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onventional representation of turbulent advecti
enhanced diffusion omits important physics

Constant-property equations of motion (Navier-Stokes equation, scalar transport equation):

u + u-vu=vVvVZ?u - (1p)Vp 0+ uU-vVo=xV?30

To obtain a turbulence model in 1D, apply the boundary-layer approximation and either

« average and replace v and k by v, and k. (usual: represents advection by diffusion)

or

 replace u -V by a different advection process (approach used here: no averaging)

Simple example:

For time-developing unforced flow, obtain the following alternative modeling
frameworks for the lateral (y) profile of streamwise velocity u and a passive scalar 0:

ut = Ve(y’t) uyy 6t = Ke(y’t) 6yy Pre (Or Sce) = Ve(y’t) /Ke(y’t)

u; = vu,, + ‘advection’ 0, = x0,, + ‘advection’ Pr (orSc)=v/x

Sandia neither framework is complete as written
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c properties of advection should be prese

Advection

« moves fluid parcels without intermixing their contents

e conserves energy, momentum, mass, species, etc.

« changes the separation of neighboring parcels gradually

Key to a 1D advection model:

For many purposes, it is not essential to
change the absolute fluid location gradually
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action is modeled as a sequence of triplet m
Ich preserve desired advection properties

The triplet map captures
compressive strain and
— rotational folding effects,
c(x)T and causes no property
discontinuities

The triplet map
is implemented
T | numerically as
C(X)T T AN a permutation
- “x  This procedure AT of fluid cells (or
emulates the o on an adaptive
effect of a 3D mesh)
Y eddy on property
profiles along a
— | line of sight
c(x) T__/ /\

N
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re are different ways to specify the 1
"~ map sequence during a simulation ‘

e Linear-Eddy Model (LEM): Map occurrences and properties
(size, location) are sampled from fixed distributions

— Parameters determining these assignments based on the
turbulent flow state at each location must be provided as input

— LEM evolves scalar profiles but not velocity, hence is a turbulent
mixing model, not a turbulence model

e One-Dimensional Turbulence (ODT): Eddy sampling is based
on the flow state evolved by the model

— After parameter adjustment, ODT predicts turbulence evolution
— The required input is the flow configuration (ICs, BCs)

* |n either model, the eddies (instantaneous maps) punctuate
continuous-in-time advancement of molecular-diffusive
transport, chemistry, etc. For example:

u=vu,, +'eddies’ 0= «0,, + ‘eddies’
) dtona ODT only LEM or ODT
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DT, the triplet map amplifies shear, inducin
dy cascade (feedback mechanism)

* The key to model performance is the eddy selection procedure
Eddy likelihood, in a random sampling procedure, is governed by local shear
When an eddy occurs, the local shear is amplified, which modifies eddy likelihoods

.vA U(y)

"triplet map"

High shear at small scales drives small eddies, leading to an eddy cascade

(In LEM, inertial-range-cascade scaling is hard-wired)
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eddy selection is based on the
IXing-length concept, applied locally

« Each possible eddy, defined by eddy spatial location and size (S),
is assigned a time scale T based on the local flow state

e A simple choice: 7~S/|U, - U| where +,— denote eddy endpoints

* The set of 7 values determines an eddy rate distribution from which
eddies are sampled

e Unlike conventional mixing-length theory, this procedure is local in
space and time (no averaging) and is applied to all eddy sizes S
(multi-scale) rather than a single selected S value (‘mixing length’)
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can be based on an energy balance

pture energy transfers (e.g., bUOyancy-ind@' _.

 Energy balance (schematic): SE=C(K-P-2V)
— Sis the eddy size
— E = p(S/7)?is the eddy kinetic-energy density

— Kis the ‘available’ kinetic energy of velocity profiles within the eddy
— P is the gravitational potential energy change caused by the eddy
— Vs a ‘viscous penalty’ (imposes a threshold eddy Reynolds number)

— C and Z are free parameters
* This relation determines the eddy time scale 7
« Within the size-S region, the velocity profile(s) are adjusted

(wavelet method) so that total (kinetic + potential + ...) energy is

conserved

 This framework accommodates various energy couplings, e.g.,

pressure scrambling, compressibility effects, surface tension
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simulations provide detailed flow-specific * ‘
representations of turbulence

These simulations are based on time advancement of u; = vu,,
with flow-specific initial u profiles (see below), plus eddies
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mean properties
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el flow: fluctuation statistics

Fig. 5. Lateral profiles of Reynolds stress components in channel flow, scaled by w2: (—) (v7); (— -+ =) (¢5): (— =) (¢3): (=) (v} ch).

(The ODT (¢) profile is identical to the ODT (¢f) profile.) ODT and DNS [33] results are plotted right and left of centerline,
respectively.
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Fig. 6. Budget of (¢7*) in channel flow, in wall coordinates: (—) production (upper), dissipation (lower); (-—-) advective transport;
(- -—) viscous transport; (----—) scrambling. ODT and DNS [33] results are plotted right and left of centerline, respectively. .
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ODT as an LES near-wall closure
ves channel-flow fluctuation statistics

Fig. 15. Root-mean-square velocity fluctuation profiles normalized by the friction velocity for Re, = 590 and computed from LES/
ODT (open symbols), ODT stand-alone (filled symbols), and DNS [33] (solid and dashed lines).
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Fig. 12. Near-wall mean and sample instantaneous velocity profiles.
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and ODT resolve advective-diffusive-reacti
uplings and hence all flame regimes

ODT simulation of a piloted
methane-air jet diffusion
flame (Sandia flame D)
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unati et al.) captures extinction-reignitioh in DNS
and Hawkes) of a planar temporal jet syngas flame
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has useful chemical predictive capabili

Conditional
mean

Conditional
RMS
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Iive-mesh ODT implementation
S many benefits

* Full (Lagrangian) adaptivity is feasible in 1D (no mesh entanglement)
* Development of a c++ adaptive-mesh ODT code with full chemical-
Kinetic capability is ongoing (with D. Lignell, BYU)
* The adaptive mesh facilitates
— spatial advancement
— cylindrical geometry
— pseudo-compressible gas dynamics
— domain coupling in 3D formulations
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first adaptive-mesh ODT code was used
0 simulate an ethylene-air sooting plume
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scalars, enabling a big time-step increase —
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rticle-eddy interaction couples entrained 1
articles to fluid motion (one-way coupling) |

* In ODT, motion and velocity are distinct, though dynamically consistent

» Particles respond, via drag law, to motion (in ODT, eddy events)

 Because ODT eddies are instantaneous
— an internal (eddy) time coordinate for particle-eddy interaction is introduced
— this involves another free parameter, relating the interaction time to t

 Eddy-time integration

low inertia

fluid displacement fzfsssessssssessssersseranses > determines a trajectt_nry ‘jJump
° by triplet map /" [] R condition’ representing the
H I eddy-induced trajectory
=~ moderate nertia change, adjusted so future
H

motion is not double-counted

.............................. high inertia Ballistic motion remains linear
« Zero-inertia (no-slip) particles

follow the fluid

 Particle-fluid relative motion is
. realistic, though absolute
time motion is discontinuous

lateral coordinate

v
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ured and 3D-simulated wall depositic)n

reproduced, and a new regime is found

Wall deposition in turbulent channel flow

Dependence on Stokes humber

Comparisons suggest that measurements and 3D
simulations are seeing initial transients rather
than the late-time regime indicated by ODT
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deposition rate (wall units)

Time variation of deposition rate

(transient relaxation)
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arly deposition is ballistic, late depositio |
IS Stokes-number dependent
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Representative particle trajectories

y/h

0 500 1000 1500 2000 2500 3000

time (wall units)

The -2/3 power dependence on St is explained
by a simple scaling analysis. Closure analysis

gives a much milder decline — and is ‘validated’
by data that mainly reflects initial conditions!
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ravitationally stable fluid, apply enough
ar to generate turbulence — what happens*

u(z,)

p(z)

2
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yers form spontaneously!

Experiment: Holford and Linden, 1999 ODT: Wunsch and Kerstein, 2001
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ODT parameter studies over a wider Pr range
than is experimentally accessible led to new

rh ot understanding and better collapse of data
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\ slow-diffusing stable species can cause layering of a 1
convection process: double-diffusive instability

Pt is the density variation due to temperature variation

Ps is the density variation due to salinity variation

Initial state: constant temperature, salinity decreases with increasing height
(stable, no motion)

Forcing: heat from below causes gravitational instability leading to turbulent mixing

Role of molecular transport: salt diffusivity is negligible, so stable jump forms, but
heat diffuses across, initiating a new turbulent layer above the jump
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captures the wide range of
namically relevant time and length scales
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ODT formulation requiring no parame
djustment is compared to measurements
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captures the observed regimes
diffusive interface structure
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domains for LES mixing-reaction closure

Menon implemented a ‘splicing” method to cou
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1D domains are Lagrangian objects within control
volumes (CVs) in one coordinate direction

 Each domain has an input end and an output end

* Mass transfer (splicing) between them is governed by
CV face fluxes from a coarse-grained 3D flow solver
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advancement of a 3D lattice-work of coupled L

mains can be driven by RANS input: ‘LEM3D’

low solution #1

Flow solut

ion #2

— Flow solution #3

mh
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 Each LEM domain spatially refines RANS control
volumes (CVs) in one coordinate direction

 Each CV is thus contained within three orthogonal
LEM domains, each within a different flow solution

 Time-advancement cycle:
— Advancement on individual LEM domains

— 1D representation of small-scale motions

— Requires RANS eddy diffusivities to determine
local eddy frequencies

é — Cell transfers (conservative mapping) couple domains
A — 3D representation of large-scale motions

— Transfers implement displacements prescribed by
RANS mean velocities

Property profiles on the
three LEM domains that
intersect a RANS CV

This approach can likewise be used
for LES mixing-reaction closure




 Arrows are RANS CV face-normal displacements
(velocities x time step)

* In this example, there is net vertical inflow and
net horizontal outflow through CV faces (box)

* Horizontal LEM domain: cut at red line and
displace uniformly on either side, leaving a gap

* Vertical LEM domain: remove green region and
insert it into the gap on the horizontal domain
(between the red lines), then displace uniformly
above and below the green region, causing the
solid blue lines to meet

« Advantage: Displaces fluid advectively (no mixing)
» Issue: Brings chemically dissimilar fluids into contact
 Remedy: Use coarse CVs to minimize the artifact
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easured properties (surrogate RANS), LEM3D
ures the mixing of scalars released within a jet

- Two ring sources (various diameter
combinations) at x/D, = 9 release
scalars A and B, respectively

* A-B cross-correlation, p, is measured
at various downstream locations
(Tong & Warhaft, 1995)

» This configuration has not previously
been modeled

Large motion
sweeps both plumes
— can cause

negative p

Dj =3cm
Uj =9m/s
Rej = 18,000
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Radial profiles of p

(measurements: ¢, model: —)

Ring
diameters

10 and 15 mm

35and 40 mm




eing generalized for combustion applications—
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A variable-density formulation is under
development (with 2-way RANS-LEM3D
coupling); collaboration with SINTEF

Chemical kinetics will be incorporated

LEM3D sub-regions will be imbedded in
flow simulations to resolve mixing locally

Will couple LEM3D to an ODT-based 3D
simulation (explained next)

conventional
closure

2



domains can be coupled to obtair
D flow simulation (ODT3D)

« Same mesh geometry as LEM3D

 Different domain coupling because
— for momentum, adjacent dissimilar states should be avoided
— for momentum (but not species), some under-resolved mixing is acceptable

 Advection feedbacks between LEM3D and ODT3D:

— LEMBS3D gets eddy events and CV face-normal mass fluxes from ODT3D
— ODT3D gets thermal expansion from LEM3D

* Implementation strategy:
— Can use coarser 3D mesh than LES due to standalone ODT capabilities
— Incorporates large scale 3D effects to improve ODT representation of
« pulverized coal burners (by capturing recirculation)
« stably stratified turbulence (by capturing internal waves)
« Rayleigh convection (by capturing ‘wind of turbulence’)
« etc. (greatly expands the range of possible applications)
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tment of 3D pressure-velocity coupling
iInguishes two ODT3D formulations

* Incompressible:
— Continuity enforced using coarse-grained (CV scale) 3D pressure projection
— ODT-resolved flow field is modified accordingly, a downscale coupling

 Pseudo-compressible:
— Enables domain coupling with no coarse-graining or downscale coupling
— Hence termed ‘Autonomous Microscale Evolution’ (AME)

S
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grid LEM inspired ‘superparameterization
osure of atmospheric flow simulations

« Small scales resolved in 2D (vs. 1D in LEM and ODT)
 Deemed necessary despite high cost (NSF S&T Center)
« Cross-fertilization is ongoing, e.g., SP is adopting AME concepts

;ﬂ’ﬁc\f\,}'foﬁf if j:ee c\i/ cl)er;v a(i)r]: this approach is viewed as a
coupled vertical (2D cloud climate modeling paradigm
- . shift (Randall et al. 2003

planar domains simulation) ( )

Conventional Parameterizations

o
~ 1
<> Lo O L2 & @Q 960
Super
2001 Parameterizations:
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ing local couplings is crucial for difficult regime:
fficient resolution is vital for affordable prediction

 Map-based advection is an advantageous strategy
for cost-effective simulation of turbulent combustion
and other turbulence-microphysics couplings

e [ts uses include
— Fundamental studies
— Input to other modeling approaches
— Engineering (e.g., design concept screening)
— Building block for 3D simulation

 Downloadable code and documentation at
http://qroups.qgoogle.com/group/odt-research

Sandia
r'l'l National

Laboratories

S



http://groups.google.com/group/odt-research
http://groups.google.com/group/odt-research
http://groups.google.com/group/odt-research

