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Outline

• Basics (Defining Fractures)
– Density

– Length

– Orientation

– Aperture & Transmissivity

• Discrete Fracture Models
– Different approaches for fracture locations

• Pixel-Based
– Fracnet

– FCM



How Do Rocks Break?

• Multiple processes and stress fields lead 
to the final fracture pattern that we can 
observe

Examine a few end-member 
fracturing mechanisms to 
understand spacing 
distributions

Scanline: measurement of 
fracture locations, or 
distances between locations, 
on a 1-D line perpendicular to 
the orientation of the fractures



Fracture Measurements

• Intensity, , fractures per length (1/L in 1-D) 

– In 2-D, length/area and in 3-D, area/volume

• Spacing, S, length between fractures (L in 1-
D)
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Random Breakage

• Fracture locations are random over a 
distance of rock

• Could occur due to uniform stress applied 
to a rock with randomly located pre-
existing flaws

• Fractures are the result of a Poisson 
process

– What does this say about fracture spacing?



Random Breakage
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Non-Random Breakage
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Preferential breaking of smallest piece leads to a power-law distribution of 
fracture spacing.  Power-law distribution has a straight line in log-log space

Matlab Demo Here



Power-Law Relationship

Y=X

log 10 Y = β0 + β1 log 10 X

α = 10β0 β = β1 

Slope, in log-log space, is the fractal dimension ( = D)



Limited Sampling: Spacing
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Fracture Spacing

• We just covered several things

– Measured fracture spacing (scanline, 
borehole, etc) will be exponential if fractures 
are randomly located

– Spacing will have a power-law distribution if 
fractures preferentially break the smallest 
intact piece

– Inferring statistical distributions from limited 
data is a risky approach



Intensity in 2-D

• Homgeneous Poisson Process (HPP) and 
Non-Homogeneous Poisson Process 
(NHPP) as models for fracture locations



Intensity Data: Resistivity Profiling

Two-dimensional surface resistivity profiles collected using a variety of array techniques 
combined with borehole geophysical logs revealed anomalous low resistivity areas in 
crystalline bedrock associated with fault zones. 

From: Thomas 
Burbey, Virginia Tech 
University



Length

• Measuring fracture length

– Have to derive from outcrop data

– Has anyone here ever seen both ends of a 
significant fracture?



Length Distributions

• Exponential

– Uniformly random growth of all fractures

• Power-Law

– Preferential growth of long fractures (growth is 
proportional to current length)

• Log-Normal

– Products of uniform random numbers produce 
log-normal distributions



Length

• Simulated Aspo feature length distribution
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Length/Size

CDF for Fracture Radius

0.10%

1.00%

10.00%

100.00%

0.1 1 10 100 1000 10000

Fracture Radius

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y
 D

e
n

s
it

y
 (

C
D

F
)

Discrete feature simulation of rectangular objects with a power-
law size distribution



Aperture and Transmissivity

• Cubic Law

– Flow  aperture3

• Snow’s Equation 
(multiple fractures)
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Fracture Measurements

• “However, in most subsurface cases, there 
will be insufficient fractures having the size 
of interest (i.e., large conductive fractures) 
to derive a statistically significant estimate 
of spacing”.

Ortega et al., 2006, AAPG Bulletin



Stochastic Simulation

• Observational limits force us to use a 
stochastic approach to fracture modeling 
to capture significant uncertainty



Discrete Fracture Models

• Statistically-based approach to simulating 
objects (fractures) that represent 
observational data base

• Typically objects have a very large (length 
to aperture) aspect ratio



DFM Examples: Aspo

Transmissivity Distribution

Background fractures coloured by 
transmissivity (log scale) in 200m 
cube

Dershowitz et al., 2002



DFM: Drawbacks

• DFM’s are completely observationally-
based (Statistical models) 

– Do not account for genesis of fractures.

– DFM can work well if observational database 
is complete

• Impossible to determine degree of completeness

• Observations of length and shape are censored

– My Experience: Difficult to use in stochastic 
flow simulation



Cell (Pixel)-Based

• Similar to DFN’s in that stochastic simulation is 
used to place objects (fractures)

• Main difference is that fractures are placed on a 
grid

– Fracture simulation will not be mesh independent 
(minimum support is mesh size)

– May be easier to incorporate rule-based growth and 
termination (FracNet)

– Amenable to dual-permeability and stochastic 
simulation approaches



Cell Based: Simulation Example

-100 0 100 200 300 400 500 600
-100

0

100

200

300

400

500

600

X dimension

Y
 d

im
e

n
si

o
n

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

X dimension

Y
 d

im
e

n
si

o
n

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

X dimension

Y
 d

im
e

n
si

o
n

40 Fracture centers located randomly in domain (left).  Fracture lengths and 
orientations drawn from exponential (80) and normal (10,20) distributions 
(center).  Fractures then trimmed to domain boundaries (right)



Fracture Network
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Percolation: Background

Development in statistical 
physics

Bond percolation on a square 
lattice where P(connect) is 
0.51 for any given edge

Percolation threshold is 0.50 
for 2-D and approximately 
0.249 For 3-D (square lattice 
with z = 4 and 6, 
respectively)

See: Sahimi, M., 1995, Flow and Transport in Porous Media 
and Fractured Rock, VCH, New York, 482 pp.



Percolation

• Critical point at which the fracture network 
goes from impermeable to permeable

– Network becomes connected across a volume

• Percolation only has definition within a 
specified area/volume



Percolation and Fractures

Fractures drawn from same length and orientation distributions

Pressure testing at Kamaishi mine

240 Fractures 100 Fractures



Cell Based: Simulation Example

0  50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

X dimension

Y
 d

im
e
n
s
io

n

-100 0 100 200 300 400 500 600
-100

0

100

200

300

400

500

600

X dimension

Y
 d

im
e
n

si
o
n

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

X dimension

Y
 d

im
e
n
s
io

n

80 Fracture centers located randomly in domain (left).  Fracture lengths and 
orientations drawn from exponential (120) and normal (10,20) distributions 
(center).  Fractures then trimmed to domain boundaries (right)



Cell-Based Model Examples

Stochastic transmissivity field on 
Structure 20 (Holton, 2001)

Stochastic field of hydraulic conductivity 
on structures (Gómez-Hernández et al., in 
prep.)



Cell Based: JNC Shobasama Site

Model of seven existing (confirmed faults)

937,500 cells, 40m cube gridblocks



Cell Based: JNC Shobosama Site

Model of existing (confirmed faults) + unconfirmed faults from lineament analysis 
(23 faults total)

McKenna, S.A., M. Eliassi, K. Inaba and H. Saegusa, 2001, Steady-state groundwater flow modeling of the MIU 
site area, Groundwater Flow in Discrete Fractures Symposium, Japanese Geotechnical Society, Tokyo, 
September 10-11, 14 pp. 



Fractured Continuum Model

• Problem Statement:

– How to honor observations made on various 
discrete fractures in continuum models of fracture 
permeability?

• What we care about:

– Flow characteristics of the fracture network

• What we measure:

– Characteristics of individual fractures
McKenna, S.A. and P.C. Reeves, 2006, Chapter 14: Fractured Continuum Approach to Stochastic 
Permeability Modeling, in: Coburn, Yarus, and Chambers, eds., Stochastic Modeling and Geostatistics: 
Principles, Methods, and Case Studies, Volume II: AAPG Computer Applications in Geology 5, p. 173–186.



MODELING APPROACHES
Dual Porosity / Permeability Systems

Equivalent Continuum Model

Fractured Continuum Model

Dual Permeability (K) Model

Discrete Fracture Network

No Fractures

No Matrix



Honoring Discrete Fracture 
Observations

• At the gridblock scale, FCM is an effective permeability 
value derived from knowledge of discrete fracture 
network

• For this study, observations were made on discrete 
fractures to characterize:

– Radius: Truncated Power-Law

– Frequency: Poisson

– Orientation: Fisher (approximated by Triangular)

– Transmissivity: Log-normal

– Aperture: Deterministic relation with Transmissivity



Angle of Deviation (degrees)
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Fracture Radius

Fracture Radius (meters)
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Fracture Frequency

Fracture Frequency (1/meter)
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Effective Gridblock Permeability

Define gridblock permeability in terms of geometric 
information on fracture network, gridblock 
dimensions and effective fracture conductance
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Effective Medium Approximation
Local Model
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Spatial Simulation

• FCM uses combination of geostatistical and object-
based simulation to populate flow model domain

• Components of Effective Medium Approximation 
(frequency and coordination number) are considered to 
be realizations of a spatial random function and are 
modeled with geostatistical simulation.

• Proportion of “conductive/non-conductive” cells, based 
on Poisson distribution, modeled with object-based 
simulation

• Three simulations combined to produce final 
permeability model

Domain Model



GEOSTATISTICAL MODEL
“Fractured Continuum”

Fractured Continuum Model

Fracture Statistics

• Shape 

• Radius

• Orientation

• Transmissivity

• Aperture

• Spatial Frequency

Coordination Number
Multigaussian

Number of Fractures

“Conductive Domains”
Boolean

Permeability Porosity



FRACTURED CONTINUUUM MODEL
Dual Porosity / Permeability Systems

Advantages
• Matrix is Not Ignored

• Fractures are Not Abstracted to 
a Network of 1-D Pipes

• Spatial Correlation Reflects 
Underlying Spatial Structure of 
Fractures 

• Statistics Underlying Fracture 
Geometry Are Directly Utilized

• Influence of Fracture Geometry 
on Flow and Transport Can be 
Explicitly Studied

 Unlike DFNs

 Unlike DFNs               

 Unlike ECMs / DFNs

 Unlike ECMs / DFNs

 Unlike ECMs / DFNs



EXAMPLE REALIZATION
Stage 1 R44/50

POR-SALSA:  H12 FLOW COMPARISON
PorosityIntrinsic Permeability

Log10 (k) [meters2]

-22        -21        -20        -19         -18         -17         -16        -15

Log10 ()

-6.0       -5.4       -4.9        -4.3       -3.7        -3.1       -2.6        -2.0



Permeability-Porosity Relationship

Permeability (m2)
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EXAMPLE REALIZATION
Stage 1 R44/50

POR-SALSA:  H12 FLOW COMPARISON
Intrinsic Permeability Transects

Log10 (k) [meters2]
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Log10 (k) [meters2]
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Large Fracture



Model Validation (orientation)

Mean orientation of both feature sets calculated 
for 50 realizations and compared to target values 
of 0.0 and 90.0 degrees



Model Validation (Frequency Minimum)

Median proportion of conductive gridblocks across 50 
realizations equals target proportion of 0.4055



Model Validation
(Minimum Fracture Radius)

97.9 percent of all features have radius greater than 7 meters

Proportion of 
features with radii 
greater than 7 
meters is shown 
against the target 
proportion for both 
feature sets



Flow Modeling 
(MESH DESCRIPTION)

POR-SALSA:  H12 FLOW COMPARISON
Hydraulic Gradient = 0.008
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Flow and Transport Model 
PERFORMANCE

POR-SALSA:  H12 FLOW COMPARISON

Flow Solution

• 1,050,804 Primary Unknowns
• 4,203,216 Secondary Unknowns

Particle Tracking

• 600 Particles
• Advective Travel Times / Distances
• Cumulative F-Quotients

15-25 Minutes

~10 Seconds

50 Realizations Overnight

Per Realization



FLOW CALCULATIONS
Stage 1 R44/50

POR-SALSA:  H12 FLOW COMPARISON

Outflow FluxesHead

Log10 (k)

199.03            199.48             199.94             200.39             200.85

Log10 (k) [meters2]Head (meters)

200.6

200.0

199.4

Arrow Size is Proportional to Flux

-22        -21        -20        -19         -18         -17         -16        -15



PARTICLE TRACKING
Stage 1:  50 Realizations

POR-SALSA:  H12 FLOW COMPARISON

Realization / No. of Realizations for Running Averages
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Comparing Conceptual Models
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Variation on Conceptual Model

In Stage 1, frequency & coordination number 
values were drawn independently from location 
of conductive features

In Stage2, proportion of 
conductive features in moving 
template is used to draw from 
frequency and coordination 
number 
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Comparing Permeability Models

Stage 1 Stage 2

Permeability in m2



PROJECT OVERVIEW
POR-SALSA:  H12 FLOW COMPARISON

Geostatistical Representation:
Fractured Continuum Model

Flow Simulator:  POR-SALSA

Mesh

100 x 101 x 101 Elements
Regular Hexahedral Elements 

(2 x 2 x 2 Meter / 8 Nodes )

1,020,000 Elements
1,050,804 Nodes

Flow Problem

Steady-State, Saturated
1 Primary Unknown (w)

4 Secondary Unknowns (H, vx,vy,vz)

Performance

50 Realizations
20 Processors

17 Hours Total Time
Log10 (k) [meters2]

-22        -21        -20        -19         -18         -17        -16        -15



Summary

• FCM represents new approach to modeling fracture 
permeability (EMT + Spatial Simulation)
– Bridge between DFN and ECM models

– Exploits capability of MPP flow and transport capabilities

• Compared to other approaches, results indicate:
– FCM Bulk hydraulic conductivity similar to ECM’s (about 1 

order of magnitude lower than DFN models)

– FCM produces longest times to first arrival (100+) years 
(DFN model first arrivals are roughly 5-15 years)


