Bayesian Analysis of Stochagtigs
Nanopore Data

« Bayesian detection of Co-Zn mixtures
concentration, based on QUB sim.

— with quantified probability distributions
» Studies of detection probability distribution
dependence on # of events and noise level

» Detector ROC curves generated from
Bayesian analysis of simulated nanopore
data with Co-Zn mixtures



Assessment and Challenges

« Key Challenges:
— Dealing with signal noise, detector drift
— Training for mixtures concentration detection
* In the absence of sufficient empirical data
* Objectives:
— Demonstrate detection from noisy data

— Demonstrate detection with intermediate signal
levels

— Demonstrate single/mixed agent detection



Stochastic nanopore array data

Attributes of stochastic signal
* Frequency of transitions

« Statistics of open and closed
intervals

* Current Amplitude

Challenges

* Noise of signal (SNR) and ability to identify transitions
(duration and amplitude)

» Multiple states (intermediate current levels)
* Modelling stochastic behaviour of mixtures

» Response time of detector (computational cost must be
low)

« Signal artifacts, baseline drift, outliers

« Trade-off Probability of Detection vs Probability of False
Alarm



Applying Bayes Theorem

|dentify the agents present in the sample, and estimate their
concentrations. The joint posterior pdf of the unknowns is

pldata|M)-p(M)

p(a’ata)
M ={Agent(s)ID, Concentration(s)}

p(M | a’ata)z

Specification of the Likelihood Function

Predictive probability of the data (attributes of the stochastic signe

Attributes are assumed statistically independent

p(dam | M ) = H p(attributei | M )



Modelling

Frequency of transitions, n/N. n=number of transitions. N=sample size

n ~ Binomial(n|6,N)

Duration of open/closed intervals. Dirichlet discretization into k intervals.

n ~ Multinomial(n|0), nz{nl,nz,....,nk} 02{91,92,....,9k}



Bayesian Estimation Of The Unknown Parameters (training)
Binomial-Beta model

n ~ Binomial(n |0, N)
0 ~ Beta(0 |a,,,)
p(@ | n,N)oc Binomial(n|0,N)- Beta(0 |a,,a,) ~ Beta(0 |n+a,,N—n+a,)

Multinomial-Dirichlet model (multivariate generalization of Binomial-Beta model)

n ~ Multinomial(n | 0)
0=(6,,6,....,0, )~ Dirichlet(0 | )
p(ﬂ | n,M) oc Multinomial(n |0)- Dirichlet(0|a) ~ Dirichlet(0 | n+ a)



p(n,, )= j Multinomial(n,, |0)- Dirichlet (8 |n+a)d® = NHG(n, |n,, +n+a)

NHG: Negative HyperGeometric Distribution. Analytical Form

Zn, +n+a) [1r() I~
NHG(n, |n  +n+a)= H Z(x):T’Z:—) M(x): ’
Iy x ( E ixl.i

Z(n+a)-M(n,)

Continuous parameterization and Interpolation of counts n
as a function of concentrations of mixture components M,

n g — QD (M s n training M training ’5 )

p(ﬂ n , M, ) ~ Dirichlet (n_+a)

p(n,, | M,)= [ Multinomial(n., |0)- Dirichlet (8| @)dd = NHG(n , |n., +n, +a)



voltage (pA)

Test : mixture Co-Zn, a-Hemolysin Pore
Simulated stochastic data QuB Software Suite.
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Co=2puM, Zn =90 nM Co =8 uM, Zn= 90 nM

» Co: Width and frequency of top-level gaps are most useful attributes

« Zn: Width and frequency of bottom-level gaps are most useful

« Combination of top-level and bottom-level gap statistics and event frequencies is effective for
mixtures of both



Posterior Probability Distribution in the Co:Zn Plane

 Posterior plotted for
* pure Co
* pure Zn
* Cot+Zn

« Using MCMC
* P([Co],[Zn] | Data)
* Highly peaked and

well centered PDFs
In all cases
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Effect of Noise and Number of Events on Observed Posteriors
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Probability Density

Performance of Various Attributes

« Co: Width and frequency of top-level gaps are most useful attributes
« Zn: Width and frequency of bottom-level gaps are most useful

« Combination of top-level and bottom-level gap statistics and event
frequencies is effective for mixtures of both
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Receiver Operating Characteristic (ROC)
Curves

As a measure of the performance of a two-class classifier, a ROC
curve shows the trade-off between sensitivity (true positives) and
specificity (false negatives) for different values of a threshold.

If the threshold is the log of the Bayes Factor:

IOgBYT =10g(p(TyT)]
P\F | y;

p(logBYT): :p(logBYTﬂyT )dyT

(F1yr)
log By = log( PT Ly )] p(log By ) = | p(log Byy, Y )dyF
p(F|ye) '




Interpretation of ROC Curves
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ROC Curves Construction, given Bayesian Data Analysis

Bayes Factor (BF) defined as:

P(Agent|data)/P(No-Agent|data) p(BFIA gent)
e p(BFINo—Agent)

Probability distributions of BF £z

for cases of Agent/No-Agent 2

are used to construct ROC =

curves _‘.;
aT

—— —

Bayes Factor



ROC Curve for Discrimination between ROC Curve for Discrimination between

(Co=2,Zn=30) and (C0=0.3,Zn=5)

{Co=0.3,Zn=30) and (Co=0.3,Zn=5)

1L
1 |
08 -
08
2 0s 3
b 2 06 -
g — 4
= 2-3 eventis =
E i —— 10-15 events Z 04 r —— 2-3evenis
£ 100-150 events = —— 10-15 events
= E 100-150 events
27 i 02 | |
(C0,Zn)=(0.3uM,30nM) (C0,Zn)=(2uM,30nM)
ot i
L L L L L L 0 r |
. e - o & 1 0 02 04 05 0.8 1

Probability of False Alarm Probability of False Alarm

ROC Curve for Discrimination between

* ROC Curves constructed using T

Bayes Factors | /_rf 4
* general non-parametric PDFs >
» detection of (Co:Zn) mixtures £
- vs ~ zero levels 1o =F
 range of # of events " el f
« O(100) events sufficient for ol (Co.zn)=(2uM.5nM)

Q 0.2 0.4 0.6 0.8 1

eXCG I I e nt p e rfo rm a n Ce Probability of False Alarm



Experimental Signal of long chain
polymers

57 Kag/mol = 100 Kgdfmol
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Experimental Signal as a function
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Density
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