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Repository

e Forget how this guy
become a criminal.

 Life and Toxicity

 How long keep this
guy in the prison?

* To prevent the escape,

— How to design and
construct the prison?

— How to operate?
— How to monitor?

 /
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When Escape

« How much damage
to public?

 Which pathway?

 How to delay to
public?

e Re-arrest?

Game Instructions |

: Play More Games

| Download This Game

i r ite }
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WIPP Layout
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WIPP Regulatory Requirements

 Regulatory requirements were primary
determinant for the development of the PA
structure

— The WIPP must be designed to provide reasonable
expectation that cumulative releases of
radionuclides to the accessible environment for
10,000 years after disposal from all significant
processes and events shall be less than specified
releases limits

Sandia
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i Cumulative Releases

Releases are normalized by radionuclide and
by the total inventory

Q. ( 1x10°curies
=21 C

R = Normalized release in “EPA units”

Q, = 10,000-year cumulative release (in curies) of radionuclide |

L; = Release Limit for radionuclide |

C =the total transuranic inventory (in curies of a emitters
w/halflives > 20 years)

ﬁg?_dial
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Table 1 (Appendix A)

Radionuclide Release Limit (L;)(in curies)
per 10° curies of TRU Waste
230Th, 232Th 10
241Am’ 243Am’ 14C’ 129|’ 237Np’ 100
238Pu’ 239Pu’ 240Pu’ 242Pu’ 226Ra,
233\, 234y, 235, 236, 2381, and
other alpha-emitting radionuclide
with a half-life greater than 20
years.
135Cs, 137Cs, 9Sr, 1265n, and other 1,000
radionuclide with a half-life greater
than 20 years that does not emit
alpha particles.
9T C 10,000
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}.‘ Release Limits:
CCDF is a Measure of Compliance

Complementary Cumulative Distribution Function

i |

* I
i | |
A : |
) i | —Less than 1 chance in 10
% 01 1 h/ of exceeding 1 EPA unit
Q : |
() I I
X ool | .
> z | B Less than 1 chance in
= 7 | 1000 of exceeding
% 0,001 | / 10 EPA units
fe ? \
@) ,
| -
Q_ 0.0001 _—_—

0.0001 0.001 0.01 0.1 1 10 100

R = Release (EPA Units)

Sandia
11 of 32 Module 6: The Safety Case @ [‘!,a&!ﬂg?c'mes



>,
| Overview of PA Objectives

12 of 32

PA answers three questions about a repository
system:

1. What can happen after permanent closure?

2. How likely is it to happen?

3. What can result if it does happen?

And one question about the analysis

1. What level of confidence can be placed on the
estimate? (uncertainty in analysis)

Quantitative, probabilistic estimate of the future
performance of a system.

ﬁg?_dial
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| Overview of PA Methodology

e [dentify all potential release pathways and
calculate the probability and consequences of
releases over a 10,000-year regulatory period.

* PA Requires:

— Site characterization (conceptual models and
parameters)

— Process models (e.g., flow and transport,
geomechanical, geochemical, drilling)

— Incorporation of uncertainty
— System-level tool to link everything together

Sandia
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} Features, Events, and Processes

Question: What needs to be considered and
Included in PA?

Answer: Features, events, and processes (FEPS)

FEPs are screened according to:
 Probability: If a FEP has a probability of occurring less than
104 1in 10,000 years it does not have to be included in PA
(e.g., meteorite impact)
« Consequence: if a FEP is beneficial to performance or is not
relevant to WIPP it does not have to be included in PA (e.g.,
sorption, oceans).

« Regulation: Certain FEPs are either screened in or out by
regulation (e.g., mining, resource extraction following
drilling).

Sandia
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4' Scenario Development

e All retained FEPs must be accounted for in PA In
at least one scenario.

 FEPs can be included by explicit modeling or by
parameter assignment.

 Expected FEPs are included in all scenarios
— Creep closure
— Brine flow, gas generation

e Disruptive FEPs are included in disturbed
scenarios.

— Drilling, mining, brine pocket

ﬁan_di::\I
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Drilling scenario
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- Scenario Selection

e SiX scenarios are considered in PA

Scenario # of Drilling Time of | Castile Brine | Intrusion
Intrusions Intrusion Pocket Type
(Years) | encountered
S1 0 (Undisturbed) NA NA NA
S2 1 350 Yes El
S3 1 1,000 Yes El
S4 1 350 No E2
S5 1 1,000 No E2
S6 2 1,000 and | Onlyat 2,000 | E2 and E1
2,000
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WIPP Site Characterization

Geologic studies
Geophysical surveys

Cations (equivalents/Liter) Anions
L | |
i T T T T T T T T T i
5 4 3 2 1 0 1 2 3 4 5
Na* + K* cr
Ca?+ HCO; + CO%
Mg2* soZ
Culebra "AIS"
Na* + K* cr
Ca?+ ? HCO; + CO%
2
Mg?" Culebra "H-17" S0;
Na* + K+ cr
Ca? Y HCO; + COF
Mg?* soZ
Salado "G-Seep"

Na* + K+ cr
Ca?* \K/ HCO; + COZ
Mg+ soZ

Castile "ERDA-6"

| Surface-based geologic drilling,
Geochemical sampling Geomechanical testing coring, & geophysical logging

5.2-8.ppt and analysis ﬁam_diaI
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4 24 WIPP PA Conceptual Models

* Disposal system geometry e Cuttings & Cavings

» Culebra hydrogeology » Spallings

* Repository fluid flow  Direct brine release

« Salado e Castile and brine reservoir

* Impure halite e Multiple intrusions

e Salado interbeds * Climate change

e Disturbed rock zone » Creep closure

» Actinide transport in Salado « Shafts and shaft seals

« Units above the Salado « Gas generation

» Dissolved transport in  Chemical conditions
Culebra - Dissolved actinide source

e Colloidal transport in Culebra term

« Exploration boreholes » Colloidal actinide source term

Conceptual Models to be Considered by Peer Review

Sandia
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| Process Models

e Conceptual models are generally implemented in
process models.

* Process models simulate distinct processes or
groups of processes such as:
— Flow of brine and gas in the subsurface
— Radionuclide transport in the subsurface
— Gas generation
— Flow of brine and solids up a borehole
— Permeability enhancement due to fracturing
— Room closure
— Solid extraction by drilling

Sandia
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j; WIPP Performance Models (CRA)

Geomechanics Actinide solubility
SANTOS FMT
1 Satado Solid Direct Rel
EEAGELD Transport olid Direct Releases
 ‘\, CUTTINGS_S
Salado NUTS
: i
Brine & gas|flow PANEL (Spallings)
Dissolved Direct Releases
Culebra flow and transport | '| BRAGFLO (DBR)
MODFLOW » SECOTP2D
/
PEST Y ¥ ’/
Stochastic transmissivity SEORE
Fields for Culebra CCDF generator
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Release Mechanisms

* Direct Releases (occur during or immediately
after drilling)

— Cuttings (Solids from drilling)

— Cavings (Solids from drilling)

— Spallings (Solids from pressure release)

— Direct Brine Release (Brine from pressure release)

e Long-term Releases

— Groundwater Transport in Culebra
— Groundwater Transport in Salado

Sandia
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* all

Schematic of Direct Releases

Borehole

Borehole

Wast

23 of 32

- Saég/aé

Direct Brine Release
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Two Types of Uncertainty

1. Subjective Uncertainty (epistemic)

Arises from a lack of knowledge about
parameters assumed to have fixed values within
the computational implementation of a PA.

« Examples: permeability, porosity, etc.

WIPP PA treats subjective uncertainty in
several ways:

I. Make assumptions that over-estimate releases
(conservative assumptions). Example: Waste
characteristics

ll. Sample certain parameter values from probability
distributions that cover the range of uncertainty.

ﬁan_di::\I
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4" Two Types of Uncertainty

2. Stochastic Uncertainty (aleatory)

— Arises from a lack of knowledge about future
events.

— Example: Timing and location of future drilling
events.

Sandia
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* Dealing with Subjective Uncertainty

e Latin Hypercube sampling (LHS) is used to define
100 sets of uncertain parameters.

* One realization of the sampled parameters is
called a “vector”.

 The group of 100 vectors is called a “replicate”.

 The replicate essentially covers the full range of
all the uncertain parameter distributions.

 LHS minimizes the correlation between
parameters unless directed otherwise.

* Typically three replicates are run to demonstrate
statistical equivalence.

ﬁg?_dial
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# Dealing with Stochastic Uncertainty

 WIPP PA treats stochastic uncertainty through
Monte Carlo sampling on possible futures.
— 10,000 futures evaluated for each vector to assign a
probability to releases

e Order statistics used to generate complementary
cumulative distribution function (CCDF)

— Results from all 100 vectors combined to determine
mean releases (and percentiles).

— Three replicates used to assign confidence
Intervals to the mean releases.

Sandia
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Constructing the CCDF

CCDFGF generates 10,000 possible futures for
each vector.

— A future is the the cumulative release from one
possible sequence of events from 0 to 10,000
years.

— Each future consists of a series of randomly
occurring drilling intrusions.

— The consequences of drilling intrusions are
calculated by interpolating between conseguences

at discrete times.
100 yrs

Oyrs + 12 3 45 6 I 10,000 yrs

Sandia
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An Example Set of CCDFs

Total Normalized Releases
100 Observations, 10000 Futures/Observation

11} ||||||IT| ||||||rl'| ||||||IT| ||||||IT| ||||||I'I'| ||||||I'1' ||||||IT| ||||||I'I'| ||||||g
T EfA LimiE
10" E
107 "
o :
I 4
[+ F]
2 10 .
s ?
_,E* a
ﬁ 10° =
e 3
o 1
10" 3
10° & 5 - 3 7 i 0 1 ) 3
10 10 10 10 10 10 10 10 10 10
Normalized Release (EPA units), R Sandia
National
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Mean CCDF by Component

Results from CRA-2004 PABC

10 « CCDF iIs
Total measure of
: T el cavings compliance

—=—DBR
—<—Releases from the Culebra
== Release Limits

g O <= Less than 1 chance in 10
3 of exceeding 1 EPA unit
g 0.01
0.001 <= Less than 1 chance in
1000 of exceeding
10 EPA units
0.0001

0.0001 0.001 0.01 0.1 1 10 100

R = Release (EPA Units) ﬁan_dial
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Summary

* Performance Assessment (PA) is a probabilistic
framework to estimate releases to the accessible
environment over 10,000 years.

* PA uses a collection site-specific conceptual
models, process models, and scenarios.

* PA explicitly includes both subjective and
stochastic uncertainty.

e CCDF for mean total releases is the measure of
WIPP compliance with EPA release limits.

* PA provides the CCDF for mean releases along
with a measure of uncertainty in the analysis.

ﬁg?_dial
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Structural Analysis

e SANTOS
= SANTOS is atwo-dimensional large deformation
finite element code which is a internal software
developed by SNL.

e JAS3D

= JAS3D is athree-dimensional iterative solid
mechanics code

= A successor of SANTOS

Sandia
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Simplified Stratigraphic Model
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TO REFERENCE
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ANHYDRITE
| cLave

MB139
ANHYDRITE

The bedded stratigraphy in the
vicinity of the repository has
been mapped in considerable
detail as shown in Figure (a).

A simplified stratigraphic model
used for the analysis is shown
in Figure (b).

The simpler model comprises
mostly argillaceous salt, with a
clean salt layer above the
disposal room and a significant
marker bed residing below the
repository floor.
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Mesh Description

et ® A two-dimensional plane strain
’ disposal room model was converted

52.87 m

from the simplified stratigraphy, is
used for the SANTOS analysis.

O

O

U=0.0

N

|
g=9.79 m/s$ ’I
I
|

|

I’ u=00 ® The discretized model represents the
,’ ,J room as one of an infinite number of
I rooms located at the repository

| horizon.

® Making use of symmetry, only half of
L5 the room is modeled.

B e ® The basic half-symmetry disposal
= T room dimensions are 3.96 m high by
. s96m | .HH\.'\\\‘.\\‘\\ “20.27m 5.03 m wide with a significant portion
, T of this area containing the stored
\.l.l.\ll\l.\.\\lll CH-TRU waste.
! Y
T N 11
U=0.0
HHH Halite HEHH  Anhydrite
HHEH  Argillaceous Halite = Waste
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} Constitutive Models

O Halite Constitutive Model

* A multi-mechanism deformation (M-D) model proposed
by Munson and Dawson, has been included in SANTOS
to model the creep behavior of rock salt

» The model can be decomposed into an elastic
volumetric part (Eqg. 1) and a deviatoric part (Eq. 2)

_ O

- 3K

S; = 26| €; —Fé&, c0s20 sij+M{sipsm—&é‘”}
c0s36,/J, ' cos3dl, 3

Evk
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} Constitutive Models

O Anhydrite Constitutive Model

8 of 35

The anhydrite layer (MB 139) is expected to experience
Inelastic material behavior.

This is assumed to be isotropic and elastic until yield
occurs.

Once the yield stress is reached, plastic strain begins
to accumulate.

Yield is assumed to be governed by the Drucker-Prager
(D-P) criterion.

JJ, =C-al,

ﬁan_diaI
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Constitutive Models

O Waste Constitutive Model

» The stress-strain behavior
of the waste was
represented by a plasticity
model with a piecewise "
liner function defining the
relationship between mean
stress and volumetric strain.

= Compaction experiments
on simulated waste were
used to develop this
relationship

Pressure (Mpa)

0
0.00 0.25 0.50 0.75 1.00 1.25
Volume Strain
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Gas Generation Potential

« The gas generation potential
and gas production rate are

composed of gas from two S
sources: anoxic corrosion and
microbial activity.

= The gas pressure in the
disposal room was computed
from the ideal gas law based on
the current free volume in the

8.0 -

6.0 -

4.0

Total Gas Potential (Mmoles)

room
2.0 -
NRT i) ST
p — 'I: R 0 250 500 . ?{Sy[) } 1000 1250 1500
g V ime (years
N = mass of gas in g-moles History of the reference gas generation potential
R = universal gas constant Used for the disposal room analysis, f=1.0

T = absolute temperature (300 °K)
V = free room volume
f = gas generation factor

Sandia
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Disposal Room Creep Closure, f=0.0
(Current Room)
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Disposal Room Creep Closure, f=1.0
(Raised Room)
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Porosity Surfaces for Rooms Containing Standard Waste

Porosity

02 03 04 05 06 07 08 09
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Porosity Surfaces for Rooms Containing Standard Waste

FPorosity

B [ [ [ e

nz2z 03 04 05 0B 07 08 09

i LU IO DL LB L LI

250 500 750 1000
Time (years)
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DRZ Calculation

QA for Ultrasonic Wave Structural Analysis for Room Q Define the Relationship between
Velocity Test Data Access Drift using SANTOS Permeability and Volumetric Strain

4

Draw the Contours for _ c-1,
I Dilatant Damage Potential J3, I
Ultrasonic Postprocess Clay Seam G Output
Wave Velocity > using Peach Model
Test Data 4 Kk =C _ .g°
Determine the Constant C in the P PV

Dilatancy Criterion by Comparing the
Contours with Ultrasonic Wave
Velocity Test Data

4

Draw DRZ Extent around Room Draw Permeability Distribution around
based on Stress Distribution Room based on Strain Distribution
from Clay Seam G Analysis from Clay Seam G Analysis

Permeability within the DRZ
at Specific Times

A
e Maximum Extent of DRZ
e Time at which DPOT satisfied BRAGFLO Analyses for Salado
e Properties of DRZ_2 Brine & Gas Flow

\—/—\

Sandia
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DRZ Extent (No Gas Generation)

199 years

= Given the revised value of C
(=0.19), the extent of the DRZ
IS assessed by determining
the damage factor (D) contour
using the data obtained from
the Clay Seam G analysis
[Park and Holland, 2004]

0191,

NeR

D

33& ygeagrsi
Anhydride ‘a’

Clay Seam G

MB139

10000 years

o ﬁan_diaI
Module 6: The Safety Case Laat}g]rg?oﬁes
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DRZ Extent (Max Gas Generation)

Clay Seam G

MB139

0000 years

Module 6: The Safety Case

2 3 4 5 6 7 8 9§ 10 11
32 years

Anhydride ‘a’

The maximum extent of the
DRZ calculated for both gas
generation cases reaches
approximately 1.4 m, the
distance to the anhydrite layer
(MB 139), below the room.

The anhydrite layer should be
included in the DRZ therefore,
the thickness of DRZ below
the room is 2.24 m.

The maximum extent of DRZ
above the room calculated for
both cases reaches anhydrite
“a”. Thus the thickness of
DRZ above the room is 4.74 m

The DRZ does not extend
through the anhydrite layer,
which acts as a buffer.
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Cracks in the Bottom Area of the Room

Sandia
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Location of Bayou Choctaw SPR Site

Bayou Choctaw
SPR Site

Lour‘s:‘ana

Dallas
Fort Worth o o

Texas

West Hackberr

Houston é
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Bayou Choctaw Salt Dome, Louisiana
(Plan View)
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Stratigraphy and Thickness of Each Layer

500'
650'

8000’
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Overview of the Mesh

(6 SPR, 2 Inactive, 7 Abandoned and 9 UTP Caverns)
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Geometry of Cavern A, M and 102

Sandia
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Overview of the Mesh

(9 SPR, 2 Inactive, 7 Abandoned and 8 UTP Caverns)
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Comparison of Modeled vs. Actual Salt Dome and Caprock

A’lﬁg)“ 4885 #
150 ft
A
B Caprock

S HFE salt

g g0 sl
N *=

g 3

~ [

JJII177] 777

| il (N)\f$x (E)
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Cavern Layout
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Cavern Deformation

(Caverns M and 102)
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Dilatancy Criteria for BC salt with Field Data

9000
8000
7000 * ¢
Sqrt(J,) = 0.257 x Il//
= 6000
=
5 4000
= / ¢ Failure
B 3000 * / m Dilatancy
2000 ” o Lower limit ___
1000 - — Trend line
0 I I I I I
0 5000 10000 15000 20000 25000 30000

I, (psi)
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Volume and Dilatancy Safety Factor Contours
In the Elements within 131 ft of Cavern 102 (Scenario 1)
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Volume and Dilatancy Safety Factor Contours
In the Elements within 131 ft of Cavern M (Scenario 1)

DILFAC

OOOOOoOoO
[a]en]en]en)enian]an]

TIME 39.83

b..m-l.h‘”lm.'l,ﬂlllll P L

DV W W W WA ¥

\
[ L L LT

[ 7 7
N 77

[[ 1777

00..........

».Ill....l~....§

.rvllllllllllﬂnnnnlln"“lnl

/7

[ 777
I

A ——

777/

Laboratories

Sandia
National

&)

Module 6: The Safety Case

32 of 35



alelelelelele £ 0O
olelelelelole -
(ONM O ON —©

SF N

TIME 42.08

DILFAC

Laboratories

Sandia
National

&)

Volume and Dilatancy Safety Factor Contours
in the Elements within 131 ft of Cavern 15 an 17 (Scenario 1)
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Minimum Safety Factor History for Dilatancy

Comparison with Current (Scenario 1)

Minimum Safety Factor for Dilatancy
©c o B B DM N DM W
EaN (00) N (o)) o EaN (e0) N

©
o

Expansion

©  Current
— — - Failure (D=1.2)

0 10 20 30 40
Time (year)
ﬁan_diaI
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Rock Mechanics Modeling in WIPP
Performance Assessment

(Apply to Korea)

KHNP Training Program
Module 6: Assembly of a Safety Case
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Main Topics

Introduction

Site Investigation in the Studied Area
Data Processing

3D Discrete Fracture Network Model
Calculation results

Conclusions

Module 6: The Safety Case
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} Introduction

e Accurate prediction of the pathway, the leakage rate of

nuclides from HLW repository is one of the critical factors
for PA

e Radionuclides are dissolved by groundwater in saturated
rock mass

e In the case of crystalline rock, groundwater flow is only
allowable through fractures

e In this presentation,
= 3D discrete fracture network could be modeled based on

In-situ data by separating geometric parameters and
hydraulic parameters.

= Calculating anisotropic hydraulic conductivity from this
model

Sandia
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nd Data

Fracture Length

Dip, Dip Direction,
I O W ‘ h art Aperture, Spacing
Site
InveSﬁgation Ground Water Level M—
; d VP
\ 4
p

3D Discrete Fracture
A 4 Network Corresponding

. to In-situ Condition
3D Discrete
Fracture
Network Model
6 Components of the
Anisotropic In-situ
Hydraulic Conductivity
Changed Hydraulic
Head, Flow Vectors
\ 4
3D Porous
Medium Model
N—
ow P d
Measured Inflow into the
\ 4 Caverns
Verification
Verified 3D
Groundwater Flow

Models

Module 6: The Safety Case
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Studied Area

e Yeosu Peninsulain
Chunnam, Korea

e 3X5km Area

5 of 40
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'

- &
?‘ Classification System of the Fracture Zone
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Fracture Mapping in Surface

(d) Set 3

(e) Set 4

Oi‘.ll!llld
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Borehole Survey
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e Total drilling length was

2,361 m
e Dip angles of the

boreholes were 65° ~70 |

e Total vertical length of

televiewer logging was

2,079 m




Fractures detected from 10 BHs

e 4,609 fractures were
detected from ten BHs

e The total number of open
fracture is 2,197

e The major dip direction of
the 5 fracture sets are
148/80, 255/80, 86/65, 28/90,
and 140/17, respectively

Sandia
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Pole, Dip, Dip Direction, Strike

Strike
P N

Dip Direction Pole
@ooo) 01)
Dip Azimuth
@ooon) >
Great Circle
@)

Lower Reference
Hemisphere
oo

/ Fracture
@¢n)
\ Dip

@)

Reference Sphere
@on)
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Hydraulic Test

e 205 hydraulic tests in 8
BHs and long term

|
iz
0
151000.00—

flow tests in 2 BHs

e \Water table were
measured for 9 months

11 of 40 Module 6: The Safety Case
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\

Effective Hydraulic Conductivity

e The effective hydraulic conductivity ranges from 1.18x107 m/s at BH AO-1 to

8.95x1019 m/s at BH AO-2

e The geometric mean of the hydraulic conductivities of rock and fracture zone

was determined as 5.05x10° m/s
Lognormal Probability Plot for J-1 to AO-8

Fercent
| | | | |

1.00E-12 1.00E-11 1.00E-10 1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04

Hydraulic Conductivity [m/s]
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» AD-1
o AO-2
« A0-30
2 AD-4
P AO-5
+ AO-F
a AD-T
& A0-8
& J-1

1.18E-07 mis
g.93E-10 m/s

1.07E-08 m/s
4 60E-08 mis
1.48E-09 m/s
4 35E-08 m/s
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Upper Weathered Zone

Type 1
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Underground
Fracture Sets

e Three fracture sets
determined from FracMan

e Major dip directions were
158.6/89.3, 251.4/87.2,
67.8/15.6

e Setl and Set 2is almost
vertical fractures

e Set 3 consists of low dip
fractures with various dip
directions

e Fisher Dispersion K were
9.95, 7.46, 7.17
respectively

14 of 40 Module 6: The Safety Case Laboratories



Input Data of Fracture Length

e T e WAV e Wak A - T

L LS A SR PV RVIR T T PR SN e LSO TLLPSS O K RSN

RELATIVE INTENS 117 RELATIVE INTENEITY
Parcentage of Hax, Percentagne of Max,
1098 18k
-0 ~95x%
Lol -0
{121 B
7
-69%
-Gl
=48
v o o curmt et [[Press am key to contimet | 30
(a) All fractures (b) Set 1
RELATIVE INTENEITY RELATIVE INTENEITY
M Pereentage of Hax, Porcontage of Hax,
’—95-10&4 95-108%
~08:: ~AH
I'??-B‘lz [F -t
9-TT% L B
-G 69 __
18- 18- , )
. i - }
Pross any key to continuat | [[Press am kew to contimet | -3

(c) Set2 (d) Set 3

RELATIVE INTEHEITY
Porcentage of Max,

95-108x

-5

(e) Set 4

[ Fress amy hey to continue! I

(c) Set 2 (599 Poles, 35.7%)
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Surface Fracture Trace Length

Percent

Percent

Exponential Probability Plot for Trace Length of Set 1 Exponential Probability Plot for Trace Length of Set 2

ML Estimates ML Estimates
Mean:  3.11705 Mean:  3.65114

Percent

0 10 20 0 10 20 30
Trace length [m]

Trace length [m]

(b) Set 2

Exponential Probability Plot for Trace Length of Set 4

Exponential Probability Plot for Trace Length of Set 3

ML Estimates ML Estimates
Mean 3.52381 Mean:  2.88947

Percent

0 10 20 30

0 10 20
Trace length [m]

Trace length [m]
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Function of Fracture Length

e |t can be described using the following equation:

» Exponential Function: f(L)=C.L™"

= Truncated Power-Law Distribution Function:

Setl Set 2 Set 3

mean(L?) 16.5 22.97 13.0
Lo 20.0 30.0 10.5
L. 1.0 1.0 1.0

A 2.147 2.164 1.747

C 1.185 1.186 0.903

Sandia
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Fracture Density

1

Item Unit Set 1 Set 2
Number of fractures 669 (39.9%) 599 (35.7%)

Total vertical length of 10 m 1678.9 1678.9
BHs

Mean fracture spacing m 2.5096 2.8029
(s)

Mean fracture area () m? 16.497 22.970

Mean cos D 0.9179 0.3262

Fracture Density /m3 0.1260 0.0476

18 of 40 Module 6: The Safety Case

P mean(s)-mean(l ?)-mean(cos D)

Set 3
409 (24.4%)

1678.9

4.1049

13.005
0.8286

0.0226

&)
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Fracture Apertures

Lognormal Probability Plot for Set 1...Set 3

= Setl
Set 2
+ Set3

©
©
|

O ©
o u
L1

Percent
83
| T |

0.0001 0.0010 0.0100 0.1000
Aperture (m)

e Selecting the open fractures of each fracture set below GL.-40 m
e Distribution is Log-normal
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A lot of vertical trend trace than horizontal one, because the
dip angle of Set 1and 2 are close to 90 degrees

NAPSAC assume that the shape of fracture is rectangular
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Borehole Detalls

Sandia
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Stereo net from DFN model using in-situ data

7d &\\H X
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(b) Set 1 (749 Poles, 56.8%

(c) Set 2 (599 Poles, 35.7%) (d) Set 3 (409 Poles, 24.4% (c) Set 2 (333 Poles, 25.2%

(d) Set 3 (237 Poles, 18.0%

)
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, the more short fractures

The larger

mean(L?) =

Module 6:

25 of 40

The Safety Case

30,

Sandia
National
Laboratories



eo net for the final simulated fracture network

'Y o

(b) Set 1 (669 Poles, 39.9%

(c) Set 2 (599 Poles, 35.7%) (d) Set 3 (409 Poles, 24.4%)

e Total number of poles is 999
(required 1,000)

e The ratios of poles of each
set is same as real

(c) Set 2 (358 Poles, 35.8%) (d) Set 3 (244 Poles, 24.4%)

\lationa
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Final Fracture Network
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Calculating Hydraulic Conductivity

400 Pa

e Boundary Condition

* Imposing a certain
hydraulic pressure on 3
outside face

* Maintaining zero Pa at
the point O

e Material Properties

0 Pa

= Density of ground
water(p) = 998 kg/m?,

= Viscosity (u) = 1.003%103
kg/(m-s) (at 20°C)

= Kinematics' Viscosity (V) 400 Pa
= 1.005%10° m?/s

Sandia
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e Effective hydraulic conductivity is influenced by:
= Fracture roughness
= Microscopic groundwater flow process in fracture
= Filling material in fracture
= Overburden pressure, etc.

e In NAPSAC, hydraulic aperture or transmissivity
can be specified to define hydraulic response of a
fracture

e Physical aperture is different from hydraulic one

e Transmissivities of each Sets are used for
determining 6 components of conductivity

e Transmissivity will be determined using in-situ
hydraulic conductivity

Why Transmissivity?
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#Iationship btwn Conductivity and Transmissivity

e Relationship:

K. = Effective hydraulic conductivity (m/s)

T = Geometric mean transmissivity of individual
fractures (m?4/s)

s = Spacing between open fractures (m)

e Inlog space, geometric mean = arithmetic mean

In(T )= In(K,)+In(s)

e Equations were reported to be accurate when the fracture
spacing and packer interval are similar
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Finally modified 6 components of
conductivities and permeabilities
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Direction cosine of principal permeabilities

_ Trend(deg)  Plunge(deg)
| -3.6873E-01 -3.0831E-02  9.2903E-01 274.8

1.4553E-01  -0.8004E-0  2.4940E-02
9.1807E-01 _1.4440E-01 _3.6917E-0L
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Conclusions

° In order to predict the groundwater flow path more
accurately, the anisotropic hydraulic conductivity should
be considered

° Following two steps were needed
1. Generating a geometrically matched 3D DFN model

2. From this DFN model, finding the hydraulically
matched 6 components of permeabilities

° It is possible to calculate the groundwater flow path and
travel time more realistically, from the 3D continuum
model with the anisotropic hydraulic conductivities
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Final results for Pathway

LLW

LLW
Caverns LW PaTH

Cavern Caverns

»

X(East)

»

X(East)

Using anisotropic conductivity Using isotropic conductivity
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Fracture Zone in Bongkil-Ri

Zone 3 | |

Certain = == = Probable Possible |
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Fracture Zone

=
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zoneO| SHE &
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Water Level Contours
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Ending Remark
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