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Photovoltaic technology has
tremendous potential:

The supply of energy from the
Sun to the Earth =3 x 10%*
J/year = 10,000 times the
global energy usage

PV efficiency must increase
(OPVs must reach 10-12%)
Cost must decrease

(DOE goal: $0.33/W)

Energy storage required to
make PVs viable.

Sustainable energy devices require significant improvements for widespread utilization.
Surface science is critical for understanding their operation and for leading rational design

and optimization of these devices.

Units in Quads 2 1 Quad = 10> BTU
G. Whitesides. Science, (2007) 315, 796.
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Proposed Work on Hybrid Interfaces
= Early Career LDRD" Inorganic/Polymer ‘interfacial

characterization
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XPS characterizes core level electrons
- Chemical Analysis — Chemical Environment — Oxidation.State — Electronic Environment -

emitted electron (has Kinetie
energy (KE))

XPS

20D e® 00 ¢ @

bound electron (has
binding energy (BE))

- -

Compositional Analysis
(identification and quantification)

Ols

Name  Area At%
Cls 11966.6 65.86
O1ls 15483.0 29.08
Nls 4529 138
S2p 9230 3.02
Cl2p 2712 0.65

Arbitrary Units

Binding Energy (eV)

Chemical Imaging

Substrate

Contamination
Ni - red
Ca - blue

"BE=hv-KE-®

spectrometer

The inelastic mean free path
(IMFP or A) of an emitted electron
makes XPS a very surface

sensitive technique.

Peak Fitting for Chemistry

(valence and chemical environment)

Oxidizing
C'H, ‘chjL Peaks shift to higher
g " BE with electron
o withdrawing groups
0—CH,
2 \\ Reducing
/A i

Peaks shift to lower

‘ » f BE with electron
Y \/ /AD \ donating groups

Increasing BE (eV)
Pijpers, Donners, J. Polym. Sci. Chem. Ed. (1985) 23, 453.

Kratos Axis Ultra DLD




XPS characterizes core level electrons
- Chemical Analysis — Chemical Environment — Oxidation.State — Electronic Environment -

Electron Spectrometer

Multichannel
Detector

Multichannel
Analyzer

\ 0{/

X-Ray Source (anode)

Output
Display

XPS Instrumentation
-~ X-ray (Al Ko @ 1486.6 eV, Mg),
-- UV (Omicron, He | @ 21.2 eV, He II)
-- Rowland Circle monochromator
-- Concentric Hemispherical Analyzer, DLD detector
-- 0.3 to 0.4 eV resolution

Compositional Analysis
(identification and quantification)

* Surface Sensitive!
*What is the chemical nature of
my'material?
eIdentification/quantification of
composition (~1% LOD) - Peak
areas proportional to
concentration — depth profiling
(surface vs. bulk), segregation?

Chemical Imaging

Contamination
Ni - red
Ca - blue |8

BE=hv-KE-®

spectrometer

Inelastic mean free path (IMFP
or A): the average escape depth for
electrons in a particular material
-Initial e energy
-Nature of the medium

Peak Fitting for Chemistry

(valence and chemical environment)
» Surface Sensitive!

*How are adsorbants interacting
with the surface? — surface
bonding
*What is the oxidation state of
species within my material? At the
surface vs. bulk?

*How is charge flowing from one
material to another at an
interfacial contact?

Kratos Axis Ultra DLD

-- imaging (spatial resolutions as low as 10

microns)
-- depth profiling
-- valence band analysis

-- integrated Ar glove box for inert sample

transfer

-- all elements (except H and He)




Charge generation, separation, and-collection occur at interfaces.

Bilay_er Organic Photovoltaicc
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The efficiency bf a solar cell is a combination of the efficiencies 0}‘
multlple individual processes, all of which can be evaluated by
. understanding an energy level diagram.
Light absorption (solar spectrum)
* Exciton dissocation (recombination)
Charge transport (resistance):
Charge collection (barriers)




Charge generation, separation, and-collection occur at interfaces.

Bilayer. Organic Photovoltaicc | Photovoltaic Performance
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By ( /i
2\ ACCEPTOR S Pl | =t pptated) CAA.
= < -
Zf ..... ; g I)solar I)solar
S =) = P, . = 1000 W/m?
m@j O = solar
g ’ A ]
i %
‘ R open circuit voltage (V,
5 f voltage P ge (Vo)

maximum output

power (Pyax) \

FanY
4

(Pry)

short circuit current (Jg)

Interface prope'rtiés must bé understood and controlléd to optimizé the
performance of the organic photovoltaic.
Focus on understandmg the physical and electronic structure of these
mterfaces
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- ITO acts as the substrate for the entire OPV structure = can influence device fabrication
- ITO is used as a key electrode for multiple technologies (LED, PV; electrochromics)
- Surface properties of ITO can dictate charge transfer properties
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Commercial ITO is poorly characterized and controlled.

Batch-to-batch variations

-Daoping — Crystallinity = Thickness — Conduetivity — Transparency —Roughness =
Thin film deposition (sputter deposition) parameters must be stringently controlled.
Doping levels: tin and oxygen vacancy concentration

Annealing conditions

Fan and Goodenough, J. Appl. Phys. (1977) 48 3524.




Comparison of native In,0; surface with native ITO reveals a
spectral component of the O(1s) related to tin.
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> - Baseline spectral components for ITO
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- Identification of O(1s) component related
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Binding Energy (eV)
w/ Thomas Schulmeyer ‘ Brumbach, et. al., Langmuir. (2007) 23, 11089-99.
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Hydroxylation of ITO occurs rapidly

Passive layer formation between electrode-and active organics!

cc - Prolonged exposure
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Exposure to atmosphere leads to extensive hydroxylation, ill-defined contamination
- Difficult to adequatély remove contaiiination and control ITO surface
- Presencesof passive/insulatinglayer leads to centact resistance in a device!

w/ Thomas Schulmeyer

Brumbach, et. al., Langmuir. (2007) 23, 11089-99.



Controlled acid etching removes contamination and produces clean, native surface
Passive layer formation-occurs spontaneously, but can be controlled and reproduced.

cc - Prolonged exposure
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Strong halo-acids etch ITO (HL, HCI/HNQO;, HCI/FeCl,) - brief exposure to remove surface layer.
Creates clean, reproducible surface.
Other “cleaning” procedures merely modify the contamination layer previous XPS Sl‘udzes
Changing contamination layer has led to “erroneous” device data.

Brumbach, et. al., Langmuir. (2007) 23, 11089-99.



Real device performance deteriorates from ideal behavior
- Parasitic resistances - Contact resistance — Leakage .pathways -

@ Acceptor Psalar Psolar

Donor

current -+

P, = 1000 W/m?

voltage

Glass

J=J | exp V—-JRA 1
nk,T /e

\ (PTH) o= V_—W
g ~ R, 4

The contact at the ITO interface can be influenced by contamination
leading to a contact resistance in the device.




Seunghyup Yoo, PhD Dissertation, University of Arizona. (2005).
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Increasing series resistance degrades FIF and J.

Strategies for reducing surface contamination are required to reduce
contact resistance and overall series resistance...
Acid etching of surface
Surface modification



Utilizing UPS to understand the role of organic/organic*
heterojunctions in bilayer OPVs.
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UPS characterizes valence band electrons
- Material work function — Ionization potential — Highest occupied molecular orbital (HOMO) -

emitted electron (has Kinetie
energy (KE))

uprPs

€vac

* valence electron
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UPS spectrum of an organic thin film
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Spectral Interpretation
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Band Diagram

band gap

' band diagram of |
material surface

* What is the work
function? — electrode
- selection
e How does the work
function change with
adsorbants? — charge
injection barriers, surface
dipoles
* What is the material
ionization potential?




In situ interface preparation - sequential growth of film on substrate — track shifts.
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Schlaf, et. al., J. Phys. Chem. B. (1999) 103, 2984-92.



C(1s)
Ti(2p) or Cu(2p)
- O(1s)
N(1s)
VBM

(issues for organics:
resolution,
interferences,
lack of VBM)

Material A Material B

T
IP, WF, WF; 1P,
CR,
CB, [ 1 i
BG
———*——"——————‘— ——————————— o — ’B—-- EF
I
BG, f VB
| VB,
CR,

" | IP = ionization potential

'WF = work function

BG = band gap

CR = charge redistribution
CB,, = conduction band offset
VB, = valence band offset

D = dipole

Band Alignment at p/n junction

dipole, band bending/charge redistribution, work
Jfunction, ionization potential, ...



evel Alignments — Energy Level Shifts -

XPS: shifts in the core levels = charge redistribution
C(1s) UPS: work function, ionization potential, HOMO position
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Brumbach, et. al., J. Phys. Chem. C. (2008) 112, 3142-51.



Energy level alignments explain multiple device performance characteristics. (J., Vo diode properties)
Some parameters of the energy level alignment (offset magnitudes, charge redistribution, dipoles, etc.) still
require further investigation.

Energy Level Alignments for Bilayer Open Circuit Potential Correlates to
Organic/Organic Heterojunctions ‘ HOMO/LUMO Offset of Bilayer
_ . ®
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S
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Brumbach, et. al., J. Phys. Chem. C. (2008) 112, 3142-51.
Armstrong, Brumbach, et. al. Macromolecular Rapid Communications (2009) 30, 717-31.
Armstrong, Brumbach, et. al. Accounts of Chemical Research (2009) 42, 1748-57.
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Strategies for improving efficiency = 3D (nano)architectures
= create a device which is mostly interface

Bulk Heterojunction landem Devices Hybrid Devices
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Optimization of interface energetics becomes increasingly more critical as
interfacial contact areas-begin to comprise the structure of a device
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Proposed Work on Hybrid Interfaces
= Early Career LDRD"— Inorganic/Polymer ‘interfacial
characterization
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Energy level alignments for many organic/organic and organic/inorganic systems are not known.
= Reported values are inconsistent!
=2 correct values? or just wrong? -Different measurements
= different results - Interfacial chemistry and effect of structure have not been examined.
Offsets are unknown. Band bending not evaluated. (polymer morphology) (doping/dedoping)
>effect of band bending is unknown

D
v
3.0eV Most work has
P, | WE, WE, | IP, =" assumed budk
48eV 200y 4.8eV 5 .
Ag roperties remain
CR, ITO P3HT P
: CBy [~ il e unchanged at the
dRiy N i gl interface.
BG, VB 7.8eV f
| VEg ZnO

Complications for hybrid (inorganic/polymer) interfaces:
Polymers must be deposited ex situ.
- characterization experiments are more difficult to perform
- “contamination’ is always present in experiments performed ex situ
Surface contamination is present in real devices, but has generally been excluded in
characterization experiments. (the impact/effect of contamination'is essentially unknown!)




Some examples of electronic characterization of hybrid interfaces are emerging in the literature.

Nguyen, et. al. Adv. Mater. (2009) 21, 1006-11.

Characterizations typically follow established protocols for inorganic systems.

Schlaf

-1n situ electrospray

- MEH-PPV/ITO
- MEH-PPV/Ag
- PBHT/HOPG
- P3HT/ITO
Ramsey
Koch
Kahn

-

- vacuum deposition of -

small molecules, IPES

- organic/metal
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Alloway, Armstrong, et. al. J. Phys. Chem. B. (2003) 107.

UPS is an extremely sensitive technique for evaluating surface electronic properties
. Dipole_ effects fromwmolecular orientationkcanbe detected by UPS
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Work function can be “tuned” at a material surface through modification
Injection barriers
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Alloway, Armstrong, et. al. J. Phys. Chem. B. (2003) 107.

“Tuning” of work function of gold surface through surface modification

Wotk function variatien over ~2 eV range(~40% of WF of cleanAu)
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lonization energy can be continuously tuned by concentration of variously dipolar species.

Salzmann, et. al. JACS. (2008) 130.

UPS intensity (arb. units)
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Figure 1. UPS spectra of pure and mixed films of standing PEN and PFP
on Si0,. The vertical lines indicate the phogoemission onsets, i.e., the IE
(values of lying PEN and PFP on Au(111)"? are given for comparison).
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nable Surfa

Assemblies of surface modifiers with controllable functionalities and dimensions.
Vary lateral (2D) dimensions with only two dipolar surface modifiers... Control surface'work function in a spatially
controlled system.

Effect of spatial distribution of molecular components in a mixed assembly on spectra
-- continuous Vvs. superposition?
Spatially.organized SAMs for work function tuning has not been evaluated..
Effects are unknown.

; . organic
. organic ,
organic

Real surfaces are likely to be a heterogeneous, dispersed array of contaminants.
Observations from-known arrays of specified dimensions could beused to infer constraints on the effects of atherwise
unknown surface contaminants on real surfaces.



Vertical (3D) Dimensions - evaluate unknown effect of surface structure

Strategically design interfacial structure and
chemistry to tailor sample for the analysis
capabilities of photoelectron spectroscopy!

organic

Liu, et. al., Nano. Let. (2006) 6, 2375-8.

Interfacial areas and distribution from interface can
be designed to optimize analyses volumes.

There 1s some precedence for evaluating
nanostructure via photoelectron spectroscopy.

-- Cu/CuO:.stripe reconstruction

11A
20A —— 28A
304
s0A
a b c d
These surfaca momphologias all give
the same XPS-peak intensity
25
E Cu
20 2
15}
[ d
10 s ‘
E c
5 h—_'___,_..--"—
ol -1 AP | .
450 500 550 600

Kinetic enargy [eV]

Koller, G.; Netzer, F. P.; Ramsey, M. G. Appl/ Phys Lett 2003, 83, 563.
Tougaard, S: Appl Surf Sci 1996, 100, 1.




| Corroborating Dep

Unique Capability: Sandia beamline at Brookhaven!
-- variable excitation energies — tune sampling depth!!
electronic characterization
non-destructive depth profiling

Confirm and support experiments with
variable excitation PES'!

Models for Evaluating Electronic Structure at Perfect Interfaces

Variation of organic film thickness on inorganic substrat

Variation of excitation energy (varying sampling volume)

Systematically step through the interfacial regime at high resolution.
-- Vary the polymer thicknesses to be above and below the XPS/UPS sampling depth.

Spin coating, electrodeposition, and/or electrospray deposition will be used for thin-film deposition.
-- Adjust the sampling depth using variable excitation energies (1 to 10 nm, synchrotron source).
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— Over 2000 users from around the world with 800-1000 publications per year.
— Provides high-brightness radiation from far-infrared to 100keV x-rays

— 49 beamlines on the x-ray ring and 16 beamlines on the VUV-IR ring.

— Operational since 1982 ‘

DOE User Facility - | e M_.‘.

e

v =8 S . : U7A 180-1200eV
sBrookhaven National Laboratories: <o s X24A 2000-5000eV



VKE-XPS characterizes

- Non-destructive depth profiling — buried interfaces — subtract out contamination layer — optimize cross section -

emitted electron (has Kinetie

VKE-XPS energy (KE))
{
Cvac
hvgesssa
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.hVEEES=s\\“ e %
0% 0 ¢ 0 Ly,
| 2S \ssss). [ ] Ll
hVEEEE‘t
* Villgnce clectron
w |
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Higher energy source probes deeper core levels.

- -

Variable Excitation Energy

allows for variable depth resolution

low KE (shallow)
high KE (deep)
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" PHYSICS WITH X-RAYS

Greater intensity and lower energy dispersion of |

the source enable high resolutjon and good S/N.

BE=hv-KE-®

spectrometer
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Lysagflt, et al.J. Appl. Phys. 101, 024105 (2007).




Erbium is a critical material for hydrogen storage.
Hydrogen loading requires an “activation” process.

Synchrotron-based photoelectron spectroscopy (variable energy XPS) can be used to
provide nondestructive depth profiling to determine the fate of the initial surface O during
the activation process.

Temperature

time

Pt E 5 EH2 | Erbium hydriding: a passive surface
. 2 . oxide is thermally-activated to yield
C. Parish, C. Snow, L. Brewer a H2 accommodating surface

» Define O distribution at the activation and load states of the Er film
» Explore the kinetics of the redistribution of O within the Er film
« Provide chemicalinput for performanece models of target films



hv = 2000 eV > 25°C. 300°C, 400°C. 500°C. 500°C ;o in,

Arbitrary Units

valence band oxygen erbium
2KkeV_25_Omin OH:0 2keV O:Er 2KkeV_25 Omin
2KkeV_300_temp 532.6 ZKﬂ;, 2KeV_300_temp
o 2keV_400_temp 12:88 D " 215, . o 2keV_400_temp
ey 500, tompiomin ' avev s00 ¢ 200°Caaomin - 60:40 et 200, tompromin
530.5
532.3
17:83 500°C = 58:42
\ occupied Er° state
533.0 530.9
16:84 400°C - 51:49
defect states 533.1 53()&
in the oxide 27:73 ' 300°C - 63:37
46:54 533.0%7530.7 25°C - 85:15 Oxidized Er
T T T T T T T T T PR L D T L L L B . L L B
16 14 12 10 8 6 2 2 536 534 532 530 528 526 180 178 176 174 172 170 168 166 164
Binding Energy (eV) Binding Eflergy (eV) Binding Energy (eV)

Fermi edge emission from
the Er° substrate

E, Er,05=6.5eV

hydroxide and

oxide

adventitious species

Ere substrate

Heat treatment requires a temperature above 400°C for thermal activation.
Activation includes: 1. Removal of hydroxyls and adventitious species from the surface
2. Depletion of exygen in near surface region

3. Defect state formation in the oxide

(continued heating leads to a redistribution of oxygen to the surface — oxide reformation (single component O 1s))
(emergence of Er® peaks in Er 4d show that oxide has thinned)

K. Zavadil




valence band

hv = 2000 eV =2 450°C for 0, 5, 10, 20 minutes
oxygen

erbium

2keV_25_Omin

2keV_25_Omin

Arbitrary Units

oxygen

2KeV_450_Smin OH:0 Cf%\« ) O:Er 2keV_450_Smin
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: 6:94 53A
£t i 450°C = 10min - 29:71
g 530.8
E
793 2326 450°C — 5min — 47:53
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T T T ™ T T T L L L LA B L L L L L L B
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1|6 1'4 1'2 o 1'0 I alx .Is ‘It I tl) Y Iz Y 7[1 5;4 T sulsz T séo T
Binding Energy (eV) Binding Energy (eV)

3KkeV_25_Omin
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LI B e
174 172
Binding Energy (eV)

LI I s e
170 168

Higher energy XPS allows for the full depth of the surface oxide to be analyzed.

- Two stage thermal activation: Stage 1. Thinning of the oxide
' Stage 2. Defect formation and reconfiguration of the oxide

K. Zavadil




room temperature (unactivated) = hv = 1500, 2000, 2500. 3000 eV

Arbitrary Units

w0 —|

oxygen
1.5keV_25_Omin 1;?:}:?3!"?“ 1.5keV_25_0minB
2 ey 2% o OH:0 530.7 2.5keV 25 omin O:Er 2ok 25 omin
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46154
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'élllf)“','z' I|5é4lIlsézlllséolllszlsll 52'5 . .

Binding Energy (eV)

valence band

heat treated (activated) = hv = 1500, 2000, 2500, 3000 eV

Arbitrary Units

oxygen
Er1E_spoo_400 ° ey E;;E;::;:‘Ia;‘“‘:g Zl];:.-él;::gogaatqo
s . _=Uu : eV_450_20min
2kex275l??6':|;};13:$: OH:0 / \ 2.5keV_500_0min O:Er 2.5keV_500_0min
ii;e\'jéojolnm 3keV_450_20min 3KkeV_450_Z0min
10:90
3000eV-- 34:66
16:84 2500eV - 65:35
2000eV.-32:68
12:88
12:88 1500eV - 72:28

T —T T — T T T T T
534 5§32 530 528
Binding Energy (eV)

162

Unactivated surface has a thick, ill-defined hydroxide/oxide/Er° surface.
Activated surface has a thin reconfigured oxide with high density of defects.

K. Zavadil'
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Near Edge X-ray Absorption Fine Structure

-C, N, O, F — chemical state identification — molecular orientation — monolayers —segregation -

NEXAFS

Electrons  Fluorescence

hv from surface  {rom bulk
(1-10nm)  (~200nm))

LUMO

Core Level

8

l\/\/}/\/\/\ 7!
/
l/

(b)

S LSS S

(a)

The maximum intensity of transition is achieved
when the electric field vectoris parallel to the
respective bonding orbital; thus, when the beam is
normal (a) the dominant transition will be the C-H"
and at glancing angle geometry (b) the major
transition will be the C-Co.

(J. Mat. Sci. Let., 17 (1998) 1223-1225.)

Molecular Orbital Orientation
Resonance with incoming X-ray

o CO/Mo(110) CoH ,/Ag(100)

o
-] | |
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NEXAFS Spectroscopy, Joachim Stéhr, Springer, 2003

o.* Component 1
C-H "

Adventitious

hydrocarbons

Component 2

.
O cp
Fluorocarbon
monolayer

o'c.

O c. Non-linear

NEXAFS

A synchrotron-generated variable energy X-
ray beam (180-1200eV) irradiates the
sample surface.

A monochromator selects energy and
directs the beam to the sample.

The x-rays at a given energy are absorbed
when they match electron energies
(resonance).

Intensity of ejected electrons (or photons)
are plotted versus x-ray energy.
Polarized light from the synchrotron allow
probing of molecular orientation.

U7A
180-1200eV




Lenhart, et. al.,

Langmuir 2005, 21, 4007-4015.

Measure the surface segregation of film components in photoresist.
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NEXAFS spectra of pure resist components.
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 Fit of surface spectrum reveals an
enhancement of PFOS on the surface.

» Bulk spectrum shows little PFOS.




Fartial Electron Yield {a.u.)

T
Spectra of the PAHT:PCBM buried interface on OTS8 and 510, with com-
position fits. Spectra offset for clarity. Standard uncertainty in PEY is = 2%;
photon energy = 0.2 eV.
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P3HT and PCBM segregation is
dependent on the surface energy
of the substrate

APPLIED PHYSICS LETTERS 94, 233303 (2009)

Substrate-dependent interface composition and charge transport in films
for organic photovoltaics

David S. Germack Calvin K. Chan,? Behrang H. Hamadani,? Lee J. Rlchter
Daniel A. Fischer,' David J. Gundlach,? and Dean M. DeLongchamp1

Materials Science and Engineering Laboratory, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899-8541, USA

Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology,
Gmﬂif’rsburg Maryland 20899-8541, USA

3Chemical Science and Technology Laboraiory, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899-8541, USA

Linear combination of PCBM
spectrum and P3HT spectrum
gives contribution of each to the
measured spectrum.

Buried interface — delaminated
and examined.

(Color online) (a) Neat P3HT and PCBM NEXAFS spectra. (b)




» A synchrotron-generated variable energy x-ray beam (180-1200eV) irradiates the sample surface.
» = A monochromator selects energy and directs the beam to the sample.
«  The x-rays at a given energy are absorbed when they match electron energies (resonance).
Secondary electrons travel along magnetic field lines to a channel plate amplifier then phosphor screen.
« A CCD directly images the phosphor, recording the spatially resolved intensity of ejected electrons.
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Next generation synchrotron light facility (2015)
10,000 times brighter than NSLS
High-current electron beam, sub-nm-rad horizontal emittance (0.5 nm-rad) and diffraction-limited vertical emittance (8 pm-rad)
Stable beam position, angle, dimension, intensity
Wide spectral range (0.1 meV (1cm, far IR) to 300 keV (hard X-ray))

-_ MNSLS-I construction underway

1 = = i T—

New Microscope Construction Builds New York State Business
Opportunities : 7k VRN
BNL Media and Communications |
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Veeco Dimension Icon

High sensitivity
ze whole periodic table
Jing (200nm resolution)

Depth profiling

Isotopic ratios
Molecular detection

Detection limits <1 at%
High spatial resolution (15 nm)
Quantification by standards

Elemental mapping
Elemental depth profiles

Morphology
Electrical properties
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