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Repository

• Forget how this guy 
become a criminal.

• Life and Toxicity
• How long keep this 

guy in the prison?
• To prevent the escape,

– How to design and 
construct the prison?

– How to operate?
– How to monitor?
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When Escape

• How much damage 
to public?

• Which pathway?
• How to delay to 

public?
• Re-arrest?
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Location of WIPPLocation of WIPP
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West-East Geologic 
Cross Section of 
Delaware Basin
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WIPP Layout
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WIPP Regulatory Requirements

• Regulatory requirements were primary 
determinant for the development of the PA 
structure
– The WIPP must be designed to provide reasonable 

expectation that cumulative releases of 
radionuclides to the accessible environment for 
10,000 years after disposal from all significant 
processes and events shall be less than specified 
releases limits
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Cumulative Releases
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R = Normalized release in “EPA units”
Qi = 10,000-year cumulative release (in curies) of radionuclide i
Li = Release Limit for radionuclide i
C = the total transuranic inventory (in curies of α

 

emitters 
w/halflives > 20 years)

Releases are normalized by radionuclide and 
by the total inventory
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Table 1 (Appendix A)

Radionuclide Release Limit (Li )(in curies) 
per 106 curies of TRU Waste

230Th, 232Th 10

241Am, 243Am, 14C, 129I, 237Np, 
238Pu, 239Pu, 240Pu, 242Pu, 226Ra, 
233U, 234U, 235U, 236U, 238U, and 
other alpha-emitting radionuclide 
with a half-life greater than 20 
years.

100

135Cs, 137Cs, 90Sr, 126Sn, and other 
radionuclide with a half-life greater 
than 20 years that does not emit 
alpha particles.

1,000

99Tc 10,000
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Release Limits: 
CCDF is a Measure of Compliance 

Less than 1 chance in 
1000 of exceeding 
10 EPA units
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Overview of PA Objectives

• PA answers three questions about a repository 
system:

1. What can happen after permanent closure?
2. How likely is it to happen?
3. What can result if it does happen?

• And one question about the analysis
1. What level of confidence can be placed on the 

estimate? (uncertainty in analysis)
• Quantitative, probabilistic estimate of the future 

performance of a system.
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Overview of PA Methodology

• Identify all potential release pathways and 
calculate the probability and consequences of 
releases over a 10,000-year regulatory period.

• PA Requires: 
– Site characterization (conceptual models and 

parameters)
– Process models (e.g., flow and transport, 

geomechanical, geochemical, drilling)
– Incorporation of uncertainty
– System-level tool to link everything together
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Features, Events, and Processes

Question: What needs to be considered and 
included in PA?

Answer: Features, events, and processes (FEPs)

FEPs are screened according to:
• Probability: If a FEP has a probability of occurring less than 

10-4 in 10,000 years it does not have to be included in PA 
(e.g., meteorite impact)

• Consequence: if a FEP is beneficial to performance or is not 
relevant to WIPP it does not have to be included in PA (e.g., 
sorption, oceans).

• Regulation: Certain FEPs are either screened in or out by 
regulation (e.g., mining, resource extraction following 
drilling). 
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Scenario Development

• All retained FEPs must be accounted for in PA in 
at least one scenario.

• FEPs can be included by explicit modeling or by 
parameter assignment.

• Expected FEPs are included in all scenarios
– Creep closure
– Brine flow, gas generation

• Disruptive FEPs are included in disturbed 
scenarios.
– Drilling, mining, brine pocket
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Drilling scenario

Drilling 
scenarios 
assume 
current drilling 
practices will 
be applied in 
the future
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Scenario Selection

• Six scenarios are considered in PA

Scenario # of Drilling 
Intrusions 

Time of 
Intrusion 
(Years) 

Castile Brine 
Pocket 

encountered 

Intrusion 
Type 

S1 0 (Undisturbed) NA NA NA 
S2 1 350 Yes E1 
S3 1 1,000 Yes E1 
S4 1 350 No E2 
S5 1 1,000 No E2 
S6 2 1,000 and 

2,000 
Only at 2,000 E2 and E1
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WIPP Site Characterization

Geologic studies
Geophysical surveys

Geochemical sampling
and analysis

Geomechanical testing

Hydrologic testing

5.2-8.ppt

Surface-based geologic drilling, 
coring, & geophysical logging
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24 WIPP PA Conceptual Models

• Disposal system geometry
• Culebra hydrogeology
• Repository fluid flow
• Salado
• Impure halite
• Salado interbeds
• Disturbed rock zone
• Actinide transport in Salado
• Units above the Salado 
• Dissolved transport in 

Culebra
• Colloidal transport in Culebra
• Exploration boreholes

• Cuttings & Cavings
• Spallings
• Direct brine release
• Castile and brine reservoir
• Multiple intrusions
• Climate change
• Creep closure
• Shafts and shaft seals
• Gas generation
• Chemical conditions
• Dissolved actinide source 

term
• Colloidal actinide source term

Conceptual Models to be Considered by Peer Review
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Process Models

• Conceptual models are generally implemented in 
process models. 

• Process models simulate distinct processes or 
groups of processes such as:
– Flow of brine and gas in the subsurface
– Radionuclide transport in the subsurface
– Gas generation
– Flow of brine and solids up a borehole
– Permeability enhancement due to fracturing
– Room closure
– Solid extraction by drilling
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NUTS
PANEL

FMT

PEST
CCDFGF

SECOTP2DMODFLOW

CUTTINGS_S

(Spallings)

Solid Direct Releases

Actinide solubilityGeomechanics

Salado
Brine & gas flow

Culebra flow and transport

Salado
Transport

Stochastic transmissivity
Fields for Culebra CCDF generator

BRAGFLO (DBR)

WIPP Performance Models (CRA)

Dissolved Direct Releases

BRAGFLO

SANTOS
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Release Mechanisms

• Direct Releases (occur during or immediately 
after drilling)
– Cuttings (Solids from drilling)
– Cavings (Solids from drilling)
– Spallings (Solids from pressure release)
– Direct Brine Release (Brine from pressure release)

• Long-term Releases
– Groundwater Transport in Culebra
– Groundwater Transport in Salado
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Schematic of Direct Releases

Waste  Panel

Cuttings

Cavings
Spallings

Borehole

Borehole

Direct Brine Release
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Two Types of Uncertainty

1. Subjective Uncertainty (epistemic) 
– Arises from a lack of knowledge about 

parameters assumed to have fixed values within 
the computational implementation of a PA.
• Examples: permeability, porosity, etc.

– WIPP PA treats subjective uncertainty in 
several ways:
i. Make assumptions that over-estimate releases 

(conservative assumptions).  Example: Waste 
characteristics

ii. Sample certain parameter values from probability 
distributions that cover the range of uncertainty.
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Two Types of Uncertainty

2. Stochastic Uncertainty (aleatory)
– Arises from a lack of knowledge about future 

events.
– Example: Timing and location of future drilling 

events.
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Dealing with Subjective Uncertainty 

• Latin Hypercube sampling (LHS) is used to define 
100 sets of uncertain parameters.  

• One realization of the sampled parameters is 
called a “vector”.

• The group of 100 vectors is called a “replicate”.
• The replicate essentially covers the full range of 

all the uncertain parameter distributions.
• LHS minimizes the correlation between 

parameters unless directed otherwise.
• Typically three replicates are run to demonstrate 

statistical equivalence.
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Dealing with Stochastic Uncertainty

• WIPP PA treats stochastic uncertainty through 
Monte Carlo sampling on possible futures.
– 10,000 futures evaluated for each vector to assign a 

probability to releases
• Order statistics used to generate complementary 

cumulative distribution function (CCDF)
– Results from all 100 vectors combined to determine 

mean releases (and percentiles).
– Three replicates used to assign confidence 

intervals to the mean releases.
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Constructing the CCDF

CCDFGF generates 10,000 possible futures for 
each vector.
– A future is the the cumulative release from one 

possible sequence of events from 0 to 10,000 
years.

– Each future consists of a series of randomly 
occurring drilling intrusions.

– The consequences of drilling intrusions are 
calculated by interpolating between consequences 
at discrete times.

0 yrs 10,000 yrs
100 yrs

1 2 3 4 5 6 7
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An Example Set of CCDFs
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Mean CCDF by Component

Less than 1 chance in 10
of exceeding 1 EPA unit

Less than 1 chance in 
1000 of exceeding 
10 EPA units

Results from CRA-2004 PABC
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Summary

• Performance Assessment (PA) is a probabilistic 
framework to estimate releases to the accessible 
environment over 10,000 years.

• PA uses a collection site-specific conceptual 
models, process models, and scenarios.

• PA explicitly includes both subjective and 
stochastic uncertainty.

• CCDF for mean total releases is the measure of 
WIPP compliance with EPA release limits.

• PA provides the CCDF for mean releases along 
with a measure of uncertainty in the analysis.
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Break
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Structural AnalysisStructural Analysis

SANTOS
SANTOS is a two-dimensional large deformation 
finite element code which is a internal software 
developed by SNL.

JAS3D
JAS3D is a three-dimensional iterative solid 
mechanics code
A successor of SANTOS
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Map of WIPP RepositoryMap of WIPP Repository

Operations area

Experimental
area
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Simplified Simplified StratigraphicStratigraphic ModelModel

The bedded stratigraphy in the 
vicinity of the repository has 
been mapped in considerable 
detail as shown in Figure (a).

A simplified stratigraphic model 
used for the analysis is shown 
in Figure (b).

The simpler model comprises 
mostly argillaceous salt, with a 
clean salt layer above the 
disposal room and a significant 
marker bed residing below the 
repository floor. 

 

(a) (b)
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Mesh DescriptionMesh Description
A two-dimensional plane strain 
disposal room model was converted 
from the simplified stratigraphy, is 
used for the SANTOS analysis.

The discretized model represents the 
room as one of an infinite number of 
rooms located at the repository 
horizon.

Making use of symmetry, only half of 
the room is modeled.

The basic half-symmetry disposal 
room dimensions are 3.96 m high by 
5.03 m wide with a significant portion 
of this area containing the stored 
CH-TRU waste.

52.87 m

-54.19 m

Applied Traction
13.57 MPa

U= 0.0y

U= 0.0x

U= 0.0yU= 0.0y

U= 0.0x

20.27 m

g= 9.79 m/s2

adaptive internal 
pressure, pg

5.03 m

3.96 m2.676 m

3.675 m

Halite

Argillaceous Halite

Anhydrite

Waste

Y

X
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Constitutive ModelsConstitutive Models

Halite Constitutive Model
A multi-mechanism deformation (M-D) model proposed 
by Munson and Dawson, has been included in SANTOS 
to model the creep behavior of rock salt
The model can be decomposed into an elastic 
volumetric part (Eq. 1) and a deviatoric part (Eq. 2)
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Constitutive ModelsConstitutive Models

Anhydrite Constitutive Model
The anhydrite layer (MB 139) is expected to experience 
inelastic material behavior.
This is assumed to be isotropic and elastic until yield 
occurs.
Once the yield stress is reached, plastic strain begins 
to accumulate.
Yield is assumed to be governed by the Drucker-Prager
(D-P) criterion.

(3)
12 aICJ −=
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Constitutive ModelsConstitutive Models

Waste Constitutive Model
The stress-strain behavior 
of the waste was 
represented by a plasticity 
model with a piecewise 
liner function defining the 
relationship between mean 
stress and volumetric strain.
Compaction experiments 
on simulated waste were 
used to develop this 
relationship
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Gas Generation PotentialGas Generation Potential

The gas generation potential 
and gas production rate are 
composed of gas from two 
sources: anoxic corrosion and 
microbial activity.
The gas pressure in the 
disposal room was computed 
from the ideal gas law based on 
the current free volume in the 
room

V
NRTfpg ⋅= (4)

History of the reference gas generation potential 
Used for the disposal room analysis, f=1.0

N = mass of gas in g-moles
R = universal gas constant
T = absolute temperature (300 ºK)
V = free room volume
f = gas generation factor
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Disposal Room Creep Closure, Disposal Room Creep Closure, ff == 0.00.0 
(Current Room)(Current Room)

0 year 8 years 25 years

300 years1,000 years10,000 years
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Disposal Room Creep Closure, Disposal Room Creep Closure, ff == 1.01.0 
(Raised Room)(Raised Room)

 

0 year 10 years 25 years

300 years1,000 years10,000 years
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Porosity Surfaces for Rooms Containing Standard WastePorosity Surfaces for Rooms Containing Standard Waste

f=0 f=0.025

f=0.05

f=0.1 f=0.2
f=0.4

f=0.5 f=0.6

f=0.8
f=1.0

f=1.2
f=1.6

f=2.0
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Porosity Surfaces for Rooms Containing Standard WastePorosity Surfaces for Rooms Containing Standard Waste
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DRZ CalculationDRZ Calculation

Permeability within the DRZ
at Specific Times

Draw DRZ Extent around Room
based on  Stress Distribution
from Clay Seam G Analysis

Draw Permeability Distribution around
Room based on Strain Distribution

from Clay Seam G Analysis

Determine the Constant C in the
Dilatancy Criterion by Comparing the
Contours with Ultrasonic Wave
Velocity Test Data

BRAGFLO Analyses for Salado
Brine & Gas Flow

Structural Analysis for Room Q
Access Drift using SANTOS

Ultrasonic
Wave Velocity

Test Data

Define the Relationship between
Permeability and Volumetric Strain

Maximum Extent of DRZ
Time at which DPOT satisfied
Properties of DRZ_2

QA for Ultrasonic Wave
Velocity Test Data

Postprocess  Clay Seam G Output
using Peach Model

3
Vpp Ck ε⋅=

Draw the Contours for
Dilatant Damage Potential 2

1

J
ICD ⋅

=
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DRZ Extent (DRZ Extent (No Gas GenerationNo Gas Generation))

Given the revised value of Given the revised value of C C 
(=0.19)(=0.19), the extent of the DRZ , the extent of the DRZ 
is assessed by determining is assessed by determining 
the damage factor (the damage factor (DD) contour ) contour 
using the data obtained from using the data obtained from 
the Clay Seam G analysis the Clay Seam G analysis 
[Park and Holland, 2004][Park and Holland, 2004]

 

10 days 8 years 25 years

33 years49 years120 years

199 years 10000 years

Undisturbed Zone

12 19.0 IJ ⋅≤

2

119.0
J
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MB139

Clay Seam G

Anhydride ‘a’
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DRZ Extent (DRZ Extent (Max Gas GenerationMax Gas Generation))

The maximum extent of the The maximum extent of the 
DRZ calculated for both gas DRZ calculated for both gas 
generation cases reaches generation cases reaches 
approximately 1.4 m, the approximately 1.4 m, the 
distance to the anhydrite layer distance to the anhydrite layer 
(MB 139), below the room.(MB 139), below the room.
The anhydrite layer should be The anhydrite layer should be 
included in the DRZ therefore, included in the DRZ therefore, 
the thickness of DRZ below the thickness of DRZ below 
the room is the room is 2.24 m2.24 m..
The maximum extent of DRZ The maximum extent of DRZ 
above the room calculated for above the room calculated for 
both cases reaches anhydrite both cases reaches anhydrite 
““aa””. Thus the thickness of . Thus the thickness of 
DRZ above the room is DRZ above the room is 4.74 m4.74 m
The DRZ does not extend The DRZ does not extend 
through the anhydrite layer, through the anhydrite layer, 
which acts as a buffer.which acts as a buffer.

 

10 days 8 years 24 years

32 years41 years73 years

199 years 10000 years

Undisturbed Zone

12 19.0 IJ ⋅≤

MB139

Clay Seam G

Anhydride ‘a’
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Cracks in the Roof Area of the RoomCracks in the Roof Area of the Room
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Cracks in the Bottom Area of the RoomCracks in the Bottom Area of the Room
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3D Room Mesh for JAS3D3D Room Mesh for JAS3D
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-54.19 m

Applied Traction
13.57 MPa

U= 0.0y

U= 0.0x

U= 0.0yU= 0.0y

U= 0.0x

20.27 m

g= 9.79 m/s2

adaptive internal 
pressure, pg

5.03 m

3.96 m2.676 m

3.675 m

Halite
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Location of Location of Bayou ChoctawBayou Choctaw SPR SiteSPR Site
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Bayou ChoctawBayou Choctaw Salt Dome, Salt Dome, LouisianaLouisiana 
(Plan View)(Plan View)
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Stratigraphy and Thickness of Each LayerStratigraphy and Thickness of Each Layer
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Overview of the MeshOverview of the Mesh 
((6 SPR, 2 Inactive, 7 Abandoned and 9 UTP Caverns6 SPR, 2 Inactive, 7 Abandoned and 9 UTP Caverns))

(N) (E)

Salt

Caprock

Surrounding Rock

Overburden
Caverns
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Geometry of Cavern A, M and 102Geometry of Cavern A, M and 102

Cavern A Cavern M Cavern 
102

UTM Coordinates (ft)
(East / North)

2006758 / 
597733

2006921 / 
600327

2006700 / 
599710

Initial Gross Cavern Volume 
(MMB) 12.6 12.6 23.6

Gross Cavern Volume after 5 
Drawdowns

 

(MMB) 25.3 25.3 47.5

Height (ft) 2000 2000 2700

Initial Diameter (ft)
Top/Bottom 110 110

250
Mid 300 300

Diameter after 5 
Drawdowns

 

(ft)
Top/Bottom 156 156

355
Mid 426 426
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Comparison of Modeled vs. Actual Salt Dome and CaprockComparison of Modeled vs. Actual Salt Dome and Caprock

4265 ft 4882 ft

73
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Caprock
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Dilatancy Criteria for BC salt with Field DataDilatancy Criteria for BC salt with Field Data
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Volume and DilatanVolume and Dilatancycy Safety Factor Contours Safety Factor Contours 
in the Elements within 131 ft of Cavern 102 (Scenario 1)in the Elements within 131 ft of Cavern 102 (Scenario 1)



32 of 35 Module 6:  The Safety Case

Volume and DilatanVolume and Dilatancycy Safety Factor Contours Safety Factor Contours 
in the Elements within 131 ft of Cavern M (Scenario 1)in the Elements within 131 ft of Cavern M (Scenario 1)
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Volume and DilatanVolume and Dilatancycy Safety Factor Contours Safety Factor Contours 
in the Elements within 131 ft of Cavern 15 an 17 (Scenario 1)in the Elements within 131 ft of Cavern 15 an 17 (Scenario 1)

15
17

1715
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Minimum Safety Factor HistorMinimum Safety Factor Historyy for Dilatancyfor Dilatancy 
Comparison with Current (Scenario 1)Comparison with Current (Scenario 1)
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BreakBreak
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Main TopicsMain Topics

Introduction
Site Investigation in the Studied Area
Data Processing
3D Discrete Fracture Network Model
Calculation results
Conclusions
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IntroductionIntroduction

Accurate prediction of the pathway, the leakage rate of 
nuclides from HLW repository is one of the critical factors 
for PA
Radionuclides are dissolved by groundwater in saturated 
rock mass
In the case of crystalline rock, groundwater flow is only 
allowable through fractures
In this presentation,

3D discrete fracture network could be modeled based on 
in-situ data by separating geometric parameters and 
hydraulic parameters.
Calculating anisotropic hydraulic conductivity from this 
model
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Works and Data Works and Data 
Flow ChartFlow Chart Site 

Investigation

Fracture Mapping 
in Surface

Borehole Survey

Hydraulic Test

3D Discrete 
Fracture 

Network Model

3D Porous 
Medium Model

Verification

Comparison of the 
Geometry of 

Fracture Networks

Comparison of 
Hydraulic 

Conductivity

Fracture Length

Dip, Dip Direction, 
Aperture, Spacing

In-situ Hydraulic 
Conductivity

Data Processing In-situ Stereo Net
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Studied AreaStudied Area

Yeosu Peninsula in 
Chunnam, Korea
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Borehole SurveyBorehole Survey

Ten NX size boreholes 
were drilled
Total drilling length was 
2,361 m
Dip angles of the 
boreholes were 65◦ ~ 70 
◦

Total vertical length of 
televiewer logging was 
2,079 m 

0 250 500m
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Fractures detected from 10 Fractures detected from 10 BHsBHs

4,609 fractures were 
detected from ten BHs
The total number of open 
fracture is 2,197
The major dip direction of 
the 5 fracture sets are 
148/80, 255/80, 86/65, 28/90, 
and 140/17, respectively
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Pole, Dip, Dip Direction, StrikePole, Dip, Dip Direction, Strike

Reference Sphere
(� � � )

Great Circle 
(� � )Fracture

(� � )

Strike 
(� � )

Dip 
(� � )

Dip Direction 
(� � � � )

Dip Azimuth
(� � � � )

α

φ

α/φ
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205 hydraulic tests in 8 
BHs and long term 
flow tests in 2 BHs
Water table were 
measured for 9 months

267000.00 268000.00 269000.00 270000.00 271000.00

146000.00

147000.00

148000.00

149000.00

150000.00

151000.00

Hydraulic TestHydraulic Test
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Effective Hydraulic ConductivityEffective Hydraulic Conductivity

The effective hydraulic conductivity ranges from 1.18x10-7 m/s at BH AO-1 to 
8.95x10-10 m/s at BH AO-2 
The geometric mean of the hydraulic conductivities of rock and fracture zone 
was determined as 5.05x10-9 m/s
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Underground Underground 
Fracture SetsFracture Sets

Three fracture sets 
determined from FracMan
Major dip directions were 
158.6/89.3, 251.4/87.2, 
67.8/15.6
Set 1 and Set 2 is almost 
vertical fractures
Set 3 consists of low dip 
fractures with various dip 
directions
Fisher Dispersion K were 
9.95, 7.46, 7.17 
respectively

(a) All (1677 Poles) (b) Set 1 (669 Poles, 39.9%)

(c) Set 2 (599 Poles, 35.7%) (d) Set 3 (409 Poles, 24.4%)
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Input Data of Fracture LengthInput Data of Fracture Length

(a) All fractures (b) Set 1

(c) Set 2 (d) Set 3

(e) Set 4

Surface Fracture Sets Underground Fracture Sets

(a) All (1677 Poles) (b) Set 1 (669 Poles, 39.9%)

(c) Set 2 (599 Poles, 35.7%) (d) Set 3 (409 Poles, 24.4%)
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Surface Fracture Trace Length
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It can be described using the following equation:

Exponential Function:

Truncated Power-Law Distribution Function:

λ−⋅= LCLf )(

λλ

λλ

λ
λ

−−

−−

−
−

⋅
−
−

= 1
min

1
max

3
min

3
max2

3
1)mean(

LL
LLL λλ

λ
−− −

−
= 1

min
1
max

1
LL

C

Set 1 Set 2 Set 3
mean(L2) 16.5 22.97 13.0

Lmax 20.0 30.0 10.5
Lmin 1.0 1.0 1.0
λ 2.147 2.164 1.747
C 1.185 1.186 0.903

Function of Fracture LengthFunction of Fracture Length
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Fracture DensityFracture Density

Item Unit Set 1 Set 2 Set 3

Number of fractures 669 (39.9%) 599 (35.7%) 409 (24.4%)

Total vertical length of 10 
BHs

m 1678.9 1678.9 1678.9

Mean fracture spacing 
(s)

m 2.5096 2.8029 4.1049

Mean fracture area (    ) m2 16.497 22.970 13.005

Mean cos D 0.9179 0.3262 0.8286

Fracture Density /m3 0.1260 0.0476 0.0226 

2l

)mean()mean()mean(
1

2 Dls cos⋅⋅
=ρ
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Fracture AperturesFracture Apertures

Selecting the open fractures of each fracture set below GL.-40 m
Distribution is Log-normal
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3D Fracture Network Block using in3D Fracture Network Block using in--situ datasitu data

A lot of vertical trend trace than horizontal one, because the 
dip angle of Set 1and 2 are close to 90 degrees
NAPSAC assume that the shape of fracture is rectangular

(a) (b)
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Borehole DetailsBorehole Details
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Stereo net from DFN model using inStereo net from DFN model using in--situ datasitu data
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Z
(V
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1,319 fractures were detected by 
the 1,000 m core logging line, 
which is ten 100 m long line 
vertically

(a) All (1319 Poles) (b) Set 1 (749 Poles, 56.8%)

(c) Set 2 (333 Poles, 25.2%) (d) Set 3 (237 Poles, 18.0%)
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Comparing real underground with simulated DFNComparing real underground with simulated DFN
Poles for real underground fractures

(a) All (1677 Poles) (b) Set 1 (669 Poles, 39.9%)

(c) Set 2 (599 Poles, 35.7%) (d) Set 3 (409 Poles, 24.4%)

(a) All (1319 Poles) (b) Set 1 (749 Poles, 56.8%)

(c) Set 2 (333 Poles, 25.2%) (d) Set 3 (237 Poles, 18.0%)

Poles for fractures of simulated DFN
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The larger     , the more short fracturesThe larger     , the more short fractures
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Stereo net for the final simulated fracture networkStereo net for the final simulated fracture network

Total number of poles is 999 
(required 1,000)
The ratios of poles of each 
set is same as real

(a) All (999 Poles) (b) Set 1 (397 Poles, 39.8%)

(c) Set 2 (358 Poles, 35.8%) (d) Set 3 (244 Poles, 24.4%)

(a) All (1677 Poles) (b) Set 1 (669 Poles, 39.9%)

(c) Set 2 (599 Poles, 35.7%) (d) Set 3 (409 Poles, 24.4%)
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Final Fracture NetworkFinal Fracture Network

Set 1 Set 2 Set 3

from surface 
survey data 2.147 2.164 1.747

Finally modified 2.670 2.112 1.719λ

λ
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Calculating Hydraulic ConductivityCalculating Hydraulic Conductivity
Boundary Condition

Imposing a certain 
hydraulic pressure on 3 
outside face
Maintaining zero Pa at 
the point O

Material Properties
Density of ground 
water(ρ) = 998 kg/m3, 
Viscosity (μ) = 1.003×10-3

kg/(m·s) (at 20℃)
Kinematics' Viscosity (ν) 
= 1.005×10-6 m2/s

0 Pa

400 Pa

400 Pa

400 Pa

O
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Why Transmissivity?Why Transmissivity?

Effective hydraulic conductivity is influenced by:
Fracture roughness
Microscopic groundwater flow process in fracture
Filling material in fracture
Overburden pressure, etc.

In NAPSAC, hydraulic aperture or transmissivity 
can be specified to define hydraulic response of a 
fracture
Physical aperture is different from hydraulic one
Transmissivities of each Sets are used for 
determining 6 components of conductivity 
Transmissivity will be determined using in-situ 
hydraulic conductivity
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Relationship Relationship btwnbtwn Conductivity and TransmissivityConductivity and Transmissivity

Relationship:

Ke = Effective hydraulic conductivity (m/s)
T = Geometric mean transmissivity of individual
fractures (m2/s)
s = Spacing between open fractures (m)

In log space, geometric mean = arithmetic mean

Equations were reported to be accurate when the fracture 
spacing and packer interval are similar

s
TK e ≅

)()()( sKT e lnlnln +≅
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Finally modified 6 components of Finally modified 6 components of 
conductivities and permeabilitiesconductivities and permeabilities

Kxx Kyy Kzz Kxy Kyz Kzx

Components 3.9177E-09 4.7590E-09 7.7854E-09 -1.7449E-10 -1.9403E-10 -1.8320E-09
Major 8.5189E-09

Intermediate 4.7896E-09
Minor 3.1536E-09

Geo. Mean 5.0485E-09

kxx kyy kzz kxy kyz kzx

Components 4.0056E-16 4.8657E-16 7.9600E-16 -1.7840E-17 -1.9839E-17 -1.8731E-16
Major 8.7100E-16

Intermediate 4.8970E-16
Minor 3.2243E-16

Geo. Mean 5.1617E-16

(m/s)

(m2 )
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Direction cosine of principal permeabilitiesDirection cosine of principal permeabilities

M
aj

or
Minor

Intermediate
X

Z

Y

cosαcosβ sinαcosβ -sinβ Trend(deg) Plunge(deg)
Major -3.6873E-01 -3.0831E-02 9.2903E-01 274.8 68.3

Intermediate 1.4553E-01 -9.8904E-0 2.4940E-02 8.4 1.4
Minor 9.1807E-01 1.4440E-01 3.6917E-01 98.9 21.7
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ConclusionsConclusions

In order to predict the groundwater flow path more 
accurately, the anisotropic hydraulic conductivity should 
be considered

Following two steps were needed
1. Generating a geometrically matched 3D DFN model
2. From this DFN model, finding the hydraulically 

matched  6 components of permeabilities

It is possible to calculate the groundwater flow path and 
travel time more realistically, from the 3D continuum 
model with the anisotropic hydraulic conductivities
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3D NAMMU Model3D NAMMU Model
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Final results for PathwayFinal results for Pathway
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ShinShin--WolsongWolsong 
#1,#2#1,#2

(Under (Under 
Construction)Construction)

LILWLILW
Repository siteRepository site

(Under Construction)(Under Construction)
WolsongWolsong #1,2,3,4#1,2,3,4

(Operation)(Operation)

National National 
ParkPark
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Fracture Zone in Fracture Zone in BongkilBongkil--RiRi
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Fracture ZoneFracture Zone

특 성

Zone 1
(Z1)

•

 

시설의 Unit가

 

위치할 수 있는 암반규모를 결정해 주는 Zone 
2의

 

경계역할을 하는 광역규모의 단열대로, 
•

 

연장길이는 10km 이상, 폭은

 

100m 이상의

 

Regional fracture 
zone에

 

해당함.

Zone 2
(Z2)

•

 

시설의 Unit가

 

위치할 수 있는 암반규모를 결정해 주고 블록

 
의 경계를 이루는 단열대. 

•

 

연장길이는 1~10km, 폭은

 

5 ~100m로

 

Major fracture zone에

 
해당함.

Zone 3
(Z3)

•

 

처분동굴과 교차될 수도 있고 적절하게 터널을 배치하여 비

 
켜갈 수 있으며, 

•

 

블록 내에 분포하는 단열대. 연장길이는 10m~1km, 폭은

 
1~5m로

 

Minor fracture zone에

 

해당함
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Water Level ContoursWater Level Contours
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Ending RemarkEnding Remark
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