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Abstract

We consider the task of low-multilinear-rank functional regression, i.e., learning a low-rank parametric
representation of functions from scattered real-valued data. Our first contribution is the development
and analysis of gradient-based optimization procedures, including stochastic gradient descent and quasi-
Newton methods, for learning the parameters of a functional tensor-train (FT) that yields improved
accuracy over standard alternating least squares methods. The functional tensor-train uses the tensor-
train (TT) representation of low-rank arrays as an ansatz for a class of low-multilinear-rank functions.
The FT is represented by a set of matrix-valued functions that contain a set of univariate functions,
and the regression task is to learn the parameters of these univariate functions. Our second contribution
demonstrates that using nonlinearly parameterized univariate functions, e.g., symmetric kernels with
moving centers, within each core can outperform the standard approach of using a linear expansion
of basis functions. Our final contributions are new rank adaptation and group-sparsity regularization
procedures to minimize overfitting. We use several benchmark problems to demonstrate at least an order
of magnitude lower accuracy with gradient-based optimization methods than ALS in the low-sample
number regime. We also demonstrate an order of magnitude reduction in accuracy on a test problem
resulting from nonlinear parameterizations over linear parameterizations. Finally we compare regression
performance with 22 other nonparametric and parametric regression methods on 10 real-world data sets.
We achieve top-five accuracy for seven of the data sets and best accuracy for two of the data sets.
These rankings are the best amongst parametric models and competetive with the best non-parametric
methods.

Keywords. Tensors, Regression, Function Approximation, Alternating Least Squares, Stochastic Gradi-
ent Descent

1 Introduction

Assesment of uncertainty in a computational model is essential to increasing the credibility of simulation
based knowledge discovery, prediction and design. Sources of model uncertainty must be identified and the
effect of these uncertainties on the model output (prediction) quantified. The accuracy to which uncertainty
can be quantified is limited by the computational resources available to simulations that solve these governing
equations. Many applications require vast amounts of computational effort, thereby limiting the number
model evaluations that can be used to interrogate the uncertainty in the system behavior. Consequently a
significant portion of methods developed for uncertainty quantification (UQ) in recent years have focused on
constructing surrogates of expensive simulation models using only a limited number of model evaluations.

Within the computational science community, both parametric and non-parametric function approxima-
tion methods have been extensively used for Uncertainty Quantification (UQ). Non parametric Gaussian
process models (GP) [Rasmussen and Williams, |2006, (O’Hagan and Kingman)| 1978] and parametric Poly-
nomial Chaos Expansions (PCE) [Ghanem and Spanos, 1991} Xiu and Karniadakis, 2002] are arguably the
two most popular methods used. Gaussian process regression can be interpreted as a Bayesian method for
function approximation, providing a posterior probability distribution over functions.
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Polynomial chaos expansions represent a response surface as a linear combination of orthonormal multi-
variate polynomials. The choice of the orthonormal polynomials is related to the distribution of the uncertain
model variables. Various approaches have been adopted to compute the coefficients of the PCE basis. Ap-
proaches include, pseudo-spectral projection |[Conrad and Marzouk] 2013| (Constantine et all 2012], sparse
grid interpolation |Ganapathysubramanian and Zabaras| [2007], Nobile et al.| [2008|, and regression using £1-
minimization [Blatman and Sudret| 2011, Doostan and Owhadi, [2011} [Mathelin and Gallivan, 2012]. For a
comparison between nonparametric GP methods and parametric PCE methods see, e.g., |[Gorodetsky and|
2016], and for an attempt to combine the benefits of both approaches see [Schobi et al., [2015].

High-dimensional approximation problems, such as regression, pose challenges for both parametric and
nonparametric representation formats. Parametric approaches, for example those using a PCE representa-
tion, are limited by their expressivity; and increasing expressivity, for example by increasing the polynomial
order, results in the curse of dimensionality for fixed polynomial order.

Nonparametric methods, for example Gaussian process regression, have great expressive capabilities.
However, they also encounter the curse of dimensionality since their excess risk grows exponentially with
dimension |Gyorfi et al., 2002].

To counteract these computational burdens for both types of methods, attention has focused on constrain-
ing the functional representation to limit the curse of dimensionality. One popular constraint is limiting the
model to that of additive separable forms [Hastie and Tibshirani, 1990, [Meier et al., 2009, [Ravikumar et al.

2008

f(x) = fi(xr) + fa(z2) + ... fa(za). (1)

Omne can also use second order interactions, e.g., fia(x1,z2), fi3(21,3),. .., to increase expressivity while
maintaining tractability [Kandasamy and Yul 2016]. However, further increasing the number of interaction
terms in the ANOVA model [Fisher, 1925

f(z) = Zfl(xz) + Z fij(zi,zj) + Z fiji(@i, xj,20) + -+
i i\j

.5,k

will still naturally encounter the curse of dimensionality unless adaptive methods that identify the order
of interaction interactively are utilized |Ganapathysubramanian and Zabaras|, 2007, Ma and Zabaras|, 2010}
[Foo and Karniadakis, 2010, |Jakeman and Roberts, 2013, [Jakeman et al., |2015].
In this paper, we propose algorithms to improve regression in a functional representation that takes
advantage of low-rank structure to mitigate this curse of dimensionality while maintaining high expressivity.
Low-rank functional representations are parametric models that enable a wide variety of interactions between
variables and can generate high order representations. More specifically, they are continuous analogues of
tensor decompositions and exploit separability, i.e., that a function can be represented by the sum of products
of univariate functions. One example is the canonical polyadic (CP) |Carroll and Chang, 1970] representation

consisting of a sum of products of univariate functions f(z) = Zf;l fll) (1)... fy)(xd), and the number of
free parameters of such a representation scales linearly with dimension. Instead of the CP format, we use a
continuous analogue of the discrete tensor train (TT) decomposition called the functional
tensor-train (FT) |Oseledets, [2013| |Gorodetsky et al. 2016] to allow for a greater number of interactions
between variables.

Low-rank functional tensor decompositions have been used for regression previously. Existing approaches
[Doostan et al., 2013, Mathelin| [2014, |Chevreuil et all 2015, [Rauhut et al., 2017] implicitely make two
simplifying assumptions to facilitate the use of certain algorithms and data structures from the low-rank
tensor decomposition literature. Specifically, they assume linear and identical basis expansions for each
univariate function of a particular dimension. These approaches convert the problem from one of determining
a low-rank function to one of representing the coefficients of a tensor-product basis as a low-rank tensor.

Following this conversion, many of these techniques use alternating minimization to determine the co-
efficients of the FT. Alternating minimization, such as alternating least squares, transforms a nonlinear
optimization problem for fitting the parameters of each univariate function to data into a linear problem by
only considering a single dimension at a time. Existing approaches either use efficient linear algebra routines
to solve the linear system at each iteration [Doostan et al., 2013] or sparsity inducing methods such as the
LASSO . Recentlym iterative thresholding has also been used to find low rank coefficients;
however, such an approach has been limited to problems with low-dimensionality [Rauhut et al., 2017].
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In this paper we take a different approach: we use gradient-based optimization procedures such as quasi-
Newton methods and stochastic gradient descent, and we do not restrict ourselves by the assumptions that
lead to the consideration of a tensor of coefficients. Overally, our contributions include:

1. Derivation and computational complexity analysis of a gradient-based fitting procedure that yields
more accurate approximations than alternating minimization

2. Usage of both linear and nonlinear parameterizations of univariate function in each mode to facilitate
a larger class of functions than is possible when using solely linear representations, and

3. Creation of rank-adaptation and regularization schemes to reduce overfitting.

Our results suggest that gradient-based optimization provides signficant advantages in terms of approxima-
tion error, and that these advantages are especially apparent in the case of small amounts of data and large
parameter sizes. To our knowledge, no gradient based procedure has been derived or evaluated for the low-
rank functional format that we consider. We also show the benefits of nonlinear representations of univariate
functions over linear representations. While almost all literature on low-rank functional decomposition thus
far has used only linear parameterizations, our results suggest a new area for further research.

Finally, we demonstrate our results on both synthetic functions and on several real-world data sets. We
demonstrate an order of magnitude lower accuracy with gradient-based optimization methods than ALS in
the low-sample number regime. We also demonstrate an order of magnitude reduction in accuracy on a
test problem resulting from nonlinear parameterizations over linear parameterizations. Our real-world data
results show that our methodology is competitive with both nonparametric and parametric algorithms. We
achieve top-five accuracy for seven of the data sets and best accuracy for two of the data sets. These rankings
are the best amongst parametric models and competetive with the best non-parametric methods.

1.1 Related Work

As mentioned above, the functional tensor-train decomposition was proposed as an ansatz for representing
functions by [2013], and computational routines for compressing a function into FT format have
been developed before [Gorodetsky et all,[2016]. In that setting, an approximation of a black-box function is
sought to a prescribed accuracy. A sampling procedure and associated algorithm was designed to optimally
evaluate the function in order to obtain an FT representation. In this work, we consider the setting of fixed
data.

There has also been some recent work on regression in low-rank format [Doostan et all, 2013 Mathelin|,
[2014] |Chevreuil et al., 2015]. These approaches rely on linearity between the parameters of the low-rank
format and the output of the function. Utilizing this relationship, they convert the low-rank function ap-
proximation to one of low-rank tensor decomposition for the coefficients of a tensor-product basis. In Section
we show how the representation presented in those works can be obtained as a particular instantiation
of the formulation we present here.

In spirit, our approach is also similar to the recent use of the tensor-train decomposition within fully
connected neural networks [Novikov et al., 2015]. There, the layers of a neural network are assumed to be
a linear transformation of an input vector, and the weight matrix of the transformation is estimated from
data. Their contribution is representing the weight matrix in a compressed T'T-format. In this work, our
low-rank format can be thought of as an alternative to the linear transformation layer of a neural network.
Indeed, future work can focus on utilizing our proposed methodology within the layers of a neural network.

2 Background

In this section we establish notation and providing background for regression and low-rank tensor decompo-
sitions.

2.1 Notation

Let R be the set of real numbers and Z be the set of positive integers. Let n € Z, d € Z, and suppose

that we are given i.i.d. data (x(i),y(i))jzl such that each datum is sampled from a distribution p, on a
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compact space (x(i), y(i)) €XxYCRIxR. Let ¥ =X x --- x Xy be a tensor product space with X C R.
Let the marginal distribution of z = (x1,...,24) € X be the tensor product measure g, = gy, X -+ X fg,,
and assume that all integrals appearing in this paper are with respect to this measure. For example let
f:X—Yand g: X — Y, then the inner product is defined as (f,g) = [ f(z)g(x)dpu(z). Similarly, the Lo
norm is defined as || f||3 = (f, f).

In this paper scalars and scalar-valued functions are denoted by lowercase letters, vectors are denoted
by bold lower-case letters such as x,y; matrices are denoted with upper boldface such as X,Y; tensors are
denoted with upper boldface caligraphic letters such as X', Y; and matrix-valued functions are denoted by
upper caligraphic letters such as F,G. An ordered sequence of elements of the same set are distinguished by
parenthesized superscripts such as (¥ or y(®.

2.2 Supervised learning

The supervised learning tasks seeks a function f : X — ) that minimizes the average of a cost function
gr: XxY =R

JIf] = /X e dnta), (2)

For example, the standard least squares objective is specified with g¢(z,y) = (y — f(:zc))2 In this work, the
cost functional cannot be exactly calculated; instead, data (x(’), y(’))i:1 is used to estimate its value. The
cost functional then becomes a sum over the data instead of an integral

n

LS ()

where we have reused the notation J[f], and further references to J will use this definition. To obtain

an optimization problem over a finite set of variables, the search space of functions must be restricted.
Nonparametric representations generally allow this space to vary depending upon the data, and parameteric
representations typically fix the representation. In either case, we denote this space as .% to seek an optimal
function f* € % such that

2
)

3)

= arg min J(f]- (4)

One example of a common function space is the reproducing kernel Hilbert space, and resulting algorithms
using this space include Gaussian process regression or radial basis function interpolation. Other examples
include linear functions (resulting in linear regression) or polynomial functions. In this work, we consider a
function space that incorporate all functions that have a prescribed rank, which will be defined in the next
section.

When solving the supervised learning problem it is often useful to introduce a regularization term to
minimize overfitting. In this paper we will consider the following regularized learning problem

f*=arg Jl;réi; JUf]+ AQf], (5)

where A € R, denotes a scaling factor and €2 : .# — R, is a functional that penalizes certain functions
in &#. For example, the function Q(f) = ||f||2 penalizes functions that have large Lo norms, and such a
penalty has been used for a certain type of low-rank functional approximation before [Doostan et al.l [2013].
In this work, we impose a group sparsity type regularization that has been shown to improve the prediction
performance in other approximation settings [Turlach et all 2005, [Yuan and Lin| 2006]. Such an approach
seeks to increase parsimony by reducing the number of non-zero elements in an approximation. In Section
[41] we describe what this type of constrains means in the context of low-rank functional decompositions.

2.3 Low-rank tensor decompositions

The function space that we use to constrain our supervised learning problem is related to the concept
of low-rank decompositions of multiway arrays, or tensors. Tensor decompositions are multidimensional
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analogues of the matrix SVD and are used to mitigate the curse of dimensionality associated with storing
multivariate arrays [Kolda and Bader, [2009]. Consider an array with LA € RP1*"XPd_ this array contains an
exponentially growing number of elements as the dimension increases. Tensor decompositions can provide a
compact representation of the tensor and have found wide spread usage for data compression and learning
tasks [Cichocki et al., 2009, Novikov et al. [2015| [Yu and Lie| [2016].

In this work, we consider the tensor-train (TT) decomposition |Oseledets . Specifically, we use the
TT as an ansatz for representating low-rank functions. A T'T representation of a tensor A is defined by a list
of 3-way arrays (A € RT’“*XP’“X”)Z:l called TT-cores where rg =rqg=1andrp, € Z, for k=2,...,d— 1.
The sizes of the cores (rk)zzo are called the TT-ranks. In this format a tensor element is obtained according
to the following multiplication

Aliy, o, ... iq) = Ai[ir)Azlia] - - - Aglia), 1< i < py for all k, (6)

where Ay[ig] € R™—1%"+ are matrices and the above equation describes a sequence of matrix multiplication.

In this format, storage complexity scales linearly with dimension and quadratically with TT-rank. This
tensor representation not only mitigates the curse of dimensionality but, unlike the canonical representation,
also provides a well posed representation format. In the next section we discuss how it can be used as a
framework for function approximation.

3 Low-rank functions

Low-rank formats for functions can be thought of as direct analogues to low-rank tensor decompositions.
In this work, we focus on aa TT-like decomposition of functions called the functional tensor-train (FT)

[Oseledets, [2013].
T0 T1 . . .
flaves, oz =) Y Z FE @) 5 (22) £ (2a), (7)

10 17,1— Zd 1

where f,gij ) X — R, and rg = rq = 1 for single-output functions. A more compact expression is obtained
by viewing a function value as a set of products of matrix-valued functions

f(.Tl,IL‘Q,...,IZTd) :fl(xl)]-}(xg)...fd(xd), (8)

where each matrix-valued function Fy : X — R™-1*"* ig called a core and can be visualized as an array of
the univariate functions an (1)
11 1
w (k) o ()

Fi(zy) = : : . 9)
) B ()

If each univariate function is represented with p parameters and r; < r for all k, then the storage complexity
scales as O(dpr?). Comparing this representation with @ we see a very close resemblence between the TT
cores and the FT cores. Indeed they are both matrices when indexed by a discrete index i, for the TT or a
continuous index xj, for the FT. We describe a closer relationship between the TT and the FT in the context
of low-rank representations of functions in the next section.

3.1 Parameterizations of low-rank functions

An FT core is comprised of d sets of univariate functions as shown in Figure [l Each set of univariate
functions, contains all of the parameters of the associated univariate functions. As a result the full FT is
parameterized through the parameterization of its univariate functions. Let pyi; € Z denote the number

of parameters descrlblng fk” ). Let @ denote the vector of parameters of all the univariate functions. Then,

there are a total of Zk Dy Zj 1 Prij parameters describing the FT, i.e., 8 € RP¢.
The parameter vector 6 is indexed by a multi-index a = (k, 7, j, £) where k =1,...,d corresponds to an
input variable, ¢ = 1,...,rx,_1 and 7 = 1,...,r; correspond to a univariate function Within the kth core,
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111 O112: O11r,: Oa11: Ogo1: Odrg_y1:

f(w1, 20, .., 2q) = Fi(wr) Fa(wa) - - - Faza)

Figure 1: Object-oriented hierarchy for storing low-rank functions. Parameters are represented by red squares
and functions are represented in blue.

and £ = 1,...,pg; corresponds to a specific parameter within that univariate function. In other words, we
adopt the convention that 8, = Oy;;¢ refers to the fth parameter of the univariate function in the ith row
and jth column of the kth core.

The additional flexibility of the FT representation allows both linear and nonlinear parameterizations
of univariate functions. A linear parameterization represents a univariate function as an expansion of basis
Pg Pkij

functions (qb,(jg) X — R)e ’ according to

=1

Pkij

D @130) = Orijedsid (). (10)
=1

Linear parameterizations are often convenient within the context of gradient-based optimization methods
since the gradient with respect to a parameter is independent of the parameter values. Thus, one only needs
to compute and store the evaluation of the basis functions a single time. Nonlinear parameterizations are
more flexible and general, but often incur a greater computational cost within optimization. One example
of a nonlinear parameterization is that of a Gaussian kernel, which can be written as

Drij/2

Iy 1 2
f]g J)(q;k; 0) = Z Hkijg exp (—02 (mk — Qkij(pkij/QH)) ) , (11)
=1

where o > 0 Here, the first pg;;/2 parameters refer to the coefficients of radial basis functions and that
second half of the parameters refer to the centers.

3.2 Low-rank functions vs. low-rank coefficients

The functional tensor train can be used by independently parameterizing the univariate functions of each
core, and both linear and nonlinear parameterizations are possible. As described below, the advantage
of this representation includes a naturally sparse storage scheme for the cores. Another advantage is the
availablitiy of efficient computational algorithms for multilinear algebra that can adapt the representation
of each univariate function individually as needed |Gorodetsky et al., 2016, |Gorodetskyl, 2017] in the spirit
of continuous computation pioneered by Chebfun [Platte and Trefethen) 2010].

Although the functional form of the tensor train is very powerful, most of the literature makes two
simplifying assumptions [Doostan et al., [2013} [Mathelin| {2014} |Chevreuil et al., 2015]:
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1. a linear parameterization of each f,gzj ), and

2. an identitical basis for the functions within each FT core, i.e., pr;; = pr and gb,(jg) = ¢y for all
i=1,...1p_1,7=1,...,rg,and £ =1,..., pg.

These assumptions transform the problem of learning low-rank functions to the problem of learning low-rank
coefficients. This transformation of the problem allows one to facilitate the use of discrete TT algorithms
and theory. We will refer to representations using these assumptions as a functional tensor-train with TT
coefficients or FT-c, where “c” stands for coefficients.

The FT-c representation stores the coefficients of a tensor-product basis ¢ for all k and £ in TT format.
Let Fj € R™-1XPe X"k he a tensor of the following form

Or11¢ . Ok1rye
Frl ] = , (12)
Okri1e © Okr_yrpe

for £ =1,...,pg. Function evaluations can be obtained from the from coefficients stored in TT format by

performing the the following summation

P1 Pd
flr, . wa) =D > Fal by Falsyla e, (1) - baey (Ta).- (13)
O=1  Lg=1

From , , and we can see that the relationship between the T'T cores F and the FT cores Fj is
Pk

Filww) =Y Frlso b one(ar), (14)
r=1

where the basis function multiplies every element of the tensor. In other words, the TT cores represent a
TT decomposition of the p; X py X - -+ X pg coefficient tensor of a tensor-product basis.

The two assumptions required for converting the problem from one of low-rank function approximation
to low-rank coefficient approximation often result in a computational burden in practice. The burden of the
first assumption is clear, some functions are more compressible if nonlinear parameterizations are allowed.
The second assumption can also limit compressibility, but also results in a larger computational and storage
burden. One example in which this burden becomes obvious is when attempting to represent additively sep-
arable functions, e.g., Equation , in the FT format. As mentioned in the introduction, this representation
is common for high-dimensional regression, and an F'T can represent this function using cores that fave the
following rank 2 structure.

f@1,22,. .. 2q) = [fi(21) 1] { fg(lxz) (1) } [ fd(liﬂd) ] -

Suppose that each of the univariate functions can be represented with py parameters and the constants 0
and 1 can be stored with a single parameter. Then, the storage requirement is py + 3 parameters for the d —2
middle cores and py, + 1 for the outer cores, totaling (p;; + 3)d — 4 floating point values. In the TT case,
the 0 and 1 terms must be stored with the same complexity as the other terms, since the TT is a three-way
array. Thus, the total number of parameters becomes 4pi(d — 2). Almost four times less storage is required
for the FT format than the TT format, in the limit of large py and d. Essentially, the TT format does take
into account the sparsity of the cores. In this case, one can think of the FT format as storing the TT cores
in a sparse format. This burden is exacerbated if we add interaction terms to Equation

4 Low-rank supervised learning

In this section, we incorporate the FT model as a constraint in the supervised learning task. We discuss
issues surrounding optimization algorithms, regularization, and choosing the TT-ranks. In particular we
discuss three optimization algorithms for fitting fixed-rank models: batch gradient descent, alternating least
squares, and stochastic gradient descent. We also present approaches for minimizing over-fitting. Specifically
we discuss a group-sparsity-inducing regularization regularization scheme and hyper-parameter estimation
scheme using cross validation and a rank-adapation.
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4.1 Low-rank constraints and regularization

The function space .# in Equation constrains the search space. The space constrained by low-rank
functions .%, is defined as follows. Let r = [1,71,...,74—1, 1] such that r; € Z; fori=1,...,d — 1. Then

f = ]:1<.’L‘1)]:2<$2> .. .fd(xd)
Fi: X — R

Fi: X o Rre—1%m% 9 < | < d
Fa: X3 — Rra-1x1

b
|

f:X—=R

denotes the space of functions with FT ranks r. Note that this function space also includes functions with

smaller ranks. For example, a function that differs in ranks 71,7, such that #; < r; and 75 < 79 can
be obtained by setting all univariate functions, aside from the top left 71 x 73 block, to zero; analogous
modifications must be made to all other cores.

In this paper we also add a regularization to attempt to minimize the number of nonzero functions
in each core. The structure of the FT-cores in Equation @D admits a natural grouping in terms of the
univariate functions. Setting a univariate function to zero inside of a core essentially lowers the number of
interactions allowable between univariate functions in neighbouring dimensions, with the overall effect beign
a smaller number of sums in the representation of the function in Equation . Minimizes the number of
nonzero univariate functions not only produces a more parsimonious model, but also minimizes the number
of interactions between function variables.

Specifically, we penalize the regression problem using the sum of the norms of the univariate functions

d Tk—1 Tk

a1 =33 S (15)

k=1 i=1 j=1

Note that this regularization method is different from that first proposed in where the FT-c

representation was used and the TT-cores of the coefficient tensor themselves were forced to be sparse. In
our case we do not look for sparse coefficients, instead our goal is to increase the number of functions that are
identically zero. As a surrogate for this goal we follow the standard practice of replacing the non-differential
“Lo” norm by the another norm, in our case a sum of the norms of the functions. This replacement also
seeks to directly minimize the number of interacting univariate functions and also provides a differentiable
objective for optimization.

4.2 Hyper-parameter estimation using cross validation and rank adaptation

A careful selection of the number of parameters py;; in each univariate function, the rank rj of each core,
and the Lagrangian multiplier A in the regularized learning problem is required to avoid over fitting. For
example if a polynomial basis is chosen, setting the degree too high can result in spurious oscillations. Cross
validation provides a mechanism to estimate hyper-parameters. In this paper we use 20 fold cross validation
to select the hyper-parameters of an FT that minimizes the expected prediction error.

Alternatively, we can design a more effective rank adaptation scheme by combining cross validation with a
rounding procedure. The problem with the simplest cross validation option is that a scheme that optimizes
separately over each 7 imposes a computational burden, and a scheme that optimizes for a single rank
across all cores, i.e., r, = r does not allow enough flexibility. Instead, we propose to combine FT rounding
|Gorodetsky et al.| 2016] and cross validation to avoid overfitting.

Rounding is a procedure to reapproximate an FT by one with lower ranks to a given tolerance. The
tolerance criterion can be thought of as a regularization term, since it limits the complexity of the represen-
tation and will be investigated in furture work. The full rank adaptation scheme is provided by Algorithm
In that algorithm cv(r) refers to a function that provides a cross-validation error for an optimization
over the space .%,, and the function rounding-rank(f,d) provides the ranks of a rounded function f with a
particular tolerance §.

The scheme increases ranks until either the cross-validation error increases or until the rounding proce-
dure decreases every rank. The first termination criterion targets overfitting, and the second termination
criterion seeks to limit rank growth when data is no longer informative enough to necessitate the increase in
expressivity.
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Algorithm 1 Rank adaptation

Require: Rounding tolerance §
1: r = ones(d + 1)
2: € = cv(r)
3: while not converged do
4: fork=1,...d—1do

5: T T+ 1

6: end for

7 r:[l,rl,...,rd_l,l]

8 é=cv(r)

9: if € > ¢ then

10: r=[1,r1 —1,...,7q-1 — 1,1]

11: break

12:  end if

13: e=¢

14: f= minfegr J(G)

5. [1,71,...,74_1,1] = rounding-rank(f,d)
16: if 7y <rpforall k=1,...,d—1 then
17: break

18: else

19: re, =7 fork=1,...,d—1

20:  end if

21: end while

4.3 Optimization algorithms

In this section, we overview three gradient-based optimization algorithms for solving supervised learning
problems in low-rank format: alternating minimization, gradient decent and stochastic gradient decent. The
computational complexity of these algorithms in analyzed in Section

4.3.1 Alternating minimization

Alternating minimization methods, mainly alternating least squares, are the main avenue for optimization in
low-rank tensor and functional contexts. These routines are typically used within tensor decompositions by
sequentially sweeping over dimensions and optimizing over parameters of a single dimension. Such approaches
are popular for compressing multiway arrays or for tensor completion problems [Savostyanov and Oseledets|
[2011}, |Grasedyck et al. 2015].

For the case of supervised learning, their usage is straightforward. The idea is to solve a sequence of
optimization problems, where the functional space %, is further constrained by fixing all-but-one FT core, Fy.
After optimizing over the kth core, that core is fixed and optimization over the next one is performed. This
algorithm is provided by Algorithm[2} This algorithm performs sweeps over all dimensions until convergence
is obtained. For details on convergence of this algorithm we refer to, e.g.,[Uschmajew| [2012]. We will provide
more details about the implementation and complexity of this algorithm in Section [f]

4.3.2 Batch gradient methods

Gradient descent directly minimizes the cost function J(€) with a batch gradient (or second-order) based
procedure. While this is a standard optimization approach, we will refer to this algorithm as all-at-once
(AAO) to distinguish it from the alternating minimization. Gradient-based procedures have been shown to
be promising in the context of canonical tensor decompositions and gradient descent [Acar et al., 2011] and
TT decompositions in the context of iterative thresholding [Rauhut et al.,|2017], but have not been explored
well for low-rank functional approximation.

Gradient descent updates parameters according to

0 0-—nvJ®),
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Algorithm 2 Alternating minimization for low-rank supervised learning

Require: Parameterized low-rank function space, .%; Initial FT cores F, for & = 1,...,d; Data,
(x(i),y(i))ll; Objective function, J; Convergence tolerence, €
1: =0
2 fO =F ... Fy
3: while not converged do
4: fork=1,...ddo
5: Fi = argmin J[Fy - - - fk_lﬁkfk+1 - Fd

Fr
6: end for
7. fUtD = F o Ry
g if ||f0+) — fO)] <€ then
9: break;
10: end if
11: i=14+1

12: end while

for n > 0. More generally, we use a quasi-Newton method to choose a direction p such that the update
becomes
0<+—6—np

In the examples in Section [6] we use the limited-memory BFGS [Liu and Nocedal, [1989] method available
in the C? libraryl] to perform this update.

One disadvantage of this approach that is often cited is that it involves solving an optimization problem
whose size is the number of parameters in the function. However, we note that the number of parameters
scales as O(dr?p), so for a one hundred dimensional, rank 5 problem with Prij = p = 5 we have ~ 12500
unknowns. This number of unknowns is well within the capabilities of modern hardware and optimization
techniques.

4.3.3 Stochastic gradient descent

Stochastic gradient descent (SGD) is often used instead of gradient decent when using large data sets. SGD
aims to minimize objective functions of the form

J6] = go(a,y),
i=1

which includes the least-squares objective . The objective function is updated using only one data point
(batches can also be used), which is chosen randomly at each iteration

0 < 0 —nVge(z™,y"), (16)

Many variations on stochastic gradient descent have been developed. We refer the reader to
for more information. These variations often include adaptive strategies for choosing the learning rate
7. Such methods have previous been applied in the context of tensors to minimize computation costs when
dealing with large scale data [Huang et al., [2015].

We will use the adaptive strategy from ADAM [Diederik and Jimmy, 2014], as implemented in the C?
library, to demonstrated the effectiveness of SGD in Section [6}

5 Gradient computation and analysis

The evaluation of the gradients of the F'T with respect to its parameters is essential for the making gradient-
based optimization algorithms tractable. Almost all existing literature for tensor approximation uses alter-
nating minimization strategies because the subproblems are convex and can be solved exactly and efficiently

Lgithub.com/goroda/Compressed-Continuous-Computation
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with standard linear algebra algorithms, though they have limitied (if any) guarantees for obtaining a good
minimizer of the full problem. One of the major contributions of this paper is the derivation and analysis of
the computational complexity of computing gradients of the supervised learning objective .

The gradient of the least squares objective function with respect to a parameter is

where a = (k, 4, j,¢) denotes a multi-index for a unique parameter of the kth core, see Section Efficient
computation of the partial derivative, %ﬁe) is essential for making gradient based optimization algorithms

tractable. Letting

Fear(rar) = Fi(z1) - Fr-1(xp-1), and (18)
For(T>k) = Frp1(Tpt1) - Fa(@a). (19)

denote the products of the cores before and after the kth, respectively, and combining Equations , ,
and we obtain the following expression

0af(e) = O _ £\ (o ) aFion) Forlsn), (20)
[e %
Thus efficiently computing gradients of the objective function and the FT requires efficient algorithms for
evaluation of the left and right product cores Foi(x<x) and Fsp(z>g) and the partial derivative O Fk (2 ).
In the following sections we describe and analyze the gradient of the FT with respect to its parameters.
We first describe the partial derivatives of an F'T with respect to the parameters of a single core. Then we
present an efficient algorithm for computing left and right product cores. Finally, we discuss the computation
of gradients of the full FT and the objective function.

5.1 Derivatives of an FT core
In this section we discuss how to obtain the partial derivatives with respect to parameters of a specific core.
Without loss of generality , we will make the following assumption to ease the notational burden

Assumption 1. Fach univariate function in each FT-core @D 1s independently parameterized with p pa-
rameters so that the FT core Fy, is parameterized with ri,_1rip parameters.

Under this assumption the FT cores have the following structure.
Bfk(z) a]:k (2)

Proposition 1. Let Ggiji € R™-1*" denote the partial derivative =55~ = 50, for some z € Xy. Under
o ij
Assumptionm, Gyiji 15 a sparse matriz with the following elements
f\ (wx) foa=ifB=j
Gla,f|={ “om. doe=if=] (21)
0 otherwise

fora=1....rx_1, and B =1,...7.

Now if we let G(p) denote the number of operations required to compute the gradient of a univariate
function with respect to all of its parameters then the cost of computing 0 Fk(zi) is O (G(p)rg—17x)
operations.

5.2 Evaluating left and right product cores

Computation of the partial derivative of the FT requires the evaluation of the left and right product
cores Fep(x<k) and Fsp(zsg). A single forward and backward sweep the cores can be used to obtain these
values using the following recursion identities

Farr1(@<rrr) = Fap(rar) Fr(rg)  and  Fopo1(@sp—1) = Fr(wp) For(r<i)-
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Algorithm 3 coregrad-left: Generate intermediate result for gradient computation

Require: Number of rows, r;_1; Number of columns r;; Number of parameters per univariate function p;
FT core Fi; Left multiplier a
1: fori=1,...74,_1 do

2 for j=1,...r, do
3 forézl,...,p(?o)
ij
4 O friji = ali] 78]059,6;?)
5: end for
6 end for
7: end for

Algorithm 4 coregrad-right: Update intermediate gradient result with multiplier from the right

Require: Number of rows, rp_1; Number of columns r;; Number of parameters per univariate function p;
Intermediate result 0 fi;;;; Right multiplier c
1: fori=1,...r,_1 do

2. forj=1,...r, do

3 for/=1,...,pdo
4: O frije = Ofrijecls]
5: end for

6 end for

7: end for

Thus we can obtain the gradient of the FT with respect to parameters of the kth core using the Algorithms
Bl and @

These two algorithms consist of a triple nested loop. The innermost loop of coregrad-left requires
computing the gradient of a univariate function with respect to its parameters, and multipling each element
of the gradient by the left multiplier. Thus if r, < r then O(G(p)r?) operations are needed for the gradient
and O(pr?) products between floating point operations are needed. Finally, the partial derivative with
respect to each parameter of the core is stored with a complexity of O(pr?) floating point numbers. Each of
these partial derivatives is updated in coregrad-right for a computational cost of O(pr?) and no additional
storage. Since each of these functions is called d times, the additional computational cost they incur is
O(dr*(G(p) + p)) and the additional storage complexity they incur is O(dpr?).

5.3 Gradient of FT and objective functions

Th entire gradient of the FT can be obtained with a single forward and backward sweep as presented in
Algorithm[5} In Algorithm[5we use O frq, to denote the partial derivative of f with respect to the parameters
of the kth core. Each step of the forward sweep requires: (i) creating an intermediate result for the gradient
of the FT with respect to each parameter of the core in line 4 of Algorithm |3} (ii) evaluating and storing
the core of the FT in line [6{ of Algorithm [5, and (iii) updating the product of the cores through the current
step in linelﬂ of Algorithm [5)). The backward sweep involves involves updating the the intermediate gradient
result obtained from the forward sweep (line |4 in Algorithm , and then updating the product of the cores
in line [T4] of Algorithm

Proposition 2. Let f : X > R be a rankr = [1 r1...rq_1 1] FT with every univariate function in Equation
©). Assume Assumption [1 and that for k = 1,...,d — 1 we have v, < r for some r € Zy. Let E(p)
denote the number of operations required to evaluate a univariate function. Let G(p) denote the number of
operations required to compute the gradient of a univariate function with respect to all of its parameters.
Then, evaluating f(x;0) and computing the gradient O f(x; @) with respect to its parameters requires

O (dr* (G(p) + E(p) +p))

operations, and storing O(dpr?) floating point values.
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Algorithm 5 FT evaluation and gradient

Require: Parameters 6; Evaluation location © = (z1,z2,...,24) € X
1: {Generate intermediate results during forward sweep}
2:a=F (1‘1)

3: Of1a, = coregrad-left(rg,r1,p, Fi1,a)

4: for k=2,...,d do

5. Ofka, = coregrad-left(ry_1,7k, D, Fk,a)
6 Fi. = F (l‘k)

7 a <+ aFy

8: end for

9: f(z;0) = a[l] {Evaluation of the FT}

10: {Update intermediate results during backward sweep}

11: c =Fy4

12: fork=d—-1,...,2 do

13:  Ofke,, = coregrad-right(rk—1,7k, D, Ofkay,C)

14: c+ Fic

15: end for

16: Of1a, = coregrad-right(ro,r1,D, fie,,C)

Proof To demonstrate this result, we can calculate the number of evaluations and storage size required
for each step of Algorithm [} First note that Lines[2]and [6]involve the evaluation of each FT core. Since each
core has at most r? univariate functions these evaluations require E(p)r? operations and the ability to store
r2 floating point numbers. Since this evaluation has to happend for each of the d cores the computational
complexity of this step is dE(p)r?. The storage space can be reused and only requires storing two vectors
of size r x 1 (a) and an r x r matrix (Fj) for a total storage complexity of O(r? +r) = O(r?) floating point
numbers. Next we note that a product between a 1 X r vector and an 7 X r matrix in lines [7] and [I4] needs to
occur 2d times and therefore requires O(dr?) operations. Thus apart from the calls to coregrad-left and
coregrad-right we have a computational complexity of O(dE(p)r?) and a storage complexity of O(r?).

Combining these costs with the cost of the coregrad algorthims presented in Section [5.2]obtain the stated
result. O

The values G(p) and E(p) are dependent upon the types of parameterizations of univariate functions.
Consider two examples: one linear and one nonlinear. For both parameterizations we consider kernel basis
functions; however, for the nonlinear parameterization we will consider the centers of each kernel as free

parameters. The linear parameterization is given by Equation with (;Sgg)(xk) = exp (—% (zg — Ckg)2>,
where 0 € Ry and ¢iy € X are the centers of the kernel such that each univariate function of the kth
dimension is represented with as a sum of kernels with the same locations. If the evaluation of the exponential
takes a constant number of operations with respect to xj, then we have E(p) = O(p) and G(p) = O(p) because
the the gradient of the univariate function with respect to its £th parameter is

217 (21 6)
0010

This gradient is independent of any other parameters. In practice this means that it can be precomputed
at each location z;, and recalled at runtime. In such a case the storage increases to O(ndpr?) numbers if
each univariate function in each core has a different parameterization. If the univariate functions of each
core share the same parameterization then the additional storage cost is O(npd). In either case the online
cost becomes a simple lookup, i.e., G(p) = O(1).

The nonlinear parameterization provided in Equation is different because we are free to optimize
over the centers. In this case the gradient of each univariate function becomes The gradient with respect to
the second half of the parameters now depends on the parameter value

= exp (-;2 () — Cu)2> : (22)

.. 2
6f,§”)(xk; 6) Orije exp (—# (2 = Okij(pns, /24+0)) ) for 0 =1,...,p/2
i Z0kij(e—p/2) (T — Orije) exp (—% (zr — ije)2> for t=p/2+1,...,p
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Table 1: Computational complexity of all-at-once optimization.

| Parameterization type Offline cost/storage Eval. and grad. (S) Full solution |
Shared/linear O(ndG(p)) / O(ndp) O(ndr? (E(p) + p)) O(Nopt,Ar05)
General /linear O(ndr?G(p)) /| O(ndr?p) O(ndr? (E(p) + p)) O(Nopt,440595)
nonlinear N/A O (ndr® (G(p) + E(p) +p))  O(Nopt,a405)

Table 2: Computational complexity of stochastic gradient descent with ADAM.

] Parameterization type Offline cost/storage Eval. and grad. per sample (S) Full solution \
Shared/linear O(ndG(p)) / O(ndp) O(dr* (E(p) + p)) NepochnS
General/linear O(ndr2G(p)) /| O(ndr?p) O(dr? (E(p) +p)) Nepoch S
nonlinear N/A O (dr* (G(p) + E(p) + p)) NepochnS

The parameter dependence of the gradient increases the complexity of optimization algorithms since pre-
computation of the gradients cannot be performed. In this case we have E(p) = O(p) and G(p) = O(p).

5.4 Summary of computational complexity

The complexity of evaluating the gradient of the least squares objective function

o 0 aa)) L

is dominated by the cost of this derivative is evaluating the gradient of f at n points. Consequently, the total
complexity is n times that provided by Proposition [2} for a total cost of O(ndr?(G(p) + E(p))) operations.
The storage cost need not increase because one can evaluate the sum by sequentially iterating through each
sample.

Now that we have described the computational complexity of the gradient computation, we summarize
the computational complexity of the proposed optimization algorithms. Table [1| shows the computational
complexity of the all-at-once optimization scheme when using a low-memory BFGS solver. Three param-
eterizations are considered a linear parameterization with identical parameterizations of each univariate
function in a particular core, a more general parameterization with varying linear parmaeterizations within
each core and, and the most general case of nonlinear parameterization of each function. We see that using
linear parameterizations allows us to precompute certain gradients before running the optimizer. This pre-
computation reduces the online cost of optimization. The computational complexity of the full solution is
dominated by the number of evaluations and gradients of the objective function, and we denote this number
as Nopt,AAO-

The computational cost of stochastic gradient descent is given in Table ] In this case the cost per
epoch (once through all of the training points) is the same as a single gradient evaluation in the all-at-
once approach. The total cost of such a scheme is dominated by how many samples are used during the
optimization procedures. In the associated table, we represent this number as the number of times one
requires iterating through all of the samples Nepochn. A fully online algorithm would not have any associated
offline cost and its complexity would be equivalent to the nonlinear parameterization case.

Finally, the alternating optimization scheme is of a slightly different nature. In the case of linear parame-
terization, each sub-optimization problem is quadratic and can be posed as solving a linear system by setting
the right hand side of Equation to zero. This linear system has n equations and pr? unknowns and its
solution, using a direct method, has an asymptotic complexity of O (np2r4). We also need to introduce a
new constant called Ngyweep that represents how many sweeps through all of the dimensions are required. We
see that in the most general case, this algorithm is Ngyeep times more expensive than all-at-once. However,
this number is a bit desceptive since each sub problem has only pr? unknowns and therefore we can assume
that Nopt,ars < Nopt,aao. In Table [3] we summarize the costs of this algorithm.

The summaries above were provided for the pure least squares regression problem. If we consider the
regularization term of Equation then an additional step must be performed. The gradient of the
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Table 3: Computational complexity of alternating (non)-linear least squares.

| Param type Offline cost/storage Solution of sub-problem (.5) Full solution |
Shared/linear O(ndG(p)) / O (ndp) O (np*r?) O (NsweepsdS)
General/linear O (ndrzG(p)) /O (ndrzp) @] np2T4) O (NgweepsdS)
nonlinear N/A @) (Nopt,ALSm‘2 (G(p)+ E(p) + p)) O (NsweepsdS)

functional Q[f] requires computing the gradient of each of the summands, which can be written as

. 2
ank |: ]gj) (xk?a ek’l“k_l’l‘klﬂ MR ek:’l"k_lTkp):| dxk‘

86k7'k,17';€l
8(”) ;er T )"'797‘ T 1j
2/ fk (xk UESTEL B kp) fk(;”)(xk; ekrk,lrkla ey akrk,ﬂ“kp)dxka
Xg 80}{)7‘16717%@

for £ = 1,...,p. In other words, to compute the gradient of every element in the sum in Equation ,
one computes the inner product between the original function and the function representing the partial
derivative of this function. In the case of linear parameterizations described above, the partial derivative is
simply a scalar and only the integral of the univariate function needs to be computed. Alternatively the full
inner product must be evaluated; however we note that the evaluation of this integral is often analytical or
available in closed form based upon the type of function. For example the cost is O(p) for orthonormal basis
functions and O(p?) more generally, to obtain the gradient with respect to every parameter of a univariate
function.

6 Experiments

In this section, we provide experimental validation of our approach. Our validation is performed on a
synthetic function, approximation benchmark problems, and several real-world data sets. The synthetic
examples are used to show the convergence of our approximations with increasing number of samples using
the various optimization approaches. We also include comparisons between both the nonlinear parameterized
FT and the linearly parameterized FT-c representations. Furthermore, we show the effectiveness of our rank
adaptation approach. The real-world data sets indicate the viability of FT-based regression for a wide variety
of application areas and indicates pervasiveness of low-rank structure.

6.1 Comparison of optimization strategies

We first compare the convergence, with the number of samples, of three optimization algorithms. We
use three synthetic test cases with known rank and parameterization. The first two functions are from a
commonly used benchmark database [Surjanovic and Bingham, 2017]. The third function is a FT-rank 2
function that is commonly used to demonstrate the performance of low-rank algorithms.

The first function is six dimensional and called the OTL circuit function. It is given by

(Vo1 +0.74)B(Re2 + 9) 11.35R; 0.74R¢B(Re2 +9)
B(Re2 +9) + Ry B(Reo +9)+Rf (B(Re2 +9)+Rf)Rcl’

f(Ry1, Roa, Ry, Rex, Rea, B) = (23)

with Vi = Rffggw and variable bounds Ry € [50, 150, Ry € [25,70], Ry € [0.5,3], Re1 € [1.2,2.5], Rea €
[0.25,1.2], and 3 € [50,300]. This function has a decaying spectrum due to the complicated sum of variables
in the denominators, and it provides and an important test problem for our proposed rank adaptation scheme.
Before exploring rank-adaptation first we explore the effectiveness of the three optimization algorithms in
the context of fixed rank r and number of univariate parameters p. Specifically we compute the relative
squared error, using 10000 validation samples, for increasing number of training samples. We use a stopping
criterion of 1073 for the difference between objective values for the gradient based techniques and for the

difference between functions of successive sweeps for ALS. Though we have found that the results for these
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Figure 2: Median, 25th, and 75th quantiles of relative error over 100 realizations of training samples for the

OTL Circuit (23).
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Figure 3: Median, 25th, and 75th quantiles of relative error over 100 realizations of training samples for the
Wing Weight function .

functions are not too sensitive to this tolerance. We solve 100 realizations of the optimization problem for
each sample size and report the median, 25th, and 75th quantiles. The univariate function are parameterized
using Legendre polynomials because we are using a domain with uniform measure.

Figure 2| demonstrates that stochastic gradient descent and the all-at-once approach tend to outperform
alternating least squares. This performance benefit is greater in regions of small sample sizes and large
number of unknowns (large » and p). In the case of the largest number of unknowns in Figure m our
gradient based methods obtain an error that is several orders of magnitude lower error than the error
obtained by ALS.

Next we consider two cases in which the rank is known. The wing weight function is ten dimensional and
given by

f(SuH quH A7A7 q, )\7t67NZa Wd97 Wp) =

A\ 100t
0'03650.758Wo.0035 o 0.006)\0.04 c
B e cos?(A) ! cos(A)

with variable bounds S,, € [150,200], Wy, € [220,300], A € [6,10], A € [-10,10], ¢ € [16,45], X € [0.5,1],
t. € [0.08,0.18], N, € [2.5,6], W4y € [1700,2500], W, € [0.025,0.08]. Using the variable ordering above
the rank of this function is r = 2. The results in Figure [3| indicate the same qualitative performance of the
three optimizaiton methods. However, the difference in this case is that the SGD is not significantly better
than all-at-once (AAQ) approach for low sample sizes. In the third panel we see that SGD levels off around
a relative squared error of 107, For such small errors we have found it difficult to converge the SGD to
smaller errors because of the tuning parameters involved in ADAM. In particular, the final error tolerance
becomes sensitive to the choice of initial learning rate.

—0.3
> (N, Way)** + S, W, (24)
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and four kernels with with optimized centers with rank r = 4. Median, 25th, and 75th quantiles are obtained
over 100 realizations of training data.

The final test function is six dimensional and commonly used for testing tensor approximation because
it has a TT-rank of 2 |Oseledets and Tyrtyshnikov} 2010], this function is a Sine of sums

6
f(a:)zsin(in), x; €[-1,1], i=1,...,6. (25)

In Figure |4 we also see that the gradient based approaches are more effective in the case of small number of
data sets, but that all achieve essentially the same minimums as the number of samples increase.

6.2 Linear vs nonlinear approximation

Next we compare the FT and FT-c representations with different basis functions. Specifically, using the OTL
function , we compare kernels at fixed locations and with kernels at optimized locations. For the linear
approximation we use 8 kernels with fixed centers, and for the nonlinear approximation we use 4 kernels with
moving centers (for a total of p = 8 for both approximation types). The results of this study are shown in
Figure 5| Using AAO optimization we see that, for this problem, the nonlinear parameterization of kernels
with moving centers provides a more effective representation. Specifically, we achieve an order of magnitude
reduction in error when using the nonlinear moving-center representation.
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Figure 6: Rank adaptation performance, polynomial order is fixed to eight. Median, 25th, and 75th quantiles
are obtained over 100 realizations of training data. The adaptive scheme follows the lowest-error-curve for
each of the sample size.

6.3 Rank adaptation

Since the OTL circuit function does not have finite rank, it is a good candidate for exploration of
our rank adaptation scheme. With this goal, we compare rank adaptation with three approximations with
varying fixed-rank, while fixing the polynomial order to eight. The results, shown in Figure [f] indicate the
desired behavior of the rank adaptation scheme, which follows the line of the best fixed-rank approximation.
In particular for low sample sizes the rank-2 approximation is the best fixed-rank approximation, and the
adaptive scheme shows approximately the same error. Once the sample size increases, the higher rank
approximations converge more quickly and the adaptive scheme is able to follow the best approximation.

6.4 Real-data performance

In this section we compare regression in the FT format on real-world data sets and with other regression
algorithms. In particular, we use 10 real-world data sets made available by [Kandasamy and Yul [2016] for
which a set of 22 algorithms, 19 nonparametric and 3 parametric, were compared. The three parametric
algorithms included a ridge regularized regression algorithm with linear basis functions, and two sparse regu-
larized algorithms LASSO and LAR. These data sets are sourced from a variety of sources and preprocessed
to normalize the inputs and outputs to zero mean and a standard deviation of one. To allow estimation of
prediction error, the authors randomly split each data set in half to generate a training sample set and a
separate validation set. The mean squared error

1 Mvalidation R ) . 2
- (1Y _ 4,
MSE= ) (Fa®)—y@)",

is calculated only over the validation set.

In addition to comparing the FT to the other algorithms, we also compare with a robust and effective
parameteric approximation scheme based on cross-validated LASSO. This scheme is able to use higher-order
polynomials and we have found it to perform better than the results reported in the paper. Let ® be a
Vandermonde-like matrix whose entries ®;; = ¢;(x;) are the j-th basis function evaluated at the i-th point,
then LASSO finds the basis coefficients that minimize

20|32 + A\rasso |01 (26)

We use least angle regression to solve the LASSO problem and use 10-fold cross validation to
choose the regularization parameter A, agso. We also use cross validation to simulatenously choose the degree
of the total-degree polynomial basis. Only degree-one and degree-two polynomial spaces were considered
because the size of the Vandermonde matrix in linear-parameteric representations grows exponentially with
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Table 4: Mean squared error on validation data for a subset of regression algorithms and data sets from
Kandasamy and Yu| [2016]. Only the algorithms which scored the best in at least one data set and the CV-
based LASSO are shown. The FT is in the last column and highlighted in blue. Bolded numbers indicate
the best performance for each data set and underlined numbers indicate a top five performance out of all 22
algorithms.

Dataset (d,n) SALSA nSVR RT GBRT MARS FT CVLASSO
Housing (12,256) 0.26241 0.38600 1.06015 0.42951 0.42379 0.32798 0.35218
Galaxy (20,2000) 0.00014 0.15798 0.02293 0.01405 0.00163 0.00056 0.00249

Skillcraft (18,1700) 0.54695 0.66311 1.08047 0.57273 0.54595 0.54434 0.56879
CCPP (59,2000) 0.06782 0.09449 1.04527 0.06181 0.08189 0.06631 0.06466
Speech (21,520) 0.02246 0.06994 0.05430 0.03515 0.01647 0.02684 0.03131
Music (90,1000) 0.62512 0.59399 1.45983 0.66652 0.88779 0.72094 0.64485

Telemonit (19,1000) 0.03473 0.05246 0.01375 0.04371 0.02400 0.04040 0.06487

Propulsion (15,200) 0.00881 0.00910 0.02341 0.00061 0.01290 0.00009 0.02660
Airfoil (40,750) 0.51756 0.55118 0.45249 0.34461 0.54552 0.46920 0.46444

Forestfires (10,211) 0.35301 0.43142 0.41531 0.26162 0.33891 0.39465 0.44175

dimension. Note that these examples highlight the fact that we can use expressive basis functions in high
high dimensions by exploiting low-rank structure. In other words, low-rank functional decompositions enable
more expressive parameterized approximation forms.

For the FT, we use a kernel basis and perform 20-fold cross validation to choose the number of kernels
p € {3,6,9}, the rank r € {1,2}, the kernel width parameters w € {1,2,4,6,8}, and the regularization
term A € {1072,1077}. The kernel width is chosen similarly to [Kandasamy and Yu, 2016] where we have
o = wn'/®4, and & denotes the standard deviation of the input data. Because we do not know the input
domains for this data, therefore we position the kernels according to the empirical marginal distribution the
data sets along each dimension. Specifically, we position the kernels at uniform quantiles of the data between
the 10th and 90th quantiles. Finally, we use the AAO optimization setup, and report the mean squared
errors on the testing data in Table 4] The FT is the best model for 2 data sets and in top five for seven data
sets, it is the only parametric model that scored the best on at least one data set. The FT also outperforms
the four other parametric models that use sparse regression or ridge regression.

Because these data sets come from a wide variety of application areas, these results indicate that low-rank
structure exists and is pervasive in a wide variety of regimes.

6.5 Application: modeling a propulsion plant on a naval vessel

In this section we consider a simulation of a gas turbine propulsion engine mounted on a naval Frigate as
detailed in |Coraddu et al.|[2014], and for which simulation data is made openly available through the UCI
Machine Learning Repository |Lichman| [2013]. The goal of the UQ problem is to predict the degradation
of the gas turbine based on certain parameters of its operation. According to |Coraddu et al.| [2014], the
model for the propulsion system is made of three components: the engine, the transmission gear, and the
propulsor. The model is described by a set of nonlinear differential equations.

This simulation has sixteen parameters as detailed in Table The output that we attempt to predict
using these simulation inputs is the gas turbine degradation coefficient that describes the gas flow rate
reduction factor over service hours.

We use the data provided through the UCI repository to compare our proposed low-rank regression
methodology to commonly used sparse regression algorithms. This data consists of 11934 instances of
parameters and outputs. We also noticed that as part of this data the GT compressor inlet temperature
and the GT compresser inlet air pressure did not vary, but we still included these variables in the regression
problem to check if our approaches are robust to such cases.

We use the CV-based LASSO scheme described above using a total order basis of up-to 4th order
polynomials and we use a rank adaptive low-rank regression scheme using the AAO approach. We also cross
validate for up to 4th order polynomials using 5-fold cross validation, and we limit the BFGS algorithm to
500 iterations. We perform regression for 20 realizations of training data. We consider training sample sizes
of 29,59,119, and 238 samples, and we validate on the remaining data.
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Table 5: Regression inputs to propulsion simulator from |Coraddu et al. [2014]. HP denotes high-pressure
and GT denotes gas turbine.

Variable Units
Lever position ()
Ship speed knot
Gas turbine shaft torque kN m
Gas turbine rate of revolutions r/min
Gas generator rate of revolutions r/min
Starboard propeller torque kN
Port propeller torque kN
HP turbine exit temperature C
GT compressor inlet air temperature C
GT compressor outlet air temperature C
HP turbine exit pressure bar
GT compressor inlet air pressure bar
GT compressor outlet air pressure bar
GT exhaust gas pressure bar
Turbine injection Control %
Fuel flow kg / s
|
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Figure 7: Comparison of rank adaptive low-rank regression with AAO optimization and CV LASSO on
simulated data from the gas turbine of a naval vessel propulsion plant from Coraddu et al.| [2014].

Figure [7] demonstrate that we are able to achieve several orders of magnitude reduction in MSE with the
low-rank approach as compare to the sparse regression approach for this problem. These results suggest that
high frequency interactions exist between the input parameters that are not captured using a total order
polynomial expansion. Indeed a full tensor product basis is needed, and that the coefficients of this tensor
product basis are low rank. Performing sparse regression with the full tensor product basis of 4th order
polynomials would have required solving for 5!¢ = O(10!!), or approximately 152 billion unknowns.

7 Conclusions

We have derived and analyzed the computational complexity of gradient based optimization for regression
in a low-rank functional tensor format, the functional tensor-train (FT). Our analysis is valid for both the
common FT-c variant, where a tensor-train of coefficients of a tensor product basis is used to represent the
function, and for the more general case where the FT is represented using a set of (non)linearly parameterized
univariate functions. Furthermore, we have proposed and demonstrated the effectiveness of both a rank-
adaptation scheme to prevent overfitting and nonlinear parameterizations of univariate functions to increase
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expressivity.

Our results indicate that full gradient-based approaches have significant accuracy advantages over the
standard practice of alternating least squares optimization. The accuracy of full gradient based schemes is
especially improved in the context of low sample sizes with respect to the number of free parameters. These
empirical findings hold true for both batch gradient optimization methods such as BFGS and stochastic
gradient descent methods such as ADAM. Furthermore, we have shown that low-rank approximation itself
is a promising model for general function approximation and machine learning. In particular, tests on 10
data sets from various application areas indicate that the FT is competetitive, and sometimes better than,
22 other commonly used algorithms.

There exists many directions for future research. The first direction is improving the performance for
noisy and/or small data through more effective regularization techniques. Here, we have incorporated a
basic group sparsity regularization term, but this area of research is actively being developed and can be
expanded into the multilinear context we consider here. Another direction for research is reducing the need
to cross validate over the number of parameters in each basis through more adaptive techniques that modify
the number of parameters on the fly.
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