

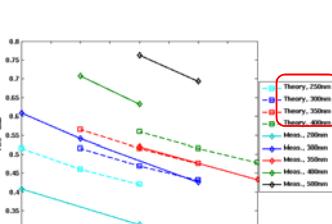
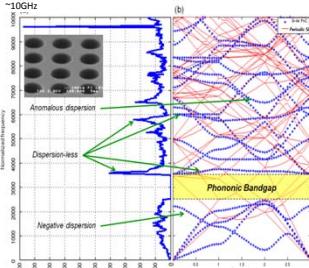
Exceptional service in the national interest

Nano-Structured Silicon Phononic Crystals with Metal Inclusions for ZT Enhancement

Charles Reinke (PI, 1712) and Ihab El-Kady (1712) — Early Career LDRD Program

Project Purpose and Approach

“We propose to address all three parameters of ZT simultaneously using nano-structured phononic crystals (PnCs) with metallic inclusions”

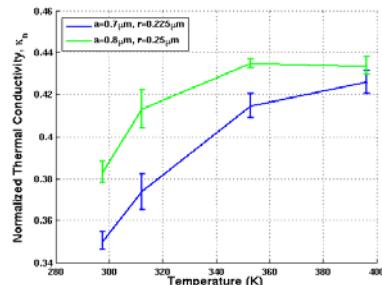


- PnCs for Engineered κ Reduction
- Metallic PnC Inclusions to Engineer κ and σ Concurrently
- Full ZT Measurement of PnCs
- Metallic Nano-Shells to Enhance Seebeck

Significance of Results

- Enable a new class of thermal materials and devices
 - Efficient thermoelectric cooling
 - Competitive waste heat scavenging
- Examine a low-cost solution for creating high-ZT materials
- Explore the continuum/quantum regime boundary
- Uncover new physical phenomena
 - High-temperature thermodynamic properties
 - Electronic band-bending at nano-scale metal-semiconductor interfaces
 - Simultaneously engineering the electrical and thermal conductivities and the Seebeck coefficient

What is a Phononic Crystal?

- Periodic arrangement of elastic scattering centers in a matrix material that exhibits both incoherent and Mie and Bragg resonant scattering
- Requires sufficient mechanical impedance mismatch


Key Accomplishments

- Measured record κ reduction for lattice constant/porosity parameters and at elevated T
- Self-consistent continuum mechanics/lattice dynamics model of κ
- 2 invited talks at international conferences
- Contributed talk at an international conference
- 2 journal papers

R&D Goals and Milestones

- Demonstrate κ reduction in Si-air PnCs at elevated temperatures
 - CM/LD hybrid model - 90%
 - Full TE characterization - 70%
- Demonstrate σ enhancement with Si-W PnC
 - Fabrication - 100%
 - Measurements - 70%
- Demonstrate Seebeck enhancement with metallic nano-shells
 - Fabrication - 50% (using previous samples)
 - Measurements - 10% (test-bed currently ready)

How does a Phononic Crystal effect κ ?

- Modification of phonon dispersion “ $\omega(k)$ ”, which is related to the and influences the phonon scattering lifetime
- Incoherent scattering due to the interface at each inclusion
- Redistribution of the phonon density of states as compared with bulk

➤ Thermal conductivity is given by the Callaway-Holland model as:

$$\kappa = \frac{1}{6\pi^2} \sum_j \int_k \frac{\hbar^2 \omega_j^2(k)}{k_B T^2} \left(\frac{\exp\left[\frac{\hbar\omega_j(k)}{k_B T}\right]}{\left(\exp\left[\frac{\hbar\omega_j(k)}{k_B T}\right] - 1\right)^2} \right) v_j^2(k) \tau_j(k) k^2 dk$$

$\omega(k)$ is the phonon dispersion
 $v(k) = \omega(k)/\partial k$ is the phonon group velocity
 $\tau(k)$ is the scattering lifetime of the phonons
 k is the wavenumber
 $j = 1, 2, 3$ (1 longitudinal and 2 transverse modes)
 L is the minimum feature size

$$\frac{1}{\tau_j(k)} = \frac{1}{\tau_{Umklapp,j}} + \frac{1}{\tau_{Impurity,j}} + \frac{1}{\tau_{Boundary,j}}$$

$$\frac{1}{\tau_{Umklapp,j}} = BT\omega_j^2(k)\exp\left[\frac{C}{T}\right]$$

$$\frac{1}{\tau_{Impurity,j}} = D\omega_j^4(k)$$

$$\frac{1}{\tau_{Boundary,j}} = \frac{L}{v_j(k)}$$

➤ where B , C , D , and E are constants determined by fitting κ to experimental data