
Basic Physics of IED's

Tracy J. Vogler

Solid Dynamics and Energetic Materials Department
Sandia National Laboratories

References:

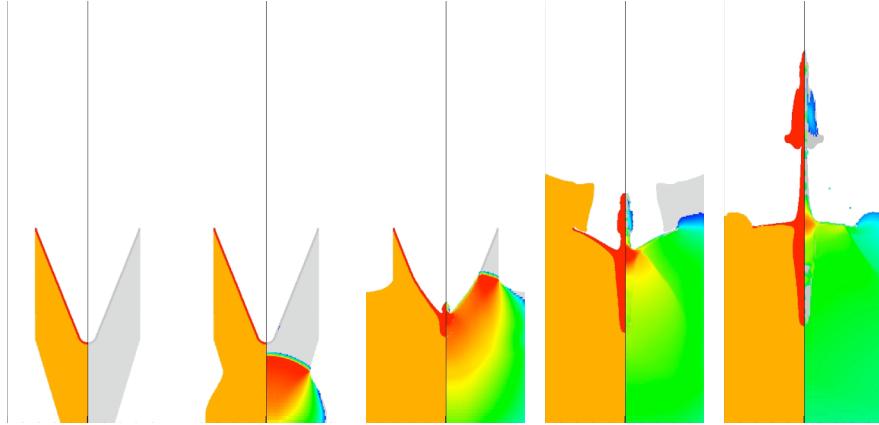
M. A. Meyers, *Dynamic Behavior of Materials*, Wiley-Interscience, 1994

P. W. Cooper, *Explosives Engineering*, Wiley-VCH, 1996

W. P. Walters and J. A. Zukas, *Fundamentals of Shaped Charges*, John Wiley and Sons, 1989

Artillery Shell IED

- old munitions readily available in Iraq
- simple detonator turns an artillery shell, etc., into an IED


http://www.defenselink.mil/news/Nov2005/20051109_3279.html

- explosive energy used to break case apart
- energy dispersed in all directions
- fragment size scales with shell thickness
- fragment velocity related to Gurney velocity

$$V = \sqrt{2E} \left(\frac{M}{C} + \frac{3}{5} \right)^{-\frac{1}{2}} \quad \text{where} \quad \sqrt{2E} \approx D / 2.97$$

D = detonation velocity (7 km/s for TNT)

Shaped Charges

- developed in early 1900's
- widespread use in WW II
- commercially used in cutting, demolition, and oil production
- elongating jet formed from liner material (metal, glass, powder)

- jet experiences extreme conditions but remains solid:

$$\varepsilon \sim 10$$

$$\dot{\varepsilon} \sim 10^4 - 10^7 \text{ s}^{-1}$$

$$P \sim 200 \text{ GPa}$$

- rules of thumb (Walters & Zukas and Cooper):

$$V_{\text{tip}} \sim D$$

$$V_{\text{tail}} \sim 0.25D$$

δ typically 4-6 CD (but can be as high as 10-12)

Shaped Charges: Penetration

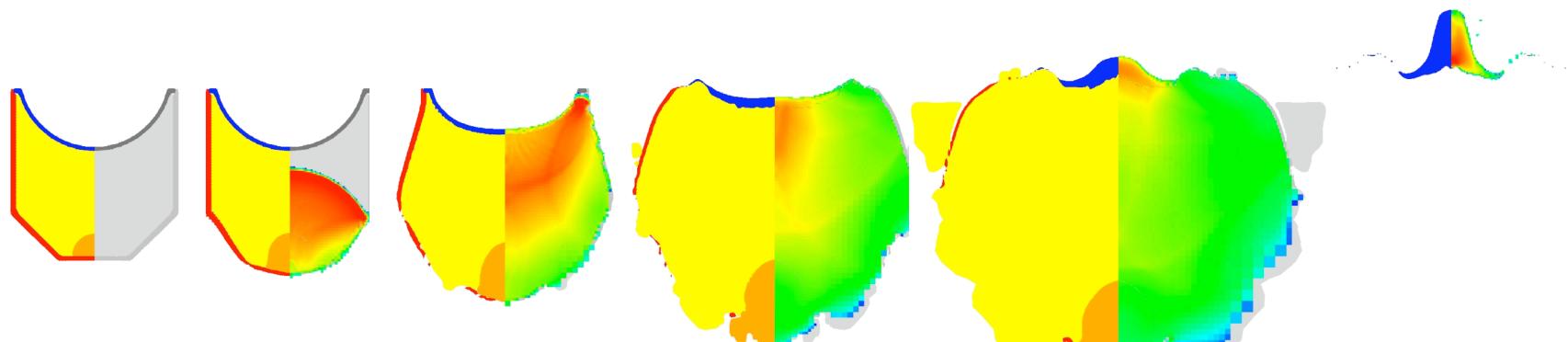
- Bernoulli's equation gives the pressure at the jet tip as

$$P = \frac{1}{2} \rho_j (V_j - V_T)^2$$

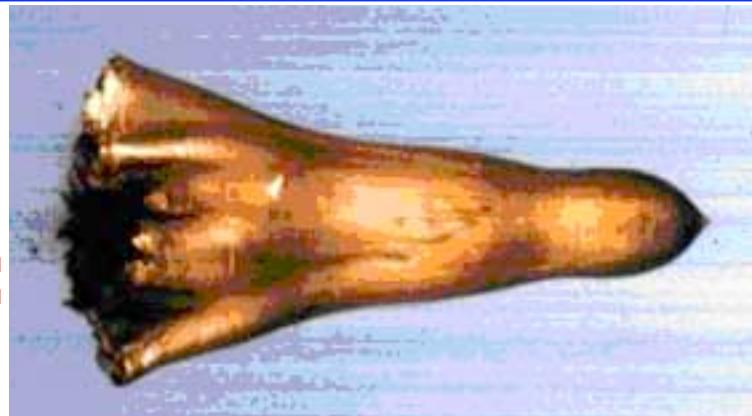
- assuming incompressible fluid behavior, one can derive an estimate of the penetration depth

$$\delta = L_j \left(\frac{\rho_j}{\rho_T} \right)^{\frac{1}{2}}$$

- optimal standoff usually 2-6 charge diameters*
- breakup of jet greatly reduces penetration depth
- high precision needed to achieve optimal performance**
- copper is common liner material, but many others have been used



EFP - Explosively Formed Projectile


also called explosively formed penetrators and self forging fragments

- creates slug of metal, usually at velocities of 2-3 km/s
- optimized designs can fly for 10's of meters
- multiple configurations possible (fold forward, fold backward, W-fold)

Example EFP's

copper EFP

http://www.afosr.af.milNews/nr_2006_38_hypersonicResearch.html

tantalum EFP

<http://www.afrlhorizons.com/Briefs/Dec04-MN0407.html>

http://www.military.com/soldiertech/0,14632,SoldierTech_EFP,,00.html

- stretching can lead to breakup
- thickness can be tailored to give desired shape
- fins improve aerodynamic stability and can induce spin