

30th Annual Meeting of the Adhesion Society, February 20th, 2007

Thin Coating Contact Mechanics with Adhesion

E.D. Reedy
Sandia National Laboratories

Dave Reedy

Engineering Sciences
Department 1526

Phone:(505) 844-3297

MS 0888

e-mail: edreedy@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

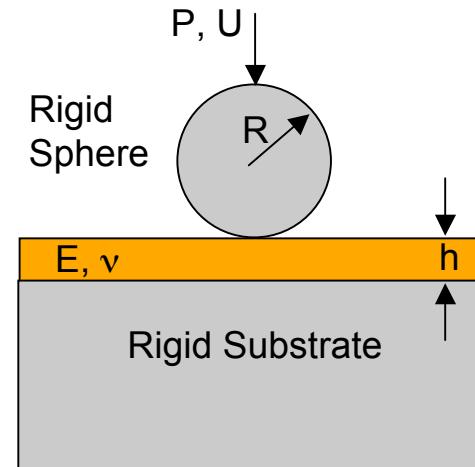
Thin Coating Contact Mechanics Theory

Model definition:

- Rigid spherical indenter with radius R .
- Thin coating with thickness h is fully bonded to a flat, rigid substrate ($h/R \ll 1$).
- Coating is linear elastic and the material is compressible (i.e., $\nu \leq 0.45$).
- $a/R \ll 1$ and $a/h \gg 1$, where a is contact radius.
- Small strains and frictionless contact.
- Assume deformation through the coating is homogeneous; normal compressive stress σ_z , radial stress σ_r and hoop stress σ_θ are all uniform through the thickness.
- The contact radius and the compressive strain ε_z are determined by the geometry of the indenter. For indenter approach U ,

$$\varepsilon_z(r) = \frac{a^2}{2Rh} \left(1 - \left(\frac{r}{a} \right)^2 \right)$$

where $a^2 = 2RU$.



- Compressive stress $\sigma_z = E_u \varepsilon_z$ where E_u is the uniaxial strain modulus ($\varepsilon_r = \varepsilon_\theta = 0$).

$$E_u = \frac{(1-\nu)E}{(1+\nu)(1-2\nu)}$$

- The applied compressive load P is determined by integrating the compressive stress over the contact area.

$$P = \frac{\pi E_u a^4}{4Rh} = \frac{E_u A^2}{4\pi Rh} = \frac{\pi E_u R U^2}{h}$$

where A is the contact area.



Thin Coating Contact Mechanics Theory

- Thin coating contact theory results can be expressed in nondimensional form

$$\bar{A} = 2\sqrt{\pi} \bar{P}^{1/2}$$

where

$$\bar{A} = \frac{A}{Rh} \text{ and } \bar{P} = \left(\frac{P}{RhE_u} \right)$$

- The thin coating contact theory can be formally extended to cases where h/R and a/R are not vanishing small (but still relatively small) by assuming that

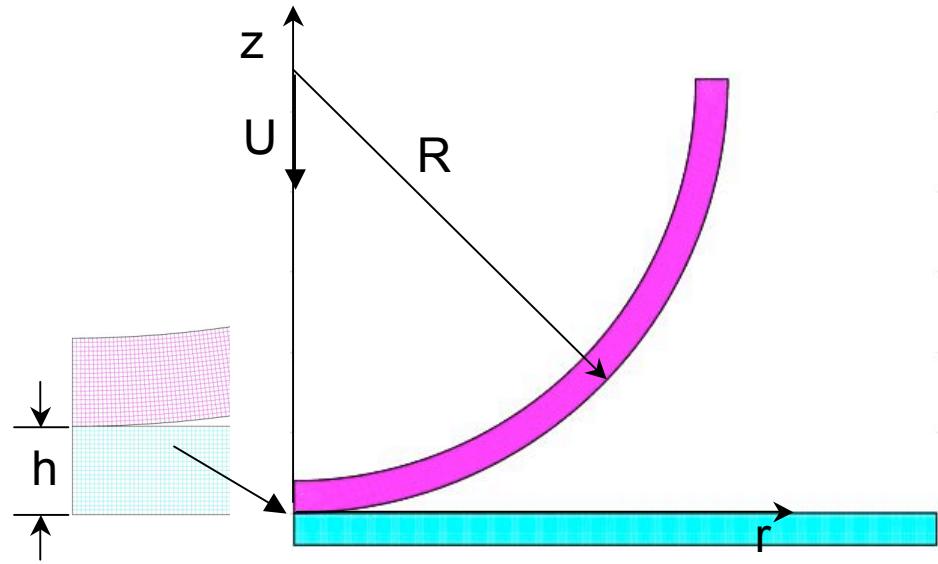
$$\bar{A} = 2\sqrt{\pi} c \bar{P}^d$$

where in the thin coating limit $c=1$ and $d = 1/2$.

- Based on dimensional considerations, one anticipates that the parameters c and d are functions of ν and h/R .

Finite Element Contact Simulations for a Thin Coating

- Used SNL's Tahoe finite element code.
- Quasistatic, small strain, axisymmetric, linear elastic analysis.
- Frictionless contact of spherical shell of radius R on a thin coating of thickness h .
- Modulus of spherical shell is 10^6 times that of the elastic coating => shell is essentially rigid.
- Bottom edge of elastic layer fixed to model bond to a rigid substrate.
- Analysis for $U/h < 0.2$; small strain, linear elastic analysis is problematic when U/h gets large.



elastic coating fixed on bottom edge.

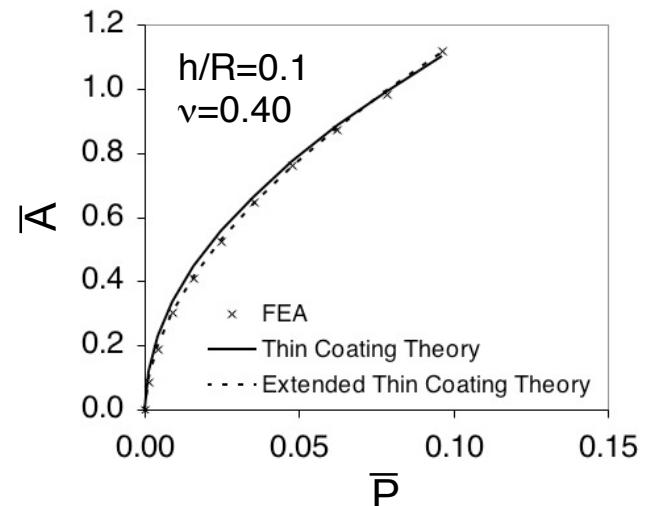
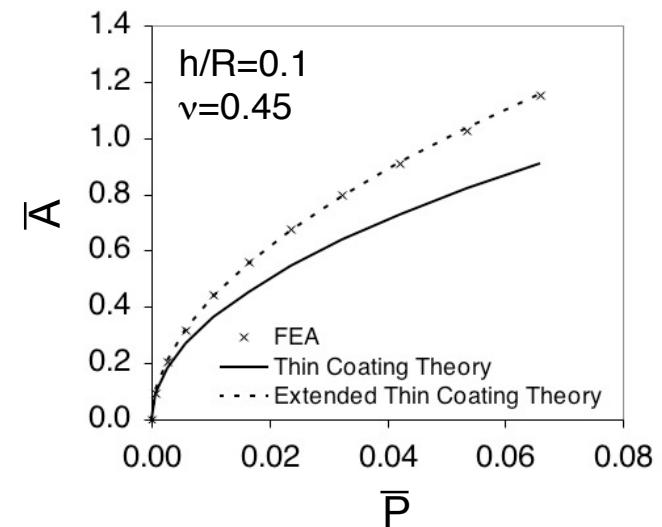
- Elements are 0.1 nm squares.
- Spherical shell displacement U is downward.

Finite Element Contact Simulations for a Thin Coating

ν	parameters	$h/R = 0.010$	$h/R = 0.038$	$h/R = 0.074$	$h/R = 0.100$
0.00	$c =$	1.01	0.97	0.93	0.93
	$d =$	0.53	0.54	0.55	0.56
0.10	$c =$	1.00	0.97	0.94	0.94
	$d =$	0.52	0.54	0.55	0.57
0.20	$c =$	1.02	0.99	0.93	0.94
	$d =$	0.53	0.54	0.54	0.56
0.30	$c =$	1.02	1.01	0.99	0.97
	$d =$	0.52	0.54	0.55	0.55
0.40	$c =$	1.05	1.10	1.11	1.13
	$d =$	0.50	0.52	0.53	0.55
0.45	$c =$	1.17	1.27	1.33	1.38
	$d =$	0.49	0.50	0.52	0.53

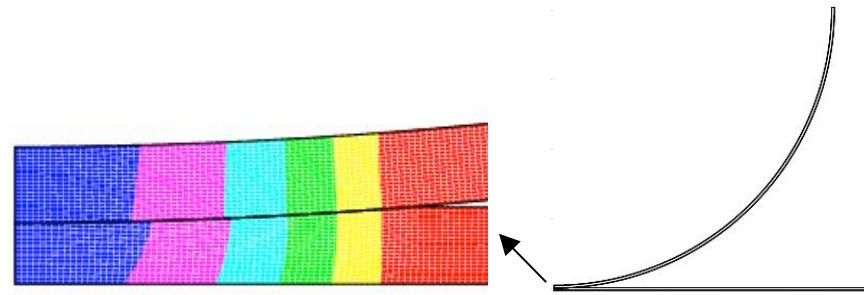
Fits for $a/h > 1$ and $U/h < 0.2$

- Performed a suite of finite element analyses with
 - determined power law fit parameters c, d in $\bar{A} = 2\sqrt{\pi}c\bar{P}^d$
- Thin coating contact theory is a reasonable approximation to the FEA for most parameter combinations (e.g. $h/R=0.1, \nu=0.4$).
- The greatest deviation from thin coating contact theory occurs as h/R increases and for $\nu > 0.4$ (e.g., $h/R=0.1, \nu=0.45$).
- The extended thin coating theory provides a good fit to the FEA for the full range of h/R and ν considered.

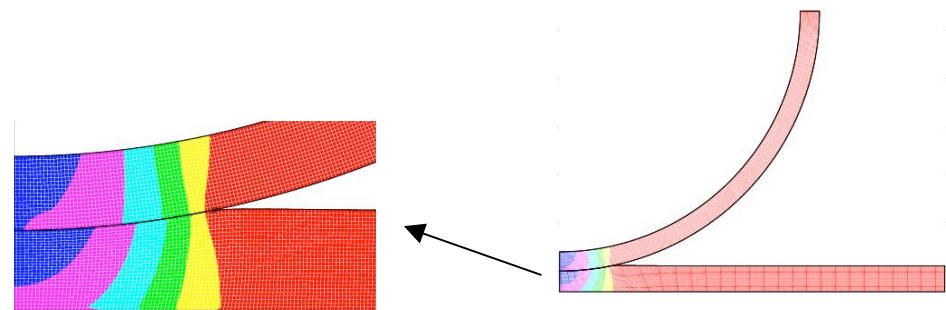


Finite Element Contact Simulations for a Thin Coating

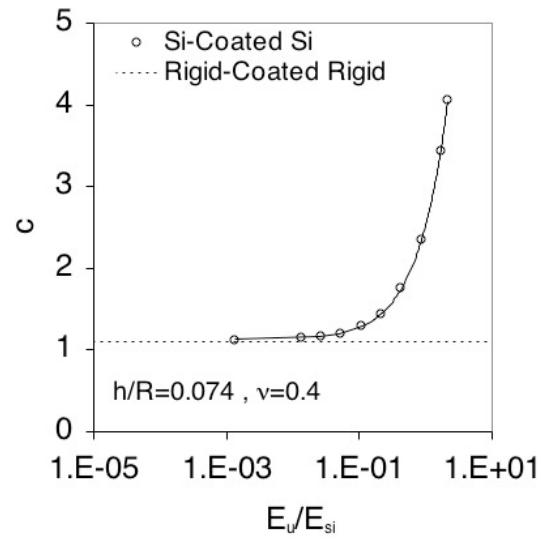
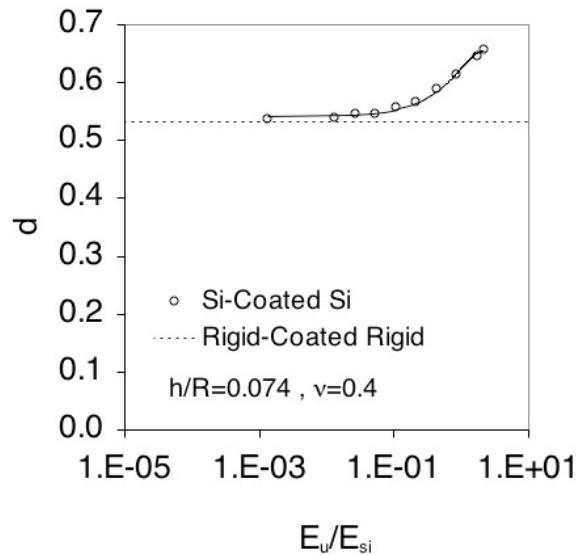
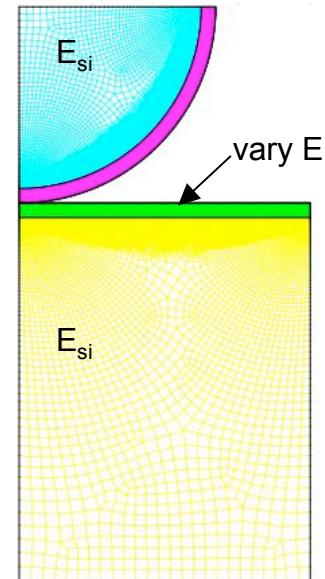
- Expect thin coating theory assumptions apply when $h/R=0.01$ and $\nu=0.4$.
- FEA contour plot of normal stress for $U/h=0.2$ shows that the normal stress is nearly uniform through the coating thickness.
- In this case fit parameters $c=1.05$ and $d=0.50$.



- Expect some deviation from thin coating theory assumptions when $h/R=0.1$ and $\nu=0.45$.
- FEA contour plot of normal stress for $U/h=0.2$ shows that the normal stress exhibits some variation through the coating thickness.
- In this case fit parameters $c=1.38$ and $d=0.53$.



Finite Element Contact Simulations for a Thin Coating



- Performed a suite of axisymmetric finite element calculations to examine when the rigid indenter/substrate idealization is applicable.
- Indenter and substrate have elastic properties similar to silicon ($E_{si}=161$ GPa, $\nu_{si}=0.23$).
- Elastic modulus of the elastic layer is varied from $E=0.1$ GPa to 161 GPa ($\nu=0.4$).
- Performed calculations for $h/R = 0.074$.
- Simulations suggest that the rigid indenter/substrate idealization is reasonable when $E_u/E_{si} < 0.05$.



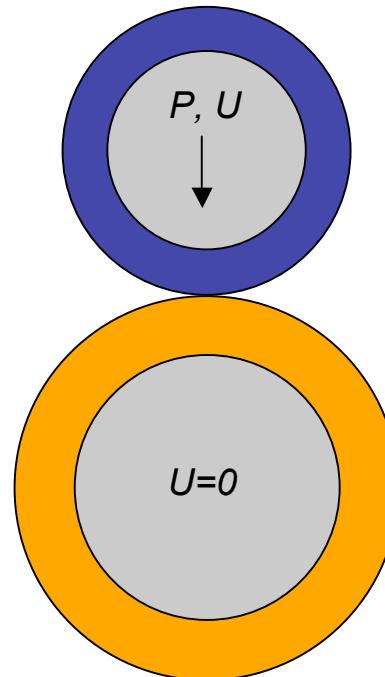
Thin Coating Contact Mechanics Theory

- Can readily extend to two contacting spheres, where each sphere is rigid and coated with a thin compliant elastic material by using an effective R and E_u .
- Based upon the assumed kinematics of the deformation (i.e., the sum of the imposed normal coating deformation is equal to the approach minus the initial gap) the effective radius is

$$R = (1/R_1 + 1/R_2)^{-1}$$

- Based upon the assumptions of uniaxial strain and uniform, through the thickness normal stress σ_z , a two material stack can be replace by a single material with effective modulus of

$$E_u = h(h_1/E_{u1} + h_2/E_{u2})^{-1} \text{ where } h = h_1 + h_2$$



Coated sphere 1
with R_1, h_1, E_1, ν_1

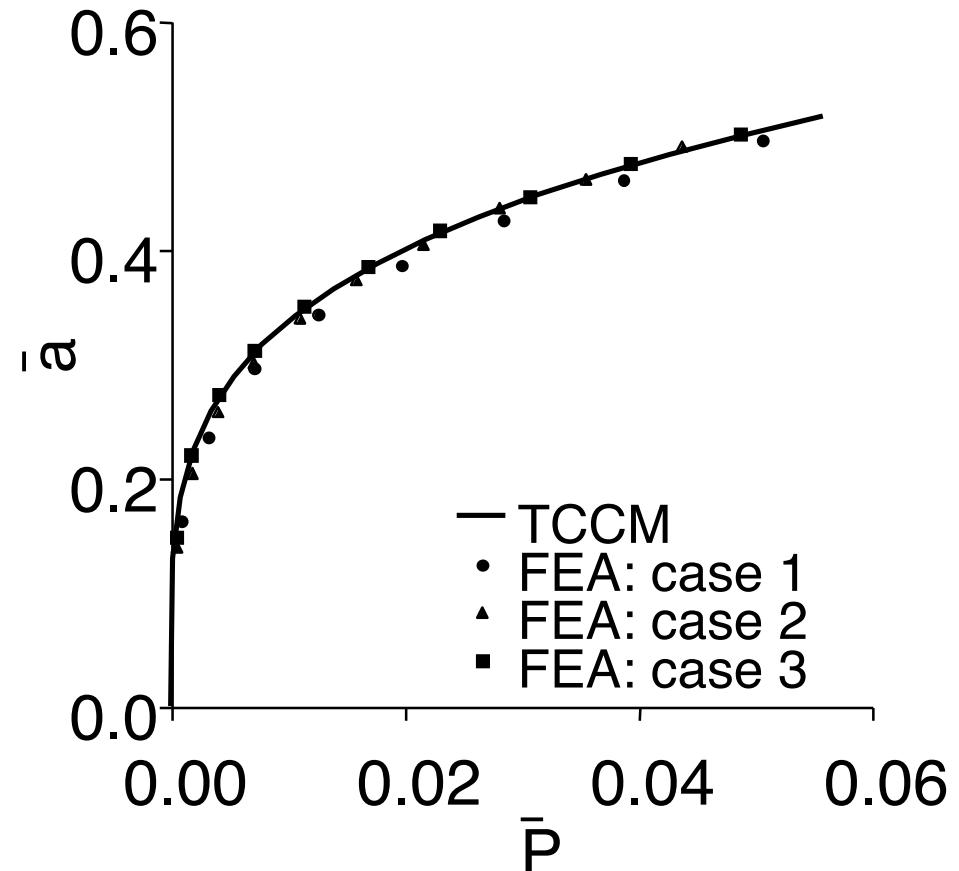
Coated sphere 2
with R_2, h_2, E_2, ν_2

R_i = coating radius
 h_i = coating thickness
 E_i = coating Young's modulus
 ν_i = coating Poisson's ratio

Thin Coating Contact Mechanics: Illustrative Results

	Case 1	Case 2	Case 3
R_1 (nm)	52	52	200
h_1 (nm)	2	2	2
E_1 (MPa)	∞	2000	4000
ν_1	na	0.3	0.4
R_2 (nm)	∞	∞	1000
h_2 (nm)	4	4	2
E_2 (MPa)	1000	4000	4000
ν_2	0.4	0.4	0.4

- Results from all three cases collapse to the universal TCCM relationship for Hertz-like response.



DMT-like Thin Coating Contact Mechanics Theory

- DMT-like theory
 - Hertz-like contact with adhesion forces acting outside of the contact radius.
 - Adhesion does not deform the contacting materials outside of the contact zone.
 - Most appropriate when range of adhesion forces long compared with elastic deformations (W/E_u relatively small).
- The total load equals the sum of the applied compressive load P and the load induced by adhesion $P_{a(DMT)}$.
- $P_{a(DMT)} = 2\pi RW$ where W is the work of adhesion (the force between a rigid sphere and a rigid half-plane).
- Consequently, using the thin coating contact mechanics theory results,

$$P + 2\pi RW = \frac{\pi E_u a^4}{4Rh} = \frac{E_u A^2}{4\pi Rh} = \frac{\pi E_u R U^2}{h}$$

- Can nondimensionalize equations using:

$$\bar{P} = \frac{P}{E_u Rh} \quad \bar{U} = \frac{U}{\sqrt{Rh}} \quad \bar{a} = \frac{a}{\sqrt{Rh}}$$
$$\bar{W} = \frac{W}{E_u h} \quad \bar{h} = \frac{h}{\sqrt{Rh}}$$

- So $\bar{P} + 2\pi\bar{W} = \frac{\pi\bar{a}^4}{4}$

and $\bar{a} = \left(\frac{2\bar{U}}{\bar{h}} \right)^{1/2}$

and $\bar{P} + 2\pi\bar{W} = \pi \left(\frac{\bar{U}}{\bar{h}} \right)^2$

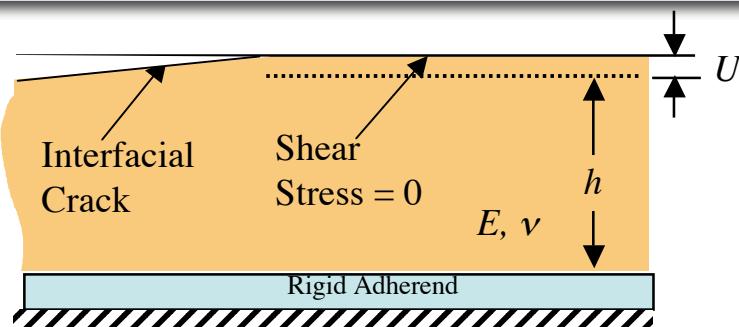
- When $\bar{U} = 0$
 $\bar{a} = 0 \quad \bar{P} = -2\pi\bar{W}$

which is the tensile pull-off load.

- When $\bar{P} = 0$
 $\bar{a} = (8\bar{W})^{1/4} \quad \bar{U} = \bar{h}(2\bar{W})^{1/2}$

JKR-like Thin Coating Contact Mechanics Theory

- JKR-like theory
 - Adhesion induced elastic deformations included.
 - Adhesion forces act only within contact area.
 - Most appropriate when range of adhesion forces short compared with elastic deformations (W/E_u relatively large).
- The applied contact load is the sum of compressive load corresponding to a contact radius a minus the load P_a induced by adhesion.
- For a thin compliant coating on a flat rigid substrate indented by a rigid sphere with $R/h \gg 1$, $R/a \gg 1$, and $a/h \gg 1$, the adhesion problem can be idealized as an edge-clamped thin strip.



- Note that a plane-strain-like condition applies since the bottom edge is fixed with $u_r = \varepsilon_\theta = 0$, so a J-integral evaluation yields

$$J = \frac{hE_u}{2} \left(\frac{U}{h} \right)^2 = \frac{\sigma_o^2 h}{2E_u}$$

where σ_o is the nominal normal stress in the uncracked portion of the strip

- Since $J = W$ when the materials are linear elastic,

$$\sigma_o = \left(\frac{2WE_u}{h} \right)^{1/2}$$

- Since most of the strip is subjected to σ_o when $a/h \gg 1$, will assume that

$$P_{a(JKR)} = \pi a^2 \left(\frac{2E_u W}{h} \right)^{1/2}$$

and consequently the net contact force is

$$P = \frac{\pi a^4 E_u}{4Rh} - \pi a^2 \left(\frac{2E_u W}{h} \right)^{1/2}$$

JKR-like Thin Coating Contact Mechanics Theory

- The applied displacement is the sum of the displacement corresponding to a contact radius a minus the displacement $U_{a(JKR)}$ induced by adhesion.

- Since

$$J = W = \frac{hE_u}{2} \left(\frac{U_{a(JKR)}}{h} \right)^2$$

then the net displacement is

$$U = \frac{a^2}{2R} - \left(\frac{2Wh}{E_u} \right)^{1/2}$$

- The nondimensionalized JKR-like thin coating are

$$\bar{P} = \frac{\pi}{4} \bar{a}^4 - \pi \bar{a}^2 (2\bar{W})^{1/2}$$

$$\bar{a} = \left(\frac{2\bar{U}}{\bar{h}} + (8\bar{W})^{1/2} \right)^{1/2}$$

- These equations can be solved to yield

$$\bar{P} + 2\pi\bar{W} = \pi \left(\frac{\bar{U}}{\bar{h}} \right)^2$$

Which is identical to the DMT result, but here \bar{U} can be negative as long as $\bar{a} \geq 0$.

- When $\bar{U} = 0$

$$\bar{P} = -2\pi\bar{W}$$

$$\bar{a} = (8\bar{W})^{1/4}$$

The maximum tensile load occurs when $\bar{U}=0$, thus defining the value of the pull-off force for a tensile loading.

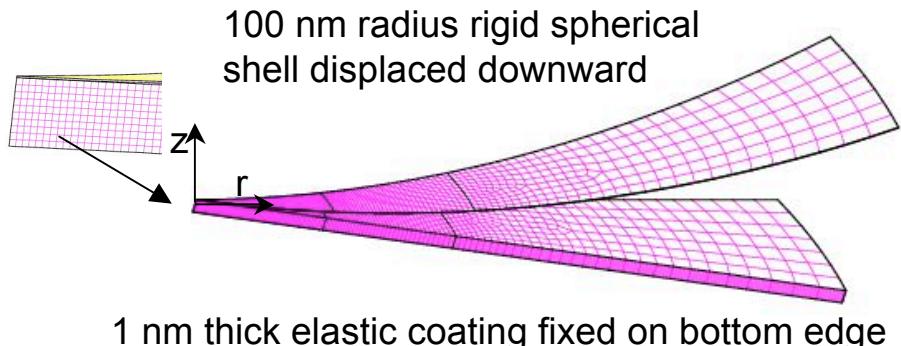
- When $\bar{P} = 0$

$$\bar{U} = \bar{h} (2\bar{W})^{1/2}$$

$$\bar{a} = (32\bar{W})^{1/4}$$

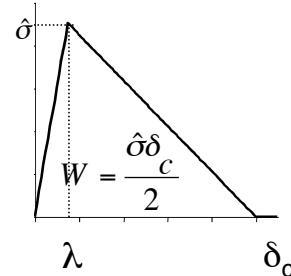
Finite Element Simulations that Include Adhesion

- Used SNL's PRESTO 3-D, explicit dynamics finite element code.
- Adhesion model combines frictionless contact with an adhesion traction that scales with normal distance between opposing surfaces (implemented via the contact algorithm).
- Large strain and displacement analysis --- if no material rotation at a point logarithmic strain.
- Begin analysis with rigid sphere just in contact with top of elastic coating ($U=0$).
- Adhesion rapidly pulls coating into contact --- hold sphere fixed until contact radius has reached its equilibrium position (analysis includes viscous damping).
- Next slowly displace rigid sphere (push or pull) to determine relationship between contact radius and applied load (1nm/ns).



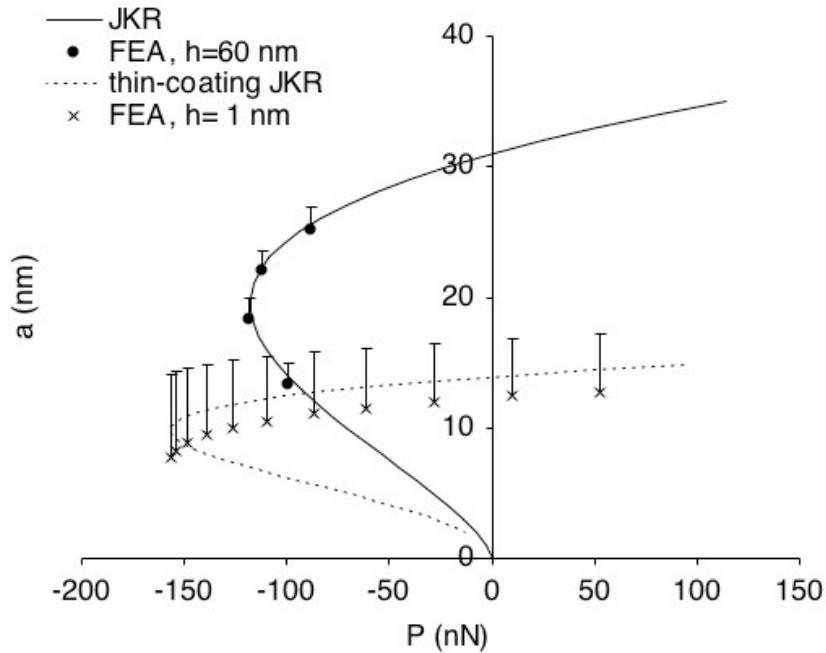
- Smallest element is a 0.1 nm cube.
 - Results of test calculations with a refined mesh (0.05 nm cube) were essentially the same.
 - If mesh is too coarse or when $\hat{\sigma}$ is comparable to E, can have element stability issues.

Adhesion
traction-
separation
relationship



Note: $\lambda \leq 0.001$ in finite element calculations (consistent with the cracked strip problem used in the JKR-like analysis).

Thin Coating Contact Mechanics: Illustrative Results



Note: symbol denotes contact radius, bar indicates length of zone where adhesion forces act across an open gap

- Illustrative calculations with:

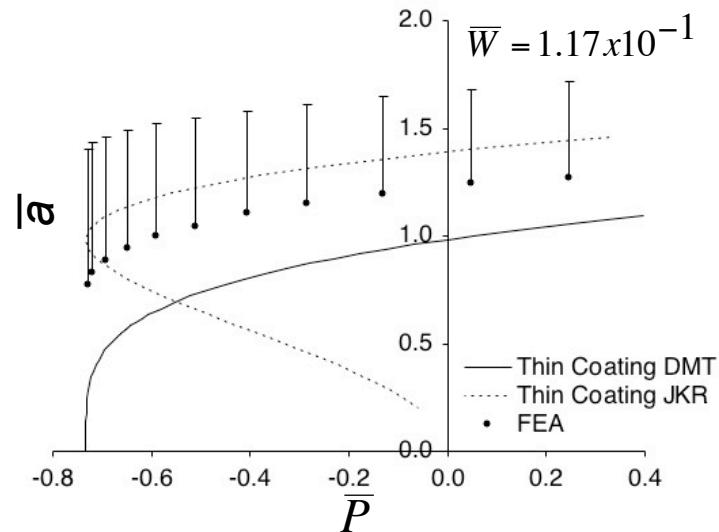
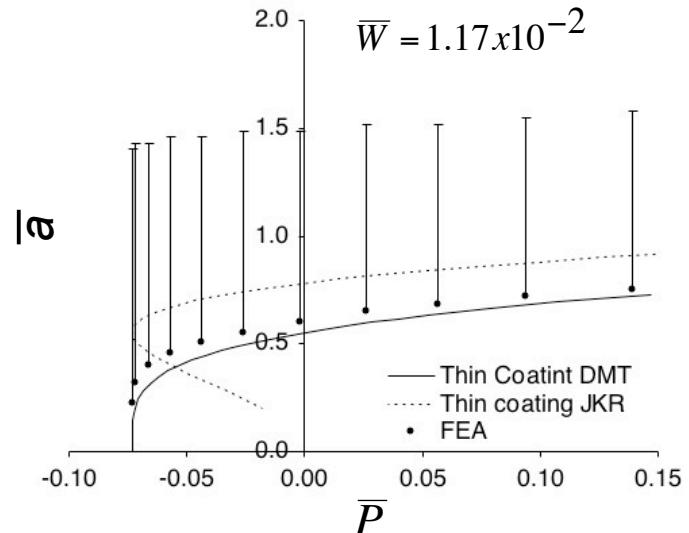
$$-R = 100 \text{ nm}, E = 1 \text{ GPa}, \nu = 0.4, \rho = 1 \text{ g/cm}^3$$

$$-W = 0.25 \text{ J/m}^2, \hat{\sigma} = 500 \text{ MPa}, \delta_c = 1 \text{ nm}$$

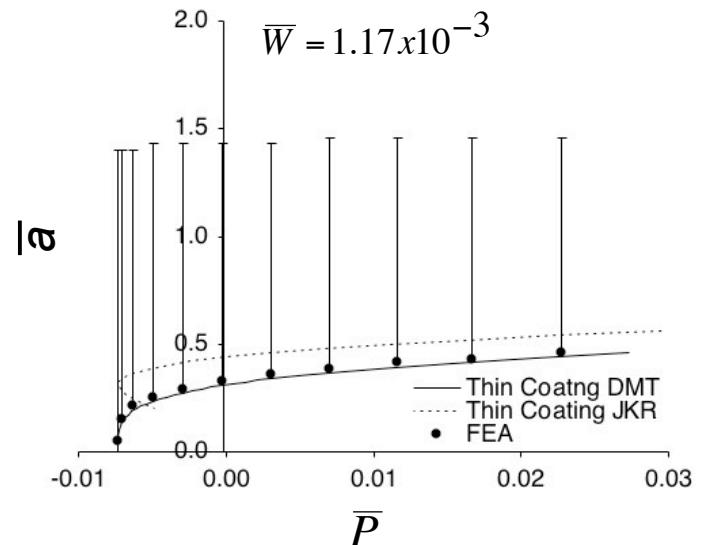
-Either a thin coating with $h=1$ nm or a thick substrate with $h=60$ nm (should be JKR-like).

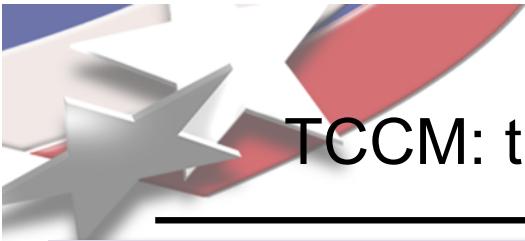
- Contact radius is defined as the radius where the stress equals $\hat{\sigma}$.
- When there is a thick substrate:
 - Finite element analysis (FEA) is in good agreement with JKR theory.
 - Calculated zone where adhesion forces act across an open gap is relatively short compared with the contact radius.
 - Note that the FEA uses a simple adhesion model and does not assume JKR behavior.
- In comparison with a thick substrate, a thin coating has:
 - a much smaller contact radius for a given contact force.
 - a much larger tensile pull-off force.
 - a relatively large adhesive zone.
- FEA results for a thin film
 - predict pull off at $U=0$ with $P=-2\pi RW$ and $a/h \sim 10$ (consistent with JKR-like theory).
 - predicted adhesive zone length bounds the TCCM JKR theory prediction for a .

Thin Coating Contact Mechanics: Illustrative Results



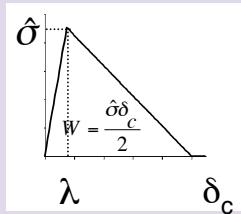
- Illustrative calculations
 - $R = 100 \text{ nm}$, $h = 1 \text{ nm}$
 - $E = 1, 10, \text{ or } 100 \text{ GPa}$, $\nu = 0.4$, $\rho = 1 \text{ g/cm}^3$
 - $W = 0.25 \text{ J/m}^2$, $\hat{\sigma} = 500 \text{ MPa}$, $\delta_c = 1 \text{ nm}$
- Approaches the thin coating DMT limit as $\bar{W} = W/(E_u h)$ decreases.
- Adhesive zone length can be quite large compared to the contact radius in the thin coating DMT limit.
- Tensile pull-off load is within 1% of $-2\pi R W$ for all three cases.





TCCM: transition between DMT-like and JKR-like limits

- Within the context of TCCM, the coating strain is assumed to be uniaxial and uniform through the coating thickness while the Adhesion-Separation relationship defines the peak adhesive stress $\hat{\sigma}$.



- Consequently the adhesion induced coating displacement U_a is simply
$$U_a = \hat{\sigma}h/E_u = 2\bar{W}h^2/\delta_c$$

 - used $W = \hat{\sigma}\delta_c/2$ above
 - U_a is the maximum gap that adhesion can close-up.
 - note that in the JKR-like limit, $U_a = \delta_c$ (no adhesion outside of the contact zone).

- Can define a thin-coating transition parameter ζ .
$$\zeta = \frac{U_a}{\delta_c} = \frac{2Wh}{E_u\delta_c^2} = 2\bar{W}\left(\frac{\bar{h}}{\bar{\delta}_c}\right)^2$$

 - when $\zeta = 0$, DMT-like, when $\zeta = 1$ JKR-like.
 - when $\zeta < 1$, adhesion force acts across an open gap.

- Recall results for the DMT-like and JKR-like limits

$$\frac{\bar{a}^2}{2} = \frac{\bar{U}}{\bar{h}} \quad \text{DMT - like}$$

$$\frac{\bar{a}^2}{2} = \frac{\bar{U}}{\bar{h}} + (2\bar{W})^{1/2} \quad \text{JKR - like}$$

- These equations differ only by a load and contact radius independent quantity that depends on adhesion, $(2\bar{W})^{1/2}$.
- This suggests that a function that depends only on $\zeta, f(\zeta)$, can be defined to span the DMT-like to JKR-like limits

$$\frac{\bar{a}^2}{2} = \frac{\bar{U}}{\bar{h}} + f(\zeta)(2\bar{W})^{1/2}$$

where $f(\zeta) = 0$ when $\zeta = 0$ (DMT-like)
and $f(\zeta) = 1$ when $\zeta = 1$ (JKR-like).

- Now since $(2\bar{W})^{1/2} = \zeta^{1/2}\delta_c/h$ (using $W = \hat{\sigma}\delta_c/2$)

$$\frac{\bar{a}^2}{2} = \frac{\bar{U}}{\bar{h}} + f(\zeta)\zeta^{1/2} \frac{\bar{\delta}_c}{\bar{h}}$$

TCCM: transition between DMT-like and JKR-like limits

- When $\bar{U} = 0$

$$\frac{\bar{a}_o^2}{2} = f(\zeta) \zeta^{1/2} \frac{\bar{\delta}_c}{\bar{h}}$$

where a_o is the contact radius when $U = 0$ and $\bar{\delta}_c = \delta_c / \sqrt{R/h}$.

- Next note that when $U=0$, the displacement associated with Hertz-like contact equals that induced by adhesion so that

$$\frac{\bar{a}_o^2}{2} = \frac{\bar{U}_a}{\bar{h}} = \frac{\bar{U}_a}{\bar{\delta}_c} \frac{\bar{\delta}_c}{\bar{h}} = \zeta \frac{\bar{\delta}_c}{\bar{h}}$$

- Comparison of the two equations suggest that

$$f(\zeta) = \zeta^{1/2}$$

- Using this result along with the TCCM relationship (same for DMT-like and JKR-like limits)

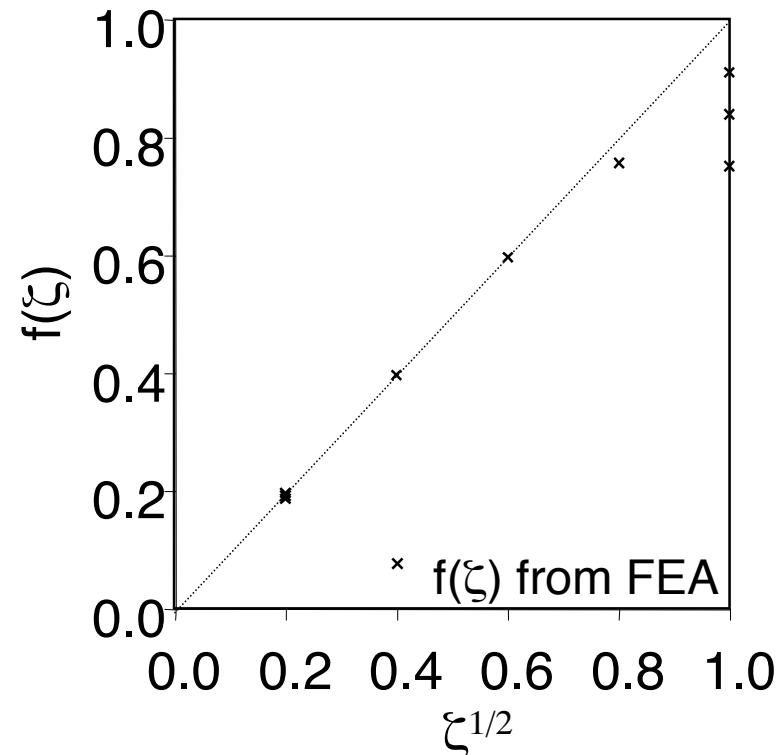
$$\bar{P} + 2\pi\bar{W} = \pi \left(\frac{\bar{U}}{\bar{h}} \right)^2$$

gives

$$\bar{P} = \frac{\pi}{4} \bar{a}^4 - \zeta^{1/2} \pi \bar{a}^2 (2\bar{W})^{1/2} - 2\pi\bar{W}(1 - \zeta)$$

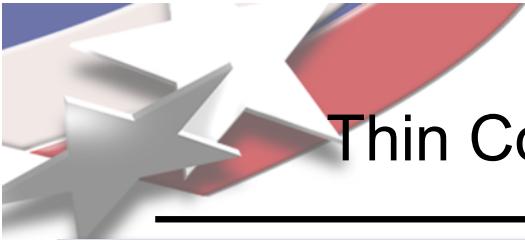
Finite element calculations verify $f(\zeta) = \zeta^{1/2}$

R (nm)	h (nm)	W (J/m ²)	$\hat{\sigma}/E_u$	a_o/h	$\zeta^{1/2}$	$f(\zeta)$
100	1	0.050	0.04	2.8	0.2	0.191
200	1	0.050	0.04	4.0	0.2	0.196
200	2	0.025	0.02	1.9	0.2	0.186
200	2	0.100	0.08	4.0	0.4	0.395
200	3	0.150	0.12	4.0	0.6	0.595
200	4	0.200	0.16	3.9	0.8	0.755
400	10	0.125	0.10	2.5	1.0	0.749
1250	10	0.125	0.10	4.6	1.0	0.838
5000	10	0.125	0.10	9.5	1.0	0.909



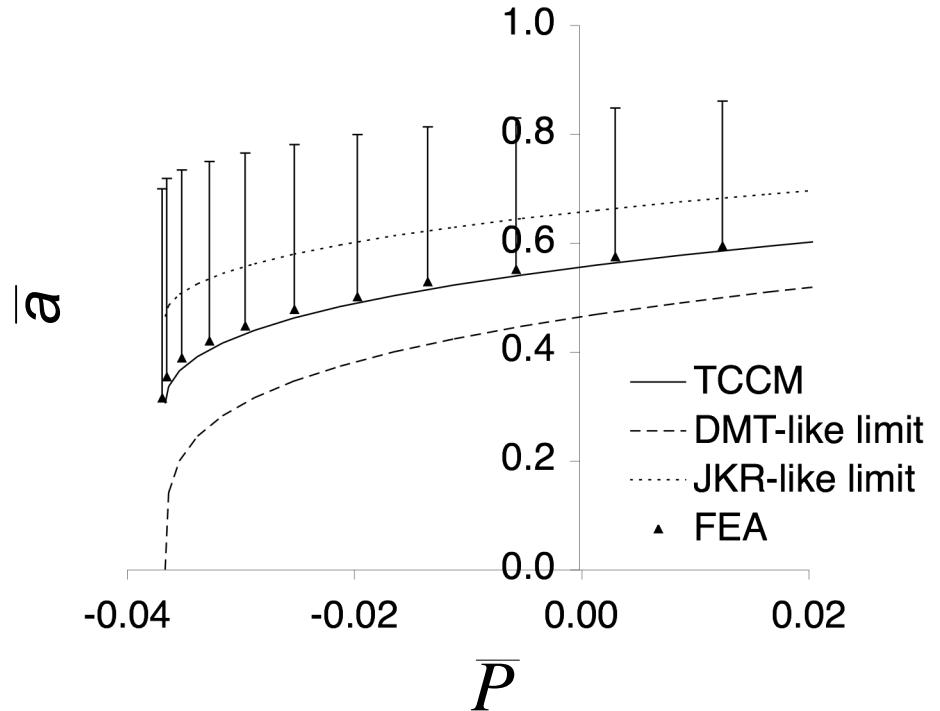
- Calculations for a rigid sphere of radius R contacting a coating of thickness h . Used calculated a_o to determine $f(\zeta)$
- $E_u = 2490$ MPa, $\delta_c = 1$ nm
- $h/R < 0.025$, $a_o/R < 0.08$,

- $\hat{\sigma}/E_u < 0.16$ ($\hat{\sigma}/E_u$ is a measure of the maximum, nominal tensile coating strain ---TCCM assumes small strain, linear elasticity)
- When $\zeta=1$, need $a_o/h \geq 10$ to approach $f(\zeta) = \zeta^{1/2}$ (TCCM assumes $a_o/h \gg 1$). It appears that a_o/h can be much less than 10 for smaller values of ζ (when “displacement discontinuity” at contact radius is less severe).



Thin Coating Contact Mechanics: Example Problem

- Example problem: two coated spheres with adhesion
 - Sphere 1: $R_1 = 200$ nm
 - Sphere 2: $R_2 = 1000$ nm
 - $W = 0.2$ J/m² ($\delta_c = 1$ nm)
 - Both spheres have a 2-nm thick coating with $E = 4$ GPa and $\nu = 0.4$
 - $\xi = 0.19$
 - $\hat{\sigma}/E_u = 0.047$
 - $a/h = 2.0$ when $U = 0$.
 - Symbols denote the contact radius while the bars indicate the length of the region where adhesion forces act across an open gap.



Summary

- Developed an elementary thin coating contact mechanics theory for two contacting spheres, where each sphere is rigid and coated with a thin compliant elastic material (use an effective R and E_u).
- Performed axisymmetric finite element simulations to assess the range of validity of the thin coating contact mechanics theory and defined an extension based on the FEA results.
- Derived DMT-like and JKR-like thin coating contact mechanics limits and also provide analytical results that span the transition between the DMT-like and JKR-like limits.
- Developed a 3-D finite element simulation capability that includes adhesion and verified that this FEA can reproduce JKR-like response when there is a thick, compliant substrate.
- Performed illustrative FEA for a thin compliant coating with adhesion (rigid indenter/substrate) and compared results with the thin coating contact theory.

Summary of TCCM governing equations

TCCM governing equations

$$\bar{P} = \frac{\pi}{4} \bar{a}^4 - \zeta^{1/2} \pi \bar{a}^2 (2 \bar{W})^{1/2} - 2\pi \bar{W} (1 - \zeta)$$

$$\frac{\bar{a}^2}{2} = \frac{\bar{U}}{\bar{h}} + (2\zeta \bar{W})^{1/2}$$

$$\bar{P} + 2\pi \bar{W} = \pi \left(\frac{\bar{U}}{\bar{h}} \right)^2$$

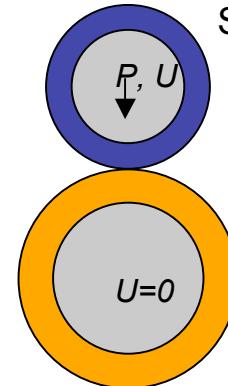
$$\zeta = 2\bar{W} \left(\frac{\bar{h}}{\bar{\delta}_c} \right)^2$$

Transition parameter

NOTE: $\bar{P} = \frac{P}{E_u R h}$ $\bar{U} = \frac{U}{\sqrt{R h}}$ $\bar{a} = \frac{a}{\sqrt{R h}}$

$$\bar{W} = \frac{W}{E_u h} \quad \bar{h} = \frac{h}{\sqrt{R h}} \quad \bar{\delta}_c = \frac{\delta_c}{\sqrt{R h}}$$

where $E_u = \frac{(1-\nu)E}{(1+\nu)(1-2\nu)}$



Sphere 1 with R_1, h_1, E_1, ν_1

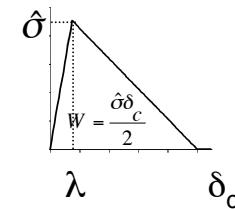
$$R = (1/R_1 + 1/R_2)^{-1}$$

$$E_u = h(h_1/E_{u1} + h_2/E_{u2})^{-1}$$

where $h = h_1 + h_2$

Sphere 2 with R_2, h_2, E_2, ν_2

Adhesion
traction-
separation
relationship



- Thin coating is fully bonded to a rigid sphere ($h/R \ll 1$).
- Coating is linear elastic and the material is compressible (i.e., $\nu \leq 0.45$).
- $a/R \ll 1$ and $a/h \gg 1$, where a is contact radius.
- Small strains and frictionless contact.