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Thin Coating Contact Mechanics Theory

Model definition:
• Rigid spherical indenter with radius R.
• Thin coating with thickness h is fully bonded to a

flat, rigid substrate (h/R << 1).
• Coating is linear elastic and the material is

compressible (i.e.,  ν ≤ 0.45).
• a/R << 1 and a/h >> 1, where a is contact radius.
• Small strains and frictionless contact.
• Assume deformation through the coating is

homogeneous; normal compressive stress σz,
radial stress σr and and hoop stress σθ are all
uniform through the thickness.

• The contact radius and the compressive strain εz
are determined by the geometry of the indenter.
For indenter approach U,

where a2=2RU.
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• Compressive stress σz = Eu εzwhere Eu is the
uniaxial strain modulus (εr= εθ= 0).

• The applied compressive load P is determined by
integrating the compressive stress over the
contact area.

where A is the contact area.
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• Thin coating contact theory results can be expressed in nondimensional form

where

• The thin coating contact theory can be formally extended to cases where h/R and
a/R are not vanishing small (but still relatively small) by assuming that

where in the thin coating limit c=1 and d = 1/2.

• Based on dimensional considerations, one anticipates that the parameters c and d
are functions of ν and h/R.
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Thin Coating Contact Mechanics Theory
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Finite Element Contact Simulations for a Thin Coating

• Used SNL’s Tahoe finite element
code.

• Quasistatic, small strain,
axisymmetric, linear elastic
analysis.

• Frictionless contact of spherical
shell of radius R on a thin coating
of thickness h.

• Modulus of spherical shell is 106

times that of the elastic coating =>
shell is essentially rigid.

• Bottom edge of elastic layer fixed
to model bond to a rigid substrate.

• Analysis for U/h<0.2; small strain,
linear elastic analysis is
problematic when U/h gets large.

•Elements are 0.1 nm squares.

•Spherical shell displacement U is downward.

h

elastic coating fixed on bottom edge.
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P

A

h/R=0.1
ν=0.40

P
A

h/R=0.1
ν=0.45• Performed a suite of finite element analyses with

- determined power law fit parameters c, d in

• Thin coating contact theory is a reasonable approximation to
the FEA for most parameter combinations (e.g. h/R=0.1, ν=0.4).

• The greatest deviation from thin coating contact theory occurs
as h/R increases and for ν>0.4 (e.g., h/R=0.1, ν=0.45).

• The extended thin coating theory provides a good fit to the FEA
for the full range of h/R and ν considered.
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Fits for a/h>1 and  U/h<0.2

Finite Element Contact Simulations for a Thin Coating

 parameters h/R =0.010 h/R =0.038 h/R =0.074 h/R =0.100 
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• Expect thin coating theory assumptions
apply when h/R=0.01 and ν=0.4.

• FEA contour plot of normal stress for
U/h=0.2 shows that the normal stress is
nearly uniform through the coating
thickness.

• In this case fit parameters c=1.05 and
d=0.50.

Finite Element Contact Simulations for a Thin Coating

• Expect some deviation form thin coating
theory assumptions when h/R=0.1 and
ν=0.45.

• FEA contour plot of normal stress for
U/h=0.2 shows that the normal stress
exhibits some variation through the
coating thickness.

• In this case fit parameters c=1.38 and
d=0.53.
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• Performed a suite of axisymmetric finite element calculations to examine when the rigid
indenter/substrate idealization is applicable.

• Indenter and substrate have elastic properties similar to silicon (Esi=161 GPa, νsi= 0.23).

• Elastic modulus of the elastic layer is varied from E=0.1 GPa to 161 GPa (v=0.4).

• Performed calculations for h/R = 0.074.

• Simulations suggest that the rigid indentor/substrate idealization is reasonable when Eu/Esi < 0.05.

Finite Element Contact Simulations for a Thin Coating

Esi

Esi

vary E
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Thin Coating Contact Mechanics Theory

Coated sphere 1
with R1, h1, E1, ν1

P, U

U=0 Coated sphere 2
with R2, h2, E2, ν2

Ri = coating radius
hi = coating thickness
Ei = coating Young’s modulus
νi = coating Poisson’s ratio

• Can readily extend to two contacting spheres,
where each sphere is rigid and coated with a
thin compliant elastic material by using an
effective R and  Eu.

• Based upon the assumed kinematics of the
deformation (i.e., the sum of the imposed
normal coating deformation is equal to the
approach minus the initial gap) the  effective
radius is

• Based upon the assumptions of uniaxial strain
and uniform, through the thickness normal
stress σz, a two material stack can be replace
by a single material with effective modulus of
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Thin Coating Contact Mechanics: Illustrative Results

• Results from all three cases collapse
to the universal TCCM relationship
for Hertz-like response.
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DMT-like Thin Coating Contact Mechanics Theory

• DMT-like theory
-Hertz-like contact with adhesion forces
acting outside of the contact radius.

-Adhesion does not deform the contacting
materials outside of the contact zone.

-Most appropriate when range of adhesion
forces long compared with elastic
deformations (W/Eu relatively small).

• The total load equals the sum of the applied
compressive load P and the load induced by
adhesion Pa (DMT).

• Pa (DMT) = 2πRW where W is the work of
adhesion (the force between a rigid sphere and
a rigid half-plane).

• Consequently, using the thin coating contact
mechanics theory results,
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• So

and

and

• When

which is the tensile pull-off load.
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JKR-like Thin Coating Contact Mechanics Theory

• JKR-like theory
-Adhesion induced elastic  deformations
included.

-Adhesion forces act only within contact area.
-Most appropriate when range of adhesion
forces short compared with elastic
deformations (W/Eu relatively large).

• The applied contact load is the sum of
compressive load corresponding to a contact
radius a minus the load Pa induced by adhesion.

• For a thin compliant coating on a flat rigid
substrate indented by a rigid sphere with
R/h>>1, R/a>>1, and a/h>>1, the adhesion
problem can be idealized as an edge-clamped
thin strip.

• Note that a plane-strain-like condition applies
since the bottom edge is fixed with ur =εθ=0,
so a J-integral evaluation yields

where σo is the nominal normal stress in the
uncracked portion of the strip

• Since J= W when the materials are linear
elastic,

• Since most of the strip is subjected to σo
when a/h>>1, will assume that

and consequently the net contact force is

! 

J =
hE

u

2

U

h

" 

# 
$ 

% 

& 
' 
2

=
(
o

2
h

2E
u

! 

"
o

=
2WE

u

h

# 

$ 
% 

& 

' 
( 
1/2

! 

P
a (JKR) = "a2 2E

u
W

h

# 

$ 
% 

& 

' 
( 

1/2

! 

P =
"a4E

u

4Rh
#"a2

2E
u
W

h

$ 

% 
& 

' 

( 
) 
1/2

U

Rigid Adherend

E, ν
h

Interfacial
Crack

Shear
Stress = 0



Reedy 2/20/07

JKR-like Thin Coating Contact Mechanics Theory

• The applied displacement is the sum of of
the displacement corresponding to a
contact radius a minus the displacement
Ua (JKR) induced by adhesion.

• Since

then the net displacement is

• The nondimensionalized JKR-like thin
coating are
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• These equations can be solved to yield

Which is identical to the DMT result, but
here      can be negative  as long as           .

• When

The maximum tensile load occurs when
U=0, thus defining the value of the pull-off
force for a tensile loading.

• When
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Finite Element Simulations that Include Adhesion
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• Used SNL’s PRESTO 3-D, explicit
dynamics finite element code.

• Adhesion model combines frictionless
contact with an adhesion traction that
scales with normal distance between
opposing surfaces (implemented via the
contact algorithm).

• Large strain and displacement analysis ---
if no material rotation at a point
logarithmic strain.

• Begin analysis with rigid sphere just in
contact with top of elastic coating (U=0).

• Adhesion rapidly pulls coating into contact
--- hold sphere fixed until contact radius
has reached its equilibrium position
(analysis includes viscous damping).

• Next slowly displace rigid sphere (push or
pull) to determine relationship between
contact radius and applied load (1nm/ns).

•Smallest element is a 0.1 nm cube.

- Results of test calculations with a refined mesh
(0.05 nm cube) were essentially the same.

- If mesh is too coarse or when    is comparable
to E, can have element stability issues.
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1 nm thick elastic coating fixed on bottom edge

r
z

100 nm radius rigid spherical
shell displaced downward

Note: λ ≤ 0.001 in finite element calculations (consistent with the
cracked strip problem used in the JKR-like analysis).
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•Illustrative calculations with:
-R =100 nm, E =1 GPa, ν = 0.4, ρ = 1 g/cm3

-W = 0.25 J/m2,     = 500 MPa, δc=1 nm

-Either a thin coating with h=1 nm or a thick
substrate with h= 60 nm (should be JKR-like).

! 
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Thin Coating Contact Mechanics: Illustrative Results

Note: symbol denotes contact radius, bar indicates length of zone where
adhesion forces act across an open gap

• Contact radius is defined as the radius where the
stress equals     .

• When there is a thick substrate:
- Finite element analysis (FEA) is in good

agreement with JKR theory.
- Calculated zone  where adhesion forces act

across an open gap is relatively short
compared with the contact radius.

- Note that the FEA uses a simple adhesion
model and does not assume JKR behavior.

• In comparison with a thick substrate, a thin
coating has:

- a much smaller contact radius for a given
contact force.

- a much larger tensile pull-off force.
- a relatively large adhesive zone.

• FEA results for a thin film
-  predict pull off at U=0 with P=-2πRW and

a/h~10 (consistent with JKR-like theory).
- predicted adhesive zone length bounds the

TCCM JKR theory prediction for a.
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• Illustrative calculations

- R =100 nm, h=1 nm

- E =1, 10, or 100 GPa, ν = 0.4, ρ = 1 g/cm3

- W = 0.25 J/m2,     = 500 MPa, δc=1 nm

• Approaches the thin coating DMT limit as
decreases.

• Adhesive zone length can be quite large compared to the
contact radius in the thin coating DMT limit.

• Tensile pull-off load is within 1% of -2πRW for all three
cases.
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TCCM: transition between DMT-like and JKR-like limits

• Within the context of TCCM, the coating strain is
assumed to be uniaxial and uniform through the
coating thickness while the Adhesion-Separation
relationship defines the peak adhesive stress     .

• Consequently the adhesion induced coating
displacement Ua is simply

- used W=   δc/2 above
- Ua is the maximum gap that adhesion can close-up.
- note that in the JKR-like limit, Ua = δc (no adhesion

outside of the contact zone).
• Can define a thin-coating transition parameter ζ.

- when ζ = 0, DMT-like, when ζ = 1 JKR-like.
- when ζ < 1, adhesion force acts across an open gap.
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• Recall results for the DMT-like and JKR-like
limits

• These equations differ only by a load and contact
radius independent quantity that depends on
adhesion,             .

• This suggests that a function that depends only on
ζ, f(ζ), can be defined to span the DMT-like to
JKR-like limits

where f(ζ) = 0 when ζ = 0 (DMT-like)
and f(ζ) =1 when ζ = 1 (JKR-like).
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TCCM: transition between DMT-like and JKR-like limits

• When

where a0 is the contact radius when U = 0 and                               .

• Next note that when U=0, the displacement associated with Hertz-like contact equals that
induced by adhesion so that

• Comparison of the two equations suggest that

• Using this result along with the TCCM relationship  (same for DMT-like and JRK-like limits)

gives
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Finite element calculations verify f(ζ) = ζ1/2

• Calculations for a rigid sphere of radius R
contacting a coating of thickness h. Used
calculated ao to determine f(ζ)

• Eu = 2490 MPa, δc = 1 nm

• h/R < 0.025, ao/R< 0.08,
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•                      (         is a measure of the maximum,
nominal tensile coating strain ---TCCM assumes small
strain, linear elasticity)

• When ζ=1, need ao/h ≥10 to approach f(ζ) = ζ1/2 (ΤCCΜ
assumes a/h>>1). It appears that ao/h can be much
less than10 for smaller values of ζ (when “displacement
discontinuity” at contact radius is less severe).
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• Example problem: two coated
spheres with adhesion
- Sphere 1: R1 = 200 nm
- Sphere 2: R2 = 1000 nm
- W = 0.2 J/m2 (δc = 1 nm)
- Both spheres have a 2-nm
thick coating with E = 4 GPa
and ν = 0.4

- ζ = 0.19
-
-  a/h =2.0 when U = 0.
- Symbols denote the contact
radius while the bars indicate
the length of the region where
adhesion forces act across an
open gap.

! 

ˆ " /E
u

= 0.047

Thin Coating Contact Mechanics: Example Problem

a

! 

P 



Reedy 2/20/07

Summary

• Developed an elementary thin coating contact mechanics theory for two
contacting spheres, where each sphere is rigid and coated with a thin
compliant elastic material (use an effective R and  Eu).

• Performed axisymmetric finite element simulations to assess the range of
validity of the thin coating contact mechanics theory and defined an
extension based on the FEA results.

• Derived DMT-like and JKR-like thin coating contact mechanics limits and
also provide analytical results that span the transition between the DMT-like
and JKR-like limits.

• Developed a 3-D finite element simulation capability that includes adhesion
and verified that this FEA can reproduce JKR-like response when there is a
thick, compliant substrate.

• Performed illustrative FEA for a thin compliant coating with adhesion (rigid
indenter/substrate) and compared results with the thin coating contact
theory.



Reedy 2/20/07

Summary of TCCM governing equations
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Transition parameter

P, U

U=0

Sphere 1 with R1, h1, E1, ν1

Sphere 2 with R2, h2, E2, ν2

• Thin coating is fully bonded to a rigid sphere
(h/R << 1).

• Coating is linear elastic and the material is
compressible (i.e.,  ν ≤ 0.45).

• a/R << 1 and a/h >> 1, where a is contact radius.
• Small strains and frictionless contact.
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