same in both
subdomains [9, 12]. This leads to a mesh refinement interface with hanging nodes along y = 0. Special
care is therefore needed to couple the solutions along the interface. In the following, we consider a grid
interface with mesh refinement ratio 1:2, and focus on the numerical treatment of the interface conditions
(4.2). Other ratios can be treated analogously.

For simplicity, we consider periodic boundary conditions in . For the spatial discretization, we use a
Cartesian mesh with mesh size h in the (fine) domain Q/ and 2k in the (coarse) domain Q¢, see Figure 2.
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Algorithm 3.2 Fourth order accurate predictor-corrector time stepping with ghost points for Neumann
or Dirichlet boundary conditions.

Given initial conditions @ and @' that satisfy the discretized boundary conditions. Compute AL

and " for k = 0,1,2,... according to
1. Compute the predictor at the interior grid points,

(3.29) wt P = 20k —uF 4 821G (p)at
2a. For Neumann boundary conditions, assign the ghost point value uS’kH to satisfy

~T _,
(3.30) by a " = ftega).

2b. For Dirichlet boundary conditions, assign the ghost point value uS’kH to satisfy

(3.31) Gi(p)a™ Tt =26, (wa* — Gi(wa" .

3. Evaluate the acceleration at all grid points,

~ k41 ~k | ~k
. u’ —2u +u
3.32 k.

-1

4. Compute the corrector at the interior grid points,

5t =~
(3.33) T LA T;pflG(,u)vk.

5a. For Neumann boundary conditions, assign the ghost point value u’é“

to satisfy
7T pt1
(3.34) by @ = f(ti):

5b. For Dirichlet boundary conditions, assign the ghost point value ugﬂ to satisfy

(3.35) Gr(w)a" " = 5 (g(ths2) — 20" + ).
t

The number of grid points in the x direction is n in Q¢, and 2n in Qf, where h = 1/(2n). We have
excluded grid points on the periodic boundary x = 1, because the solution at x = 1 is the same as at
x = 0. The grid points (z/,y/) in O and (z¢,y¢) in Q¢ are defined as

(4.3) o =(—-1h, i=1,2,---2n, 26 =2(i—1)h, i=1,2,---,n,
. a
yl=(G—1Dh, =012 2n+1 ys=2(j —n)h, j=0,1,2,-- ,n+1

J
respectively. There are 2n ghost points
(4.4) (zf yl), i=1,2,---,2n
in Qf and n ghost points

(4.5) (@5, Yni1), 1=1,2,---,n
in Q°.

Notations for the two-dimensional SBP operators are introduced in Section 4.1. The SBP-GP method
for the problem (4.1)-(4.2) is introduced in Section 4.2. A second order accurate method was originally
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Fig. 2: A sketch of the grids f and «°.

developed in [22], where ghost points from both subdomains are used to impose the interface conditions.
Here, we generalize the technique to fourth order accuracy. In Section 4.3, we propose a new SBP-GP
method that only uses ghost points from the coarse domain. This reduces the amount of computational
work for calculating the numerical solution at the ghost points and improves the structure of the associated
linear system. We end this section with a discussion of the SBP-SAT method and its relation to the SBP-
GP method.

4.1. SBP identities in two space dimensions. The one-dimensional SBP identities with ghost
points (2.6) are on exactly the same form as those without ghost points, (2.7). In the discussion of SBP
identities in two space dimensions, we use the notations for SBP operators with ghost points in Q. The
same notational convention of the tilde symbol is used to indicate that the corresponding variable uses
ghost points.

Let w and v be grid functions in Qf. We define the two-dimensional scalar product

2n 2n—1

(U,U)h = h2 Z Z W Ui Vi -

i=1 j=1

The weights w; do not depend on the index ¢ because of the periodic boundary condition in z. In addition,
we define the scalar product for grid functions on the interface

2n

(4.6) (ur,vr)p =h Z w;v;,
i=1

where the subscript I' denotes the grid function on the interface.
The SBP identity in two space dimensions in the fine domain 0/ can be written as

(4.7) (u, G (p)v)n = =Sz (u,v),
(u, Gy (0)0)n = =8, (u,0) — (ur, Tp)n,

where the subscripts = and y denote the spatial direction that the operator acts on. The bilinear forms
Sz(+,+) and Sy(-,-) are symmetric and positive semi-definite. There is no boundary term in (4.7) for
G, (u) because of the periodic boundary condition. For simplicity, we have omitted the boundary term
from the boundary at y = 1. The last term on the right hand side of (4.8) corresponds to the boundary

term from the interface, where the i*" element of vy is

~T _
(4.9) (vp)i = sz,1b1 Vi,:-

Here we use Matlab’s colon notation, i.e., : denotes all grid points in the corresponding index direction.
To condense notation, we define

Gr(p) = Go(p) + Gyp), Sp=S.+ S,
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so that (4.7)-(4.8) can be written as
(4.10) (u, G (1)0)n = —Sy(u,v) — (ur, op)n.

The SBP identity for the operators in the coarse domain €2¢ are defined similarly.

4.2. The fourth order accurate SBP-GP method. We approximate (4.1) by

(4.11) pfftt = éf(/‘).?a

(4.12) plen = Ge(p)c,

where the grid functions f and ¢ are finite difference approximations of the functions F(z,y,t) and
C(z,y,t) in (4.1), respectively. The diagonal matrices p/ and p® contain the material properties pf
and p© evaluated on the fine and coarse grids, respectively. Corresponding to the continuous interface
condition (4.2), the grid functions f and c¢ are coupled through the discrete interface conditions

(4.13) fr = Per,
(4.14) & =RFr.

Here, P is an operator that interpolates a coarse interface grid function to an interface grid function on
the fine grid. The operator R performs the opposite operation. It restricts an interface grid function
on the fine grid to the coarse grid. Stability of the difference approximation relies on the compatibility
between the operators P and R, as is specified in the following theorem.

THEOREM 4.1. The semi-discretization (4.11)-(4.14) satisfies the energy estimate

d
(4.15) pr [(Fe P  Fon+ Sp(F, F) + (cr, poci)an + Sele, )] =0,
if the interpolation and restriction operators are compatible,
(4.16) P =2R"T.
Proof. By using the SBP identity (4.10) in ©/, we obtain
~1
(Forf? Fudn+ Sp(F o ) = = ((Fe)i - Fr) -

Similarly, we have in ¢
(Ct, pcctt)2h + Sc(cta C) = <(CF)t 7EIF>2h :

Summing the above two equations yields

(@IT) S ((Fop? Fut 705 5) + (enpfen + Sele )] = 2 () Fr) +2{(er), &)y,

To prove that the right-hand side vanishes, we first differentiate (4.13) in time, and use (4.6) to obtain

((F)s Fr), = ((Per), Fr)

The compatibility condition (4.16), together with the scalar product (4.6), gives

((Per), Fr), = ((er), RFr)_ .

The second interface condition (4.14) leads to

(4.18) <(CF)t7R};>2h = ((er); )y, -

The energy rate relation (4.15) follows by inserting (4.18) into the right hand side of (4.17). This proves
the theorem. |
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16 S. WANG AND N. A. PETERSSON

We note that the factor 2 in the compatibility condition (4.16) arises because of the 1:2 mesh refine-
ment ratio in two dimension and the periodic boundary condition. The factor is 4 in the corresponding
three dimensional case.

For the mesh refinement ratio 1:2, the stencils in P and R can be easily computed by a Taylor series
expansion. For example, a fourth order interpolation operator in (4.13) has the stencil

1 9 9 1
(fr)aei = *1*6(61“)1‘—1 + E(CI‘)i + E(CI‘)i-&-l 16(Cr)z+2,

(fr)2i—1 = (er)i

on the hanging and coinciding nodes, respectively. Then, the compatibility condition (4.16) determines
the restriction operator R, used by the second interface condition (4.14),

(cr)i = (fr)zz 1t 35 (fr)2z 2+ 5 (fr)Zz 1+ 55 (fr) %(ff)zww
For other mesh refinement ratios, the interpolation and restriction operators can be constructed using
the techniques in [11].

Similar to Dirichlet boundary conditions for the one-dimensional problem, ghost points are not ex-
plicitly involved in the first interface condition (4.13). However, by differentiating (4.13) twice in time
and using the semi-discretized equations (4.11)-(4.12), we obtain

(4.19) () G F| =P () Gl ) -

This condition depends on the ghost point values on both sides of the interface and is equivalent to
(4.13) if the initial data also satisfies that condition. For this reason, we impose interface conditions
for the semi-discrete problem through (4.14) and (4.19). When discretizing (4.11)-(4.12) in time by the
predictor-corrector method, the fully discrete time-stepping method follows by the same principle as the
predictor-corrector method in Algorithm 3.2. More precisely, for the predictor, step 2a is used to enforce
(4.14) and step 2b is used for (4.13). Similarily, for the corrector, step 5a is used to enforce (4.14),
combined with step 5b for (4.13).

The grid function €y in (4.14) has n elements. By writing (4.14) in element-wise form it becomes
clear that it is a system of n linear equations that depends on 3n unknown ghost point values. Similarly,
(4.19) is a system of 2n linear equations for the same 3n unknowns. In combination, the two interface
conditions give a system of 3n linear equations, whose solution determines the 3n ghost point values.
For the fully discrete problem, this linear system must be solved once during the predictor step and once
during the corrector step.

The coefficients in the linear equations are independent of time. As a consequence, an efficient
solution strategy is to LU-factorize the interface system once, before the time stepping starts. Backward
substitution can then be used to calculate the ghost point values during the time-stepping. For problems
in three space dimensions, computations are performed on many processors on a parallel distributed
memory machine. Then it may not be straightforward to efficently calculate the LU-factorization. As
an alternative, iterative solvers can be used. For example, an iterative block Jacobi relaxation method is
used in [22]. It has proven to work well in practice for large-scale problems.

4.3. The improved SBP-GP method. In the improved SBP-GP method, the interface conditions
are imposed through n linear equations that only depend on the n ghost point values in ¢, see Figure 3 (b).
The key to the improved method is to combine SBP operators with and without ghost points. More
precisely, in Q¢ we use the SBP operator with ghost points. Thus, the semi-discretized equation in Q€ is
the same as in the original SBP-GP method,

(4.20) pey = Ge(p)e.

In Qf, we use (4.11) only for the grid points that are not on the interface

(4.21) (P Fu)s = (Gr(W)f)j, §=2,3,....
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(@) (b)

Fig. 3: A mesh refinement interface with ghost points denoted by filled circles. (a) ghost points from
both domains. (b) ghost points from the coarse domain.

For the grid points in 2/ that are on the interface, we enforce the interface condition (4.13) such that
(4.22) foa=(Pc)n.

Note that this equation does not depend on any ghost points values in Q.
To write the semi-discretization in a compact form and prepare for the energy analysis, we differentiate
(4.22) twice in time, and use (4.20) to obtain

(4.23) (Fi)os = (Pew).n =P () Gelw)e] ) -
Equations (4.21) and (4.23) can be combined into

(Gr(w)f).+m, G=1,

f = e
(4.24) (' f0).; 5= (Lnd )., {<Gf<u>f>:,j, j=23,...,

where

n=pIeP ((p°) GelwE] ) = Gy Iy

We note that n is a zero vector up to truncation errors in the SBP operator and the interpolation operator.
Therefore, n does not affect the order of accuracy in the spatial discretization.

The semi-discretization (4.20) and (4.24) can be viewed as a hybridization of the SBP-GP method
and the SBP-SAT method. The spatial discretization (4.24) in Qf is on the SBP-SAT form, but the
penalty term 7 depends on the ghost points values in c.

Continuity of the solution is imposed by (4.22), in the same way as in the original SBP-GP method.
But to account for the contribution from 7, continuity of flux (the second interface condition in (4.2))
must be imposed differently. Here we use

(4.25) ¢ =R (fr — hwin),
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18 S. WANG AND N. A. PETERSSON

where h is the mesh size in Qy, and w; is the first entry in the scalar product (2.3). Note that ghost
points are used to compute E} but not fr.

Compared with (4.14) in the original SBP-GP method, the condition (4.25) includes the term hw;n.
Because it is on the order of the truncation error it does not affect the order of accuracy. As a consequence,
(4.25) provides a valid way of enforcing flux continuity. The following theorem illustrates why the n-term
is important for energy stability.

THEOREM 4.2. Assume that the interpolation and restriction operators satify (4.16). Then, the semi-
discrete approzimation (4.20), (4.24) and (4.25) is energy stable in the sense that (4.15) holds.

Proof. From (4.24) , we have

(ftvpfftt)h = (fu. Gy () F), + hwi (filr,m)),
= _Sf(ftv.f) - <ft|1—‘7.fi‘>h + hwy <ft|F7n>h
:7Sf(ft7f)+<ft|F77fi"+hw1n>h

The contribution from the domain Q° is
(ct, peeit)an = —Se(er, €) + <Q€|F»Ei‘>2h'

Adding the two above equations gives

d . _
% [(.ftvpf.ft)h + Sf(f7 .f) + (Cta P Ct)2h + Sc(c7 C)] = 2<ft‘Fv _.fi" + hw177>h +2 <ct|F7 ci—‘>2h
= 2(Pei|r, — fr + hwin)n + 2{(ci|r, ep)on = 2(ci|r, R(—F1 + hwin))an + 2{ci|r, €p)on, = 0. O

With the predictor-corrector method for the time discretization of (4.20) and (4.24), the fully discrete
algorithm can be adopted from Algorithm 3.2. We impose (4.25) in step 2a for the predictor, and in
step ba for the corrector. We note that (4.25) corresponds to a system of n linear equations. The right-
hand sides are different in the linear systems in steps 2a and 5a, but the matrix is the same. It can
therefore be LU-factorized once, before time integration starts. The linear systems can then be solved
by backward substitution during the time stepping. The improved SBP-GP method presented in this
section is evaluated through numerical experiments in Section 5.

4.4. The SBP-SAT method. In the SBP-SAT method, the penalty terms for the interface condi-
tions (4.2) can be constructed by combining the penalty terms for the Neumann problem in Section 3.1
and the Dirichlet problem in Section 3.2. The semi-discretization can be written as

(4.26) P fu=Grwf +ps,
(4.27) peer = Ge(p)e + pe.

There are two choices of py and p.. The first version, developed in [31], uses three penalty terms
(428)  (pp)ic =W [uz’,l;b{ (Fr —Per), — Lol (Fr — Per), + gel (F - Pci“)l} :
(420 (o0 = We | uEa 3 (er — R, ~ uagret (er = Rfc), + 5t (e~ RA) |
where by and e; act in the y direction. In both (4.28) and (4.29), the first two terms penalize continuity

of the solution, and the third term penalizes continuity of the flux. The scheme (4.26)-(4.29) is energy
stable when the penalty parameters satisfy

f 2 c \2
1 [ j,m
(4.30) rr= L > max (uf,l) 7 (ucj, ) 7
2 2\ 2 )i 2(Hiin) 5

where i =1,2,...,2nand 7 =1,2,...,n.
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The second choice of SATs uses four penalty terms [28], which has a better stability property for
problems with curved interfaces. The method was improved further in [1] from the accuracy perspective
when non-periodic boundary conditions are used in the x-direction. In addition, the penalty parameters
in [1] are optimized and are sharper than those in [28]. As will be seen in the numerical experiments, the
sharper penalty parameters lead an improved CFL condition.

4.5. Computational complexity. In the next section, we test numerically the CFL condition of
the improved SBP-GP method and the SBP-SAT method for cases with a grid refinement interface. To
enable a fair comparison in terms of computational efficiency, in this section we estimate the computa-
tional cost of the two methods for one time step. Since the interior stencils of the two SBP operators
are the same, the main difference in computational cost comes from how the interface conditions are
imposed at each time step. For simplicity, we only consider problems with constant coefficients when
estimating the computational complexity. Also note that the number of floating point operations (flops)
stated below depends on the implementation of the algorithms, and should not be considered exact.

In the improved SBP-GP method, a system of n linear equations must be solved at each time step,
where n is the number of grid points on the interface in the coarse domain. The system matrix is banded
with bandwidth 7, so the LU factorization requires 49n flops, but it is only computed once before the
time stepping begins. In each time step, updating the right hand side of the linear system and solving
by backward substitution requires 173n and 5n flops, respectively. This results in a grand total of 178n
flops at each time step.

In the SBP-SAT method, the interface conditions are imposed by the SAT terms, which are updated
at each time step. This calculation requires 157n flops. We conclude that imposing interface conditions
with the SBP-GP and the SBP-SAT method require a comparable number of floating point operations per
time step. Thus, the main difference in computational efficiency comes from the different CFL stability
restrictions on the time step, which is investigated in the following section.

5. Numerical experiments. In this section, we conduct numerical experiments to compare the
SBP-GP method and the SBP-SAT method in terms of computational efficiency. Our first focus is CFL
condition, which is an important factor in solving large-scale problems. We numerically test the effect
of different boundary and interface techniques on the CFL condition with the predictor-corrector time
stepping method. We then compare L? error and convergence rate of the SBP-GP method and the
SBP-SAT method with the same spatial and temporal discretizations. The convergence rate is computed

€ap, 2

where eo, is the L? error on a grid «, and e, is the L? error on a grid with grid size half of  in each
subdomain and spatial direction.

5.1. Time-stepping stability restrictions. We consider the scalar wave equation in one space
dimension

in the domain x € [—7/2, /2] with non-periodic boundary conditions.
In [26], it is proved that for the predictor-corrector time stepping method, the time step constraint
by the CFL condition is

2+/3
(5.2) 5 < i7
VE
where k is the spectral radius of the spatial discretization matrix. In general, we do not have a closed

form expression for k. In the special case of periodic boundary conditions and constant coefficients,  is
given by the following lemma.

LEMMA 5.1. Consider (5.1) with periodic boundary conditions, constant p, u and zero forcing F = 0.
If the equation is discretized with standard fourth order accurate centered finite differences, the spectral
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radius becomes

oo o
3h2p’
where h is the grid spacing.
Proof. See Appendix 1. 0
In the following numerical experiments, we choose p = p = 1, which gives the estimated CFL

condition §; < 1.5h. This case is used below as a reference when comparing CFL conditions.

First, we consider the Neumann boundary condition at & = +x/2, and use the SBP-GP and the
SBP-SAT method to solve the equation (5.1) until ¢ = 200. For the SBP-GP method with the fourth
order SBP operator derived in [26], we find that the scheme is stable when §; < 1.44h. In other words,
the time step needs to be reduced by about 4% when comparing with the reference CFL condition. For
the SBP-SAT method with the fourth order SBP operator derived in [19], the scheme is stable up to the
reference CFL condition ¢; < 1.5h.

Next, we consider the equation with Dirichlet boundary conditions at z = 4+ /2. To test the injection
method and the SAT method, we use the fourth order accurate SBP operator without ghost point [19].
When using the injection method to impose the Dirichlet boundary condition, the scheme is stable with
0; < 1.5h. However, when using the SAT method to weakly impose the Dirichlet boundary condition and
choosing the penalty parameter 20% larger than its stability-limiting value, the scheme is only stable if
0; < 1.16h. This amounts to a reduction in time step by 23%. If we decrease the penalty parameter so
that it is only 0.1% larger than its stability-limiting value, then the scheme is stable with §; < 1.25h, i.e.
the time step needs to be reduced by 17%, compared to the injection method.

In conclusion, for the Neumann boundary condition, both the SBP-GP and the SBP-SAT method
can be used with a time step comparable to that given by the reference CFL condition. This is not
surprising, given the similarity of the methods and in the discrete energy expressions. For the Dirichlet
boundary condition, we need to reduce the time step by 23% in the SAT method. If we instead inject
the Dirichlet data, then the scheme is stable with the time step given by the reference CFL condition.

5.2. Discontinuous material properties. We now investigate the SBP-GP and SBP-SAT method
for the wave equation with a mesh refinement interface. The model problem is

(5.3) pUi =V - (uVU) + F,

in a two-dimensional domain Q = [0,4x] X [—4m, 4], where p(x,y) > 0, u(z,y) > 0, and the wave speed
is ¢ = +/u/p. Equation (5.3) is augmented with Dirichlet boundary conditions at y = 44w, and periodic
boundary conditions at x = 0 and = = 4.

The domain  is divided into two subdomains Q' = [0,47] x [—47,0] and Q2 = [0, 47| x [0, 47] with
an interface I' at y = 0. The material parameter u is a smooth function in each subdomain, but may be
discontinuous across the interface. In particular, we consider two cases: u is piecewise constant in Section
5.2, and p is a smooth function in Section 5.3. In each case, we test the fourth order accurate SBP-GP
method and the SBP-SAT method, both in terms of the CFL condition and the convergence rate.

When p is piecewise constant, an analytical solution can be constructed by Snell’s law. We choose a
unit density p = 1 and denote the piecewise constant p as

o va (xuy) S Ql?
u(x,y) - 2
M2, (%y) S Q )

where 1 # po.

Let an incoming plane wave U; travel in Q' and impinge on the interface I'. The resulting field
consists of the incoming wave Uj, as well as a reflected field Ugr and a transmitted field Up. With the
ansatz

Ur = cos(z +y — /2p1t),
Ugr = Reos(—z +y + /2p1t),
Ur =T cos(x + ky — /2u1t),
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Fig. 4: The exact solution at time ¢ = 0 (left), and ¢ = 11 (right) when the wave has propagated for
about 2.5 temporal periods. The solution is continuous at the material interface x = 0 but the normal
derivative is discontinuous due to the material discontinuity.

where k = \/2p1 /2 — 1, the two parameters R and T are determined by the interface conditions
U+ Ug=Urp,

Ml(%(UI +Ur) = N2%UT7
yielding R = (1 — pok)/(p1 + pok) and T =1+ R.

In the following experiments, we choose p; = 1 and po = 0.25. As a consequence, the wave speed
isc; =1in Q! and ¢, = 0.5 in Q2. To keep the number of grid points per wavelength the same in two
subdomains, we use a coarse grid with grid spacing 2k in Q', and a fine grid with grid spacing h in 2.
We let the wave propagate from ¢ = 0 until ¢ = 11. The exact solution at these two points in time are
shown in Figure 4.

5.2.1. CFL condition. To derive an estimated CFL condition, we perform a Fourier analysis in
each subdomain Q' and Q2. Assuming periodicity in both spatial directions, the spectral radius of the
spatial discretization in Q' and Q2 is the same x = 4/(3h?), given by Lemma 5.1. By using (5.2), we find
that the estimated CFL condition is

o3 3,
V2 \/4/3Bh%) V2

We note that the restriction on time step is the same in both subdomains. The factor 1/v/2 in (5.4),
which is not present in (5.2), comes from (5.3) having two space dimensions.

For the SBP-GP method, we have found numerically that the method is stable when the time
step & < 2.09h. This indicates that the non-periodic boundary condition and the non-conforming grid
interface do not affect time step restriction of the SBP-GP method. With &§; = 2.09h and 6412 grid points
in the coarse domain, we perform a long time simulation until ¢ = 1000, and plot the Ly error in Figure
5. We observe that the Lo error does not grow in time, which verifies that the discretization is stable.

For the SBP-SAT method with three penalty terms, the stability limit appears to be d; < 1.18h,
which represents approximately a 45% reduction in the time step. When using four penalty terms and
the sharper penalty parameters [1], the scheme is stable for §; < 1.82h, which is an improvement from
the scheme with three penalty terms, but not as good as the SBP-GP method.

(5.4) 5 < ~ 2.12h.

5.2.2. Conditioning and sparsity of the linear system for ghost points. In the SBP-GP
method, a system of linear equations needs to be solved to compute the solution at the ghost points. To
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Fig. 5: Ly error for the improved SBP-GP method for a long time simulation to time ¢ = 1000 (~ 225
temporal periods).

Loy error

N, cond; cond, nnz;, NNz,

3212 126 778 2240 4160
6412 1.26 1680 4480 8320
12812 1.26 3425 8960 16640

Table 1: Condition number cond and number of nonzero elements nnz in the matrix for ghost points.
The subscript o and i correspond to the original and improved SBP-GP method, respectively. N, denotes
the number of grid points in the coarse domain.

demonstrate the superiority of the improved SBP-GP method, we examine the conditioning and sparsity
of the system on three meshes.

In Table 1, we observe that for the improved SBP-GP method, the condition number is close to one
and is independent of the mesh size. In contrast, the condition number in the original SBP-GP method
is several magnitudes larger, and grows with mesh refinement. Furthermore, the number of nonzero
elements in the improved SBP-GP matrix is approximately half the number of nonzero elements in the
matrix in the original method. Hence, the system of linear equations in the improved SBP-GP method
is both more sparse and better conditioned.

5.2.3. Convergence rate. We now perform a convergence study for the SBP-GP method and the
SBP-SAT method. We choose the time step d; = h so that both methods are stable. The L? errors in the
numerical solution with the SBP-GP method are shown in Table 2. Though the dominating truncation
error is O(h?) at grid points near boundaries, the numerical solution converges to fourth order accuracy,
i.e. two orders are gained in convergence rate [29].

For the SBP-SAT method with three penalty terms (4.26)-(4.29), the L? errors labeled as SAT3
in Table 3 only converge at a rate of three. Because the dominating truncation error is O(h?) at grid
points close to boundaries, we gain only one order of accuracy in the numerical solution. This suboptimal
convergence behavior has also been observed in other settings [29].
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2h L? error (rate)

1.57x107!  1.6439x1073

7.85x1072  1.0076x10~% (4.02)
3.93x1072  6.2738x107° (4.01)
1.96x1072  3.9193x10~7 (4.00)
9.81x107%  2.4344x107% (4.01)

Table 2: L? errors (convergence rates) of the fourth order SBP-GP method for piecewise constant .

2h L? error (rate) SAT3  L? error (rate) SAT4 L2 error (rate) INT6

1.57x1071  3.0832x1073 2.1104x1073 2.1022x1073

7.85x1072  3.4792x107% (3.15)  1.1042x10* (4.26)  1.1014x10~* (4.25)
3.93x1072  4.4189x107° (2.98)  6.6902x107° (4.04)  6.6815x1076 (4.04)
1.96x1072  5.6079x1075 (2.98)  4.0374x1077 (4.05)  4.0346x10~7 (4.05)
9.81x107%  7.0745x1077 (2.99)  2.4659x107® (4.03)  2.4651x107% (4.03)

A~ N S

Table 3: L? errors (convergence rates) of the fourth order SBP-SAT method for piecewise constant .

We have found two simple remedies to obtain a fourth order convergence rate. First, when using
the SBP-SAT method with four penalty terms, we obtain a fourth order convergence, as shown in the
third column of Table 3 labeled as SAT4. Alternatively, we can use three penalty terms but employ a
sixth order interpolation and restriction operators at the non-conforming interface. This also leads to
a fourth order convergence rate, see the fourth column of Table 3, labeled INT6. In both approaches,
the dominating truncation error is still O(h?) at a few grid points close to the boundaries. However,
different penalty terms will give different boundary systems in the normal mode analysis for convergence
rate. The precise rate of convergence can be analyzed by the Laplace-transform method, but is beyond
the scope of this paper.

We also observe that the L? errors of the SBP-GP method is almost identical to that of the SBP-SAT
method (SAT4 and INT6) with the same mesh size.

5.3. Smooth material parameters. In this section, we test the two methods when the material
parameters are smooth functions in the whole domain 2. More precisely, we use material parameters
p = —cos(x) cos(y) + 3,
= cos(x) cos(y) + 2.

The forcing function and initial conditions are chosen so that the manufactured solution becomes

u(zx,y,t) = sin(xz + 2) cos(y + 1) sin(t + 3).

We use the same grid as in Section 5.2 with grid size 2h in Q! and h in Q2. The parameters ppmin = 2
and pmax = 3 take the extreme values at the same grid point. Therefore, a Fourier analysis of the
corresponding periodic problem gives the time step restriction

5 o< L 2v3 _ V3
"= V2 /16/(302) \/limax/pmin | 2

Numerically, we have found that the SBP-GP method is stable when §; < 0.86h. This shows again that
the non—periodicity and interface coupling do not affect the CFL condition in the SBP-GP method. The
SBP-SAT method is stable with d; < 0.77h, which means that the time step needs to be reduced by
approximately 10%.

h ~ 0.86h.
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2h L? error (rate)

1.57x107!  2.7076x10~*

7.85x107%  1.6000x107° (4.08)
3.93x1072  9.7412x1077 (4.04)
1.96x1072  6.0183x107% (4.02)
9.81x1073  3.7426x107° (4.01)

Table 4: L? errors (convergence rates) of the SBP-GP method for smooth p.

2h L? error (rate) SAT3 L2 error (rate) SAT4 L? error (rate) INT6

1.57x10~!  3.8636x10~° 1.8502x1073 1.8503x10~2

7.85x1072  4.3496x107% (3.15)  9.4729x1075 (4.29)  9.4736x107° (4.29)
3.93x1072  5.3152x107° (3.03)  3.7040x1076 (4.68)  3.7043x107° (4.68)
1.96x1072  6.6271x1075 (3.00)  2.0778x1077 (4.16)  2.0779x 1077 (4.16)
9.81x107% 8.2783x1077 (3.00)  1.3372x107% (3.96)  1.3372x10~% (3.96)

Table 5: L? errors (convergence rates) of the fourth order SBP-SAT method for smooth p.

To test convergence, we choose the time step §; = 0.7h so that both the SBP-GP method and SBP-
SAT method are stable. The L? errors at ¢t = 11 are shown in Table 4 for the SBP-GP method. We
observe a fourth order convergence rate.

Similar to the case with piecewise constant material property, the standard SBP-SAT method only
converges to third order accuracy, see the second column of Table 5 labeled as SAT3. We have tested the
SBP-SAT method with four penalty terms, or with a sixth order interpolation and restriction operator.
Both methods lead to a fourth order convergence rate, see the third and fourth column in Table 5.
However, the L? error is more than three times as large as the L? error of the SBP-GP method with the
same mesh size.

6. Conclusion. We have analyzed two different types of SBP finite difference operators for solving
the wave equation with variable coefficients: operators with ghost points, G(u), and operators without
ghost points, G(u). The close relation between the two operators has been analyzed and we have presented
a way of adding or removing the ghost point dependence in the operators. Traditionally, the two operators
have been used within different approaches for imposing the boundary conditions. Based on their relation,
we have in this paper devised a scheme that combines both operators for satisfying the interface conditions
at a non-conforming grid refinement interface.

We first used the SBP operator with ghost points to derive a fourth order accurate SBP-GP method
for the wave equation with a grid refinement interface. This method uses ghost points from both sides
of the refinement interface to enforce the interface conditions. Accuracy and stability of the method
are ensured by using a fourth order accurate interpolation stencil and a compatible restriction stencil.
Secondly, we presented an improved method, where only ghost points from the coarse side are used to
impose the interface conditions. This is achieved by combining the operator G(u) in the fine grid and the
operator é(u) in the coarse grid. Compared to the first SBP-GP method, the improved method leads
to a smaller system of linear equations for the ghost points with better conditioning. In addition, we
have made improvements to the traditional fourth order SBP-SAT method, which only exhibits a third
order convergence rate for the wave equation with a grid refinement interface. Two remedies have been
presented and both result in a fourth order convergence rate.

We have conducted numerical experiments to verify that the proposed methods converge with fourth
order accuracy, for both smooth and discontinuous material properties. With a discontinuous material,
the domain is partitioned into subdomains such that discontinuities are aligned with subdomain bound-
aries. We have also found numerically that the proposed SBP-GP method is stable under a CFL time-step
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condition that is very close to the von Neumann limit for the corresponding periodic problem. Being able
to use a large time step is essential for solving practical large-scale wave propagation problems, because
the computational complexity grows linearly with the number of time steps. We have found that the
SBP-SAT method requires a smaller time step for stability, and that the time step depends on the penalty
parameters of the interface coupling conditions. In the case of smooth material properties, the SBP-SAT
method was also found to yield to a larger solution error compared to the SBP-GP method, for the same
grid sizes and time step.

One disadvantage of the SBP-GP method is that a system of linear equations must be solved to
obtain the numerical solutions at the ghost points. However, previous work has demonstrated that the
system can be solved very efficiently by an iterative method [23, 25]. Furthermore, the proposed method
only uses ghost points on one side of the interface and therefore leads to a linear system with fewer
unknowns and a more regular structure than previously.

Sixth order accurate SBP operators can be used in the proposed method in a straightforward way.
However, sixth order SBP discretization often leads to a convergence rate lower than six, and it is an
open question if a six order discretization is more efficient than a fourth order discretization for realistic
problems. In future work we plan to extend the proposed method to the elastic wave equation in three
space dimensions with realistic topography based on [23], and implement it on a distributed memory
machine to evaluate its efficiency.
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Appendix 1: Proof of Lemma 5.1. By using the standard fourth order finite difference stencil,
(5.1) can be approximated as

d2uj< 1 4 5 4 i

a2 Tt T Ui T G gt — 12Uj—2> s

. s = i w . wav b w .
By using the ansatz u; = 4e**7, where w is the wave number and x; h, we obtain

d*a L owon 4 son 5 4 i I iwon\ B
dt2_<_12€ te gyt T TRt rh
4 h 1 h
= 72 sin? % (1 + 3 sin® u;) %{L

Therefore, the Fourier transform of the fourth order accurate central finite difference stencil is

A 4 h 1 h
(6.1) Q:—ﬁsirf% <1+3sin2 “2> %.
Consequently, we have
Q=
K = max = .
3h2p
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