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Abstract 
This work describes the development of a transported Livengood-Wu (L-W) integral model for computational fluid dynamics (CFD) 

simulation to predict auto-ignition and engine knock tendency. The currently employed L-W integral model considers both single-stage 

and two-stage ignition processes, thus can be generally applied to different fuels such as paraffin, olefin, aromatics and alcohol. The 

model implementation is first validated in simulations of homogeneous charge compression ignition combustion for three different fuels, 

showing good accuracy in prediction of auto-ignition timing for fuels with either single-stage or two-stage ignition characteristics. Then, 

the L-W integral model is coupled with G-equation model to indicate end-gas auto-ignition and knock tendency in CFD simulations of 

a direct-injection spark-ignition engine. This modeling approach is about 10 times more efficient than the ones that based on detailed 

chemistry calculation and pressure oscillation analysis. Two fuels with same Research Octane Number (RON) but different octane 

sensitivity are studied, namely Co-Optima Alkylate and Co-Optima E30. Feed-forward neural network model in conjunction with multi-

variable minimization technique is used to generate fuel surrogates with targets of matched RON, octane sensitivity and ethanol content. 

The CFD model is validated against experimental data in terms of pressure traces and heat release rate for both fuels under a wide range 

of operating conditions. The knock tendency—indicated by the fuel energy contained in the auto-ignited region—of the two fuels at 

different load conditions correlates well with the experimental results and the fuel octane sensitivity, implying the current knock 

modeling approach can capture the octane sensitivity effect and can be applied to further investigation on composition of octane 

sensitivity. 

Keywords: Knock; Livengood-Wu integral; Octane sensitivity; CFD; two-stage ignition  

Nomenclature 
𝛾  Change of 𝑇 or 𝑃 during LTHR 
Γ  Dilution rate 
𝜏  Ignition delay 
𝜙  Equivalence ratio 
AHRR Apparent heat release rate 
AI  Auto-ignited 
aTDC After top dead center 
CFD computational fluid dynamics 
E  Fuel energy 



 2  

FMF Fuel mass fraction 
gIMEP gross indicated mean effective pressure 
HoV Heat of vaporization 
𝐼  L-W integral 
KLSA Knock-limited spark advance 
LHV Lower heating value 
L-W Livengood-Wu 
LTHR Low temperature heat release 
MON Motor octane number 
NTC Negative temperature coefficient 
𝑃  Pressure 
PRF  Primary reference fuel 
RON Research octane number 
S  Octane sensitivity 
SI  Spark-ignition 
𝑇  Temperature 

Introduction 
Motor gasoline is expected to continuously dominate the U.S. transportation market in the near future [1]. Further improvement in 

the thermal efficiency of gasoline engines is therefore critical to reduce total energy consumption and CO2 emissions. Engine knock is 

an abnormal combustion phenomenon typically observed in gasoline spark-ignition (SI) engines, and is caused by auto-ignition of 

unburnt mixture in the end-gas ahead of the propagating flame and can sometimes lead to severe damage of the engine components. 

Knock remains one of the major barriers to improving SI engine efficiency since a delayed spark timing or reduced compression ratio 

is usually required at knock-limited condition to avoid auto-ignition, but with an efficiency penalty. 

Fuel composition and properties can significantly affect knock tendency. Research Octane Number (RON) [2] and Motor Octane 

Number (MON) [3] are currently the standard rating methods for knock resistance of fuels in SI engines. A fuel is rated by comparing 

its knock-limited compression ratio in a Cooperative Fuel Research (CFR) engine with primary reference fuel (PRF) blend in the RON 

and MON testing conditions, respectively. A practical fuel generally has different values for RON and MON, and their difference is 

referred to as octane sensitivity (S). The origin of S has been studied from both chemical and thermal aspects. The chemical component 

of S is mainly attributable to the fact that low-S fuels (e.g., paraffin) typically exhibit two-stage ignition and negative temperature 

coefficient (NTC) behaviors, which makes the auto-ignition process less sensitive to the unburnt gas temperature, while high-S fuels 

(e.g., olefins, aromatics and ethanol) are more sensitive to the unburnt gas temperature due to the lack of NTC behavior [4]. On the other 

hand, fuel heat of vaporization (HoV) has been considered as a potential thermal component of S since the intake temperature in the 

RON test is impacted by fuel evaporation cooling while the intake temperature in the MON test is not [5]. The proportion of chemical 

and thermal components was approximated by comparing RON and modified RON (with fuel cooling effect eliminated) for gasoline-

ethanol blends, showing that the thermal component becomes important only when ethanol content is higher than 30% by volume [5][6]. 

Nonetheless, to better understand the origin of S, the chemical and thermal components such as auto-ignition delay, laminar flame speed 

and HoV, etc., require further investigation to quantify their contribution, which is difficult to achieve in experimental studies since the 

properties of real fuels are generically co-variant, while numerical approaches can be promising solutions, provided an accurate knock 

modeling approach that incorporates fuel effects is available. 

Computational Fluid Dynamics (CFD) has become an effective tool for understanding the knock phenomenon. Liang et al. [7] 

coupled the level-set G-equation combustion model [8] with detailed chemical kinetics to simulate knocking combustion in a boosted 

direct-injection SI (DISI) engine. This hybrid method has been widely adopted since then, and approaches like maximum amplitude 
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pressure oscillation (MAPO) analysis [9][10], intermediate species analysis [11] and detonation theory analysis [12] can be applied to 

the CFD results to determine knock onset or knock tendency. This hybrid approach typically employs detailed chemical mechanisms to 

accurately predict auto-ignition. The large number of species in a detailed mechanism leads to increased computational expense, limiting 

its application for parametric study and design optimization, especially in knock study wherein a spark timing sweep is usually necessary 

to identify knock-limited spark advance (KLSA). In addition, a small Mach Courant–Friedrichs–Lewy (CFL) number less than unity 

and consequently a small CFD time-step are required for pressure oscillation analysis, which further makes it computationally expensive 

to accurately predict knock in CFD simulation. 

Recently, a transported Livengood-Wu (L-W) integral model has been proposed by the authors [13], which introduces the L-W 

integral into CFD for indication of end-gas auto-ignition. The L-W integral is transported in the CFD domain as a passive species, and 

the global reaction rate is tabulated from chemical kinetic calculations. A criterion calibrated against experiment was developed to 

provide accurate prediction of KLSA at multiple operating conditions. This approach achieves about 10 times faster simulation run time 

compared to the ones that solve detailed chemical kinetics, since detailed kinetics calculations and transport of hundreds of species are 

avoided, and simulations can run with a large Mach CFL of 50. In this previous work, a single-stage L-W integral model was used, 

assuming that the global reaction rate only depends on the unburnt thermodynamic condition and can be approximated by the reciprocal 

of total ignition delay. While this single-stage approach was demonstrated successful in knock prediction for a gasoline fuel that has 

limited low-temperature heat release (LTHR) under boosted SI conditions, it is worthy to examine how well this approach can be 

generalized to other fuels that exhibit evident two-stage ignition behavior. 

In the current work, the L-W knock model presented in Reference [13] is further improved and extended to account for the two-

stage ignition behavior by applying a staged L-W integral approach. This allows the L-W knock model to be applied to fuels with 

different ignition behavior and S, and potentially enables further numerical analysis and better understanding of the S origin. Commercial 

CFD software CONVERGE 2.4 [14] is employed for the simulations and the new model is implemented through a user defined function. 

Predictions of auto-ignition by both the single-stage and two-stage L-W integral approaches are compared against detailed chemistry 

calculation in homogeneous charge compression ignition (HCCI) simulations for three types of fuels: PRF20, Co-Optima Alkylate and 

Co-Optima E30 [15]. Then, the transported L-W integral model is coupled with the G-Equation model to predict knock in DISI engine 

simulations. The capability of capturing knock tendency for fuels with different S is also discussed. 

Livengood-Wu integral model for auto-ignition prediction 

Fuel surrogates 
To enable simulations, surrogate fuels were generated for the Co-Optima Alkylate and Co-Optima E30 fuels, which were designed 

to have similar RONs but different S [15]. A three-component toluene primary reference fuel (TPRF) and a four-component TPRF-

ethanol (TPRF-E) were obtained using a multi-variable minimization technique in conjunction with prediction models for RON and 

MON. Specifically, the difference between predicted and target RON and MON with respect to component volume fractions was 

minimized, subject to the constraints of the sum of the volume fractions being unity and, in the case of E30, the ethanol volume fraction 

being 30.59%. The details of the surrogate compositions and properties are shown in Table 1, along with properties of the real fuels. 

Table 1. Fuel surrogates composition and properties compared with real values [15]. Density and HoV are at 298 K, 1 bar. 
 Alkylate E30 

Real fuel properties 
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Density (kg/m3) 696.8 752.7 

HoV (kJ/kg) 309.40 564.70 

LHV (kJ/kg) 44520 38170 

RON/MON 98.0/96.6 97.4/86.6 

Ethanol (%vol) 0 30.59 

Surrogate composition 

iso-octane 0.90049 0.18865 

n-heptane 0.03395 0.21285 

Toluene 0.06556 0.28266 

Ethanol 0 0.31584 

Surrogate properties 

Density (kg/m3) 697.8 759.6 

HoV (kJ/kg) 309.50 527.14 

LHV (kJ/kg) 44418.52 38311.51 

RON/MON 98.0/96.6 97.4/86.6 

Ethanol (%vol) 0 30.59 

 
The RON/MON prediction models employed were feed-forward neural networks [16] that relate the ignition chemistry from a 

detailed chemical kinetics model [17] and other thermophysical properties to the octane rating. Two feed-forward neural networks were 

created, one each for RON and MON.  Both models used the same inputs and architecture – a single hidden layer with 24 nodes. The 

inputs included three ignition delay related quantities, simulated using the detailed chemistry model [17] in a homogenous, constant-

volume reactor at 825 K and 20 bar. These were the inverse of the ignition delay time to reach 1225 K, and the derivative of the 

normalized ignition delay time with respect to pressure and temperature. The other neural network inputs were the enthalpy of 

vaporization and liquid density at 298 K, and the mole-averaged atom counts of hydrogen, carbon and oxygen. The neural network was 

demonstrated to have good predictive capability with root-mean-square errors (RMSE) in RON/MON of approximately 1 octane number 

for cross-validation data. Further details on the design, implementation, and validation of the neural network can be found in [18]. 

Livengood-Wu integral model 
The L-W integral [19] was traditionally used to predict engine auto-ignition. The global reaction rate is approximated by the 

reciprocal of ignition delay at given temperature and pressure, and the temporal integration of the global reaction rate along the engine 

pressure-temperature trajectory indicates a progress towards auto-ignition. The mixture is considered ‘auto-ignited (AI)’ when this 

integral reaches unity. The ignition delay can be either estimated using an Arrhenius-based correlation [19] or tabulated from chemical 

kinetics calculation [13]. It has been pointed out that the traditional L-W integral model, which considers the ignition as a single-step 

process, can be problematic when applying to fuels that exhibit two-stage ignition characteristics (e.g., paraffin), and a staged integration 

method is required to accommodate those fuels [20]. Figure 1 shows an example of two-stage auto-ignition process in a constant volume 

homogeneous reactor. As can be seen, the total ignition delay, 𝜏!"!, can be divided into two parts: the first-stage ignition delay, 𝜏#, and 

the second-stage ignition delay, 𝜏$, which are defined by the first and second temperature inflection points, respectively. After the first-
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stage ignition, the temperature is increased due to LTHR, as indicated by 𝑇%&'( at the minimum temperature rise rate point between 

𝜏# and 𝜏!"!. 

 
Figure 1. Illustration of a two-stage auto-ignition process. 

 
Figure 2. First-stage (𝜏!) and total (𝜏"#") ignition delay at 40 bar, 0.5 equivalence ratio for PRF20-air mixture. The ratios of pressure (𝛾$) and 
temperature (𝛾%) increases after first-stage ignition are plotted for the two-stage regime. 

Figure 2 shows the constant-volume ignition delay as function of initial temperature, calculated using a reduced mechanism [21] 

for PRF20 and air mixture at 40 bar. 𝜏!"! is shown by the solid line, while 𝜏# is shown by the dashed line in the two-stage regime as 

bounded by the dotted lines. The difference between 𝜏# and 𝜏!"! is 𝜏$. Both temperature and pressure increase due to the LTHR after 

the first-stage ignition. These changes are characterized as 𝛾& = 𝑇%&'( 𝑇)*)!)+,⁄  and 𝛾- = 𝑃%&'( 𝑃)*)!)+,⁄ . 

For the single-stage ignition regime, only the total ignition delay and single-step integration need to be considered. The single-stage 

L-W integral, 𝐼., is tracked as a passive scalar and is used to indicate local progress towards auto-ignition.  

𝜕!(𝜌𝐼-.) + ∇(𝜌𝒖𝐼-.) − ∇ ∙ (𝜌𝐷&∇𝐼-.) = 𝜌𝜔̇.           (1) 

𝜔̇. = 1 𝜏!"!(𝑇, 𝑃, 𝜙, Γ)⁄                           (2) 
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Here, 9  denotes the Favre-averaged mean value. The impact of sub-grid turbulent fluctuation on end-gas auto-ignition was found 

to be marginal for the studied engine cases [13] and is neglected in this work. The chemical source term 𝜔̇. is determined as the 

reciprocal of ignition delay 𝜏!"! based on local temperature (𝑇), pressure (𝑃), equivalence ratio (𝜙) and dilution rate (Γ).  

For the two-stage ignition regime, a staged integration method is applied. Two L-W integrals, 𝐼# and 𝐼$, are considered, indicating 

local progress towards the first-stage and second-stage ignition, respectively. These two integrals are transported similarly to 𝐼. as in 

Eq. (1) but with different source terms as shown in Eq. (3) and (4), respectively. The source term for second integral 𝐼$, 𝜔̇$, remains 0 

until the local 𝐼# reaches unity. It should be noted that 𝜏$ is a function of local thermodynamic state after the first-stage ignition (i.e., 

𝛾&𝑇 and 𝛾-𝑃), instead of local non-reacting condition (i.e., 𝑇 and 𝑃) which does not account for LTHR since the auto-ignition heat 

release is not coupled with the energy equation. Here, 𝛾& and 𝛾- are also transported in the computational domain, both initialized at 

a value of 1 and assigned the value as function of local conditions only at the instant when first-ignition occurs. 

𝜔̇# = 1 𝜏#(𝑇, 𝑃, 𝜙, Γ)⁄                               (3)  

𝜔̇$ = :
0																																								𝑤ℎ𝑒𝑛	𝐼# < 1
1 𝜏$(𝛾&𝑇, 𝛾-𝑃,⁄ 𝜙, Γ)					𝑤ℎ𝑒𝑛	𝐼# ≥ 1             (4) 

All the L-W integral related parameters, 𝜏#, 𝜏$. 𝜏!"!, 𝛾& and 𝛾-, are calculated for each fuel using the CONVERGE 0D solver 

and tabulated a priori in the dimensions of 𝑇 (from 500 to 1500 K with 10 K step), 𝑃 (from 5 to 70 bar with 5 bar step), 𝜙 (from 0.4 

to 2.0 with 0.1 step), Γ (from 0 to 0.2 with 0.05 step). The reduced TPRF-E mechanism is employed, which has been validated for 

engine combustion application [21][22]. For the single-stage ignition regime, the values of  𝛾& and 𝛾- are 1, and the values of 𝜏# 

and 𝜏$ are assigned both equal to 𝜏!"!. As a result, the staged integration would over-predict the ignition delay when applied in the 

single-stage regime as will be shown in section 2.3.  

In order to ensure that the L-W integral model can be accurately applied to both single-stage and two-stage ignition regimes, the 

single-stage and two-stage L-W integration approaches are solved simultaneously and independently in the current CFD implementation, 

and auto-ignition is predicted when any of 𝐼. and 𝐼$ reaches unity. In other words, while the two-stage L-W model would fail in the 

single-stage ignition regime, the single-stage L-W result can guarantee accurate auto-ignition prediction, and vice versa for the two-

stage ignition regime. 

Validation in 0D HCCI 
The implementation of L-W integral model is validated against detailed chemical kinetics calculation in 0D HCCI combustion with 

a compression ratio of 16, as shown in Figure 3, Figure 4 and Figure 5 for PRF20, alkylate and E30, respectively. At each condition, the 

results of single-stage (green dash-dot lines) and two-stage L-W integrals (blue dashed and red dotted lines) are obtained from the same 

simulation run with detailed chemistry solver turned off. The temperature profile (black solid lines) is predicted by the detailed chemistry 

from a separate simulation run with the same initial conditions. The simulations start at -143° after top dead center (aTDC) with the 

initial conditions as shown in the figures, representing typical pressure-temperature trajectories in SI engines. 

For PRF20 at initial condition of 350 K and 1 bar, 0.5 equivalence ratio and 1000 rpm as seen in Figure 3 (a), the first-stage ignition 

occurs around -22 aTDC and the second-stage integral starts to rise immediately, while the single-stage integral continuously grows 

during the ignition process. The ignition timings predicted by the single-stage and two-stage L-W integrals are very close, and both 

agree well with the detailed chemistry results. Similarly, both L-W integration approaches provide satisfying prediction of auto-ignition 

when the initial pressure is increased to 2 bar. However, when the initial temperature is increased to 380 K, the second-stage ignition 
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delay is increased due to the NTC behavior as seen in the temperature profile. Consequently, difference between two L-W integral 

approaches becomes evident. Two predicted ignition timings further deviate as the engine speed is increased to 2000 rpm in Figure 3 

(d), and the single-stage L-W approach fails in predicting ignition timing. 

 
Figure 3. Comparison of single-stage (green dash-dot) and two-stage (first-stage: blue dashed; second-stage: red dotted) L-W integrals with in-
cylinder temperatures from detailed kinetics (black solid) in 0D HCCI with PRF20. 

For alkylate fuel, a stoichiometric condition is selected to be relevant to typical SI engine conditions. Similar observations from the 

PRF20 cases are also found for the alkylate cases in Figure 4. The single-stage approach works as well as the two-stage integration 

approach at initial temperature of 350 K, but at initial temperature of 380 K, only the two-stage approach is accurate while the single-

stage approach over-predicts the ignition timing. This is because the alkylate fuel and its surrogate mostly consists of iso-paraffin, 

although the temperature increase during the second-stage ignition is not as significant as for PRF20. On the other hand, the ignition for 

E30 is a single-stage process as seen in the temperature profile in Figure 5, and the single-stage L-W model is sufficient to accurately 
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predict the ignition timing. The profile of first-stage integral overlaps with the single-stage integral, while the second-stage integral fails 

to predict ignition accurately. 

It is seen that the two-stage L-W integral model is generally favorable for paraffin fuels with two-stage ignition characteristics, 

especially for the higher temperature end of the two-stage regime that has longer second-stage ignition delay as seen in Figure 1. 

However, for the lower temperature end of the two-stage regime, wherein the second-stage ignition delay is shorter, the single-stage L-

W model works satisfactorily as seen in the cases of PRF20 and alkylate with initial temperature of 350K in Figure 3 and Figure 4. In 

addition, increasing pressure would also reduce the LTHR and make the two L-W integral approaches work equivalently. 

 

 
Figure 4. Comparison of single-stage (green dash-dot) and two-stage (first-stage: blue dashed; second-stage: red dotted) L-W integrals with in-
cylinder temperatures from detailed kinetics (black solid) in 0D HCCI with alkylate. 
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Figure 5. Comparison of single-stage (green dash-dot) and two-stage (first-stage: blue dashed; second-stage: red dotted) L-W integrals with in-
cylinder temperatures from detailed kinetics (black solid) in 0D HCCI with E30.  

Application of Livengood-Wu integral model for knock prediction 

DISI engine model 
The modeled engine in this section is a 1.6-L Ford EcoBoost engine operated with the production turbocharger and direct-injection 

fueling system at Oak Ridge National Laboratory (ORNL). The engine specifications are summarized in Table 2. The engine geometry 

for CFD simulation is shown in Figure 6. Figure 7 summarizes the engine operating and boundary conditions measured from experiments 

for both alkylate and E30 fuels, which covers a wide range of conditions from throttled, low-load to boosted, high-load, at stoichiometric 

air-fuel ratio and 2000 rpm engine speed. 

A modified cut-cell Cartesian grid generation method is employed to automatically generate the computational grid at runtime in 

CONVERGE. The base mesh size was set to be 2 mm, with 1 mm refinement applied to the in-cylinder region, 0.5 mm boundary 
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refinement applied on the walls and 0.25 mm mesh refinement applied to the spark region. The total cell count varies during a full engine 

cycle and peaks at 1.2 million near bottom dead center. The turbulent flow was modeled by a generalized re-normalized group k-ε model 

[23] with a temperature wall function [24] employed for the wall heat transfer. The Peng-Robinson equation of state [25] was used to 

correctly describe pressure-volume-temperature relationship during compression [26]. A Lagrangian model that consists of the hybrid 

Kelvin-Helmholtz Rayleigh-Taylor breakup model [27], No Time Counter collision model [28] and Frossling correlation [29] was used 

to account for the spray atomization process of droplet breakup, collision and vaporization. 

Table 2. Engine specifications for experiments at ORNL. 
Engine Ford 1.6 L EcoBoost 

Bore * stroke 79.0 mm * 81.3 mm 

Conrod length 133 mm 

Compression ratio 10.1 : 1 

Fueling system 
Center-mounted, direct injection, 

production injector 

Injection pressure 130 bar 

Start of injection -300° aTDC 

Fuel 
Co-Optima Alkylate,  

Co-Optima E30 

 
Figure 6. Engine geometry used for simulations. 

Turbulent premixed combustion was captured by the level set G-equation model [8]. According to the flamelet modeling theory of 

Peters [8], under both the corrugated flamelet and thin reaction zone regimes, the inner reactive-diffusive layer of the flame can be 

modeled as an interface with infinitesimal thickness, which is tracked by solving the transport equations for a scalar 𝐺 and its variance 

𝐺//$ [14]: 

𝜕!D𝜌𝐺EF + ∇D𝜌𝒖𝐺EF = −𝜌𝐷!/𝜅̃I∇𝐺EI + 𝜌0𝑠&I∇𝐺EI           (5) 

𝜕!D𝜌𝐺//$K F + ∇D𝜌𝒖𝐺//$K F = ∇ ∙ D𝜌𝐷&∇𝐺//$K F + 2𝜌𝐷&D∇𝐺EF
$ − 𝑐.𝜌𝐺//$K 𝜀 𝑘⁄                                        (6) 



 11  

Here,  𝜌 and 𝜌0 are the burnt and unburnt gas density, respectively. 𝐷& and 𝐷&/  are the turbulent diffusivities [14]. 𝜅 is the 

mean flame front curvature. 𝑘 and 𝜀 are the turbulent kinetic energy and its dissipation rate, respectively. 𝑠& is the turbulent flame 

speed, and can be calculated using a turbulent burning velocity relationship for RANS turbulence models [8], 

𝑠& = 𝑠% + 𝑢/{−𝑎1𝑏2$/2𝑏#𝐷𝑎 + [(𝑎1𝑏2$/2𝑏#𝐷𝑎)$ + 𝑎1𝑏2$𝐷𝑎]3.5}                                      (7) 

where 𝑢/ is the turbulent velocity fluctuation, 𝑠% is the laminar flame speed, and 𝐷𝑎 is the Damköhler number. 𝑎1, 𝑏# and 𝑏2 are 

model constants and are set to be 0.78, 2.5 and 1, respectively. 𝐺(𝑥, 𝑡) is the distance function relative to the mean flame front, wherein 

𝐺 < 0 indicates unburnt region and 𝐺 > 0 indicates burnt region. The spark-ignition process was modeled by directly sourcing 𝐺 in 

a spherical volume with a radius of 0.5 mm located at the center of the spark plug gap. Laminar flame speed was calculated and tabulated 

a priori [9] using CONVERGE 1D solver with the same reduced mechanism used for ignition delay calculations. The L-W integral 

model was implemented in conjunction with the G-equation model and was applied to the unburnt region (𝐺 < 0) to predict end-gas 

auto-ignition. 

The model setup and parameters were not changed for all the cases and fuels. Only intake/exhaust boundary conditions and spark 

timings were specified based on experimental measurement as shown in Figure 7. Eight consecutive open-cycles were simulated for 

each set of condition to achieve convergence in the cycle-averaged results [13] that are used for analysis henceforth. Each cycle runs for 

8 hours on 72 cores with the current model. In contrast, the run time can be 10 times as long when the chemical kinetics is solved and a 

pressure-based knock analysis is applied [9]. Figure 8 and Figure 9 present the validation of the DISI engine model at all conditions for 

alkylate and E30 fuels. Cylinder pressure traces and apparent heat release rate (AHRR) are compared against experimental measurement 

and the overall match is good considering the wide range of conditions. The relative error in prediction of net indicated mean effective 

pressure is less than 8% and the error in CA10 and CA50 is less than 4 crank angle degree. The current model is shown able to accurately 

predict the trend in flame propagation corresponding to the varied operating condition, giving confidence to applying this model for 

predicting knock. 

 
Figure 7. Engine experimental conditions for alkylate and E30. 
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Figure 8. Validations of DISI engine simulations with Co-Optima Alkylate under 4 load conditions. Solid lines: experimental data averaged from 
300-cycle measurements. Dashed: CFD predictions averaged from 8-cycle runs. 

 
Figure 9. Validations of DISI engine simulations with Co-Optima E30 under 6 load conditions. Solid lines: experimental data averaged from 300-
cycle measurements. Dashed: CFD predictions averaged from 8-cycle runs. 

Effects of octane sensitivity on knock tendency 
Three parameters derived from L-W integral model can be potentially employed to indicate knock. 𝑉𝑜𝑙67 is the total volume of 

cells that auto-ignite as predicted by the L-W integral. 𝐹𝑀𝐹67 and 𝐸67 are the fuel mass fraction and fuel energy contained in that AI 

volume. Figure 10 shows the predicted profiles of these three parameters for alkylate at 136 N·m condition with spark timing swept 

from -12.23 to -18.23° aTDC. The increase in these profiles represent the accumulation of AI cells as the end-gas is continuously 

compressed by the propagating flame. The profile declines after reaching its peak since the end-gas is consumed by the flame. A bi-

modal profile is seen at retarded spark timing, which is caused by the non-uniform spatial growth of the flame. It was shown in our 

previous study [13] that the peak values of 𝑉𝑜𝑙67 correlates well with knock tendency and can be used to determine knock onset and 

KLSA in a boosted SI engine with alkylate fuel under stoichiometric operation, and the use of 𝐹𝑀𝐹67  and 𝐸67  can potentially 

generalize this metric to other fuels and conditions, e.g., stratified or lean operation. As seen in Figure 10, the peak value of each profile 

increases when the spark timing is advanced, indicating an increased knock tendency. The trends and shapes in 𝑉𝑜𝑙67, 𝐹𝑀𝐹67 and 𝐸67 
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profiles are similar since the fuel is almost homogeneously distributed in the current study. Henceforth, 𝐸67 is used to compare knock 

tendency between alkylate and E30 since it accounts for the differences in stoichiometric air-fuel ratios and lower heating values of 

different fuels. 

 
Figure 10. Profiles of AI volume, AI FMF and AI energy for alkylate at 136 N·m condition. Spark timing varied from -12.23 to -18.23° aTDC with 
2 crank angle degree increment. Symbols mark the peak points. 

 
Figure 11. Peak AI energy ratio (circle lines) of E30 and alkylate, and experimental KLSA (square lines) for both fuels. 

The ratio of peak values in 𝐸67 between E30 and alkylate is shown in Figure 11 for different load conditions. Here, the alkylate 

results were simulated using the same intake/exhaust conditions and spark timings from E30 cases to ensure a fair comparison of fuels, 

and the injected mass of alkylate was adjusted to maintain a stoichiometric mixture. The ratio of peak values in 𝐸67 is about 6 at 108 

N·m condition, indicating a higher knock tendency for E30 than alkylate. As the operating load increases, the ratio declines 
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monotonically to less than unity, suggesting that the more knock-prone fuel changes from E30 to alkylate. Also presented in Figure 11 

is the experimental KLSA, which was experimentally measured as the crank angle before a significant increase in the knock meter 

reading was observed when gradually advancing the spark timing. The different slopes in KLSA for alkylate and E30 is related to the 

different S of the two fuels. As the intake pressure increases with increasing load, the operating condition is shifted towards the beyond-

RON condition. Consequently, the E30 with higher S is more knock-resistant at these beyond-RON conditions and allows more advanced 

spark timing compared to alkylate. The two KLSA profiles cross around the 136 N·m since that condition is close to the RON test 

condition and both fuels have similar RONs. The simulation result shows the location of switch in knock propensity (the 𝐸67 ratio 

equals unity) occurs around 190 N·m. This deviation between experiment and simulation could be caused by a number of reasons, such 

as the inaccuracies in the prediction of main combustion events, surrogate formula, as well as the inconsistencies between the detailed 

mechanism that used to formulate surrogate and the reduced mechanism that was employed for L-W integral model tabulation, which 

can be potentially improved in future work. Nonetheless, the CFD prediction captures the trend in knock tendency of two fuels with 

different S, suggesting the current modeling framework coupling G-equation model with L-W integral model can incorporate the effect 

of S on knock tendency and can be applied to further investigate the origin of S. A detailed analysis is possible with this numerical 

approach to decompose and quantify the impact of different fuel properties, such as ignition delay, flame speed and HoV, on the 

measured S. 

Summary and conclusions 
In this study, a transported L-W integral model was developed and implemented in CFD simulation for engine knock study. The 

current framework is 10 times more efficient in computational run time compared to an approach applies chemical kinetics calculation 

and pressure oscillation analysis [9]. This model can be applied to auto-ignition prediction for fuels with either single-stage or two-stage 

ignition characteristics by solving both the single-stage and two-stage L-W integrals simultaneously. The L-W integral model was 

validated against detailed chemical kinetics in HCCI combustion at several conditions for three different fuels, namely PRF20, Co-

Optima Alkylate and Co-Optima E30. The TPRF-E surrogates for the Co-Optima fuels were generated using multi-variable 

minimization method and neural network model by matching the RON, MON and ethanol content. The two-stage integration approach 

was shown to perform better than the traditional single-stage approach in prediction of auto-ignition in HCCI combustion for paraffin 

fuels, especially at high initial temperature (380 K), but the difference between two approaches is marginal at low initial temperature 

(350 K) and high initial pressure (2 bar), while the two-stage approach fails for fuels that only have single-stage ignition process, i.e. 

Co-Optima E30. Therefore, the current implementation combining both single-stage and two-stage integration approaches is justified to 

extend the L-W integral model for a wide range of fuels that relevant to engines and to provide accurate predictions of auto-ignition as 

presented in the HCCI validations. The L-W integral model was then applied to DISI engine combustion to predict end-gas auto-ignition 

and knock tendency for Co-Optima alkylate and Co-Optima E30, two fuels with similar RON but different S. The predictions of SI 

combustion agree well with the experiment for a wide range of operating conditions without case-by-case model adjustment. The effect 

of S on knock tendency from experiment was also captured by the current model as indicated by the comparison of the peak auto-ignited 

fuel energy of two fuels, wherein the E30 fuel with higher S is more knock-prone at low load and is more knock-resistant at high load 

compared to the alkylate. While further model improvement for quantitative analysis is necessary in the future work, the current results 

suggest the potential of applying this L-W integral knock model to investigating fuel effects on engine knock, e.g., the origin of S.  
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