

# Toward Scalable Solvers for Stochastic Multi-Stage Long-Term Generation and Transmission Capacity Expansion

Dr. Jean-Paul Watson

Discrete Math and Complex Systems Department  
Sandia National Laboratories, Albuquerque, New Mexico

*Key Algorithmic Collaborators:*

*Richard Chen (Sandia)*

*William Hart (Sandia)*

*Roger Wets (UC Davis)*

*David Woodruff (UC Davis)*

**Technical Conference on Planning Models and Software  
Federal Energy Regulatory Commission  
Washington, DC  
June 9 - 10, 2010**

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,  
for the United States Department of Energy's National Nuclear Security Administration  
under contract DE-AC04-94AL85000.



# Combinatorial Optimization R&D at Sandia

---

- Efforts are centered on two primary research thrusts
  - Risk Management
    - Multi-stage, general mixed-integer
    - Efficient risk versus cost tradeoff analysis
    - Scalable Conditional Value-at-Risk (CVaR) computation
  - Multi-Stage Stochastic Optimization
    - Multi-stage, general mixed-integer
    - Massively parallel environments
- Application drivers
  - Contamination sensor network design (INFORMS Edelman Finalist)
  - Network interdiction for critical infrastructure
  - Biofuel network design
  - Electrical grid generation and transmission capacity expansion
  - Scalable unit commitment with large renewables penetration
- Funding sources

# Resource Allocation: Integer and Stochastic Programming

- Deterministic Mixed-Integer Programming (MIP)

- The PDE of Operations Research

$$\begin{aligned} \min \quad & \mathbf{c}' \mathbf{x} + \mathbf{h}' \mathbf{y} \\ \text{s.t.} \quad & \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{y} \leq \mathbf{b} \\ & \mathbf{x} \in \mathbb{Z}_+^n (\mathbf{x} \geq 0, \mathbf{x} \text{ integer}) \\ & \mathbf{y} \in \mathbb{R}_+^n (\mathbf{y} \geq 0) \end{aligned}$$

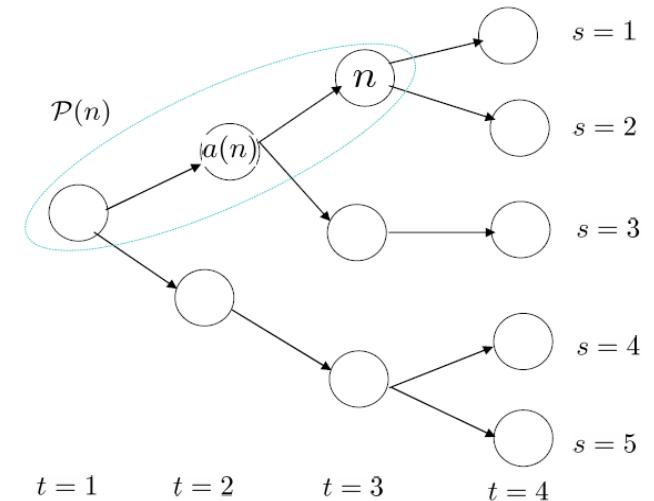
- Approximable for most real-world problems (NP-Hard)

- Stochastic Mixed-Integer Programming (SMIP)

- SMIP = MIP + uncertainty + recourse

$$\begin{aligned} \min \quad & f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + \mathbb{E}[Q(\mathbf{x}, \omega)] \\ \text{s.t.} \quad & A \mathbf{x} \geq \mathbf{b}, \quad \mathbf{x} \in \mathbb{R}_+^{n_1-p_1} \times \mathbb{Z}_+^{p_1} \\ Q(\mathbf{x}, \omega) = \min \quad & \mathbf{q}(\omega)^T \mathbf{y} \\ \text{s.t.} \quad & W \mathbf{y} \geq \mathbf{h}(\omega) - T(\omega) \mathbf{x} \\ & \mathbf{y} \in \mathbb{R}_+^{n_2-p_2} \times \mathbb{Z}_+^{p_2} \end{aligned}$$

- Still NP-Hard, but far more difficult than MIP in practice





# Capacity Expansion as Stochastic Mixed-Integer Programming

---

- Many historical planning models are either deterministic or linear (or both)
  - Driven by combinations of data availability and solver maturity
- With advances in IT and solver technology, multi-stage stochastic mixed-integer formulations are becoming more prevalent in the literature
  - Singh et al. (2009), Wang and Ryan (2010), Huang and Ahmed (2009)
  - General paradigm captures key aspects of capacity expansion problems
- Key technological challenges to deploying multi-stage stochastic MIP models
  - No canonical generation and transmission capacity expansion model
  - Multi-stage stochastic MIP solvers are not yet general-purpose
  - The difficulty of multi-stage stochastic MIPs *likely* requires parallelism
- Key requirement to solve the deployment barrier
  - Modeling and solver framework to facilitate rapid prototyping of alternative solution strategies, supporting built-in parallelism



# Stochastic Mixed-Integer Programming: The Algorithm Landscape

---

- The Extensive Form or Deterministic Equivalent
  - Write down the full variable and constraint set for all scenarios
  - Write down, either implicitly or explicitly, non-anticipativity constraints
  - *Attempt* to solve with a commercial MIP solver
    - Great if it works, but often doesn't due to memory or time limits
- Time-stage or “vertical” decomposition
  - Benders / L-shaped methods (including nested extensions)
  - Pros: Well-known, exact, easy for (some) 2-stage, parallelizable
  - Cons: Master problem bloating, multi-stage difficulties
- Scenario-based or “horizontal” decomposition
  - Progressive hedging / Dual decomposition
  - Pros: Inherently multi-stage, parallelizable, leverages specialized MIP solvers
  - Cons: Heuristic (depending on algorithm), parameter tuning
- Important: *Development of general multi-stage SMIP solvers is an open research area*



# Progressive Hedging: A Review and/or Introduction

---

1.  $k := 0$

2. For all  $s \in \mathcal{S}$ ,  $x_s^{(k)} := \operatorname{argmin}_x (c \cdot x + f_s \cdot y_s) : (x, y_s) \in \mathcal{Q}_s$

3.  $\bar{x}^k := (\sum_{s \in \mathcal{S}} p_s d_s x_s^{(k)}) / \sum_{s \in \mathcal{S}} p_s d_s$

4. For all  $s \in \mathcal{S}$ ,  $w_s^{(k)} := \rho(x_s^{(k)} - \bar{x}^{(k)})$

5.  $k := k + 1$

6. For all  $s \in \mathcal{S}$ ,  $x_s^{(k)} := \operatorname{argmin}_x (c \cdot x + w_s^{(k-1)} x + \rho/2 \|x - \bar{x}^{(k-1)}\|^2 + f_s \cdot y_s) : (x, y_s) \in \mathcal{Q}_s$

7.  $\bar{x}^{(k)} := (\sum_{s \in \mathcal{S}} p_s d_s x_s^{(k)}) / \sum_{s \in \mathcal{S}} p_s d_s$

8. For all  $s \in \mathcal{S}$ ,  $w_s^{(k)} := w_s^{(k-1)} + \rho (x_s^{(k)} - \bar{x}^{(k)})$

9.  $g^{(k)} := \frac{(1-\alpha)|\mathcal{S}|}{\sum_{s \in \mathcal{S}} p_s d_s} \sum_{s \in \mathcal{S}} \|x^{(k)} - \bar{x}^{(k)}\|$

10. If  $g^{(k)} < \epsilon$ , then go to step 5. Otherwise, terminate.



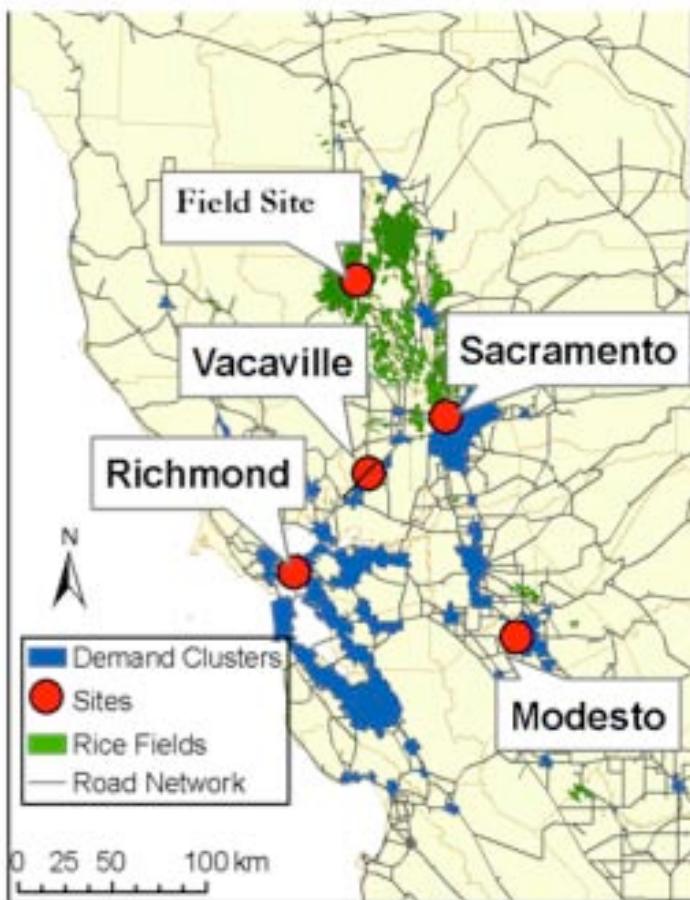
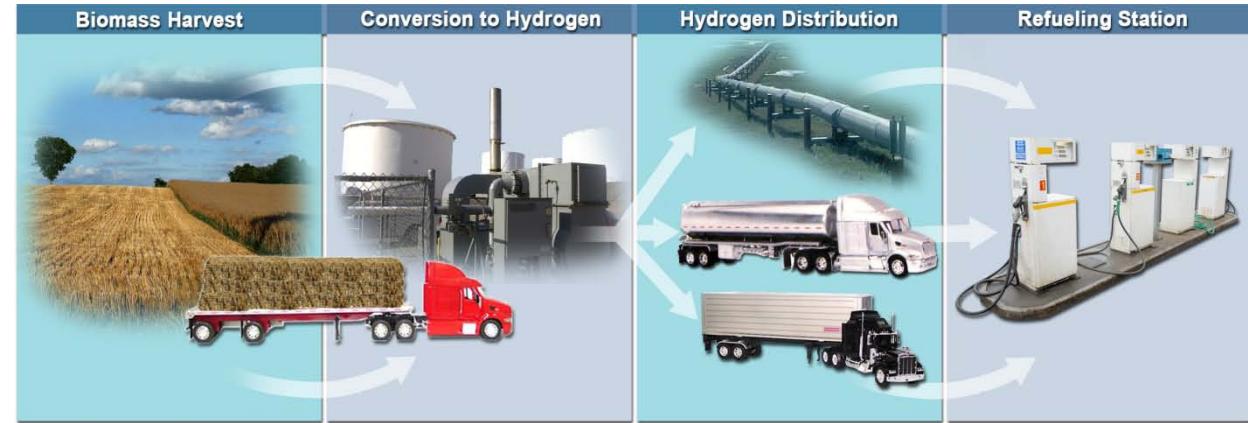
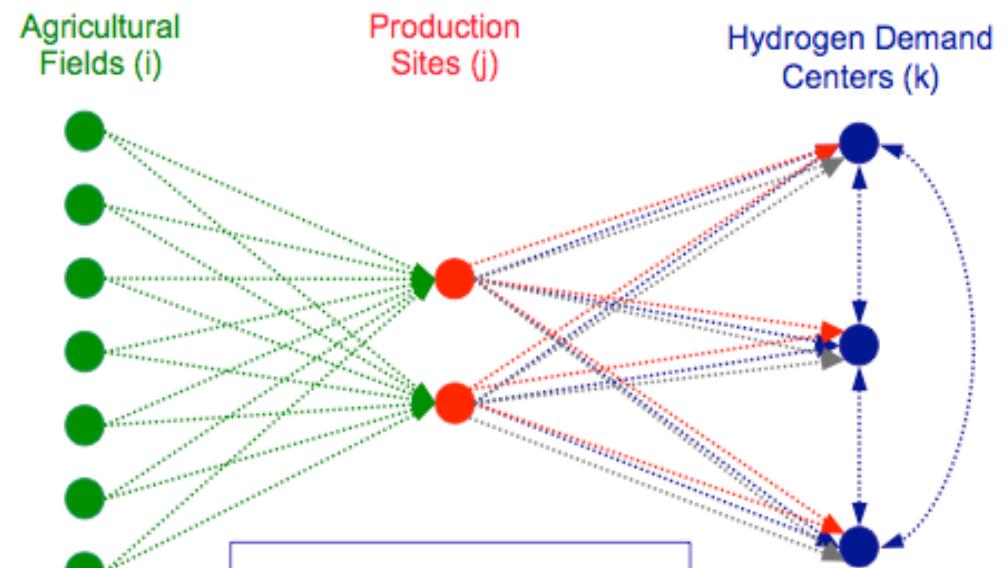
# Progressive Hedging as a Stochastic Mixed-Integer Heuristic

---

- Progressive Hedging does provably converge in the *convex* case, in linear time
  - NOTE: As practitioners know well, linear time can take a *long* time
- Progressive Hedging (PH) has been successfully used as a heuristic for multi-stage mixed-integer stochastic programming
  - Løkketangen and Woodruff (1996)
  - Numerous others (Birge, Gendreau, Crainc, Rei)
- Practical and critical issues of note
  - How to pick  $\rho$ ?
  - Cycle detection
  - Convergence acceleration
    - Variable fixing
    - Slamming



# The Impact of Decomposition: Biofuel Infrastructure and Logistics Planning



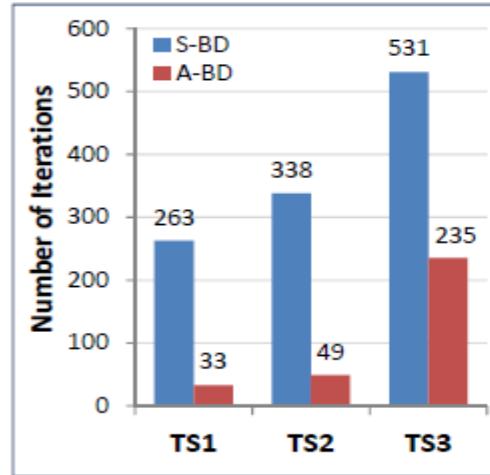
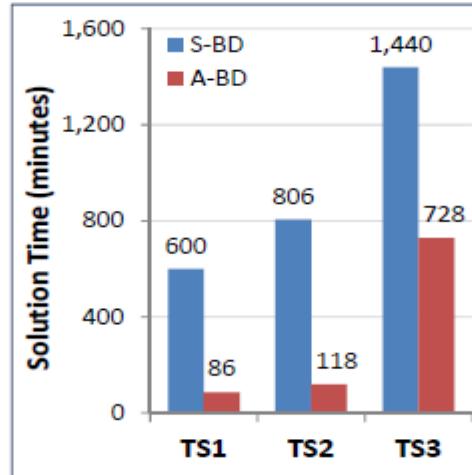
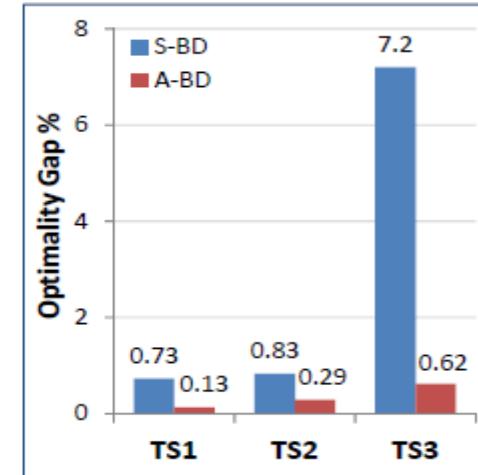
Three modes of Hydrogen Delivery:  
**Pipeline**  
**Compressed Gas Truck**  
**Liquid Truck**

## Example of PH Impact:

- Extensive form solve time: >20K seconds
- PH solve time: 2K seconds

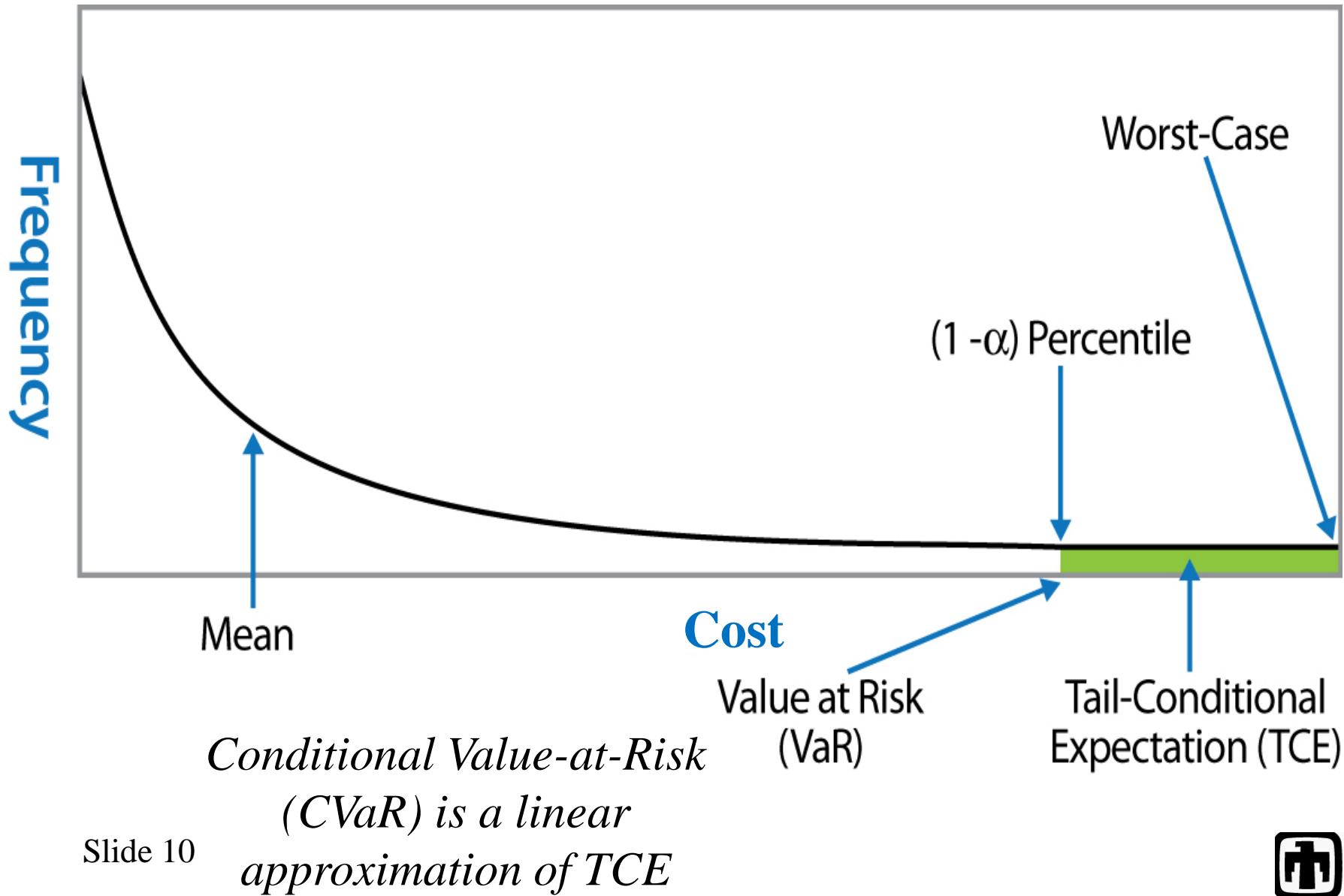
# The Impact of Decomposition: Wind Farm Network Design

- Where to site new wind farms and transmission lines in a geographically distributed region to satisfy projected demands at minimal cost?
- Formulated as a two-stage stochastic mixed-integer program
  - First stage decisions: Siting, generator/line counts
  - Second stage “decisions”: Flow balance, line loss, generator levels
- 8760 scenarios representing coincident hourly wind speed, demand
- Solve with Benders: Standard and Accelerated



- Summary: A non-trivial Benders variant is *required* for tractable solution

# Mean versus Risk? Some Terminology



# Progressive Hedging and Conditional Value-at-Risk

- Scenario-based decomposition of Conditional Value-at-Risk models is conceptually straightforward (Schultz and Tiedemann 2006)

**Proposition 5.1.** *Assume that  $\mu$  is discrete with finitely many scenarios  $h_1, \dots, h_J$  and corresponding probabilities  $\pi_1, \dots, \pi_J$ . Let  $\alpha \in (0, 1)$ . Then the stochastic program*

$$\min\{Q_{CVaR_\alpha}(x) : x \in X\} \quad (11)$$

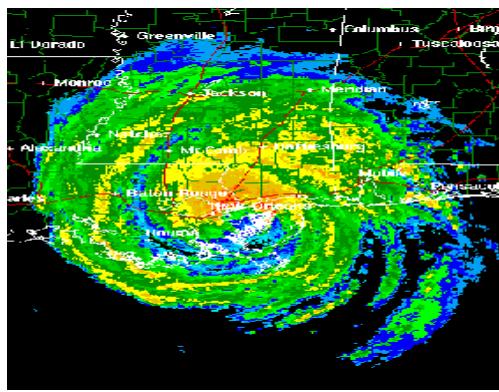
*can be equivalently restated as*

$$\begin{aligned} \min_{x, y, y', v, \eta} \left\{ \eta + \frac{1}{1-\alpha} \sum_{j=1}^J \pi_j v_j : \right. & Wy_j + W'y'_j = h_j - Tx, \\ & v_j \geq c^\top x + q^\top y_j + q'^\top y'_j - \eta, \\ & x \in X, \quad \eta \in \mathbb{R}, \quad y_j \in \mathbb{Z}_+^{\bar{m}}, \\ & \left. y'_j \in \mathbb{R}_+^{m'}, \quad v_j \in \mathbb{R}_+, \quad j = 1, \dots, J \right\}. \end{aligned} \quad (12)$$

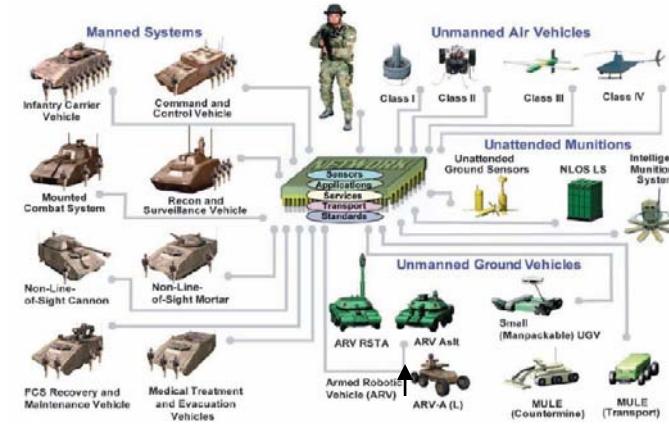
- But
  - Computational issues are largely unexplored

# Selecting Scenarios to Ignore in Stochastic Optimization: Advances in Probabilistic Integer Programming Solvers

Ignoring the 100-year Flood  
(Infrastructure Planning)



Capacitated Storage  
(US Army Future Combat Systems)



Force-on-Force “Anomalies”  
(Mission Planning)



Central Theme: The Need to Ignore a Small Fraction  $\alpha$  of Scenarios During Optimization

$$\begin{aligned}
 & \text{minimize} && c \cdot x + \sum_{s \in \mathcal{S}} p_s (f_s \cdot y_s) \\
 & \text{subject to:} && (x, y_s) \in \mathcal{Q}_s, \quad \forall s \in \{\mathcal{S} : d_s = 1\} \\
 & && \sum_{s \in \mathcal{S}} p_s d_s \geq (1 - \alpha) \\
 & && d_s \in \{0, 1\}, \quad \forall s \in \mathcal{S}
 \end{aligned} \tag{E}$$

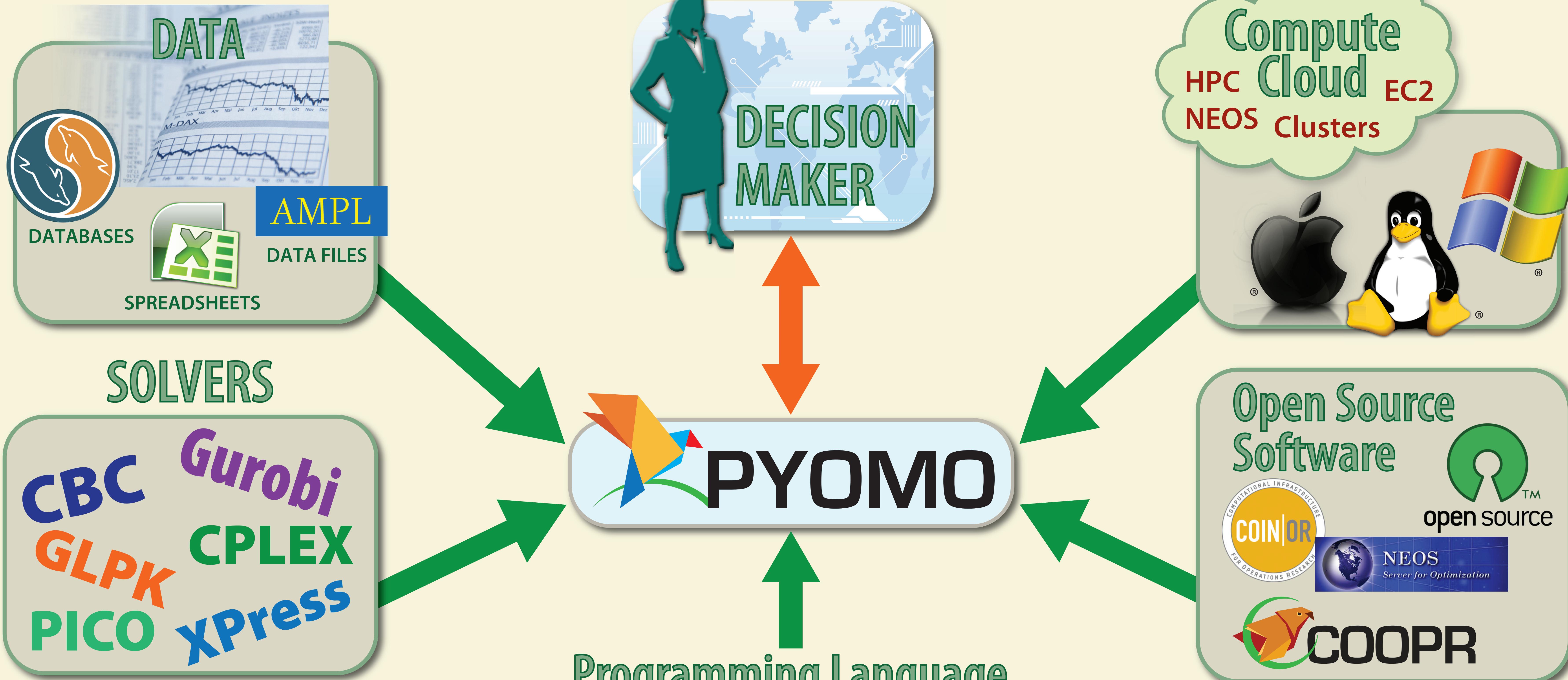
Results for network design:  
- 2-8% better solutions  
than CPLEX, 1440m  
versus ~10m

*Impact:* - Best available heuristic for solving probabilistic integer programs  
- First demonstration on large-scale, real-world problems



# PYOMO

## An Open-Source Optimization Modeling Tool



### Modeling Capabilities

- Abstract model definition
- LP and MILP models
- Manage multiple model instances
- Stochastic modeling extensions

### Key Features

- Parallel solver execution
- Extensible framework
- Interface to many data sources
- Portability
- Embedded in modern programming language
- Freely available
- Unrestricted open source license



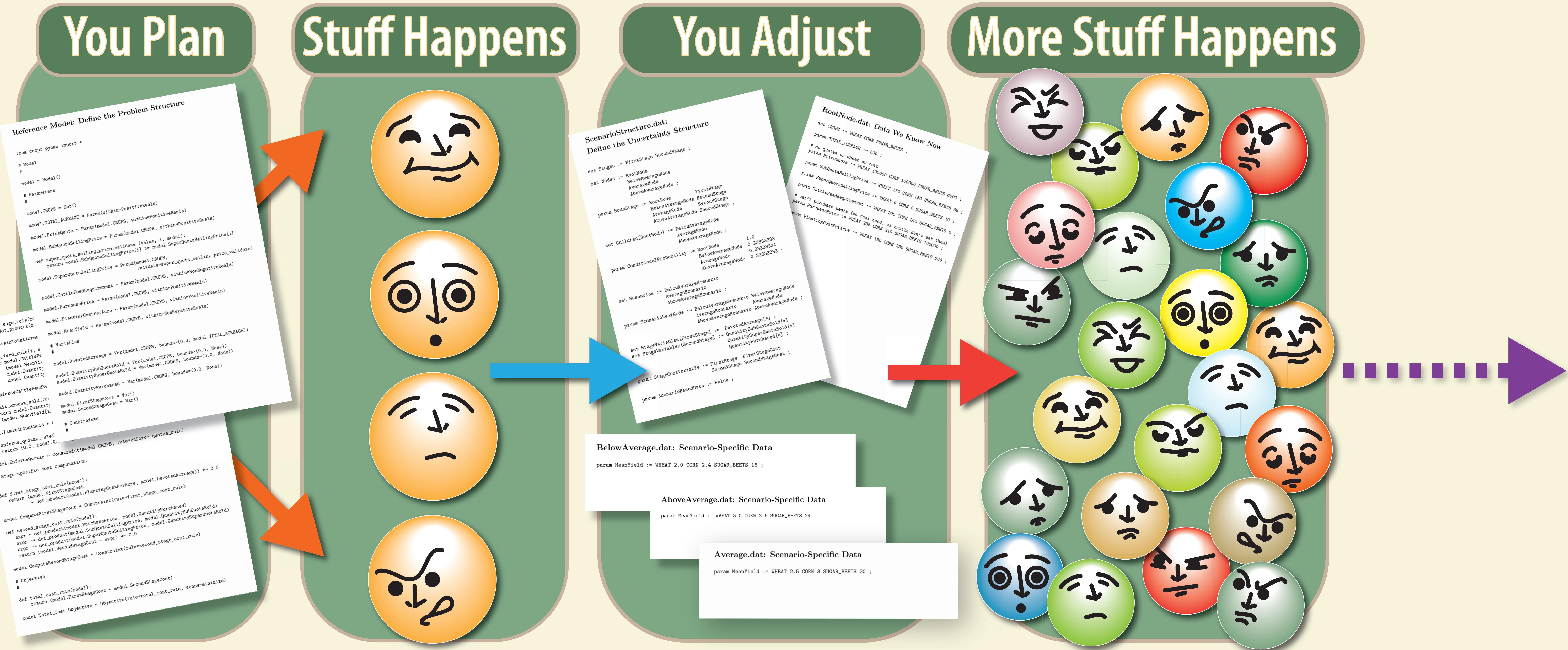
### Coopr Capabilities

- Pyomo modeling language
- Stochastic programming
- Modeling extensions
- Solver interfaces
- GUI front-end

### Coopr Resources

- Coopr installer script
- Wiki documentation
- Examples
- Trouble tickets
- Mailing lists

# Hedging Against Uncertainty: A Modeling Language and Solver Library



# PySP: Stochastic Programming in Python



# Multi-Stage Planning for Uncertain Environments

- Explicitly capture recourse
- Uncertainty modeling framework
- Integrated solver strategies

# What We Do:

- Mixed decision variables
  - Continuous
  - Integer/Binary
- General multi-stage
- Stochastic programming
  - Expected value
  - Conditional Value-at-Risk
  - Scenario selection
- Cost confidence intervals

# How We Do It:

- Deterministic equivalent
- Scenario-based decomposition
  - ◆ Progressive Hedging
  - ◆ Customizable accelerators
- Algebraic modeling via Pyomo
- SMP and cluster parallelism
- Integrated high-level language support
- Multi-platform, unrestrictive license
- Open source, actively supported by Sandia
- Co-Managed by Sandia and COIN-OR



TO LEARN MORE VISIT > <https://software.sandia.gov/trac/coopr/wiki/PySP>

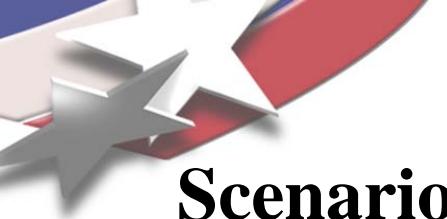




# Stochastic Programming and High-Performance Computing

---

- Decomposition algorithms for solving multi-stage stochastic mixed-integer programs are “naturally” parallelizable
  - L-shaped and Progressive Hedging are particularly amenable
- Practical issues arise as the number of scenarios grows
  - Even the most modest branching processes in multi-stage decision environments lead to thousands to millions of scenarios
  - MIP solve times are heterogeneous, leading to poor parallel efficiency
- Current capabilities in PySP:
  - Scalability to order-thousand scenarios and processors
- In-progress efforts
  - Asynchronous decomposition algorithms
  - IBM Research Blue Gene deployment
  - EC2 / Gurobi deployment
- Major deployment issue: MIP solver licensing to thousands of processors
  - Mitigated in part by Gurobi EC2 deployment



# Scenario Sampling: How Many is Enough?

---

- Discretization of the scenario tree is “standard” in stochastic programming
  - Often, no mention of solution or objective stability
  - Let alone rigorous statistical hypothesis-testing of stability
  - *Don’t trust anyone who doesn’t show you a confidence interval*
- Two general approaches in the literature
  - Has the solution converged? (Sample Average Approximation)
  - Has the objective converged? (Multiple Replication Procedure)
- Formal question we are concerned with
  - What is the probability that  $\hat{x}$ ’s objective function value is suboptimal by more than  $\alpha\%$ ?
- Initial implementation available in PySP
  - Preliminary results for various network expansion and design problems indicates that we are using *far* too few samples



# Conclusions

---

- Multi-stage stochastic mixed-integer programs are a natural modeling paradigm for solving generation/transmission capacity expansion problems
- Solver technologies capable of solving realistic instances are emerging
  - But many challenges remain, both in terms of research and deployment
- Sandia is developing software to address what we view as the challenges
  - Frameworks to support rapid modeling and solver prototyping
  - Scalable parallelization of decomposition strategies
  - Rigorous quantification of uncertainty bounds on solution costs
  - Open-source solutions
    - Sandia is mandated to collaborate with and aid industry – not compete
- For more information:
  - <https://software.sandia.gov/trac/coopr/wiki/PySP> -or- jwatson@sandia.gov