SANDIA REPORT
SAND2018-8018

Unlimited Release

Printed July 2018

Evaluation and Comparison of Machine
Learning Techniques for Rapid QSTS
Simulations

Logan Blakely, Matthew J. Reno, Robert J. Broderick

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof, nor
any of their employees, nor any of their contractors, subcontractors, or their employees, make
any warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2018-8018
Unlimited Release
Printed July 2018

Evaluation and Comparison of Machine
Learning Techniques for Rapid QSTS
Simulations

Logan Blakely, Matthew J. Reno, Robert J. Broderick
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-1033

Abstract

Rapid and accurate quasi-static time series (QSTS) analysis is becoming increasingly important
for distribution system analysis as the complexity of the distribution system intensifies with the
addition of new types, and quantities, of distributed energy resources (DER). The expanding need
for hosting capacity analysis, control systems analysis, photovoltaic (PV) and DER impact
analysis, and maintenance cost estimations are just a few reasons that QSTS is necessary.
Historically, QSTS analysis has been prohibitively slow due to the number of computations
required for a full-year analysis. Therefore, new techniques are required that allow QSTS analysis
to rapidly be performed for many different use cases. This research demonstrates a novel approach
to doing rapid QSTS analysis for analyzing the number of voltage regulator tap changes in a
distribution system with PV components. A representative portion of a yearlong dataset is selected
and QSTS analysis is performed to determine the number of tap changes, and this is used as
training data for a machine learning algorithm. The machine learning algorithm is then used to
predict the number of tap changes in the remaining portion of the year not analyzed directly with
QSTS. The predictions from the machine learning algorithms are combined with the results of the
partial year simulation for a final prediction for the entire year, with the goal of maintaining an
error <10% on the full-year prediction. Five different machine learning techniques were evaluated
and compared with each other; a neural network ensemble, a random forest decision tree ensemble,
a boosted decision tree ensemble, support vector machines, and a convolutional neural network
deep learning technique. A combination of the neural network ensemble together with the random
forest produced the best results. Using 20% of the year as training data, analyzed with QSTS, the
average performance of the technique resulted in ~2.5% error in the yearly tap changes, while
maintaining a <10% 99.9"" percentile error bound on the results. This is a 5x speedup compared
to a standard, full-length QSTS simulation. These results demonstrate the potential for applying
machine learning techniques to facilitate modern distribution system analysis and further
integration of distributed energy resources into the power grid.

CONTENTS

1. INTRODUCTION......ccceeruveeccnneccraaecnns . . . 9
2z METHODOLOGY i 13
e 1 TP IR .o 0.5 54 . 5 4 A NSNS RS 13
2.2 QSTS Distribution System Test Circuit and Dataset...........ccceecveevieeiiienieeiiienieeieeneene 13

2.3 FEature SElECtION........cciiiiiiii ittt e et e e e e e eab e e eeareeeraeeeneeas 14
2.4 Intelligent SAMPIING.......ccuiiiiiiiieiieeieeeie ettt ettt e eessaeeteebeeenbeessaeenseenneeenne 16
24.1 Intelligent Sampling MethodolOBY s s wmmmessesmmis 16

2.4.2 SPEEA VETSUS ACCUTACYeeeuvierierireerienireesieesseesseeaseessaesseesseessseesseessseessssssseessees 18

2.5 SIMulation Validationcoouiiiiiiiiiiie ettt et e eeaae e eaneas 19

3. NEURAL NETWORK ENSEMBLEuccccintiinuiecnsneecssanecssnsesssssessssessssssssssssssssssssssssssssases 21
3.1 OVRIVICW ..eeiieiee ettt et e et e ettt e e e et e e e ettt e e e eeaaeeeeeetaseeeeestaseeseessaeeeeaessseeeeesseeeeanns 21

3.2 ATCRITECTUTEC.eeeieeiiieeeeeeeee et e et e e et e e e e ettt eeeeeeaaaeeeeeeaaeeeeeesaeeeeanns 21

Btol DI T8 o s oo o 00 A5, B A A, ST 85 22

4;: DECISION TREE ENSEMBLES :.cisassssssssossisisisisssssissivivisassvssasssivivisesasavssavivssssssssvosas 25
s JRAIRIOERY, TPRIERE, oo .0 050555 9. RS 8 S S S 25

B 1.1 OVEIVIEW oottt eeeee e ettt e et e et e e e e eaaa e e e e ettt e e e eeaaaeeeeeeaseeeeeenaseeeeennees 25

4.1.2. ATCRIEECTUIEeeei e ettt e e e e et e e e e abe e e e e eataeee e eanns 26

413 RESUILS .. e ettt e et e e ettt e e e et e e e e nae e e e eanes 28

4.2. Boosted Decision Tree ENSembIeooiviiieiiiieiiiiieiieceee et 30
B.2.1. OVEIVIEW .ooeeiiiiiieeeeiieeeeeeieee e ettt e ettt e e e et e e e e e eaaa e e e eeaaaeeeeeasaeeeeeesbeeeesetaeeeeeeanees 30

4.2.2 ATCRITECTUTEvviieeiieee e e ettt e e e e et e e e e arr e e e e e taeeeeennes 31

B2 s TRBRTILES o i conn s msion s o v oo i3 55 50 A 55 5.5 ST 5 5.0 AR5 5 SR 05 31

5. SUPPORT VECTOR MACHINES ccaisnasnisonmmsmeimimsammc i cmiaem st 33
S . OVEIVIEW ..eieutiieetiee et ettt ettt e ettt e e et e e s bt e e sabeeeabeeessaeeessaeesasaeesssaeeassaeesseeesseeessaeensseesnnes 33
5.2, ATCRILECIUIE.eiiviieciie et ettt et e e e e e ta e e st e e eabeeeeaseeeeaseeeenseeennseeensseesanes 34
5.3 RESUIES ..t et e e e e e e e ae e e abe e e erb e e eeaneeeareeeanes 34

6. DEEP LEARNINGcccccirtiiereiernnenecsnecsssasessssssssssssssnsssssasesssasssssasssssassssssssssasssssssssssnsssssssssses 37
0.1 OVETVIEW ...ttt ettt ettt e ettt e et e e e eaae e e taeesaseesaseeeasaeesssseesaseeessseeeesseessneeans 37

6.2 ATCRITECTUIC ... e et e ettt e e e eaaa e e e e enaaeeeeennaeaeas 37

02T TR e i im0 55000 5805 S A T 38

¥« ENSEMBIE OF ENSENMBLES ..cuaunmannsnmmismicsiam i nnmaamsanamisamm 43
8. COMPARISON AND DISCUSSION....cueicerreeecraecssanscssasscssasesssasssssassssssssssasssssasssssasssssnsssses 45
8.1. Comparison Between ML Methods Analyzed............ccccoveeiiiiiiiiiciiiiceeecee e 45
8.2. Comparison to Other Ongoing QSTS Researchccccvveviieeiieecciiecee e 49
8.3. Discussion of Results and Other Possible Machine Learning Methodsc........... 51
8.3.1 Other Machine Learning Methodsccceviiiiiiiiiieiieiiicieieecee e 51

8.3.2 FULUTE AVEIIUES.......uuviiiiiieieieeeiiiieee e e e e eeecittt e e e e e e e e eatr e e e e e e e e eeeasbbaseeaaeeeeannnrerens 52

8.3.3 DiISCUSSION OF RESUILS ..ottt e e e e e e e e e e e e e e e eeeneans

9. CONCLUSION.

10. REFERENCES

FIGURES

Figure 1 - MethOdOIOZY OVETVIEWcccuuiiiiuiieiiiieiiie et eeiee et e sve e e e e s tae e st eesaaeesssaeessseeessseeesseeenssaeens 13
Figure 2 - Diagram of the modified IEEE 13-bus feeder colored by voltage [21].......cccceeviiviirivniennnnne. 14
Figure 3 = Featurs Tt eorralalions: [Z1] s ssssnussmsrnmns s s i s s s s 15
Figure 4 - Intelligent Sampling bins [25], white squares indicate there are no samples with those metrics

.. 17
Figure 5 - Error introduced by running QSTS on individual periods.........c.ccovovevuieiienieneniienienieeieneene. 18
Figure 6 - Speed versus accuracy tradeoff..........coooviiiiiiiiiiiiiiiee s 18
Figure 7 - Monte Carlo sweep from 10 to 50,000 Monte Carlo runsc.cccoceveeienienenienceneeieeeenen 20
Figure 8 - Individual neural network architecture [21].........ccoiiiiiiiiiiiiiii e 22
Figure 9 - Neural Network results hiStogramccoociiiiiiiiiiiiiie e 22
Figure 10 - Neural Network Ensemble results simulating different percentages of the year-................... 23
Figure 1. = Rapden: Foreat VS malTzablomemsessemssmmmesemssssosenimssssssssstsssissss s s s sissssimsa i 23
Figure 12 - Example random fOreSt tIe€eeuiriieriirieitieieeiesiteieee ettt 26
Figure 13 - Example close-up of a random fOrest tree..........coouerieriiriiriienienieiieieeeeieee e 27
Figure 14 - Random Forest individual tre€ €ITOTcoeiiuiiiiriiiiiiiiiceeieeeeeeeee s 28
Figure 15 - Random Forest resnlts HiStOITAIN .umsoimesrsmassmsmssnnssssessssess s s s assesaamssi 29
Figure 16 - Random Forest results simulating different percentages of the yearccocceeviiriiennennne. 29
Figure 17 - BooSted ensSembIe PrOCESS.cc.ueuirieriieiieietieie ettt ettt ettt e e e e e eneeeneeees 30
Figure 18 - Examples of trees in the boosted ensemble............cocoeiiiiiiiiiiiiiiiiiiieeee 31
Figure 19 - Boosterl ensernbils TESTME . cmmsmssnsms e omsmosamssss s e s s aan s s s 32
Figure 20 - Boosted ensemble results simulating different percentages of the yearc.cccceeeevienennnn 32
Figure 21 - SVM eXamPLE [30]....eoiuiiiiiiiiiiieeiteeee ettt sttt st 33
Figure 22 - SVM results NISTOZIAMccuivuiiiiiiiiriiiiecieie ettt st 35
Figure 23 - SVM results simulating different percentages of the year with QSTSccccoevviiiiiiieinienns 35
Figure 24 - Deep Learning comparison of training RMSE and validation RMSE............ccccoocinin 39
Figure 25 - Deep Learning with augmented data using the swapping methodology..........ccccveveveennnenn. 40
Figure 26 - Deep Learning with augmented data using the SMOTE methodologyc.ccceceevveriennnnnne. 40
Figure 27 - Ensemble of Ensembles hiStOZramcccoieriiiiiniiniiiiiiiiieieseeieeieee e 43
Figure 28 - Ensemble of Ensemble simulating different percentages of the yearccoccceeviiiiiennnnnn 44
Figure 29 - Comparison of algorithms simulating different percentages of the year with QSTS 46
Figure 30 - Comparison of algorithms (Zoomed in VETSION).........c.eeerureeiieeeiireniieeeiieeeieeeeveeeseeeenaveeens 46
Figure 31 - Comparison of algorithms hiStogram..........c..cccceeieriiiiiiiniiiiii e 47
Figure 32 - Ensemble of Ensembles hiStOZramcooieiiiiiiiiiiiiiiinieienieeeiceeeee e 47
Figure 33 « Maching Leattiiig tERIITS .o o sus s mmns osssmssnsossmns s ommms o mmms o0 56 550 55506 0505 65 05555 49
Figure 34 — Algorithm computational timing COMPATISONcecveeervreeiiieeriieeeiieeeeieeeeneeesreeeseneeenereeens 49
Figure 35 - Comparison of rapid QSTS mMethodsc.ccovciiieiiiiiiiiieiieeee e e 51
Figure 36 - Final summary of computational times for each algorithmc.cccoooeiiiiiiiiiiiiiniic, 55

Boost
CNN
DER
DL
DNN
IEEE
ML
NN
OpenDSS
PV
QSTS
RF
SVM

NOMENCLATURE

Boosted Ensemble

Convolutional Neural Network

Distributed Energy Resource

Deep Learning

Deep Neural Network

Institute of Electrical and Electronic Engineers
Machine Learning

Neural Network (references the ensemble in this case)
Open Distribution System Simulator™
Photovoltaic

Quasi-Static Time-Series

Random Forest

Support Vector Machine

1. INTRODUCTION

The increasing presence of solar power and other distributed energy resources (DER) on electric
power distribution systems present novel challenges in both analysis and implementation.
Traditional methodologies for analyzing power systems are unable to cope with the dynamic nature
of DER impacts, particularly the extreme variability in photovoltaic (PV) systems. Quasi-static
time-series analysis presents a way to analyze the highly variable, time-dependent nature of DER
in the distribution grid setting [1]. However, fully detailed QSTS simulations at one second
resolution over an entire year are currently prohibitively computation intensive. New, rapid
methods for conducting QSTS analyses are required to fully utilize the capabilities of QSTS in a
practical setting. The goal of this research is to reduce the computational time of QSTS simulations
by applying machine learning techniques to QSTS.

Historically, the analysis of distribution systems was conducted using a ‘snapshot’ methodology,
choosing a handful of moments during the year that served as examples of the most extreme
situations likely to be encountered by the distribution system [2]. This would include samples
such as the hottest day of summer, coldest day of winter, etc. This type of analysis is sufficient for
systems that change slowly over time and are highly predictable. The integration of DER
technologies radically changes that paradigm with higher variability[3], energy storage capabilities
[4], advanced inverters [5], and communication-based control latencies [6], [7]. While this
research focuses on the impact of PV systems, much of the analysis described here is also
applicable to other DER technologies. By nature, the power output of PV systems can be highly
variable on a second-to-second basis due to moving cloud cover and variability in yearlong
behavior due to seasonal trends. PV power output can also be smooth during certain periods (full
cloud cover or completely clear days). There is no way to capture this type of dynamic behavior
accurately using the snapshot methodology.

For this reason, many PV impact studies require QSTS analysis. There are many different types
of impacts that QSTS analysis can inform for example, voltage regulator changes, steady-state
voltage, voltage flicker, thermal loading, line losses, communication requirements, and/or control
systems analysis. Each of those metrics has slightly different requirements in terms of the
resolution and length of simulation that is required; for a detailed analysis please reference [2] [1].
This project focuses exclusively on the voltage regulator tap changes analysis. There are two
reasons for this, first, this metric has been shown to be one of the more difficult metrics to analyze
and predict, and second, it has been shown to be a significant driver of maintenance costs [8]. A
high-penetration of PV on a distribution system can increase the number of tap changes that occur
throughout the year which may lessen the lifetime of the voltage regulators [2], [8], [9]. Voltage
regulators often have time-delays on the order of 30 seconds. To capture the interactions that cause
the movement of the regulators, a resolution of <5 seconds is required [1], [2].

Solving a yearlong QSTS simulation at 1-second resolution is currently so computationally
expensive that it prohibits widespread use in industry. The simulations can take anywhere from
10-120 hours depending on the hardware used and size/complexity of the feeder being analyzed
[10]. For PV impact studies, at least two simulations must be run, a base case and a case with
added PV installations. However, it is often desirable to know the impact of different types of PV
installations or in different locations, which requires many more simulations and even longer

simulation times. The overall goal of this research is to significantly decrease the time required
for these types of studies using machine learning

This research conducted a survey of several supervised machine learning techniques in order to
simulate only a portion of the year using QSTS and then allow the machine learning to predict the
remainder of the year. Neural networks, two types of decision tree ensembles, random forest and
boosted ensemble, support vector machines, and deep learning were chosen for this purpose [11,
p. 10] [12]. There has been little investigation into applying machine learning techniques to QSTS
and only slightly more to distribution systems analysis in general. This research details a
methodology for applying machine learning to QSTS analysis, as well as detailing the advantages
and disadvantages of machine learning and some of the specific techniques available.

The decision of which machine learning algorithms to investigate is not necessarily a
straightforward one. There are a large number of choices, each with advantages and disadvantages,
and at this point, there are no guidelines of which algorithm to choose that work consistently [11,
p. 10], [12]. This was one motivation for choosing to investigate multiple methods. The chosen
algorithms have a record of performing well on complex problems and strike a balance between
older methods with more literature and newer techniques, while keeping the goal of speed in mind.
All of the techniques investigated here are supervised machine learning techniques because the
training labels are easily available by running the QSTS analysis on a portion of the year.

According to [12], the decision tree ensemble methodologies (random forest [13], [14] and boosted
ensemble [15]-[17]) performed the best overall in their experiments. Neural network and support
vector machines were the other top algorithms, and depending on the experiment/dataset
sometimes performed better than the decision tree ensembles.

Deep learning is a newer technique than any of the others that were chosen. One of the main
advantages is the ability of these networks to take the raw data as an input and calculate their own
features in a feature extraction stage [18]. Convolutional neural networks were the type of deep
learning chosen to be investigated here [19].

Each of these methods takes a different approach to machine learning. Neural networks learn the
correlation between the inputs and the outputs as a function approximator. The decision tree
ensembles leverage the power of weak learners (decision trees) in aggregate, by combining the
predictive power of individual trees into an ensemble of hundreds of trees. Random forest uses an
ensemble of general trees, and boosted ensemble uses an ensemble of specialized trees. Support
vector machines utilize a transformation of the input into a higher dimensional space.
Convolutional neural networks combine feature extraction from raw data with the function
approximation power of standard neural networks.

It has been consistently shown that ensemble methods perform better than single instances in
isolation [12]. An ensemble method combines individual instances of a technique (or multiple
techniques) to form one prediction. For example, a single neural network could be used for the
predictions, but an ensemble of neural networks each forming a prediction and then combined to
form a single final prediction has higher accuracy in general than the single network by itself.
Each of the methods investigated has been shown to perform better as part of an ensemble than in

10

isolation, and the results shown here use the ensemble versions, with the exception of the deep
learning. The reason ensemble learning was not employed in the deep learning case is further
explained in Section 6. Deep learning The primary reason that ensembles tend to perform better
is that each member of the ensemble will produce a slightly different result, and in aggregate, the
results are much closer to the ground truth [12], [13], [15], [20]. The neural network results from
this project’s research further confirm that fact. Please see [21] for figures and further analysis.

11

2. METHODOLOGY

2.1 Overview

A graphical overview of the steps in the methodology are

| detailed in Figure 1. Steps 1 & 2 prepare the complete dataset

1. Separate year-long ' to be used as input for the machine learning algorithms. Step

‘ data into periods ‘ 3 chooses a percentage of the year to be simulated using QSTS
| and then uses this set of data as an input into the machine
i 1 learning algorithms. Step 4 trains an individual machine
learning algorithm using the data from Step 3. Step 5 predicts

' 2 Calculate features | the remainder of the year (the portion not chosen in Step 3).
; for all periods The sum of the QSTS res.ulj[s from Step 3 are then combined
: _ with the sum of the predictions from Step 5 for the full year

l prediction. Each method surveyed follows this same series of

steps with one exception, for the deep learning method, the

3. Intelligently sample | «Cajcylate Features” step is omitted and the load and PV time

a percentage of the series are used directly as input data.
year & run QSTS
J A complete, sequential QSTS was run on the complete dataset
- o to produce the ground truth results, and the predicted tap
4. Train Machine changes are compared to that full-length simulation. In
Learning Algorithm . discussion with our industry partners for this project, they
l . defined a 10% acceptable error threshold in the year-long
predictions [1]. All of our results reference that threshold.

5. Use the ensemble
to predict the The remainder of the Methodology section is organized as
remainder of the year follows, Section 2.2 QSTS Distribution System Test Circuit
and Datasetdetails the dataset used in the research, Section 2.3
Figure 1 - Methodology overview Feature Selection covers Steps 1 & 2, Section 2.4 Intelligent
Samplingcovers Step 3, Section 2.5 Simulation
Validationcovers simulation validation. The remainder of the paper covers the machine learning
algorithms in Steps 4 & 5.

2.2 QSTS Distribution System Test Circuit and Dataset

The QSTS simulation is on a modified IEEE 13-bus test circuit that incorporates a centralized PV
system at the end of the feeder, shown in Figure 2. The circuit has three single-phase voltage
regulators at the feeder head and one single-phase capacitor and a 3-phase capacitor bank out on
the feeder. The voltage regulators are modified to provide +5% regulation, and a voltage switching
control is added to the 3-phase capacitor. The phase of some loads is changed to slightly balance
the feeder, and all loads were increased by 20% to create some more extreme conditions. The load
time-series is a S-minute resolution normalized profile based on substation SCADA measurements
from a feeder in California in 2013. A large 3-phase latitude-tilt 2MW PV system (~40%
penetration of peak load) is added at the end of the feeder. The global horizontal irradiance (GHI)

13

time-series measured at 1-second resolution in Oahu is converted to plane-of-array (POA)
irradiance using the DIRINT decomposition model and the Hay/Davies transposition model. The
S-minute resolution load data was interpolated to match the 1-second resolution of the GHI time-
series. The Sandia Array Performance model and Sandia Inverter models are used to convert the
POA irradiance into PV power output time-series. The circuit is modeled in OpenDSS and the
algorithm is coded in MATLAB using the GridPV toolbox to interact with OpenDSS. The
simulation is a year at one-second resolution.

* 1.04
1.03
* Substation
Y7 PVPCC 1.02
4 LTCIVREG E
B Fixed Capacitor vy
A Switching Capacitor 1.01 5’
© End of Feeder °
>
] !
100 kVAr 600 kVAr 0.99
O
1.52 km 0.98

Figure 2 - Diagram of the modified IEEE 13-bus feeder colored by voltage [21]

2.3 Feature Selection

The first step in the methodology is to divide the year-long time-series dataset into periods. These
periods are an arbitrary interval (minutes, hours, days, weeks, etc.). Regardless of the size of the
period, the machine learning will learn the correlation between the data for that period and the
number of tap changes. The reason for dividing the year into periods is that these machine learning
algorithms require discrete units for training and testing data. For this project, 2-hour periods were
chosen based on the work done in [21]. That work demonstrates results using a variety of values
for the length of the time period, both smaller and larger, and two-hour periods provide the lowest
average error in those experiments. A further reason for choosing 2-hour periods is discussed in
Section 2.4.1 Intelligent Sampling Methodology and shown in Figure 5. For the deep learning
portion of the research 1-hour periods were chosen and the reasons for that choice are discussed
in Section 6. Deep learning.

The next step is the feature selection itself which is the process for determining what to use as the
actual input for the machine learning algorithm. In the deep learning case, the 1-second resolution
load and PV time-series are used as inputs. One of the advantages of the deep learning approach
is that the network is able to extract its own features from the raw data. In the case of the other
ML algorithms that were chosen, the 1-second time-series needs to be converted into features that
are selected by hand.

14

A total of 17 input features were generated for each period. Statistical features such as maximum,
minimum, mean, etc. were calculated. It has been shown that solar variability is a significant
driver in the number of tap changes [22], so a number of variability statistics were calculated as
well. Day of the year, and hour of the day are highly correlated to solar power and so those were
also included. Due to the time-dependent nature of QSTS [23] the standard deviation of the
previous two weeks was added as a feature. See Table 1 for a complete list of the 17 features.

Table 1 - Full Feature List

Input Features

Maximum (PV & Load) Minimum (PV & Load)

Mean (PV & Load) Range (PV & Load)

Length (PV & Load) Standard Deviation (PV & Load)
Median (PV & Load) Day of the Year

Standard Deviation of previoustwo Starting Hour

weeks

For neural networks choosing the final feature list is particularly important. The features need to
be as relevant and non-redundant as possible. Some of the features in the full feature list in Table
1 are highly correlated. Within the neural network context, it is better to have a few features that
are not correlated than many features that are correlated. Figure 3 plots the correlation coefficients
between each of the features. For example, max, min, median, and mean are all highly correlated.
Out of those four, only the most highly correlated, the mean, was included in the final feature list
for the neural network ensemble. In the end, a down-selected list of 9 out of the 17 features were
used as inputs to the neural network ensemble.

Load Max
Load Min
Load Mean
Load Median
Load Range
Load Stdev
Load VI

PV Max

PV Min

PV Mean

PV Median
PV Range |
PV Stdev |

PV VI

Hour

Day of Year
Prev. Load Std |

jusnijjso) uone|aliod

Figure 3 - Feature list correlations [21]
For the decision tree ensembles, the full 17-feature list was used as inputs. For both random forest

and the boosted decision tree ensembles, part of the power of the ensemble comes from the
diversity of trees included in the ensemble. Thus, keeping the larger feature list (despite some

15

features being highly correlated) increases the diversity in the forest [13]. This was born out in
our experiments as well, being that the 17-feature input version performed better than a down-
selected feature list. The full input list was also used in the Support Vector Machine (SVM) case.

The search space of possible input features is extremely large, and it is impossible to do an
exhaustive search. Therefore, the hand-picked subset of 17 features was chosen to be evaluated.
This subset performs well in these experiments, however there is no guarantee that this subset of
features is optimal. One reason for constraining the input feature list to 17 features, and down
selecting to 9 for the neural network is that as the number of features increases, the number of
training samples required also increases. This is sometimes termed the ‘curse of dimensionality’
[24]. Intuitively, the larger the number of features, the more training samples are required to
accurately represent the combinations that those features could represent. Within the parameters
of this research, the total amount of data is fixed, and so the number of features was kept small. In
general, adding additional input features requires more parameters (weights in the neural network
case), which increases model complexity as well. For further discussion of possible future work
using other possible choices for features, please see 8.3.2 Future Avenues.

2.4 Intelligent Sampling

2.4.1 Intelligent Sampling Methodology

The Intelligent Sampling step in the methodology selects some percentage of the total number of
periods in the year to be run using the QSTS simulation and subsequently used as inputs to the
machine learning algorithm. The portion of the data used as the training set for the machine
learning algorithm needs to be representative of the entire year, meaning that the distribution of
the features inside the training set needs to reflect the distribution of the features in the dataset as
a whole. Previous research has shown that simply using random sampling to select the training
data requires sampling ~85% of the year in order to guarantee an error under the 10% threshold
[1]. Intuitively, this high value means that randomly selected samples are not representative, for
example the random sample may choose primarily clear days or perhaps primarily days in the
summertime. Random sampling does not necessarily achieve a representative sampling until
~85% of the year is sampled. For this reason, the stratified sampling approach in [25], henceforth
referred to as the “Intelligent Sampling” method, was chosen. Using a stratified sampling
approach guarantees that a diverse selection of periods is chosen. At least one sample from each
‘bin’ is chosen and then weighted sampling based on the number of samples in each bin is used
for the remaining samples. Figure 4 shows a plot of the stratified sampling bins, with Load Median
plotted on the y-axis, Solar Variability Index (VI) on the x-axis, and the average number of tap
changes in that bin in color. This methodology ensures that there is at least one sample from each
bin included in the training set.

16

30

-

25

o
©

o
)

20

e
-~
T

115

&
(3]

Average Tap Changes

110

Load Median (norm.)
(=]
(=2}

e
>

o
w

. I. [I‘l [‘l [T T 1
0 0.2 0.4 0.6 0.8 1
VI (norm.)

Figure 4 - Intelligent Sampling bins [25], white squares indicate there are no samples with those
metrics

0.2

The percentage of the year being sampled determines the stratification level and grid size. So,
when a smaller percentage of the year is being sampled, the bins themselves are larger to ensure a
‘representative’ sampling is obtained. When a larger percentage of the year is required the bins
are smaller and therefore the resulting training set is a better representation of the full dataset. One
of the important results of this research is determining what percentage of the year is required, i.e.
discovering what percentage of sampling obtains an acceptable representation of the whole dataset.

[26], [27] demonstrate similar methodologies where the goal was to extrapolate the results of a
hosting capacity analysis done on a representative subset of feeders to the remainder of the feeders
in the group. The ability to select representative periods of the year is an interesting research
question for a variety of reasons. [28] presents motivations for representative sample selection in
a more general setting and describes a similar stratified sampling approach. Our results show it is
possible to select a representative portion of the year and stay below an arbitrary error threshold
of 10% for the QSTS analysis.

Once the training data set has been sampled using the methods described above, that data is
simulated using QSTS. However, this training set is now a set of non-contiguous periods from
throughout the whole year; it is no longer a regular time-series. What that means for the QSTS
simulation step is that the periods are being run using QSTS individually, in isolation from the
other periods. This introduces some error since the current state of the system is dependent on the
previous state of the system [23]. Figure S shows the error introduced by running QSTS on the
individual periods rather than sequentially. Overall, the error introduced is quite small, and these
results also provide one reason that 2-hour periods (1-hour for deep learning) were chosen as the
period size. This small error is included in the overall error results seen in the following sections.
The choice of period size does not affect the total information contained in the dataset. The total
number of tap changes in the yearlong dataset remains the same, regardless of the period size, and
that limits the overall information available to the learning algorithms. The other considerations
for choosing a period size are that using too small of a period size results in the statistical features

17

being noisier; whereas, too large of a period will make the statistical features too general. Figure
5 introduces a lower bound on the period size choice in terms of introducing new error, and for
periods more than two hours, the variation that drives the tap changes begins to be lost.

Regulator Tap Changes
20 ! : T : - g]
.1 | |7®Regl|
o B 1T —e—Reg2|
SN Q L —8— Reg3 ||
e o B
1" NN S 5 .

g e e g e Lo
.05 02 05 1 2 46 12 24

Sampling Period (hours)
Figure 5 - Error introduced by running QSTS on individual periods

2.4.2 Speed versus Accuracy

It is worth noting that choosing a percentage of the year to simulate with QSTS and use as training
data is a tradeoff between speed and accuracy. The more of the year that is simulated the more
accurate the machine learning prediction will be and the lower the overall error. However, the
higher the percentage of the year that is simulated the more time is spent on the QSTS
computations. The time spent on the QSTS simulations for the training data is the driver of the
overall time cost for these methodologies. The time spent on the machine learning portion is nearly
negligible in comparison to the time necessary to run the QSTS simulations on the training data.
Figure 6 illustrates this tradeoff. As the percentage of the year simulated increases the error
decreases. The error would converge to zero when simulating 100% of the data, equivalent to the
full-length QSTS simulation.

Neural Network Ensemble
I I I I I

= =10% Threshold
——Neural Network Ensemble

0 ! ! ! ! ! ! !
15 20 25 30 35 40 45 50

Percent of the Year Simulated with QSTS
Figure 6 - Speed versus accuracy tradeoff

99.9th Percentile Error in Yearly Tap Changes

18

2.5 Simulation Validation

There are two steps in the methodology that introduce some elements of randomness into the
results of the simulation. The Intelligent Sampling step introduces randomness in the choice of
the samples used to train the machine learning algorithm, and the machine learning algorithms
themselves introduce some randomness in their initial conditions and/or construction. In the
average case, the Intelligent Sampling works well. However, because the sampling still contains
a random component, it is possible that the Intelligent Sampling will sometimes return a non-
optimal training set. The reason for this is that, while some bins potentially only have one sample
and will always be selected, the majority of bins will have multiple samples, and the samples are
randomly selected out of the bin. This technique was chosen to avoid overfitting and to allow the
algorithm to generalize better to other feeders; a more deterministic algorithm may have produced
better results in this particular instance but would be unlikely to perform well in general. In the
same way, the initial setup for the neural network (weight initialization) or the construction of the
decision trees (training subset choices and branching feature choices) can also return non-optimal
results. The practical result of this randomness is that subsequent simulations are likely to produce
slightly different results, and it is necessary to understand the extent of the possible error due to
this randomness. To account for this and to bound the error for this methodology, a Monte Carlo
approach was adopted. 10,000 Monte Carlo runs were conducted for each machine learning
method, and the results were plotted as an error distribution over all 10,000 runs. All of the results
figures that follow in this paper were created after 10,000 Monte Carlo runs for the given method.
Figure 7 illustrates one reason for choosing 10,000 Monte Carlo runs. This figure was generated
using the neural network ensemble methodology, and 10,000 runs is where the error begins to
converge. We ran this experiment using only the neural network and used that as the basis for
choosing 10,000 runs. Clearly, some tradeoff was made between the simulation time
considerations and the number of Monte Carlo runs. The Sandia High-Performance Computing
Cluster (HPC) was used to run these computationally intensive simulations, and in fact, running
so many Monte Carlo simulations would require so much time that it would be unreasonable
without the HPC resources. To be clear, the Monte Carlo simulations are only used to validate
this methodology. In practice, only a single simulation would be run. The single simulations meet
the speed goals set by the project.

19

14— ——————— ——————

12 - .

10 = .

Yearly Tap Changes Error (%)
oo

6 ——MAE | |
99.9th
4 e d
\—_\/\—-\,.—v —
2 P | L L n L P | L L L L PR |
102 103 104

Number of Monte Carlo Runs
Figure 7 - Monte Carlo sweep from 10 to 50,000 Monte Carlo runs

Plotting a histogram of the error of each individual run over the 10,000 Monte Carlo runs, the
distribution of errors is gaussian and therefore the maximum error goes to infinity as the number
of simulations goes to infinity; see Figure 9 for an example. For these results, the 99.9'" percentile
error bound over 10,000 Monte Carlo simulations is shown, and is considered to be the error bound
for this methodology. There is however a 1/1000 chance that a feeder would exceed this error
bound.

20

3. NEURAL NETWORK ENSEMBLE

3.1 Overview

Neural networks are a supervised machine learning architecture designed to loosely model the
workings of a human brain. A feed-forward, multi-layer perceptron neural network was chosen as
the architecture for this portion of the project. Layers of ‘neurons’ are connected from one layer
to the next via learned weights and the value of a neuron in the subsequent layer is calculated by
taking the dot product of the previous layer’s neuron value and the weights entering the neurons
in the subsequent layer. The values for each neuron in the subsequent layer are calculated in this
way and then a bias term is also added. Those values are then transformed into an ‘activation’
value using an activation function, in this case the sigmoid function. The values for the weights
between layers are learned during the training of the network using the back-propagation
methodology. For a more detailed description of how neural networks work and the training
process see [29].

3.2 Architecture

The choice of the feed-forward neural network architecture was determined experimentally to be
the best out of several alternatives that were investigated. Contrary to intuition, recurrent neural
networks experimentally performed worse than the feed-forward versions. Given that the data is
time-series in nature, recurrent networks would seem to be a logical choice. One hypothesis about
this result is that after doing the Intelligent Sampling step the training data is no longer a regular
time-series, being that a time-series is defined as samples collected at regular intervals [30]. There
1s supporting research showing similar results that recurrent networks may not perform as well as
expected when the data is not a regular time series [31]. However, this hypothesis was not fully
explored and it is possible that there are other factors contributing to the feed-forward network
experimentally performing the best in these tests.

The final network architecture was an input layer of nine nodes (the number of input features used),
a single hidden layer of 5 nodes, and a single output node as shown in Figure 8. The single output
node outputs a numerical prediction for the number of tap changes in the given period. The number
of hidden nodes was chosen using extensive experimental trial and error. There are some heuristics
in literature for choosing the number of hidden nodes, but at this time there are no specific
guidelines for doing so. The Levenberg-Marquardt method was used to train the network based
on the work in [32].

An ensemble composed of 50 of the individual neural networks described above was used in the
final ensemble architecture. For more details on the specifics of the architecture and tuning of the
hyperparameters please see [21] which is the conference paper published based on the neural
network research for this project.

21

3.3 Results

Figure 9 shows the results of each of the Monte Carlo runs plotted in Histogram form. These
results are using 20% of the year as training data. The mean absolute error for the neural network
ensemble methodology is 2.6% error in the yearly tap changes and the 99.9'" percentile error is
10.8%. You can see the error in general is quite good, however using 20% of the year does not

Layer Hidden

Load Mean

Load Std Dev Output

Layer
Load VI ¥

PV Mean Number of

Tap Ch
PV Std Dev Ll

PV VI
Starting Hour

Day of the Year

Prev. Load
Std Dev

Figure 8 - Individual neural network architecture [21]

bound the error below the 10% threshold set by our industry partners.

Monte Carlo Runs

1200

1000

800

600

400

1400 T T T
=——=MAE = 2.6%
99.9th = 10.8%

200

-20 -15 -10 -5 0 5 10 15
Percent Error in Yearly Tap Changes

Figure 9 - Neural Network results histogram

22

20

Figure 10 shows the results for the Neural Network Ensemble using different percentages of the
year as training data. These results were generated by running 10,000 Monte Carlo simulations
for each of the percentages plotted below and then plotting the 99.9'" percentile error for each
percentage. You can see that between 20% and 25% of the year, the error drops below the 10%
threshold. For comparison the results for Random Sampling and Intelligent Sampling are also
shown. The Random Sampling line crosses the 10% threshold >85% of the year simulated. The
Intelligent Sampling line are the results after doing linear interpolation on the intelligently sampled
data. The neural network ensemble approach clearly outperforms Random Sampling, as well as
simple linear interpolation on the intelligently sampled data.

Neural Network Ensemble
T T T T I

——Random Sampling
Intelligent Sampling

= =10% Threshold

——Neural Network Ensemble

B
=

w
[3,]
T

w
o
T

1

N
(3]
T

N
o
T

-
(3]

-
o

[3,]

99.9th Percentile Error in Yearly Tap Changes

1 | |

20 25 30 35 40 45 50
Percent of the Year Simulated with QSTS

Figure 10 - Neural Network Ensemble results simulating different percentages of the year

| |

oo
o
== |
[3,]

23

4. DECISION TREE ENSEMBLES

4.1. Random Forest

4.1.1. Overview

Random forest is a supervised machine learning technique based on an ensemble of decision trees
developed by Breiman [13] in 2001. Random forest leverages the predictive power of ‘weak
learners’, in this case decision trees, in an ensemble ‘forest’ of trees to make a final prediction.

The individual trees are constructed using the CART (Classification and Regression Tree) process
[33], with each tree making its own individual prediction for the number of tap changes during the
given period. The CART methodology, at each branch point in the tree, randomly selects a subset
of the available features and then chooses the feature from that subset that minimizes the error
over all the samples. This process continues until the tree has reached its maximum size. At the
construction of each tree, a subset of the training samples is chosen to construct that tree. The
training samples are sampled with uniform probability with replacement. This is known as a
‘bootstrapping’ approach and when combined with a predictive ensemble is referred to as
‘bootstrap aggregating’ or ‘bagging’. This sampling approach is one difference between this
method and the boosting method described in the next section. The individual predictions are
then averaged to form the final ensemble prediction. See Figure 11 for a visualization of the
random forest process. For a more detailed description of random forest see [13] and [14].

Test Sample Input

Tree 600 ()

Prediction 600

Average All Predictions

y

Random Forest

Figure 11 - Random Forest visualization

23

4.1.2. Architecture

As noted in Section 2.3 Feature Selection, the random forest uses all 17 of the available features
from the Feature Selection section, and the algorithms randomly samples 5 to choose from at each
branch during the construction of the tree. Five features constitute approximately one-third of the
total features, which is one heuristic for choosing that hyperparameter; it was also verified using a
parameter sweep over possible values. See Figure 12 for an example of the structure of one tree
in the forest; all the trees in the random forest will have a similar architecture since they are all
attempting to make the best general prediction possible. The triangles represent the ‘if statement’
branches on the selected feature. The red line represents a possible path that a test sample might
take as it traverses the tree. Figure 13 shows a close-up of the green box from Figure 12. You can
see some of the features chosen for those branches. Following the arrows, the sample branched
left at the “Load Mean” node, meaning that the sample’s Load Mean value was less than 1610.05.
The ‘leaves’ of the tree represent the prediction of that tree for the given time period, 1.1667 tap
changes for the two-hour period in this example. This random forest used 600 trees in the
ensemble. For more details on the specific implementation for this research see the conference
paper published on the results of the decision tree ensembles from this project [34].

FN 41 B i f -
.ﬁ:/ \-’% (:‘:. i\ jl“ 4%\./ :% . k‘; ‘l k l/ .,S\, ‘I %‘; :{f .?*\ /,;"t\ P jx "f\.
N /\ A 7\ /N N A/ / \]1
é ?‘, i 7% /‘;i f; l& P L‘Ik‘% 41 Iy e \T. i‘a i .ﬁ: "‘I \ \72;\

\ ﬁ L AW /) ik A \VAVAVAR
d 3 ‘e g ﬁﬁ‘ ﬁ N Ad ‘ ‘4 o Y % }‘ y, K
II'L | '\ \ Iﬁ /‘/ \\ '“L / \ f\ j | j i f \ }(\‘ /
. iﬁ;@ﬁ 0[{: IJ‘“ - 0";\ ‘j{s\ bbb ffi\%\.
il ‘ ,}c ol Lﬁ; . l. ‘3 74 ﬁ
.if & i j | AL
'\ I
| I\

Figure 12 - Example random forest tree

26

e N
7 N\
DOY < 122 sﬁluéov >=1225 loadMean < 1610.05 ZNoadMean >= 1610.05
P N /
/ N\
/ \ N
// \\ ¥ ,‘/ “\
/ \ N
."/ b3 N\
. 0 loadMax < 1497 GsﬁoadMax >= 1497.66 loadMedian < 1859.87 f»A\yoadMednan >= 185987
/ *\
/ \ Tap Changé Vi
R Prediction
Ay \
/ \ b
/ 7 \
/ \ \
¢ P -
o o 33!333 o loadStd < 20 9483/1,:{1)368(6 >= 20,9483
XN
£ N
/ .'\
74 \
/ \
/ \
/ N\
/ \
L startHour < 19 JstartHour >= 19
% 0

Figure 13 - Example close-up of a random forest tree

Looking at the individual trees in the forest, each tree is making the best possible individual
prediction for the given time period. This is one of the key differences between the random forest
method and the boosting method. Figure 14 shows the error distribution if each individual tree
was forced to predict the entire year without the benefit of the ensemble. You can see the
maximum error was 33.5%, and the 2.7% corresponds to the error of the random forest ensemble
as a whole. If instead of predicting individually, this group of trees made an ensemble prediction,
the 2.7% mean error would correspond to the error of that prediction.

27

200 T T T T T = . T T

180 - = Mean Error =2.7% -
MaxErr = 33.5%

160 -

140 -

120

100 -

Number of Trees

| l

0 | 1 1
-60 -40 -20 0 20 40 60

Percent Error
Figure 14 - Random Forest individual tree error

4.1.3. Results

Figure 15 shows the random forest results for the Monte Carlo runs using 20% of the year. You
can see the Mean Absolute Error (MAE) of 2.6% and the 99.9'" percentile error bound of 10.9%.
The 99.9" percentile is quite similar to the neural network results from above and the overall error
distributions look similar. Figure 16 shows the results simulating different percentages of the year
using QSTS. Atbetween 20% and 25% of the year, the method will result in errors below the 10%
threshold.

28

99.9th Percentile Error in Yearly Tap Changes

1400

1200

1000

800 -

600 -

Monte Carlo Runs

400

200

-15 -10 -5

——MAE = 2.6%
=—=99.9th = 10.9%

1

0 5 10 15

Percent Error in Yearly Tap Changes
Figure 15 - Random Forest results histogram

Random Forest

20

40

= =10% Threshold
——Random Forest
——Random Sampling
———Linear Interp

10 15

20 25 30 35 40
Percent of the Year Simulated with QSTS
Figure 16 - Random Forest results simulating different percentages of the year

29

45 50

4.2. Boosted Decision Tree Ensemble

4.2.1. Overview

Boosting is a supervised machine learning technique proposed originally as AdaBoost [15] in
1997. The version used in this research is called LSBoost which is a regression variation of the
AdaBoost algorithm. For a description of the specific workings of LSBoost see [16], [17].

A boosted ensemble shares many similarities to the random forest ensemble. Both are composed
of CART-type trees and both produce a single ensemble prediction for the given period of time.
There are two key differences between the random forest ‘bagged’ ensemble and the ‘boosted’
ensemble. The first difference is that the subset of training samples used to grow each tree are
not chosen randomly. Once the first tree has been grown subsequent trees will try to better predict
the training samples that were poorly predicted by previous trees. That means that subsequent
trees will use more of the incorrectly predicted samples from previous trees. So as the forest grows
the trees will become specialized, designed to predict subsets of the data rather than each tree
making the best general prediction, as in the random forest approach. The second difference
follows from the first, instead of simply averaging the predictions of the individual trees, the
boosted ensemble combines the individual trees using a weighted approach where the weight of
each tree is determined by its training error. Figure 17 shows a visualization of this process.

Test Sample Input

Tree 350 4

Weighted Combination of All

Boos_ging‘h‘iE‘lfl_rsemble

Figure 17 - Boosted ensemble process

30

4.2.2 Architecture

Figure 18 shows a progression of the trees grown in a boosted ensemble. Tree 1 looks very much
like the example tree from the random forest in Figure 12. However, trees begin to change as they
specialize in the samples that are difficult to predict. This boosted ensemble included 350 trees.
That number was chosen using extensive experimental testing. As in the random forest case, the
full 17 features were used to encourage a diversity of trees in the ensemble. For more details on
the boosted implementation for this project please see the conference paper published on the results
of the decision tree ensembles [34].

Y
L8

Tree 150 Tree 250 Tree 350
Figure 18 - Examples of trees in the boosted ensemble

4.2.3. Results

Figure 19 shows the results of the boosted ensemble in the Monte Carlo simulations. The Mean
Absolute Error (MAE) is 2.6% and the 99.9™ percentile error is 11.0%. Again, these error rates
and distributions are quite similar to the random forest and neural network ensemble results.
Figure 20 shows the results simulating different percentages of the year with the Random Sampling
and Intelligent Sampling plotted for reference.

31

99.9th Percentile Error in Yearly Tap Changes

Boosted Ensemble

1400 T \ T r
=——=MAE = 2.6%
=——=09.9th Percentile Error = 11.0%
1200 - -
1000 - |
(2]
c
&
o 800 - -
[
©
(6]
2 600 i
[
5]
=
400 - *
200 - T
o L
-20 -15 -10 -5 0 5 10 15 20
Percent Error in Yearly Tap Changes
Figure 19 - Boosted ensemble results
Boosted Ensemble
40 \ \ \ I

——Random Sampling
——Linear Interp

= =10% Threshold
—Boosting

w
(3]

w
o

N
(3]

N
o

-
(5}

-
o

(3]

o

25 30 35 40 45

Percent of Year Simulated with QSTS
Figure 20 - Boosted ensemble results simulating different percentages of the year

15 20

-
o

32

50

5. SUPPORT VECTOR MACHINES

5.1. Overview

Support Vector Machines are a type of supervised machine learning developed by Vapnik [35]. In
this paper we use the general term Support Vector Machine (SVM) to refer to regression version
of the technique. SVM’s use a (non-linear) kernel mapping to map the input into a higher
dimensional feature space. Transforming the input in this way allows more flexibility in
delineating between different types of samples. This allows the construction of a hyperplane (in
the classification case) or a function approximation that may not have been possible in the original
input space. In the regression case, the methodology attempts to create a function approximation
that captures all the samples within some boundary around the approximation. Looking at Figure
21, the dotted blue line represents the boundary and the red circles represent the ‘support vectors’.
The support vectors, in the regression case, represent the samples that are on the boundary line (or
sometimes outside); they are used to delineate the approximation, i.e. they define the boundary
lines. Then a new sample can be compared to support vectors for the final SVM prediction,
depending on where the new sample is compared to the support vectors a prediction can be
obtained. For more detailed explanation of the SVM methodology see [35], [36], and [37].

D Support Yector Regression [_ [X]
| Linear Spline _'_]l Bound Inf & insensitivity] 05

Load

Save

A

Data

Clear Data

i

Regress

No. of Support Vectars: 7 (77.8%)

Figure 21 - SVM example [36]

33

5.2. Architecture

The architecture of this implementation of support vector machines for regression was determined
using a grid search of a subset of possible hyperparameter values using the Sandia High
Performance Computing Cluster. A gaussian kernel was determined to be optimal. The parameter
values were as follows Box Constraint: 215.44, Kernel Scale: 2.1544, and also normalizing the
input features. This methodology used all 17 of the input features.

The SVM used an ensemble of 40 individual support vector machines. To construct the ensemble,
a bagging approach was used, similar to the bagging used in the random forest methodology. A
subset of the available training features was sampled with replacement for each of the members of
the ensemble. The final ensemble prediction was generated by taking the average of each
individual SVM prediction.

There are likely a variety of optimizations that could be made to this architecture with further
study and experimentation. However, this was one of the final machine learning methodologies
explored and research was discontinued for reasons discussed in the results section below.

5.3. Results

Figure 22 shows the results of the Monte Carlo simulations, using 20% of year for the QSTS
simulations. The 99.9"™ percentile error is 16%, and the mean absolute error is 3.8%. The errors,
although similar, are higher than the neural network, random forest, or boosted ensemble. Figure
23 shows simulations using different percentages of the year; with the current architecture and
hyperparameters, ~30% of the year is necessary to simulate with QSTS to remain under the 10%
threshold.

The decision was made to discontinue the tuning of the SVM model due to the fact that the results
in the neural network case, Figure 9, random forest case, Figure 15, and boosted ensemble case,
Figure 19, were so similar to each other. It is our hypothesis that, although the SVM errors are
higher than those other three methods, with appropriate tuning of the model, the results would
likely be quite similar to those results. Further discussion of why that might be the case can be
found in Section 8.1. Comparison Between ML Methods Analyzed. Therefore, the research was
stopped at this point without further tuning of the model.

34

1000

=——MAE = 3.8% |
=——99.9th = 16.0%

800 - a

900

700 N

600 N

500 - n

400 - N

Monte Carlo Runs

300 - N

200 - N

100 - N

0 L l | 1 | L
-50 -40 -30 -20 -10 0 10 20 30 40 50

Percent Error in Yearly Tap Changes

Figure 22 - SVM results histogram

40 ‘
——Random Sampling
~———Linear Interp

= =10% Threshold -

w
3]
I

——SVM

w
o

N
[3,]

-
(3]

99.9th Percentile Error in Yearly Tap Changes
- N
o o

(3]

0 | | | | |
10 15 20 25 30 35 40 45 50

Percent of Year Simulated with QSTS

Figure 23 - SVM results simulating different percentages of the year with QSTS

35

6. DEEP LEARNING

6.1 Overview

“Deep Learning” covers a wide range of techniques and methodologies gaining increasing
popularity in recent years, particularly in the field of image recognition. Deep learning is often
described in terms of ‘layering’ different techniques. For example, in the following section the
‘fully connected’ layers are equivalent to the feed-forward neural network architecture discussed
previously, and here they are components of the deep learning architecture. For this project
convolutional neural networks, a supervised learning technique, were chosen for the deep learning
architecture. The architecture used here is based on the AlexNet architecture from [19].

Unlike the other methodologies that used the statistical features discussed in the Section 2.3
Feature Selection, the convolutional neural network takes the raw data as input. One of the main
advantages of the deep learning approach is the ‘feature extraction’ ability of convolutional neural
networks. There is no guarantee that the features chosen in Section 2.3 are optimal or exhaustive.
The purpose of the convolutional layers is to extract meaningful features from the raw data before
the prediction step. So, the input to the network is the 1-second resolution load and PV profiles,
and the intelligently sampled training set is further divided into an actual training set and a
validation set, similar to the neural network ensemble.

6.2 Architecture

This network architecture, adapted from AlexNet [19], consists of two convolutional layers each
followed by a ReLu activation function and Cross Channel Normalization, that is followed by a
dropout normalization layer, then two fully-connected layers, and finally a regression layer. This
architecture is a scaled back version of the original because the dataset is smaller than the one used
for AlexNet, as well as for time considerations.

Deep learning in general requires significantly more data than other machine learning methods.
One-hour periods were used to give the algorithm more distinct samples. While this does not
increase the meaningful size of the dataset or the total information value, it does allow more
distinct opportunities for the back-propagation algorithm to work. However, it is not clear that
this was an effective technique, and it is likely that using the two-hour periods would have
performed similarly. Two methods for data augmentation were attempted in addition to using the
un-augmented dataset. Data augmentation is the technique of taking an existing dataset and
altering the samples in some way to create new data samples. The transformation must be done in
such a way as to preserve the essential structure of the sample. Some examples in the image
recognition context are cropping the image differently, altering pixel intensities, applying
‘warping’ filters to the image, etc. In each of these cases, the pixel values are different, and so the
sample is in effect a ‘new’ sample for the deep learning network, however the essential content of
the image is unchanged. However, in instances such as this where the inputs are load time-series
and PV time-series, ensuring that the essential structure and content is unchanged and that the
resulting profiles reflect real world possibilities is much more difficult since they cannot be
visually inspected.

37

The first method that that was attempted divided the one-hour periods into a first half and second
half and randomly switched the halves among the training samples. The intuition behind this
method being that it is already known how many tap changes occur in each of the halves and
previous research has shown that only a small amount of error is introduced by running the QSTS
period on isolated periods of the data [25].

The second method was based on the Synthetic Minority Over-sampling Technique (SMOTE)
from [38]. This technique uses an auto-encoder to create a feature-space representation of the
training data. Then to augment the training data the training samples are fed into the auto-encoder
to obtain the feature-space representation and grouped by similarity (in this case by number of tap
changes in the period). Two similar samples are subtracted from one another (still in the feature-
space representation) and a random percentage of the difference between the two samples is added
to the first sample to produce an augmented sample. The intuition behind this technique being that
the new augmented sample will be ‘between’ the two samples that are similar and thus should have
similar behavior.

The network was trained for a large number of epochs and the epoch with the lowest validation
error was chosen as the final network. One epoch is defined as one pass through the training data
which is broken up into batches, in this case of 128 samples per batch. A single epoch uses each
of the training samples once for optimization and then the samples are randomized and used again.
The chosen network was then used to predict the remaining periods (the testing set). Given the
long training times required for this method and the overall poor results, the Monte Carlo
simulations were not run for the deep learning architectures.

6.2.3 Results

Figure 24 shows a plot of the training root mean squared error versus the validation root mean
squared error for one run of the convolutional network using the un-augmented dataset. Each
iteration represents one training batch of 128 samples. This means that each of the 128 samples is
used as input to the network, the errors values are calculated, then the suggested weight
adjustments are calculated, but then update step uses the average of the weight adjustments for all
128 samples. The actual weight update occurs only once per batch. Looking at Figure 24, the
minimum for the validation error is at iteration 5,800 as so that version of the network was used to
predict the remaining samples. The final percent error in the yearly tap changes was ~16.5%.

38

2.5 I

—Training RMSE
——Validation RMSE

1.5 l
!

RMSE

0.5~

0 | | | | |

0 0.5 1 1.5 2 2.5
Number of iterations in increments of 50 %10

Figure 24 - Deep Learning comparison of training RMSE and validation RMSE

Figure 25 shows the training RMSE and validation RMSE for the network run using the augmented
data — swapping method. The minimum for the validation error is at ~41000 iterations and using
that network produced a yearly error in tap changes of ~15%.

Figure 26 shows the training RMSE and validation RMSE for the network using the augmented
data — SMOTE method. The minimum validation error is at ~72000 iterations and the network
from that iteration produced a yearly error of ~24.5%.

39

—Training RMSE
—Validation RMSE

25 N

A g Aot e

0 | | | |
0.5 1 1.5 2 25
Number of iterations in increments of 50 x10°
Figure 25 - Deep Learning with augmented data using the swapping methodology
3r T T T T T T T =
—Training RMSE
—Validation RMSE
25 H
2 4
1.5~ 8
w
2
¢ 1 7
0.5 _
o — —
0.5 n
| 1 | | L | |
1 2 3 4 5 6 7
Number of iterations in increments of 50 <104

Figure 26 - Deep Learning with augmented data using the SMOTE methodology
These results are not favorable when compared to the results from the other machine learning

techniques, ~10.8% 99.9"™ percentile error and ~2.6% mean absolute error for a neural network
ensemble Figure 9 and ~11% 99.9" percentile error and ~2.6% mean error for decision tree

40

ensembles Figure 15 and Figure 19. These deep learning results should be considered a rough,
preliminary investigation of deep learning, convolutional neural networks, and data augmentation
within this context. There are several places where certainly optimizations could be made to
perhaps improve the performance. The network architecture is unlikely to be optimal and could
almost certainly be improved given time and effort. There are many adjustments that could be
made within the AlexNet structure and there are many other options altogether for deep learning
architectures (Long-Short Term Memory modules may be an appropriate choice). Neither data
augmentation method produced satisfactory results. However, the augmentation using the
SMOTE methodology has room for tuning that would likely produce better results.

The decision was made to discontinue research in deep learning avenues at this early stage for two
key reasons. The focus of this QSTS project is to improve the speed of a year-long QSTS
simulation, and deep learning is clearly unsuited for that objective. Training of this architecture
was conducted on the High-Performance Computing Cluster and still took hours to complete.
Changes to the network architecture that would improve performance would likely increase, rather
than decrease the time required. This was another reason to start with a scaled back version of
AlexNet. The second reason is that deep learning requires more data than other options, and the
nature of the QSTS dataset is that there is only a limited amount of data. Pursuing the data
augmentation might be worthwhile in other contexts but in this case, there is no clear way to use
deep learning due to the time constraints.

41

7. ENSEMBLE OF ENSEMBLES

There is a variety of recent research investigating the efficacy of ‘ensembles of ensembles’ as a
hybrid machine learning technique [20], [39]. An ensemble of ensembles is simply more than one
machine learning technique combined to form a single prediction. For example, a neural network
ensemble, a random forest, and an SVM ensemble could be combined to form a single ensemble.
In this case, an ensemble consisting of the neural network ensemble and the random forest together
did produce an improvement in the overall prediction. Figure 27 shows the histogram of the Monte
Carlo runs, with a 99.9™ percentile error of 9.9%, an improvement over the best so far of 10.8%
from the neural network ensemble in Figure 9. Figure 28 shows the ensemble of ensemble results
simulating different percentages of the year; this method actually remains below the 10% threshold
using 20% of the year. This is significant because using 20% of the year is a 5x overall speedup
compared to using 25% of the year which is a 4x overall speedup.

Ensemble of Ensembles
1400 T T T T T T
——MAE = 2.4%

1200 . | ——99:9th =9.9% |

1000 |- .

800 - g

600 - .

Monte Carlo Runs

400 - .

200 - 7

-20 -15 -10 -5 0 5 10 15 20
Percent Error in Yearly Tap Changes
Figure 27 - Ensemble of Ensembles histogram

43

-
©

——99.9th Error
—MAE 1
= =10% Threshold

-
[=2]

-
H

-
N

-
o

-]

99.9th Percentile Error in Yearly Tap Changes

0 \ \ \ \ \
10 20 30 40 50 60 70

Percent of Year Run with QSTS
Figure 28 - Ensemble of Ensemble simulating different percentages of the year

The best results were obtained using only the neural network ensemble with the random forest.
The two separate predictions were averaged to obtain the final ensemble of ensemble prediction.
Other combinations were also experimentally tested. Adding in the boosted ensemble made no
difference to the results, and the neural network ensemble with the boosted ensemble produced the
same results as the neural network ensemble with the random forest. It seems to make sense that
the two decision tree ensemble methods contain similar information and the neural network
contains slightly different information, so adding a second decision tree ensemble does not aid in
the overall prediction. It does imply however, that the neural network and the decision tree
ensembles were solving the prediction problem in different ways and the combination is beneficial
to the overall prediction which is an interesting conclusion. Since the SVM model was not
performing as well as the other methods when research was stopped, it was not included in the
ensemble of ensemble analysis. That would be an interesting extension of this research to discover
if a well-performing SVM would add to the ensemble of ensembles accuracy. There are many
variations on the ensemble of ensembles technique that were not explored here. For example,
often the ensembles are combined using a weighted average of the members of the ensemble.
These weights can be determined in a variety ways. For example, different weights can be given
to different members based on some classification of the input before running the machine learning
algorithm [20]. For instance, perhaps some members of the ensemble perform better during certain
weather conditions than others and should be weighted according to the weather for the specific
input sample.

44

8. COMPARISON AND DISCUSSION

8.1. Comparison Between ML Methods Analyzed

Each of the machine learning algorithms that were investigated over the course of this phase of the
project is considered to be a supervised learning technique, meaning that they are trained using
labeled data. For a discussion of a potential unsupervised learning option see the discussion of
clustering techniques in Section 8.3. Discussion of Results and Other Possible Machine Learning
Methods. All machine learning techniques require ‘significant’ amounts of training data, deep
learning in particular has a huge data requirement, but precisely what the data requirement is
remains poorly defined and is highly dependent on the problem context. Here the amount of data
available is constrained by the speed vs accuracy tradeoff described in Section 2.4.2 Speed versus
Accuracy.

Neural networks, random forest, and the boosted ensemble all produced extremely similar results
(and we hypothesize that a fully-tuned SVM model would also converge to comparable results),
and this was not an expected result. For a side by side comparison, see Figure 29, Figure 30,
Figure 31, and Figure 32. In general, these techniques tend to perform differently depending on
the problem, and one would not expect the results to be so similar [12]. The similarity suggests
that there is a limiting factor at work that is unrelated to the choice of algorithm. We hypothesize
that this similarity is due to the data constraints. The speed versus accuracy tradeoff that is present
in this work dramatically constrains the amount of data available. There are 4368 two-hour periods
in the yearlong dataset, and taking 25% of those gives a training set of 1092 samples. This is a
small sample set compared to many common machine learning datasets; MNIST [40] (basic ML
benchmark dataset) contains a training set of 60,000 handwritten digit samples, and the ImageNet
dataset (deep learning benchmark dataset) contains millions of training samples [41]. With more
training data, it is reasonable to expect that there would be more significant differences between
the algorithms’ results. This was the primary reason for stopping the research into SVM earlier
than the other methods, and also for not investigating other possible algorithm choices. Looking
at Figure 29 and Figure 30, you can see the comparison of algorithms’ error as more of the year is
simulated with QSTS.

45

40

——Random Sampling
——Linear Interpolation

= =10% Threshold
——Support Vector Machines
30 - ——Random Forest -
——Boosted Ensemble
——Ensemble of Ensembles
——Neural Network Ensemble| —

w
(3]
I

N
(3]
I

-
(3]

99.9th Percentile Error in Yearly Tap Changes
= N
o o

(5,
T
|

! \ \ \ \
10 15 20 25 30 35 40 45 50
Percent of Year Simulated with QSTS

Figure 29 - Comparison of algorithms simulating different percentages of the year with QSTS

——Linear Interpolation

= =10% Threshold
——Support Vector Machines
——Random Forest
——Boosted Ensemble
——Ensemble of Ensembles
——Neural Network Ensemble

N
N

N
o
T

i
=]
I

=
[=2)

99.9th Percentile Error in Yearly Tap Changes
© ° N »

o

4 | \ | | | I
20 25 30 35 40 45
Percent of Year Simulated with QSTS

Figure 30 - Comparison of algorithms (zoomed in version)

46

Random Forest

Neural Network Ensemble

1400 r T 1400 - T r - B - - '
=
1200 99.9th =10.8% 1200 [|=—99.9th=10.9%
» 1000 @ 1000 | 1
= =
& (4
o 800 o 800 1
= ©
o o
@ 600 f o 600 1
E R
° c
= o
400 = 400 1
200 200 J
0 ! 0 : g
-20 15 -10 5 0 5 10 15 20 -20 15 -10 S5 0 5 10 15 20
Percent Error in Yearly Tap Changes PercentErrorin Yearly Tap Changes
Boosted Ensemble Support Vector Machines
1400 . . , , v Y ' 1000 ' ' Y ' v "
——MAE= 2.6% T
~——99.9th = 11.0% — =3.
1200 1 ~—99.9th = 16.0%
800 y
@ 1000 | 1 g
& & goof]
o 800 1 o
© %
o (&)
@ L -
£ 600 g 400} 1
§ o
400 + J =
200+]
200 1
0 L 0
.20 15 10 5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20

Percent Error

Percent Error in Yearly Tap Changes

Figure 31 - Comparison of algorithms histogram

Ensemble of Ensembles

1400 T T

=——MAE = 2.4%
=——=99.9th = 9.9%

1200 -

1000 |-

800 -

600 -

Monte Carlo Runs

400 |-

200 -

0 \ .
-20 -15 -10

-5 0 5

15

10 20

Percent Error in Yearly Tap Changes
Figure 32 - Ensemble of Ensembles histogram

47

All of the timing information that follows is based on a laptop computer with the following
hardware: Intel® Core™ 17-3687U CPU @ 2.10GHz 2.60 GHZ with 8.00 GB RAM. Table 2
provides a summary of the timing results. Note that the brute force time for this dataset is 30
minutes. The boosted ensemble provides the best single-method time of ~7.5 minutes (75%
reduction) and the ensemble of ensembles produces the best overall time of ~7 minutes (80%
reduction). The percentage of the year simulated with QSTS in Table 2 reflects the percentage
required to stay under the 10% error threshold. Also note, that due to the simulation time required,
a full sweep of the percent of the year simulated with QSTS was not conducted for the deep
learning and so the ~25 is simply an estimation.

Figure 33 shows a comparison of the machine learning portion of the timing (without the QSTS
simulation portion). Although random forest and the boosted ensemble have nearly identical
prediction results, the boosted ensemble is faster at 4 seconds, compared to 12 seconds for the
random forest. The neural network takes 25 seconds and the support vector machine takes 21
seconds. The deep learning on the far right of the graph extends up to 75,633 seconds, or 21 hours
for the machine learning portion.

Figure 34 provides the full picture for each methodology timing. The machine learning portion is
still in red and the purple represents the time required for the QSTS simulation. Clearly the QSTS
simulation time dominates, regardless of the machine learning algorithm chosen (with the
exception of the deep learning method). Note that due to the small machine learning time for the
boosted ensemble (4 seconds), the red portion does not show well on the figure, but there is 4
seconds of machine learning on top of the QSTS time. For clarity, the abbreviations in the Figure
33 and Figure 34 are ‘Lin Interp’: linear interpolation from the intelligent sampling, ‘NN’: neural
network ensemble, ‘SVM’: support vector machine, ‘EE’: ensemble of ensembles, ‘RF’: random
forest, ‘Boost’: boosted ensemble, ‘DL’: deep learning, and ‘Brute Force’: standard, full-length
QSTS simulation.

Table 2 - Algorithm times summary

Algorithm Percentage of the year ML Time Sinrfl;)lt;tlion Times
simulated with QSTS (seconds) Time Faster
Brute force 100% - 30 min -
Non-ML Sampling 40% - 12 min 2.5
Deep Learning ~25% 75,633 (21 hours) | 21 hours -
Support Vector Machine 30% 21 ~8 min 33
Neural Network 25% 25 ~8 min 4
Random Forest 25% 12 ~ 8 min 4
Boosted Ensemble 25% 4 ~ 7.5 min 4
Ensemble of Ensembles 20% 37 ~7 min 5

48

21 hours

Seconds

Boost RF SVM NN EE DL
Figure 33 - Machine Learning timings

T

T I T T

I QSTS Simulation
EMachine Learning 21 hours

2000

1500

Seconds

1000

500

NN RF Boost EE DL

Brute Force Lin Interp SVM
Figure 34 — Algorithm computational timing comparison

8.2. Comparison to Other Ongoing QSTS Research

While this report focused on using different types of machine learning to speed up distribution
system QSTS simulation, there has been significant research in this area recently for other ways

49

to make the QSTS simulation faster [42]. For example, a reduced order model of the distribution
system can be used to simplify the computations while maintaining an equivalent circuit model in
time-series [43]. More computational power can be brought to solving QSTS simulations using
parallelization [44], either separating the system spatially into subcircuits [45], [46] or temporal
separations with parts of the year going to each processor [47], [48]. QSTS algorithms traditionally
step forward in time using a fixed time-step, but new variable time step algorithms can focus the
computational effort on specific variable times and even backtrack for large system events for
additional speed [10], [49]-[51]. In a similar fashion, discrete event-based simulation techniques
can be used for QSTS simulations by applying linear regression models and voltage sensitivities
to determine the next event and fast forward in the time-series [52], [53]. Novel QSTS vector
quantization algorithms have shown massive speed improvements by clustering the state space of
power flow solutions and using a look-up tables for previously solved power flows [54]-[56].
Current research is working on combining various of the methods, such as variable time-step with
vector quantization [57] or temporal parallelization with circuit reduction.

It can be quite challenging to do a straight forward comparison of the speed improvements and
errors of each of the rapid QSTS methods referenced. For example, the results are specific to the
distribution system being analyzed for characteristics such as topology, PV penetration, voltage
regulator settings, number of loads with unique timeseries profiles, and many other things. Also,
in a quickly moving research field, each of these fast QSTS algorithms is constantly changing,
improving, and becoming faster. For certain algorithms, such as parallelization, the speed
improvements are also directly related to the computational hardware and the number of cores
available to the user. Even with these caveats, a rough comparison of the speeds and errors is
shown in Figure 35. Many of the new QSTS algorithms are performing more than 20 times faster
than traditional brute-force QSTS simulations, and vector quantization and event-based
simulations are around 200 times faster. In comparison, as summarized in Section 8.1, the machine
learning methods presented in this report are roughly 4-5 times faster. The machine learning
timings shown in Figure 35 are from the ensemble of ensembles results in Figure 30.

50

Figure 35 - Comparison of rapid QSTS methods

8.3. Discussion of Results and Other Possible Machine Learning
Methods

There is an extensive list of other possible machine learning algorithms that could be investigated
for this purpose, and there are a variety of ways this research could be continued, or perhaps more
appropriately, expanded in a different direction. This section will discuss a selection of other
algorithms that were not explored in this research, a brief discussion of areas into which this
research could be expanded, and finally a discussion of why this portion of the project was
concluded.

8.3.1 Other Machine Learning Methods

One type of algorithm which was not explored during this research is unsupervised learning
(learning without labeled data). All of the training data for the preceding algorithms was labeled
with the correct number of tap changes for the period. An alternative approach would be some
type of clustering, K-means, hierarchical clustering, etc. For an overview of clustering techniques,
see [58]. This could be framed in terms of clustering the intelligently sampled data and then
assigning the remaining ‘test’ periods to a cluster. Although, clustering is generally considered
unsupervised learning, strictly speaking this would not be fully unsupervised learning in the sense
that after clustering the training data (without using the labels) each cluster would then be assigned
a ‘cluster label’ based on the tap changes for the samples within each cluster. Radial basis
networks are another possible choice. They are a supervised learning technique within the neural
network family [59]. There are multitude of techniques within the ‘deep learning’ family, however
none of them show promise in overcoming the fundamental difficulties encountered for this
project, explained in Section 6. Deep learning. There is not necessarily any clear reason to believe

51

that any of these other techniques would perform better than the ones investigated over the course
of this research given this project’s set of constraints.

8.3.2 Future Avenues

Perhaps more worthwhile are a few considerations for possible different directions to take this
research. Returning to the idea of deep learning, a key advantage of deep learning is the ability to
extract features from raw data. It might be possible to use deep learning techniques as a feature
extractor with a different end goal in mind than for this project. Potentially, by taking a large
enough number of PV and load profiles, better features could be extracted using deep learning than
simply using human-constructed statistics. These load and PV profile features could then be used
for any number of other techniques or goals.

There are possibilities for the data augmentation as well. As the demand for data grows and more
and more analysis is required in distribution system research, data augmentation might be a
solution. Critics of data augmentation argue that because the data is generated rather than observed
that is not worthwhile. However, many of the advantages of data augmentation come in
‘completing’ a real-world dataset; a real-world dataset will never cover all possibilities or edge-
cases and data augmentation can go a long way in making a dataset more complete, particularly if
there is a way to verify that the augmented data is reasonable in the real-world. With these types
of QSTS analyses it is possible to run the true simulations to verify if the data augmentation is
working correctly. Autoencoders [38], [60], variational autoencoders [61], and generative
adversarial networks [62] are all examples of methods used for data augmentation.

As discussed in 2.3 Feature Selection, the subset of features that are used as input to the machine
learning algorithms is both critical and non-trivial to determine. There is an extremely large range
of other possible features that could be explored for this problem. This research chose to use the
standard deviation of the previous two weeks of data, one feature for the PV data and one feature
for the load data. It is possible to tune the timeframe for adding information about what occurred
previously, or include more than one data point for different timeframes, for example perhaps
adding information both about the previous period as well as the previous two weeks would be
beneficial. Another approach would be to add information specific to the feeder, for example the
location of the PV installations, the delay on the voltage regulators, etc. There are also possibilities
for ‘automatic’ feature extraction, for example using an autoencoder to extract the features and use
those features as input to the machine learning algorithms in the place of the statistical features.
These are just a few of the possible avenues, and we leave the further exploration of this issue to
upcoming research.

The amount of data present for this research and the speed versus accuracy tradeoff was found to
be a limiting factor for the machine learning algorithms investigated here. However, this research
was bounded by looking at a single year and a single distribution system feeder at a time. There
might be better opportunities for using machine learning algorithms in a situation where there is
more data available. The other techniques mentioned in the section above certainly outperform
the machine learning in terms of timing on the single feeder scale, however another interesting
question might be, “How do these techniques scale to thousands of feeders?””. Machine learning
techniques might be a technique better utilized from a big picture perspective, thousands of feeders,

52

entire distribution systems, all customers in a region, etc. Those are the types of questions that
might produce interesting results by using machine learning algorithms.

8.3.3 Discussion of Results

There are three primary reasons that this phase of research for rapid QSTS has been concluded.
Under the specific constraints of this project, although achieving ~4-5x speedup when compared
to a brute force solution of the QSTS simulation, it seems clear that some of the other rapid QSTS
techniques are performing better than the machine learning algorithms investigated here. Vector
quantization, for example, from Figure 35 achieves ~200x speedup compared to brute force. From
Section 8.1. Comparison Between ML Methods Analyzed, it is clear that the amount of data
available is a limiting factor for the machine learning algorithms. Also, this research has limited
itself to predicting the number of tap changes in a period, and that is just one possible desired
metric from the QSTS analysis. Under this methodology, separate networks/ensembles would
need to be trained to predict other metrics. Some of the other rapid QSTS techniques described
above are able to obtain results during the simulation for any desired metrics, such as capacitor
switches, bus voltages, time that components exceed their thermal rating, and many others. For
all of these reasons, this portion of the rapid QSTS project has been concluded.

53

9. CONCLUSION

This project investigated several machine learning algorithms for the purpose of decreasing the
time necessarily for a yearlong QSTS analysis to determine the number of voltage regulator tap
changes in year given specific PV and load profiles. A representative portion of the year was
selected, a machine learning algorithm trained on that data, and the remainder of the year predicted,
while remaining under the 10% yearly error threshold. The ensemble of ensembles methodology
achieved a 5x speedup compared to the brute force approach, and the best single-method, boosted
decision tree ensemble, achieved a 4x speedup compared to the brute force approach. The speedup
achieved depends on the amount of the year that is simulated using QSTS and used as training;
there is a tradeoff between the overall speed and the overall accuracy of the results. The methods
that were tested produced similar results which we hypothesize is due to the speed versus accuracy
tradeoff resulting in the amount of training data being the limiting factor rather than the machine
learning techniques themselves. The deep learning techniques proved too time-intensive for use
in this situation, regardless of the amount of data used. Further increases in speed for these
techniques are limited due to the data limitations, and other techniques for fast QSTS show more
promising results. Figure 36 (same figure as in Section 8.1) visually summarizes the methods
investigated and the time that was achieved for each method, and Table 3 (same figure as in Section
8.1) provides a textual summary. Due to the randomness involved in selecting the training data
and in the machine learning techniques, the 99.9'" percentile error was reported over 10,000 Monte
Carlo simulations as an error bound on these techniques. In the best overall case, ~20% of the
year was required to achieve a <10% 99.9'" percentile error, and in the best individual case, ~25%
of the year was required. In fact, the average case is much better than those bounds, ~2.5% error,
or Y4 of the 99.9™ percentile error, in the yearly tap changes in most cases. Moving forward there
are other opportunities to use machine learning for distribution system analysis; particular attention
should be paid to situations where the amount of data involved is prohibitively large for traditional
techniques and machine learning could be used to aid in that type of large-scale analysis.

T T

EQSTS Simulation
ElMachine Learning 21 hours

2000

1500

Seconds

1000

500

Brute Force Lin Interp SVM NN RF Boost EE DL
Figure 36 - Final summary of computational times for each algorithm

52

Table 3 - Algorithm times summary

Algorithm Percentage of the year ML Time SirrTlf:;:ion Times
simulated with QSTS (seconds) Time Faster
Brute force 100% - 30 min -
Non-ML Sampling 40% - 12 min 2:5
Deep Learning ~25% 75,633 (21 hours) | 21 hours -
Support Vector Machine 30% 21 ~8 min 3.3
Neural Network 25% 25 ~8 min 4
Random Forest 25% 12 ~ 8 min 4
Boosted Ensemble 25% 4 ~ 7.5 min 4
Ensemble of Ensembles 20% 37 ~7 min 5

56

10. REFERENCES

[1] M. Reno, J. Deboever, and B. Mather, “Motivation and Requirements for Quasi-Static Time
Series (QSTS) for Distribution System Analysis,” IEEE PES Gen. Meet., 2017.

[2] R. J. Broderick, J. E. Quiroz, and M. J. Reno, “Time Series Power Flow Analysis for
Distribution Connected PV Generation,” SAND2013-0537, 2013.

[3] M. Lave, J. E. Quiroz, M. J. Reno, and R. J. Broderick, “High Temporal Resolution Load
Variability Compared to PV Variability,” IEEE Photovolt. Spec. Conf., 2016.

[4] M. J. Reno, M. Lave, J. E. Quiroz, and R. J. Broderick, “PV Ramp Rate Smoothing Using
Energy Storage to Mitigate Increased Voltage Regulator Tapping,” IEEE Photovolt. Spec.
Conf., 2016.

[5] J. Seuss, M. J. Reno, R. J. Broderick, and S. Grijalva, “Analysis of PV Advanced Inverter
Functions and Setpoints under Time Series Simulation,” Sandia Natl. Lab. SAND2016-4856,
2016.

[6] M. J. Reno, J. E. Quiroz, O. Lavrova, and R. H. Byrne, “Evaluation of Communication
Requirements for Voltage Regulation Control with Advanced Inverters,” North Am. Power
Symp., 2016.

[7] J. E. Quiroz, M. J. Reno, O. Lavrova, and R. H. Byrne, “Communication Requirements for
Hierarchical Control of Volt-VAr Function for Steady-State Voltage,” IEEE Innov. Smart
Grid Technol. ISGT, 2017.

[8] M. Coddington and et al., “Updating Interconnection Screens for PV System Integration,”
Contract, vol. 303, pp. 275-300, 2012.

[9] B. Palmintier et al., “On the Path to SunShot: Emerging Issues and Challenges in Integrating
Solar with the Distribution System,” Natl. Renew. Energy Lab., vol. NREL/TP-5D00-65331,
2016.

[10] M. J. Reno and R. J. Broderick, “Predetermined time-step solver for rapid quasi-static time
series (QSTS) of distribution systems,” in 2017 [EEE Power Energy Society Innovative Smart
Grid Technologies Conference (ISGT), 2017, pp. 1-5.

[11] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, no. 1, pp. 1-37,
Jan. 2008.

[12] R. Caruana and A. Niculescu-Mizil, “An Empirical Comparison of Supervised Learning
Algorithms,” Proc. 23rd Int. Conf. Mach. Learn., pp. 161-168, 2006.

[13] L. Breiman, “Random Forest,” Mach. Learn., vol. 45, no. 1, pp. 5-32, Oct. 2001.

[14] G. Biau, “Analysis of a Random Forests Model,” J. Mach. Learn. Res., no. 13, pp. 1063—
1095, 2012.

[15] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, Aug.
1997.

[16] J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Ann.
Stat., pp. 1189-1232, 2001.

[17] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Front. Neurorobotics,
vol. 7, Dec. 2013.

[18] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learing,” Nature, vol. 521, no. 436, 2015.

[19] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Neural Inf. Process. Syst. NIPS, 2012.

34

[20] A. Mohammed, W. Yaqub, and Z. Aung, Probabilistic Forecasting of Solar Power: An
Ensemble Learning Approach. 2015.

[21] M. Reno, R. Broderick, and L. Blakely, Machine Learning for Rapid QSTS Simulations using
Neural Networks. 2017.

[22] M. Lave, M. J. Reno, and R. J. Broderick, “Characterizing Local High-Frequency Solar
Variability and the Impact to Distribution Studies,” Sol. Energy, 2015.

[23] J. Deboever, X. Zhang, M. Reno, R. Broderick, S. Grijalva, and F. Therrien, Challenges in
reducing the computational time of QSTS simulations for distribution system analysis. 2017.

[24] M. Verleysen and D. Francois, “The curse of dimensionality in data mining and time series
prediction,” in Computational Intelligence and Bioinspired Systems, Lecture Notes in
Computer Science 3512, 2005, pp. 758-770.

[25] J. Galtieri and M. J. Reno, “Intelligent Sampling of Periods for Reduced Computational Time
of Time Series Analysis of PV Impacts on the Distribution System,” /IEEE Photovolt. Spec.
Conf., 2017.

[26] R.J. Broderick, K. Munoz-Ramos, and M. J. Reno, “Accuracy of Clustering as a Method to
Group Distribution Feeders by PV Hosting Capacity,” IEEE PES Transm. Distrib. Conf.
Expo., 2016.

[27] M. J. Reno, K. Coogan, S. Grijalva, R. J. Broderick, and J. E. Quiroz, “PV Interconnection
Risk Analysis through Distribution System Impact Signatures and Feeder Zones,” I[EEE PES
Gen. Meet., 2014.

[28] B. Palmintier, B. Bugbee, and P. Gotseff, “Representative Day Selection Using Statistical
Booststrapping for Accelerating Annual Distribution Simulations,” IEEE Innov. Smart Grid
Technol. ISGT, 2017.

[29] M. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[30] C. M. Lee and C. N. Ko, “Time Series Prediction Using RBF Neural Networks with a
Nonlinear Time-varying Evolution PSO Algorithm,” Neurocomputing, vol. 73, 2009.

[31] J. L. Carmo and A. J. Rodrigues, “Adaptive Forecasting of Irregular Demand Processes,”
Eng. Appl. Artif. Intell., vol. 17, 2004.

[32] D. Brezak, T. Bacek, D. Majetic, J. Kasac, and B. Novakovic, “A Comparison of Feed-
forward and Recurrent Neural Networks in Time Series Forecasting,” IEEE Conf. Comput.
Intell. Financ. Eng. Econ. CIFEr, 2012.

[33] L. Breiman, Classification and Regression Trees. New York: Routledge, 1984.

[34] L. Blakely, M. J. Reno, and R. J. Broderick, “Decision Tree Ensemble Machine Learning for
Rapid QSTS Simulations,” IEEE Innov. Smart Grid Technol. ISGT, 2018.

[35] V. Vapnik, The Nature of Statistical Learning Theory. Springer Verlag N.Y., 1995.

[36] S. R. Gunn, “Support Vector Machines for Classification and Regression,” Tech. Rep. Sch.
Electron. Comput. Sci. Univ. Southampt., 1998.

[37] M. . Hearst, B. Scholkopf, S. Dumais, E. Osuna, and J. Platt, “Trends and Controversies -
Support Vector Machines,” IEEE Intelligent Systems, vol. 4, no. 13, pp. 18-28, 1998.

[38] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Over-sampling Technique,” J. Artif. Intell. Res., no. 16, pp. 321-357, 2002.

[39] B. Lange et al., “Wind Power Prediction in Germany - Recent Advances and Future
Challenges,” 2014.

[40] “MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges.”
[Online]. Available: http://yann.lecun.com/exdb/mnist/. [Accessed: 09-Apr-2018].

[41] “ImageNet.” [Online]. Available: http://www.image-net.org/. [Accessed: 09-Apr-2018].

58

[42] F. Therrien, M. Belletéte, J. Lacroix, and M. J. Reno, “Algorithmic Aspects of a Commercial-
Grade Distribution System Load Flow Engine,” IEEE Photovolt. Spec. Conf., 2017.

[43] Z. K. Pecenak, V. R. Disfani, M. J. Reno, and J. Kleissl, “Multiphase Distribution Feeder
Reduction,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1320-1328, Mar. 2018.

[44] D. Montenegro, R. C. Dugan, and M. J. Reno, “Open Source Tools for High Performance
Quasi-Static-Time-Series Simulation Using Parallel Processing,” IEEE Photovolt. Spec.
Conf., 2017.

[45] D. Montenegro, G. A. Ramos, and S. Bacha, “A-Diakoptics for the Multicore Sequential-
Time Simulation of Microgrids Within Large Distribution Systems,” [EEE Trans. Smart
Grid, vol. 8, no. 3, pp. 1211-1219, May 2017.

[46] D. Montenegro, G. A. Ramos, and S. Bacha, “An Iterative Method for Detecting and
Localizing Islands Within Sparse Matrixes Using DSSim-RT,” IEEE Trans. Ind. Appl., vol.
54, 2018.

[47] R. Hunsberger and B. Mather, “Temporal decompostion of a distribution system Quasi-Static
time-series simulation,” in 2017 IEEE Power Energy Society General Meeting, 2017, pp. 1—
5.

[48] R. Hunsberger and B. Mather, “Monte Carlo Based Method for Parallelizing Quasi-Static-
Time-Series Simulations,” /IEEE Int Conf Prob Methods Appl Pwr Sys, 2018.

[49] D. Montenegro, J. Gonzalez, and R. Dugan, “Multi-rate control mode for maintaining fidelity
in Quasi-Static-Time-Simulations,” in 2017 IEEE Workshop on Power Electronics and
Power Quality Applications (PEPQA), 2017, pp. 1-5.

[50] B. Mather, “Fast Determination of Distribution-Connected PV Impacts Using a Variable
Time-Step Quasi-Static Time-Series Approach,” IEEE Photovolt. Spec. Conf., 2017.

[51] M. J. Reno and B. Mather, “Variable Time-Step Implementation for Rapid Quasi-Static
Time-Series (QSTS) Simulations of Distributed PV,” IEEE Photovolt. Spec. Conf., 2018.

[52] M. U. Qureshi, S. Grijalva, and M. J. Reno, “A Fast Quasi-Static Time Series Simulation
Method for PV Smart Inverters with Var Control Using Linear Sensitivity Model,” IEEE
Photovolt. Spec. Conf., 2018.

[53] X. Zhang, S. Grijalva, M. J. Reno, J. Deboever, and R. J. Broderick, “A Fast Quasi-Static
Time Series (QSTS) Simulation Method for PV Impact Studies Using Voltage Sensitivities
of Controllable Elements,” IEEE Photovolt. Spec. Conf., 2017.

[54] J. Deboever, S. Grijalva, M. J. Reno, and R. J. Broderick, “Fast Quasi-Static Time-Series
(QSTS) for Yearlong PV Impact Studies Using Vector Quantization,” Sol. Energy, 2018.

[55] J. Deboever, S. Grijalva, M. J. Reno, X. Zhang, and R. J. Broderick, “Scalability of the Vector
Quantization Approach for Fast QSTS Simulation for PV Impact Studies,” IEEE Photovolt.
Spec. Conf., 2017.

[56] J. Deboever, S. Grijalva, M. J. Reno, and R. J. Broderick, “Algorithms to Effectively
Quantize Scenarios for PV Impact Analysis using QSTS Simulation,” IEEE Photovolt. Spec.
Conf., 2018.

[57] B. Li, B. Mather, J. Deboever, and M. J. Reno, “Fast QSTS for Disributed PV Impact Studies
using Vector Quantization and Variable Time-Steps,” IEEE Innov. Smart Grid Technol.
ISGT, 2018.

[58] T. S. Madhulatha, “An Overview on Clustering Methods,” IOSR J. Eng., vol. 2, no. 4, pp.
719-725, 2012.

59

[59] H. Yu, T. Xie, S. Paszczynski, and B. M. Wilamowski, “Advantages of Radial Basis Function
Networks for Dynamic System Design,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp.
5438-5450, 2011.

[60] P. Baldi, “Autoencoders, Unsupervised Learning, and Deep Architectures,” JMLR Workshop
Unsupervised Transf. Learn., 2012.

[61] C. Doersch, “Tutorial on Variational Autoencoders,” ArXivIi60605908 Cs Stat, Jun. 2016.

[62] 1. J. Goodfellow and et al., “Generative Adversarial Networks,” Adv. Neural Inf. Process.
Syst., 2014.

[63] M. J. Reno, J. A. Azzolini, and B. Mather, “Variable Time-Step Implementation for Rapid
Quasi-Static Time-Series (QSTS) Simulations of Distributed PV,” IEEE Photovoltaic
Specialists Conference (PVSC), 2018.

60

— ek

MS1033
MS1033
MS1140
MS1140

MS0899

DISTRIBUTION

Robert J. Broderick
Abraham Ellis
Logan Blakely
Matthew J. Reno

Technical Library

61

8812
8812
8813
8813

9536 (electronic copy)

@ Sandia National Laboratories

