
Bayesian Analysis of Stochastic 
Nanopore Data

• Bayesian detection of Co-Zn mixtures 
concentration, based on QUB sim.
– with quantified probability distributions

• Studies of detection probability distribution 
dependence on # of events and noise level

• Detector ROC curves generated from 
Bayesian analysis of simulated nanopore 
data with Co-Zn mixtures
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Assessment and Challenges

• Key Challenges:
– Dealing with signal noise, detector drift

– Training for mixtures concentration detection
• In the absence of sufficient empirical data

• Objectives:
– Demonstrate detection from noisy data

– Demonstrate detection with intermediate signal 
levels

– Demonstrate single/mixed agent detection



Stochastic nanopore array data

Attributes of stochastic signal

• Frequency of transitions

• Statistics of open and closed 
intervals

• Current Amplitude

Challenges

• Noise of signal (SNR) and ability to identify transitions 
(duration and amplitude)

• Multiple states (intermediate current levels)

• Modelling stochastic behaviour of mixtures

• Response time of detector (computational cost must be 
low)

• Signal artifacts, baseline drift, outliers

• Trade-off Probability of Detection vs Probability of False 
Alarm



Applying Bayes Theorem
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Predictive probability of the data (attributes of the stochastic signal)

Attributes are assumed statistically independent

Specification of the Likelihood Function
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Identify the agents present in the sample, and estimate their 
concentrations. The joint posterior pdf of the unknowns is



Modelling
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Duration of open/closed intervals. Dirichlet discretization  into k intervals. 
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Frequency of transitions, n/N. n=number of transitions. N=sample size
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Binomial-Beta model

Multinomial-Dirichlet model (multivariate generalization of Binomial-Beta model)
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Bayesian Estimation Of The Unknown Parameters (training)
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NHG: Negative HyperGeometric Distribution. Analytical Form

Continuous parameterization and Interpolation of counts n 
as a function of concentrations of mixture components Ms
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Test : mixture Co-Zn,  -Hemolysin Pore
Simulated stochastic data QuB Software Suite. 

• Co: Width and frequency of top-level gaps are most useful attributes 
• Zn: Width and frequency of bottom-level gaps are most useful
• Combination of top-level and bottom-level gap statistics and event frequencies is effective for 
mixtures of both
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Posterior Probability Distribution in the Co:Zn Plane

• Posterior plotted for 
• pure Co
• pure Zn
• Co+Zn

• Using MCMC 

• P([Co],[Zn] | Data)

• Highly peaked and 
well centered PDFs 
in all cases



High Noise

Moderate 
Noise

Effect of Noise and Number of Events on Observed Posteriors



Performance of Various Attributes
• Co: Width and frequency of top-level gaps are most useful attributes 
• Zn: Width and frequency of bottom-level gaps are most useful
• Combination of top-level and bottom-level gap statistics and event 
frequencies is effective for mixtures of both



Receiver Operating Characteristic (ROC) 
Curves

As a measure of the performance of a two-class classifier,  a ROC 
curve shows the trade-off between sensitivity (true positives) and 
specificity (false negatives) for different values of a threshold.
If the threshold is the log of the Bayes Factor:
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Interpretation of ROC Curves



Bayes Factor (BF) defined as:

P(Agent|data)/P(No-Agent|data)

Probability distributions of BF 
for cases of Agent/No-Agent 
are used to construct ROC 
curves

ROC Curves Construction, given Bayesian Data Analysis



• ROC Curves constructed using 
Bayes Factors

• general non-parametric PDFs
• detection of (Co:Zn) mixtures

- vs ~ zero levels
• range of # of events

• O(100) events sufficient for 
excellent performance

(Co,Zn)=(2M,5nM)

(Co,Zn)=(2M,30nM)(Co,Zn)=(0.3M,30nM)



Experimental Signal of long chain 
polymers



Experimental Signal as a function 
of the concentration



Bayes Factors Classification 
Different polymers



Bayes Factors Classification 
Different concentration


