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• Combinatorial synthesis first 

used in pharmaceutical industry 

(105 assays per day)

• Create large libraries of 

samples

• Challenge 1: creating library

• Several clever approaches 

including -array printers

• Challenge 2: sample screening

• Electrochemical (usually 

very simple)

• Optical / Spectroscopic

Combinatorial electrocatalyst synthesis differs from first principle 
type appoaches; the challenge is the screening method

But, what happens when you want to look at more 
complicated electrochemical data sets?



A Pt surface oxide reduction

B Deposition of adsorbed H

C Oxidation of adsorbed H

D Pt-H + OH- --> Pt + H2O + e-

Pt + glucose + OH- -->

Pt-glucoseads + H2O + e-

E, Pt-glucoseads --> 

F Pt-gluconolactoneads + H+ + e-

Pt + OH- --> Pt(OH)ads + e-

G Pt-gluconolactoneads + Pt(OH)ads

--> gluconate + H+ + 2Pt
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Complicated Electrochemistry: Glucose oxidation.
Glucose electrochemistry is important for medical 

applications, sensing, for use as a fuel.

All regions are important; analysis of a library 
would quickly become unmanageable.  How 

would you quantify all the important features?



Multivariate Data Analysis: A brief tutorial of 
Principal Component Analysis (PCA)

Variable 1
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Vector with greatest variance (loading vector, p1)

Definition: PCA reduces the dimensionality of 
multivariate datasets (simplifying them) by transforming 
data into a new coordinate system such that the greatest 
variance lies on the first coordinate (first principal  
component), the second greatest variance on the second 
principal component, and so on.

Now imagine not just two variables, but many thousands!

X = TkPk
T + E

Integer value (principal component score, t1)

Vector with 2nd most variance (loading vector, p2)

Integer value (principal component score, t2)

X = t1p1
T + t2p2

T



Electrodeposit Pt:Ru alloys in 
different rows, test all elements 

in parallel with 100 channel 
potentiostat

100 Pt

100 Ru

Composition

Approach: Electrodeposit variants onto 10x10 array 
of Pt rods & test in sugar solutions

Pt rod diameter = 1mm



-.4 0   0.4 0.8 1.2 
-2

0

2

4

6

8

10

x 10
-5

Potential (V vs SCE)

C
u

rr
en

t 
(A

m
p

s)

PCA

Apply PCA to one row of electrodes and perform 
cyclic voltammetry experiments in 1M solutions 

containing a single sugar

The ten duplicates group with one another and each sugar is in a 
different area of the scores plot – the data is classified (an 

“electrochemical tongue”)

“Electrochemical Tongue” coined by: C. Krantz-Rulcker, M. Stenberg, F. Winquist, 
and I. Lundstrom, Analytica Chimica Acta,426, 217, (2001). 
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Acquire data from all 100 library members over 

mixed monosaccharide solutions; towards 
electrochemical sensing

• 3-factor, 5-level design of experiments 
resulted in 15 training solutions
• Training solutions contain between 10mM 
and 1M glucose, fructose, and galactose
• Partial least squares (PLS) regression 
model built for each sugar

• RMSECVglucose = 152mM
• RMSECVgalactose = 184mM
• RMSECVfructose = 133mM
• 70 – 99% of variance captured in 4 or 
5 principal components (model 
dependent) reducing data sets from 
1000’s of variables

• 12 test solutions were tested, and their 
concentrations predicted using the PCR 
model

 

m

yy

RMSECV

m

i
ii





 1

2ˆ



0

250

500

750

1000

1250

0 250 500 750 1000 1250

P
re

di
ct

ed
 G

lu
co

se
 C

on
ce

nt
ra

ti
o

n 
(m

M
)

Actual Glucose Concentration (mM)

RMSEP = 142mM

Glucose was well predicted aside from one 
statistical outlier
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RMSEP = 120mM

Galactose was also well predicted



0

250

500

750

1000

1250

0 250 500 750 1000 1250

P
re

di
ct

ed
 F

ru
ct

o
se

 C
on

ce
nt

ra
ti

on
 (

m
M

)

Actual Fructose Concentration (mM)

RMSEP = 325mM

The fructose model failed at higher concentrations, 
possibly due to electrode saturation
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Additional statistics (Q-residual) can identify 
outliers and aid investigation as to their cause

• Test solution number 
10 was identified as a 
statistical outlier.
• Examination of the 
raw data revealed 
unusually low signal –
noise ratio.



Conclusions and Acknowledgements
Conclusions

• Experiments do not have to be “dumbed down” because the data is 
impossible to analyze.
• PCA of electrochemical data sets allow classification
• PCR models were built over a large concentration range with 
relatively few training samples yet had encouraging results.
• We believe the differentiation is greater because of the 
compositionally diverse array; in future work we aim to prove this.
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Initial Mechanism for Glucose Oxidation 
on Pt at Basic pH

chemisorption and 
oxidation of -D-
glucose on Pt

oxidation of intermediate 
to glucono--lactone

oxidation of glucono--lactone to 
gluconate anion

B. Beden et al., Electrochim. Acta 
41(5), 1996, 701-709

+ 2H+ + 2e-

oxidation of 
intermediate to 
gluconate anion

weakly 
adsorbed

strongly
adsorbed

low 
probability



Glucose Electrochemistry 
Previous Work
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• -glucose:  proton on anomeric carbon is axial (down)

– Preferred orientation for glucose oxidation

• Mutarotation produces equilibrium mixture (~ 37/63 /)

• Glucose electrochemistry extensively studied as function of pH, 

temperature, working electrode, etc.

– Lamy, Kokoh, Leger, Beden, Largeaud, et al.

– Ernst, Heitbaum, & Hamann

– Yeager, et al.

– Adzic, et al.

– Becerik, Kadirgan, et al.

– Many others

• Voltammetry, electrolysis, in situ FTIR, liquid chromatography used to 

study mechanism

– Example - Pt, pH 7.3, triple-potential-step oxidation for optimal 

gluconic acid formation:

• 9% conversion of glucose to ~ 65% gluconic acid with notable 

residuals of glucuronic, glyoxylic, oxalic, and tartaric acids 

(among many other products)
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