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Neutron generators are compact
sources for energetic neutrons
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Neutron generators (NGs) have

several applications

* Qil-well down-hole
characterization

->Neutrons activate
geological materials,
allowing spectroscopic
analysis

 Homeland security

->Neutrons activate
materials to look for
explosives, drugs, etc.

- Laboratory benchtop
source

* Nuclear weapons

—>Sandia produces NGs
for the US deterrent
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Neutron generators: 50 years of
hydrogen storage

Much contemporary <= Tube === Power Supply =»
research focus on

hydrogen storage
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Major problem: Er oxidizes easily
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Samples are ErD, thin films on Mo // Si

~500 nm Er ~500 nm ErD,

~100 nm Mo ~100 nm Mo




>100 nm of oxide observed via EFTEM
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We can use diffraction to verify the
layers’ crystallography

Sandia
National
Laboratories



Diffraction shows hydride and oxide

have epitaxial orientation
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Near-integral lattice mismatch
probable cause for epitaxy

ErD,

. Fm3m

ag,p;=0.512 nm

ag203=1.054 nm

agr203/ Agp2~ 2.06
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Oxides seen at the surface and
penetrating within the film
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ErD,

Mo

Si
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We observe satellite spots that are
not predicted from the ErD, structure
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Two hypotheses for satellites: oxide
inclusions or hydrogen ordering

Hypothesis 1: Hypothesis 2:
Nano-oxide inclusions Ordering of D in ErD,,,

Er,0,

ErD,

Si

Snow et al., J Nuc Mater Grier et al., J Appl Cryst
V374 (2008), P.147 V33, P. 1246, 2000
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Variable-temperature diffraction rules out
hydrogen ordering
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Nano-oxides difficult to observe in TEM

Reflection for derik-field image
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Higher-resolution EFTEM shows
no obvious oxide aicles

Er EFTEM ol O EFTEM map
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Preliminary atom probe results: small
oxides observed

mag WD HV tilt
50000 x| 4.8 mm | 5.00 kV |52 °

FIB preparation and atom
probe performed at
University of North Texas
Center for Advanced
Research and Technology
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Preliminary atom probe results: small
oxides observed
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Oxides in ErD, grow epitaxially on the
surface, and nano-oxides may exist in the matrix

Imaging, EFTEM, and ‘/
diffraction indicate oxide =——)
films formed on the sample
surface

Er,O,

ErH,

Satellite diffraction spots ?
could be due to nano-oxides
within the ErD, matrix

Si

Additional experiments are
underway to confirm or
refute this nano-oxide
hypothesis
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