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Material and device development of
AlGaN based deep UV emitters
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Opportunity: (1) AiIGaN/AIN Mg-doped polarization superlattices for p-type doping of “Al,Ga, ,N” (x > 0.5)

« Chemical sensing and material processing applications would greatly benefit from a compact, ) °f ANl RS-l Res Bl Chveemporailies
high performance laser diode at deep UV wavelengths (< 280 & 340 nm). Wells: AlossGaorN ot _ p-SL (154, 62% p o« exp(E./KT)

|Barriers: AIN mp-SL (5/10A, 49%) |
ep-GaN F p-GaN: E, =150meV

5A | 5A (62%): E, = 29meV

Aot Diode | / 5A /10A (49%): E,=18meV
: : : i i ——P-SPSL (10A, as grown) " e
Materials: AlGaN AlGalnP GaAs/AlGaAs  InGaAs = : —---P-SPSL (10A, Post RTA) Sals : » Hole activation energy ~ kT
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. Wavelength (nm) Temperature (K) VNATZ0R 1399, 0384 Allerman et. al-, JCG 2010
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» AlGaN semiconductor alloys are emerging as a promising candidate for extending
semiconductor laser diode technology into deep UV wavelengths.
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New opportunity

60%AlGaN
— 30%AlGaN

AlGaN Multi-
Quantum Wells H AIN

10A, (Mg)Al,2;Gag 77N

Challenge: — A g 10A, (Mg)AIN
— - / AIN

» AIGaN semiconductors present several major materials roadblocks to laser demonstration: om of » Thermal ionization not required
AN » Average Al: 62% .
» Optically transparent to UV
=» [ ow in-plane hole resistivity
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e Polarization fields ionize Mg acceptors 250 270 290 310 330
e Sheets of holes reside at interfaces Wavelength (nm)

S (1) Ineffective p-type doping of AlGaN epilayers
 pGaN - large (> 200 meV) acceptor ionization energies

(2) Non-radiative point defects (vacancies, impurities) (2) Deep Level Optical Spectroscopy (DLOS) to quantify point defects
—> reduces efficiency, impacted by growth conditions

(3) Lack of a lattice-matched substrate (extended defects) Photoluminescence of 340 nm AlGaN DLOS data for two Defect energies and
- contact A\ high threading Ui atsn density e A QWs vs. growth temperature growth temperatures relative densities

10.0
reduces efficiency, precludes reliable LD operation. 1060C . ARG Mot A _/ n
B L ’:;‘.o‘u.: A 3

> AIN substrates lead to high sheet resistance and st N B
optical loss.
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Ammstrong et al., APL 2011
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Quantum Well Width (A) photon energy (eV) ®» Large reduction in trap density
with growth at higher temperature

®» PL increased with higher ®» Three deep level traps detected
growth temperature in Alp.osGao.goN used in wells

(1) P-type Al,Ga,,N growth by MOCVD in a Veeco D-125 System

(3) AlGaN regrowth over etched trenches to reduce extended defects
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Temp:  990-1010° C g R Vercunature (Veeco) S B R e S e ® Introducing surface roughness

75 torr , i | X 119} AlGaN with reduced dislocations Tl drives dislocation reduction
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Growth Rate: 0.3-0.4 um/hr (AlGaN) = b TR -~ sapp;ire
0.07-0.12 um/hr (AIN) o 1 | N\l =

Mesais 385nm at top!

Pressure:

Sources: TMAI, TMGa, NH;, H,, N,
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=» Sub-micron features are key for S :
uniform reduction of dislocations Alignment e i i

Position from Flat (mm)

Cathodoluminescence

V/IIl Ratio: 4000, 5000 (AIGaN, AIN) |_C{PR A PR M SRS Vi = 3 '“-'--‘;'
oy’ ‘ % in R\, Etched pattern
Dopants: Cp2Mg &N 4 % R o Y 4, N“Gao,Nﬂ! e Overgrowth of etched i .
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Sapphire: 0.2° off toward m-plane R = Wi g Wl - "’Q il P 2-4 x 10° cm
o A\ R R R R e e Strain induced 3D

Veeco D-125 . - @ @ islanding (AlIGaN) :

Electroluminescence at 100mA

(1a.) P-type doping of Al,Ga, N epilayers (X <0.3)
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Resistivity of (Mg)Al, ;Ga, ;N Resistivity (Mg) of Al,Ga,_ N Resistivity of (Mg)Al,Ga, N
with NH; flux with Mg flux with Al composition
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» Spatially uniform reduction in dislocation density
= 15x increase in LED [ 30%AIGaN (340nm) 60%AIGaN (280nm) 3 2 _ . 3 2 _
[ emission (340nm) L =» 7-8x increase in PL = 2-4x increase in PL » p low 10° cm (X - 0'3)’ mid 10° cm (X - 0'65)

» A/ compositions; 0< Xal <1
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G 4 3 =gt iy g Electrically inject laser design
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ot (4) Laser diode processing and testing
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icfivi / TH L ave guide layer
[ ® Resistivity is largely independent] [" Resistivity is more sensitive to Mg ] ®» The increase in resistivity reflects the : : e

- e O GaN-AlGaN MQW
of VIl ratios exceeding 1200. flux for AlGaN films with higher Al increase in Mg acceptor activation energy s
composition. with higher Al composition.

(Si) Alp3Gag ;N (7um)
N-Claddina

Lasing threshold 1 \ ;
~50 kW/cm? Pump: 266 nm Ridge waveguide

! Pulse: 5n's (Si) Alp 3Gag ;N (3um) LD cross-section
Ng-coRec 2hoftferod & Mg-SPSL with growth temperature :

Superlattice (Mg-SPSL) 40 v i) “
| | | Stripe width: 50 pm Sapphire

Barriers: AIN (5-15A) S| O a 5A-wells, 5A-Barriers - i Lasing: 346 nm
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Mg-doped Al,Ga, N
test structure Total thickness: 300A — 1.1um

Mg Activation: 15 min. @ 800C in N2
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Wave guide layer ——7period

3 | wozso2 | (> 90% @ 275nm, 7 Period)
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. (Mg)-AIN
SARPSING (Mg) 23%-AlGaN
~ 2pm AIN buffer 960 980 1000 1020 1040 OP laser structure
T Growth Temperature (°C)

®» Resistivity of AlIGaN epilayers and Mg-SPSL
are weakly dependent on temperature
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Etched laser facet
(AlGaN-on-sapphire )
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