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Executive Summary  
 
     Renewables and especially photovoltaics (PV) have benefitted significantly from a host 
of incentives and policies targeted toward enhanced integration and adoption of specific 
energy technologies. However, with the push to move forward into a subsidy-free market 
framework, behind-the-meter residential PV applications have generally struggled to 
retain their value (unlike utility scale and commercial projects) [1]. This project focused 
on developing control-theoretic solutions aimed at improving the integration and 
interaction of behind-the-meter residential PV with other distribution system assets 
(controllable and non-controllable) to enhance the integrated value of residential PV. 
 
To this end, a suite of decentralized control methodologies have been developed to 
enable effective coordination and control  of behind-the-meter residential load customers’ 
PV, battery storage systems (BSS), controllable loads and other similar assets within a 
distribution feeder. This interaction aims at procuring energy savings and, thus, energy 
bill savings. The main source of savings is drawn from reducing the effect of demand 
charge pricing and is realized at the feeder level, assuming community level interaction 
and management among the aforementioned assets. Optimal control of the assets is 
implemented with a distributed optimization methodology, leveraging consensus-based 
algorithms. The results gathered from the optimal control simulations demonstrates that 
the savings can be duly achieved and the algorithm decision times (to dynamically control 
asset set points, for example) are fast. 
 
As for the overall efficiency of PV+BSS systems, to procure energy savings from 
curtailment of the demand charge pricing effects, the optimal control is set up so as to 
minimize the variance of the load for all customers, throughout a feeder and throughout 
time in a rolling horizon scheduling with model predictive control. The control takes into 
account inter-temporal electrochemical storage (battery) degradation costs: specifically, 
we have developed a long-term lifetime model for the BSS that weighs in the effect of the 
degradation factor in the dispatch formulations, thus, a considerable operating cost that 
affects energy decision making. The levelized cost of energy (LCOE – redefined for the 
purpose of quantifying asset integration effectiveness through the customers’ energy 
cost) is shown to be below the threshold set for the combined PV+BSS topology of $ 
0.14/kWh for multiple cases of PV penetration all the way up to 50%, provided that a 
policy of shared ownership of and savings is in place. Further, the LCOE calculated for 
the case before the deployment PV+BSS systems is also achievable, i.e. the deployment 
of PV+BSS, if planned and scheduled optimally. will have no effect on customers’ energy 
costs. 
 
From the control methodology viewpoint, the developed consensus-based algorithms      
are shown to converge for a wide range of problem cases (spanning normal operating 
scenarios and contingencies), guaranteeing dispatch solutions under forecasting errors, 
communication break-downs and cyber-security attacks. The proposed control solutions 
are scalable and real-time implementable, with dispatch computations and device set-
point updates converging in less than 2s in most practical instances of the above events. 
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Fig. 1. The agent-based coordination of PV, BSS and interruptible loads 

in the distributed optimization ABC4PV framework. 
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Background 
In order to properly assess the work undertaken in this project, two main R&D 

directions are identified, namely energy management objectives and optimal control tools.  
Energy Management of Photovoltaics & Batteries for Residential Customers’ Savings 

The first issue of concern involves objectifying and understanding the socio-economic 
implications of coordinated optimal control of assets such as photovoltaics (PV), battery 
storage systems (BSS) and controllable loads installed in various end-customer points 
(mostly households) throughout a distribution network. This framework implies access      
to system monitoring and some direct control over end-customers’ assets. Based on the 
rationale that large fleets of behind-the-meter (BTM) customers can better benefit from 
holistic PV+BSS management, this specification is made clearer by our focus on 
cooperatively owned and operated feeders. Thus, the literature review presented in the 
following is motivated by advances in the field of the optimal control and operation of fully 
vertically controlled distribution feeders and microgrids.  

A second issue of concern is the ability to realistically quantify trade-offs between 
battery operating cost (due to its degradation) and optimal scheduling/dispatch. The 
working hypothesis sought to balance arbitrage opportunities (taking advantage of low 
cost energy generation deferred to time slots of more expensive energy) while also 
providing back-up power benefits to end-users in cases of emergency.  

In light of the above points, we review the following relevant literature. Compared to 
[2] the cost objective devised in this work takes into account various PV energy pricing 
systems and is built on a battery degradation model for a more realistic consideration of 
its effect on the cost. Additionally, we consider demand response capabilities of loads.      
A relevant approach in this context is also considered in [3], with a simplified battery 
operation cost. The allocation and operation of Distributed Generation (DG) units, which 
enforce capital cost considerations in the objective function are discussed in [4]; this is in 
contrast with the hypothesis assumed in this project, that PV-storage deployment in 
households is predetermined. In the context of this project, the coordinated (optimal) 
control of the units deployed, rather than PV-storage placement infrastructure design,      is 
envisioned to incentivize wider penetration of the proposed “plug-and-play” philosophy to 
end-customers’ households. Some analysis on the net-metering policy on PV energy is 
conducted in [5] and a detailed battery degradation model is used in [6]. However, the 
battery degradation model used is in the interest of the operating constraints of the 
storage system and not as a cost-contributing factor in the decision-making. Instead of 
PV-energy billing, green certificates are considered in [7], while the degradation cost of 
the storage system is not accounted for; nevertheless, a linear factor on the performance 
of the PV installation and operating the storage system in that regime, could be 
considered as a simplified approach to the issue. A net metering policy is assumed in [8] 
and weights are assigned on each of the cost terms of the objective function (optimizing 
both on operating costs and line losses). A detailed cost operating model for the battery 
storage system, which is shown to be convex, is assumed in [9]. Although any approach 
to quantify the cost of Electric Vehicle (EV) batteries may be, practically, intractable, we 
commented on [10], as it attempts to coordinate the operation of DG, EV storage and 
interruptible loads, so as to minimize infeed costs, while satisfying trip plans of the Electric 
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Vehicles. Although [11] is a risk aware scheduling technique to cover for the stochastic 
nature of wind generation through other sources, neither the charging efficiency nor the 
degradation cost of the battery storage are accounted for. Similarly, the approaches 
presented in [12, 13] are risk-aware, the former by incorporating penalties in the objective 
function and the latter by enforcing the relevant constraints. Neither of these studies 
weighs in on the operating cost of the storage system. A problem quite similar to the one 
addressed in this project has been discussed in [14] but for thermal generation and 
restricted to net-metering billing policy. A linear approximation of the battery degradation 
cost as obtained in [15] has been used for this study. In [16] redundant energy and 
emission costs from EVs, thermal generation, DG and loads capable of demand response 
have been coordinated, in the absence though of any credible degradation cost model for 
the EV storage. The aforementioned publications on optimal resource scheduling suffer 
mainly in the context of:  
i. Properly addressing the subsidy-free PV energy assumption, and  
ii. Quantifying the operating cost of the battery storage system due to its degradation.  
The work conducted in this project accounts for both of these issues in an attempt to 
develop optimal scheduling of the battery utilization and load management at the level of 
system wide control of multiple units. 

     We elaborate further on certain critical aspects of the cost objective considered in 
this project. The revenue that may be procured by exploiting the role of battery storage 
systems as energy buffers of the PV output in a subsidy-free policy framework,      has to 
be based on a load pricing policy that is not flat. If energy rates are not flat (demand 
charge, time of use – TOU – tariffs, peak pricing, etc.), exploiting the potential of      
batteries as energy buffers can benefit users by shifting their consumption from expensive 
times of a certain period to cheaper ones. In wider scopes, such shifting has been 
proposed through methods like peak shaving, valley filling and others. As it is implied by 
these latter points, batteries dispersed over a microgrid among end-users may serve both 
emergency loads when seldom interruptions occur and procure savings through energy 
shifting. In the context of this work, we considered the Demand Charge Pricing as the 
most challenging policy of the aforementioned type. Unlike TOU tariffs, Demand Charge 
Pricing (DCP) is applied retroactively. Under DCP, after a clearance period has come to 
an end (usually a calendar month in length), for the hour of that period that the peak 
loading for a given feeder has occurred, all active loads of that feeder are subject to an 
extra cost. This extra cost is orders of magnitude greater than the typical energy cost. For 
example, in the case of an average, actual cooperative feeder (the cooperative acts as 
an aggregator for all participating parties, mostly households, connected to the feeder), 
which will also be discussed later in the analysis, DCP is $40/kWh, while the energy cost 
is around $0.07/kWh. It is evident that if some proper handling of the loads is used, the 
total energy cost for the end users will be notably reduced. To achieve that, loads should 
be shifted away from peak times to valley times, BSS could store energy at valley times 
and feed load around peak times, etc. However, focusing on the peak loads does not 
ensure energy saving for the community microgrid per se, due to the fact that DCP is 
applied retroactively and over a long clearance period. To properly handle the effects of 
DCP, firstly, we consider any available DG assets as “negative loads” (as for microgrid 
battery storage, according to the flow of energy), and, following in this sense, the 
proposed control solution seeks to minimize the variance of the augmented set of “loads” 
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of the community microgrid. Load variance minimization (LVM), which is equivalent to 
minimizing energy losses [17], has emerged mostly from the valley filling strategy for EV 
charging and will be briefly reviewed here. Traditionally, LVM has been posed as a 
quadratic programming problem of minimizing the variation of flexible loads (behind a 
point of common coupling or of a whole feeder) about their daily average or a target profile 
[17-22]. LVM is usually decoupled from the economic dispatch of DG, BSS and DR 
resources. Shaving peak loads and shifting them to valley times through TOU tariffs [23, 
24] or other pricing methods [25-27] and rule/heuristic mechanisms [28, 29], are means 
to approximate LVM in a non-explicit manner. In the context of this work, LVM is extended 
to minimize the joint variation of all loads and DG (load-generation variation minimization 
– LGVM) installed on a cooperative feeder operating as a community microgrid. The 
microgrid battery storage is employed as a buffer for DG that is shifted to peak times, so 
that the overall “apparent” load of the feeder (not to be confused with apparent power)      
is minimized about its daily average. This way, the effect of DCP to the total energy cost 
for the microgrid becomes negligible. 
Distributed Optimization Framework  

The algorithmic approach used and developed in this project, “Consensus + 
Innovations” (C+I), requires a separate concise review on its realizations in distributed 
optimal control problems.  

     Consensus-based approaches that exploit information from neighboring actors in 
optimal power management problems has recently received notable attention [30, 31] due 
to their decentralized nature, scalability and flexibility. In its earlier versions [32-35], 
researchers proposed decentralized solutions for the economic dispatch (ED) problem 
(i.e. neglecting line constraints) by enforcing a consensus on the marginal cost of 
generation through an iterative process. However, line congestion would render the 
marginal costs unequal and, thus, the aforementioned algorithm is unable to handle the 
Optimal Power Flow (OPF) problem, since it contains line constraints. To handle this 
challenge, [36] suggested an innovation based approach. The core of this method is 
based on iterative updates which solve the first order optimality conditions associated 
with the OPF problem. The original optimization problem may be solved through a 
coupled system of equations. Optimality conditions involve solely local information, hence 
the variable updates in C+I for the considered problem could be performed in a fully 
decentralized fashion. To this end, the optimality conditions are integrated as innovation 
updates in the variable updates. In this approach, each bus just exchanges information 
with its physical neighbors, i.e., other buses that are physically connected through 
transmission lines. It should be noted that the set of parties/actors, performing 
optimization in the C+I framework, need only a connected communication network (i.e. 
there is at least one path between any pair of nodes/parties/actors). We note that the 
realizations of the distributed C+I based control obtained in this project does not take into 
account: 

i. the bus voltages limits and the effect of reactive power to their regulation,  
ii. the effect of line resistances (common also in most linearized OPF approaches 

[37]), due to the fact that they are usually of negligible magnitude compared to the line 
reactance’s.  
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The mathematical formulation devised in the ABC4PV ensures that the proposed 
control can both cater to the dispatching of reactive power in terms of voltage regulation, 
as also account for the resistive nature of distribution network lines.  
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Project Objectives  
The high-level objective of this project is to develop the technology and operating 

framework to deploy integrated photovoltaics, storage, and load control (including 
thermostats) in a way that realizes greater value than either the individual components 
deployed on their own or single integrated combination of PV, storage, and load control 
operating independently of other such deployments.  
Specific scientific and technological objectives and outcomes of this project include: 
1. Design and development of a holistic control methodology for effective integration of 

distributed generation, storage and load control and its implementation to the specific 
instance of PV, battery storage and programmable thermostats and plug load 
controllers. The proposed methodology is distributed, agent-based and achieved 
optimal control and coordination of resources in distribution feeder systems. Also, it is     
: 
 Scalable, by employing an agent-based control paradigm in which local decisions 

at the system entities are determined through simplistic local computations and 
peer-to-peer information exchange; 

 Generic, i.e., provides optimal control synthesis for a wide range of distribution 
feeder systems based on operational characteristics of the various system entities; 

 Risk-aware, i.e., the optimal control settings take into account uncertainties 
associated with solar and load variability and their forecasts; 

 Robust, i.e., able to cope with intermittent malfunctioning of local agent 
computational processes and occasional failures in inter-agent communication. 

2. Mathematical analysis of the distributed control methodology including optimum 
design and cost-of-operation assessment as a function of the operational 
characteristics of the feeder network, the installed controllable components and the 
quality of load and solar forecasting employed in the decision-making process. 

3. Implementation and testing of the measures to ensure the cyber-security of the agents 
and the operating framework. 

4. A software implementation of the control methodology in a high-level programming 
language (MATLAB and/or C++) to extensively simulate control performance (i.e., 
overall cost required to achieve reliable energy dispatch) over a wide range of system 
parameters and operating conditions: specifically, we considered varying generation-
demand-storage cost curves, varying storage specifications, how performance varies 
with varying uncertainty-attributes modeling load and solar forecasting, and, in 
particular, identify system and device configurations that achieve the LCOE target 
operation cost in a socio-technologically reliable fashion.  

5. An open-source assessment of an actual feeder in the Open Modeling Framework 
(OMF), NRECA’s GridLAB-D based simulation platform, for showing the existing 
concerns for system support by PV+BSS systems. The OMF implementation 
emulated a scenario very close to actual operation. To achieve the above, the OMF 
environment has been extended as follows (which might be of independent interest, 
as well): 
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 Simulation of an actual feeder with real year-long data. This is done in the extended 
OMF for a feeder at a co-op which has agreed to participate as a partner in the 
project by making a feeder available for testing. The simulation modeled the 
performance of the feeder in response to different weather scenarios, electricity 
prices, and electrical demand on the feeder and the broader utility. For each 
scenario, the model showed the technical and financial performance of residential 
customers and their power quality. 

6. A testbed/prototype development of the distributed resource coordination and control 
algorithms  by means of deploying networked “ABC4PV units” on CMU campus for 
full scale field demonstration of the agent-based ABC4PV solution.  
 Development of the agent hardware, interfacing the agent to the battery, storage, 

and load controller(s) and to communicate with each other in a distributed fashion; 
 Installation and physical setup of PV arrays, storage and flexible demand on the 

test feeder and implementation of the agent algorithms on the dedicated hardware;   
 A detailed techno-economic assessment of both the entire system as well as the 

energy storage subsystem attributed to the implementation of the proposed control 
methodology. 

The test-bed of CMU campus units was further emulated in the MATLAB platform to 
assess the energy exchanges scheduling and examine concerns for communication 
breakdowns and cyber-attacks. The results corroborated our expectations and 
theoretical guarantees with respect to the major project objectives. 

 
7. Development in control and energy system decision-making methodologies achieved 

in this project have been published in high-impact peer-reviewed national and 
international conferences and journals. We proposed and chaired special sessions in 
major energy and control conferences to promote and disseminate our research 
results in this field. 

8. The PIs were invited to present the work at special sessions of conferences and give 
seminars at academic and industrial organizations including energy utilities and co-
ops. These events made the broader energy community aware of the technology and 
the demonstration and promoted its further development and adoption. 
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Project Results and Discussion 
The results of our efforts are organized and presented by Task. 
Task 1:  Design and Development of Distributed Resource Coordination and 

Control Methodology  
• High-level description of research and outcomes: The objective function describing the 
day-ahead cost of covering the end-customer loads has been determined. The 
capabilities of the unit (PV energy, storage and interruptible loads) have been 
incorporated in the function. The technical, operating and policy limits have been 
expressed through constraints. Contracted PV energy is proposed as a subsidy-free 
alternative to net-metering. A novel C+I formulation that solves the scheduling problem 
for distribution systems with voltage concerns has been developed. Proof of 
convergence has been produced for the iterative, distributed, optimal scheduling 
algorithm. Extensive tests have been conducted for convergence assessment. 

Each residential customer is equipped with BTM PV+BSS systems the operations of 
which come at certain costs that need to be minimized for maximum savings. At the same 
time, those customers have load costs from the operation of their devices. The following 
costs are identified for the system assets: 
- PV power has zero operational cost. The stochastic availability of solar irradiation 

implies that any de-loading of a PV system incurs missed opportunity cost and 
reduced revenue (because of degrading monetary value for PV energy that is deferred 
to later time). Hence, Maximum Power Point operation is realized [38]. That said, the 
component degradation is inevitable and cannot affect its operational cost which is 
zero for the PV Modules and the PV Inverter.  

- Battery storage operational cost is two-fold and is broken down as follows: 
o The cost of the battery recharging current depends on the electricity rate and/or 

any available excess of Distributed Generation (DG) that may be used. Charging 
efficiency might be a concern if not otherwise accounted for. 

o The battery degradation cost represents a major part of the operational cost. The 
decision on the depth of discharge (DoD) and, hence, on the charging schedules 
of the storage system affects both the future availability of battery capacity and 
also its lifetime. Unlike previous studies, the battery degradation cost in this project 
is related to the usage profile, which may not be considered given and constant for 
the whole duration of the storage lifetime. Battery degradation is formulated below. 

- The cost of load is calculated at two levels: 
o The load to be served at any given time depends on the electricity rate, and the 

available DG and storage that can be deployed to this end. 
o The load to be interrupted has a cost that follows a specific rate according to a 

pre-agreed contract with the end-user(s) or a similar demand response plan. 
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Based on the above discussion, the objective function of the scheduling problem is: 

minimize f  = [ ] +⋅
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Where:  
Ch: Set of batteries recharging, 
nB: Battery recharging efficiency (in per unit values or %), 
DG,av: Excess of DG available to recharge storage (in p.u. or kW), 
Dch: Set of discharging batteries, 
Dgd: Degradation cost (in $), 
IF: Energy In-feed cost (in $), 
L-{IL}: Set of load demand excluding interruptible load, 
DG/B,av: Excess of DG or storage available to serve load demand (in p.u. or 

kW), 
L∈ {IL}: Set of interrupted load demand, 
IL: Interruptible load cost (in $). 

tLiP ,,  & tILiP ,, : Part of i-th load consumed & interrupted, respectively, at hour t (in 
p.u. or kW), 

tRChiP ,,  & tDChiP ,, : Part of i-th battery recharged & discharged, respectively, at hour t 
(in p.u. or kW),  

nB: Battery recharging efficiency (in p.u. or %), 
tNMiP ,,  & tCntriP ,, : Part of i-th PV on net-metering & contract tariffs, respectively, at 

hour t (in p.u. or kW), 
IF: Cost of in-fed energy (in $), 
Dgd: Degradation cost (in $), 
ILC: Interruptible load cost (in $), 
CntrPV: contracted price for photovoltaic energy (in $). 
In the above, a day-ahead horizon formulation has been assumed. Moreover, the PV 
systems constitute the sole type of DG units considered in the setup. The IF and IL rates 
are given as vectors that are not flat. Besides the non-flatness of the IF and IL rates, 
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additional costs can be assumed to be added as penalties or incentives to shift loads, 
generation and storage. The framework of model predictive control [39], as this is referred 
to in the SOPO, further affirms this last assumption. From the formulation of the objective 
function (I) it follows that when an excess of storage and distributed generation occurs, 
there is a reimbursement equal to the infeed cost of energy. This has been derived by the 
assumption that net-metering policies [40] are in place. However, to strengthen the 
subsidy-free profile framework of the SUNSHOT initiative, we constrain the total amount 
of stored energy discharged in every unit to the total amount of load of the unit; i.e. no 
revenue is considered for stored energy fed to the grid. Secondly, the photovoltaic 
installation may or may not feed its energy to the grid, but at a contracted price with a 
local aggregator, utility owner, etc.  

With regards to the constraints of the optimization problem the following are noted:  
f
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Constraint (II) expresses the physical limits of the availability of photovoltaic power from 
the module installed. Due to the time-ahead horizon nature of the optimization problem, 
however, the maximum and minimum may not be defined, but estimated or forecasted (f 
superscript). Constraint (III) is the function describing the effect of a discharge or recharge 
action on the battery storage system to its voltage across the terminals, depending also 
on the voltage of the previous time slot. In a little more detail: 
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where,  
vbatt :  battery open circuit operating voltage (in p.u. or V) 
E0 :  internal voltage (constant/characteristic of the battery, in p.u. or V) 
i : charge/discharge current (signed, positive for discharge, in p.u. or V) 
K,R0 : resistant type constants (characteristics of the battery, in p.u. or Ω) 
t : total time of applying i to the batter, for multiple different i's 
Qmax: maximum capacity of the battery. 
The next two constraints outline the maximum discharging and recharging currents of the 
battery storage system. We note, as presented previously, that these also depend on the 
operating limits of the power electronics device to which the storage system is connected 
to. Constraint (VI) describes the limitation on the amount of load that can be interrupted 
as a portion of the load at the time. The minimum allowed load is, essentially, the critical 
load that cannot be shed at the time, while the maximum allowed load includes any 
additional load that can be used at the time. The latter makes sense if the interruptible 
load is shifted at different times of the day and which, in turn, relates to constraint (VII). If 
there is no load-shifting considered, there will be a constraint of a total amount of load 
that can be shed throughout the scheduling horizon. If the practice for the interruptible 
load is to shift it at different times of the day, then the sum of all Pi,IL for the scheduling 
horizon should be zero. This implies that for the case of interruptible load Pi,IL is strictly 
non-negative, while for the case of shifted load Pi,IL can be either positive or negative. The 
voltage quality constraint for its magnitude at every bus, as also the loading limits of the 
lines and the transformers are given in (VIII). The power flow constraints are given in (IX) 
and (X).  

To minimize the effect of demand charge pricing (DCP) the objective function and 
constraints are further updated and enhanced as follows: 

minimize 

∑
+=

=

⋅+=

1
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s.t.  ][][][ .,1,1. jijiji dPPd ≤−≤− , for i=[1,23] and j=i+1    (XI) 

Where: 
pk:  pareto shadow costs of quasi peak-shaving 
d:  slack variables 
P1,i:  infeed bus (interconnection or slack) power at time i 

This set-up essentially describes the aim to minimize the variance about the average of 
the overall feeder load that is served from the infeeding bus (numbered as bus 1), i.e. to 
minimize the peaks, by shifting them to valleys in a day-ahead horizon, and then 
throughout a billing period, since we are operating on a model predictive control manner. 
This approach reduces the effect of the DCP, since the DCP is employed at the highest 
hourly peak load of a feeder, hence, if all peaks are reduced by shifting them to the daily 
valleys, the DCP will be employed at a considerably reduced peak load. The set-up is not 
exhaustive and is not deterministic, in the sense that the value of pk will affect how much 
the daily load variance of the feeder will be reduced about its average. The higher the pk, 
the higher the “load smoothening” about its average. 
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Based on the overall optimal control formulation of the problem (I)-(XI) the 
consensus+innovations (C+I) based distributed control is obtained. C+I forms the basis 
of many agent-based distributed control architectures and can be roughly described in 
the form of the following iterative state (for example, device set points) updates: 

𝑥𝑥𝑛𝑛(𝑘𝑘 + 1) = 𝑥𝑥𝑛𝑛(𝑘𝑘) − 𝛽𝛽(𝑘𝑘) �
𝑙𝑙∈𝛺𝛺

�𝑥𝑥𝑛𝑛(𝑘𝑘) − 𝑥𝑥𝑙𝑙(𝑘𝑘)� + 𝛼𝛼(𝑘𝑘) ∙ 𝜀𝜀(𝑧𝑧𝑛𝑛) 

where, xn (k+1) is the state of variable x by agent n at step k+1. This state os recursively 
updated by assimilating the k-step states of agents l belonging to the neighborhood Ω of 
agent n (the “Consensus” term), as also by a correction term ε, which is a function of local 
cost terms collected by agent n (the “Innovation” term). As one may notice, the 
aforementioned terms are accelerated by the corresponding time-varying gains β, α. Due 
to the iterative nature of the methodology, the gains have to be properly tuned to avoid 
instability (i.e. failure to converge to a desired state (control or set point)), as also for the 
state to converge in as few a number of steps as possible.  

To determine the update terms of the C+I framework of the here proposed optimal 
control set-up for distribution networks, the Karush-Kuhn-Tucker (KKT) conditions have 
to be laid out; to extract the KKT conditions, the Lagrangian function of the above problem 
has to be first formulated. The focus will be on the coupled optimal power flow (COPF) 
problem, since all other constraints are linear and can be similarly extracted with the 
following process. 
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The resulting KKT conditions are: 
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The updated COPF in the C+I framework is now as follows: 
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Where for subscripts: 
i,j:   bus number, 
g,l:   generator (set), 
V:   voltage, 
ln:   line, 
NBi:   electric “neighborhood” of bus i, 
m:   minimum allowable value (limit), 
M:   maximum allowable value (limit), 
B:   set of all buses, 
λ, μ, u:   Lagrangian multipliers, 
and for regular fonts: 
C:   cost function, 
P,Q,S:   active, reactive, apparent bus/line power, 
|v|,θ:   bus voltage magnitude, angle, 
g,b:   line conductance, susceptance, 
λ, μ, u, l, T, K: Lagrangian multipliers and factors, 
α, β:   non-decaying C+I tuning parameter, 
The update functions for the Lagrangian multipliers of the constraints on voltage 
magnitude and line capacity have been omitted for this part of the analysis, based on the 
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observations in Subtask 2.1, titled, “Network Design”, presented in “RPPR1 Q2 2016 
7165” report of the second period of Year 1. To briefly remind those observations, voltage 
magnitude and line capacity limits of distribution feeders are not violated as of the design 
of those networks. 
To analyze the convergence and performance of the COPF in the C+I framework, a 
stacked representation of the variables of the problem needs to be used. Hence, vector 
X is X = [λ, μ, V, θ, P, Q] T. As of this representation, the update functions presented 
above are also stacked accordingly and the iteration matrix G is: 

Gutr = 
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qq
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vvv
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Where, 

( ) ( )[ ]YiYr −⋅−Ι= λβλ1  
( )[ ]sqgYYr +⋅= λβλ2  

( ) ( )[ ]YiYr −⋅= λαλ3  
Ι⋅−= λαλ4  

sqY⋅+Ι= µβµ1  

sqY⋅−= µαµ2  
( )[ ]sqgYYr +⋅−= µαµ3  

Ι⋅−= µαµ4  

sqV Yv ⋅+Ι= β1  
( )[ ]sqgV YYrv +⋅= β2  

Ι⋅= Vv β3  
( ) ( )[ ]YiYr −⋅−Ι= θβθ1  

Ι⋅= θβθ 2  
Ι⋅= Pp β1  

Ι⋅⋅⋅−Ι= gP ap 22 β  
Ι⋅= Qq β1  

Ι=2q  

Where, 
I:   identity matrix,  
r(z):   real part of element z, 
i(z):   imaginary part of element z, 
α, β:  acceleration parameters (α, β > 0), 
Y:  admittance matrix, 

sqgY :  a laplacian-type matrix where off-diagonal elements are 
)(
)( 2

,
ij

ij
ijsqg Yi

Yr
Y = , 

sqY :  a laplacian-type matrix where off-diagonal elements are 
)(

*

,
ij

ijij
ijsq Yi

YY
Y

⋅
−=  

Assuming Pg (0) = Pg,min , Qg(0) = Qg,min and λ and μ projected to the positive space. Then 
[Pg(u)T Qg(u)T] ≥ [Pg(v)T Qg(v)T] for any u > v, i.e. bounded monotonic sequences. Thus, 
G reduces to: 
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Gutr = 
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For the iterative procedure to converge, the spectral radius of Gutr needs to be strictly less 
than 1 [41]. Since, Gutr is a block upper triangular matrix, its eigenvalues are those of λ1, 
μ1, v1 and θ1. The eigenvalues of λ1, μ1, v1 and θ1 can be approximated according to the 
Bauer-Fike theorem (BFt) [42]. As of BFt, for any matrix M, that can be decomposed as 
M = Mutr + Mmisc if all elements of Mmisc are less than ε, it is expected that: 
ρ(M) ≤ ρ(Mutr) + Ο(ε) 
In this case, λ1, μ1, v1 and θ1 can each be decomposed as sums of an upper triangular 
and a second matrix with all the off-diagonal elements below the main diagonal (let the 
latter matrix be denoted as lod(M)). Hence, it is: 

( ) ( ) ( )[ ]YiYrlod −⋅−= λβλ1  
( ) sqYlod ⋅= µβµ1  
( ) sqV Yvlod ⋅= β1  

( ) ( ) ( )[ ]YiYrlod −⋅−= θβθ1  
As of BFt, by properly selecting small βx parameters, all elements of the aforementioned 
matrices can be reduced below an acceptable ε. For the upper triangular components of 
λ1, μ1, v1 and θ1 matrices, their eigenvalues are their diagonal elements, i.e.: 
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For strictly positive values of the acceleration parameters and any given power system of 
n buses, with line impedances rij+j∙xij, where rij, xij > 0, hence, gij > 0 and bij < 0, according 
to BFt ρ(Gutr) < 1.  
According to this analysis, it has been shown that the C+I implementation of the COPF 
converges, excluding the inequality constraints on the power quality limits. Furthermore, 
due to the fact that all update functions are linear combinations of continuous functions, 
the methodology converges to a fixed point [41]. From this and according to [43] the fixed 
point can be readily shown to be the optimal solution of the COPF problem. 

For completeness, the proof of the COPF in the C+I framework is extended to account 
for the ‘excluded’ constraints. There are two update terms for the upper and lower limit of 
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the voltage magnitude and two for the maximum and minimum (essentially, bi-directional 
flow) line capacity limitation. All of these updates are of the same mathematical 
formulation, hence the proof for the upper limit of voltage constraints will be presented for 
simplicity. The update is reminded here: 

( ) =+1, ku iv  ℙ ( ) ( )( )Miiviv vvku ,, −+ β  

The projection of this update is to the positive space. Even if the projection was dropped, 
it is not possible to prove convergence according to [41] (i.e. ensuring that the spectral 
radius of the update/iteration matrix be strictly less than 1), because the diagonal element 
of ivu ,  is definitely equal to 1 and may not allow the corresponding eigenvalue to be 

reduced according to the Bauer-Fike theorem [42]. However, as from the “RPPR1 Q3 
2016 7165” report of Q3 of Phase I of this project, let it be reminded that this update was 
extracted according to the Karush-Kuhn-Tucker conditions over the corresponding 
Lagrangian function of the COPF formulation, i.e. the above update function is, 
essentially: 

( ) =+1, ku iv  ℙ ( )
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This update is of the gradient descent form [44]. Hence, if the above iterative function is 
bounded, it has a fixed point. In this sense, any positive number large enough may be 
chosen to project the above iteration in an up and down bounded space, thus, ensuring 
that the iterative process has a fixed point. Applying the same approach to the iterative 
function of the lower limit voltage, upper and lower limits of line capacity constraints and 
combining it with the proof of convergence of the rest of the update functions presented 
in the previous quarterly report, it is shown that the COPF formulation in the C+I 
framework converges to a fixed point. From this and according to [43] the fixed point can 
be readily shown to be the optimal solution of the COPF problem. 

From the optimization problem described here it is easy to extend the proof of 
convergence to the scheduling problem presented in the whole (I)-(XI) set-up. This is due 
to the fact that the scheduling problem practically encapsulates the power flow formulation 
and adds inequality constraints, which, through the Lagrangian formulation of the dual 
problem and in the framework of the C+I approach, are expressed as iterative functions 
similar to the upper limit of voltage constraint presented right above. Hence, the optimal 
day-ahead scheduling problem in the C+I framework proves to converge to the optimal 
solution of the corresponding central formulation. 

In the Appendix of this Task, we describe a heuristic method to improve the speed of 
convergence of the C+I methodology, which constitutes another contribution of our work 
of broader impact in the field of distributed, iterative solvers for optimization problems. 

Three Milestones fell under this Task. Milestones M.1, M.7 and M.8. Milestone M.8 
described, essentially, the improvements and the end-results of Milestone M.1, as the 
latter assessed the performance of the optimal control framework in the first stages of the 
project. Hence, Milestones M.1 and M.8 are described together. We conducted 
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exhaustive testing on three actual distribution feeders (two from the island of Rhodes in 
Greece, on from the island of Ikaria in Greece) and a test distribution feeder of 10-buses. 
Milestones M.1 & M.8 (DELIVERED, SUCCESSFUL) 
Average LCOE and cost analysis, Convergence Values 

With regards to the testing of the control algorithm and the in-depth assessment of the 
simulated LCOE, the following major remarks were gathered: 
- When there is no effort to minimize the DCP effect, the BSS is not used at all, but for 

cases that the PV power exceeds the load and would thus lead to inverse flows from 
the feeder upstream to the interconnection. According to most grid codes, this energy 
flow is not allowed and should, hence, be somehow mitigated.  

- As from the analysis, there would be peak PV power leading to inverse energy flows 
for penetration of unit equipment installations in at least 50% of the end customers. 
The LCOE would be marginally below the $0.14/kWh threshold for such levels of 
penetration and all the way up to the case of 100% penetration that would exceed it. 

- For the case of neglecting the effect of the DCP to the LCOE and unless some level 
of penetration of unit equipment installations leads to increased flows of power 
upstream to the interconnection (i.e. if the battery needs to be used to mitigate such 
phenomena) the LCOE is way above the $0.14/kWh threshold for high penetrations, 
since the effect of the DCP is not mitigated (the peaks are not reduced). 

- For all cases that aim to reduce the effect of DCP to the LCOE, any increase in the 
cost-term consideration of the DCP reduces the LCOE.  

- The LCOE can also be reduced if a policy of shared ownership is in place. Every end 
customer may sign a contract for a minimum amount of emergency charge of the 
battery storage for addressing extreme phenomena (black-outs, maintenance 
interruptions, weather causing damages to the grid, etc). This contractual agreement 
means that the user will pay an X% portion of the battery storage cost, thus 
discounting its operating cost from the optimization algorithm decision-making. The 
rest of the unit equipment cost (including the 100-X% of the storage capacity not paid 
by the said end customer) will be shared, though the cooperative acting as the 
aggregator, at a community level. In this case the results are updated as follows. 
o LCOE<$0.14/kWh for any level penetration, if the customer of the premises of the 

PV+BSS installations owns more than 25% of the system and expected IRR≤10%, 
o LCOE<$0.14/kWh for penetration up to 50% if the customer of the premises of the 

PV+BSS installations owns less than 25% of the system and expected IRR≤10%, 
o LCOE<$0.14/kWh for any level of penetration, if expected IRR≤10% 
o LCOE<$0.11/kWh for any penetration, if the customer of the premises of the 

PV+BSS installations owns more than 75% of the system, 
o LCOE<$0.11/kWh for penetration less than 40%, if the customer of the premises 

of the PV+BSS installations owns less than 50% of the system, 
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o LCOE<$0.11/kWh for penetration up to 16%, if the customer of the premises of 
the PV+BSS installations owns less 25% of the system, 

o As IRR grows, the aforementioned penetrations that allow for the thresholds to not 
be exceeded, drop 

Let it be here noted that the $0.14/kWh threshold is the one set by the SOPO of this 
project, while the $0.11/kWh threshold is the LCOE noted as before the deployment of 
any BTM PV+BSS, i.e. the energy billing per kWh without any contribution of resources. 
Journal paper submissions are under consideration. 
Milestone M.7 (DELIVERED, SUCCESSFUL) 
Distributed optimization algorithm convergence time 

In this Milestone the convergence time of the C+I algorithm was sought to be assessed 
with a threshold of acceptable behavior 2s. Two distinctive outcomes should be 
commented. Firstly, regardless of the size of the feeder, the number of active resources 
and any random delays, the scheduling algorithm would not converge in time less than 
2 s, if arbitrary initial values were assigned to the update terms. This implementation of 
the algorithm is also known as “cold start” and implies that there exists no prior knowledge 
of the state of the variables.  

Secondly and, practically, since a “cold start” of the scheduling algorithm is not a 
realistic scenario, the “hot start” was also assessed. A “hot start” means that there exists 
(somehow) some knowledge about the update variables (usually from a previous step in 
a model predictive control approach) and either only one or two steps forward are added 
to the scheduling horizon or only some availability of resources is updated. For very few 
changes in the scheduling data of the algorithm, i.e. for “hot start” realization of the 
methodology, the metric of 2 s for time of convergence would be achieved. To quantify 
the premises of these tests, let it be noted that for the feeder R-23 of the island of Rhodes, 
Greece [45], with more than 50 load buses, presumably all equipped with active resources 
such as PV and storage, adding one step ahead in the scheduling horizon would not 
require more than 1.2 s average time to converge. Similarly, the convergence would be 
achieved in times around 1 s for an update in the PV forecast even of all buses. However, 
changing simultaneously the load and PV forecast beyond the deviations of most 
common forecasting tools would require considerable times to converge, as if it was a 
“cold start” implementation.  

Appendix to Task 1  
Cost of Battery Degradation 
As long as lifetime affects the operational cost of a component and is in turn affected by 
the latter, that cost cannot be considered constant [46]. In the case of a battery storage 
system, degradation represents an actual operational cost since it translates to loss of 
capacity in the long term [47]. However, the loss of available capacity is in turn a function 
of the discharging cycles; i.e. the decision to operate it and at what level. The idea here 
proposed is that every discharge is averaged (in terms of used capacity) with the previous 
ones from the start of the battery operation system; dividing the total lifetime capacity of 
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the battery by this average, yields the lifetime, thus the effect of the use of the storage 
system on its operational cost. Assuming:  
st: total hours from start of battery operation (in h), 
Ast:  total capacity of discharged Ah (or discharge cycles) from start of battery 

operation,  
x or Pi,DCh,t:  Next hour (t+1) discharge in Wh,  
x/VB:  next hour discharge (in Ah, VB: battery voltage across terminals) 
Then the averaged usage profile is given by:  
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If C0 is the capital cost of the battery (in $) and r% the expected/preferred internal return 
rate, then the Net Present Value [46] of the storage system would be: 
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Let it be noted that the assumed investment model represents the worst case scenario 
compared to accounting additionally for financial plan considerations. Furthermore, the 
cost calculation would be much more complicated and depend on parameters that should 
be approached only as specific study cases (out of the scope of the project). 
Regarding the cost of degradation specifically, as of the specifications of any battery 
storage system, the battery capacity degrades by D% over Y lifetime cycles for d% DoD. 
That said for investment lifetime capacity TAh, the discharge degradation factor per 
capacity unit (recharged/discharged) is (D1/TAh)/Ah and, thus, the available capacity (1-
D)1/TAh/Ah, which leads to the degradation cost per Ah recharged/discharged as:  
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The above formulation clearly implies that if Ast >> x (i.e. after a few dozens of 
recharge/discharge cycles or more), the CdgrdB may be simplified and considered constant 
for longer periods of time and not be included as a function of the problem variables that 

would complicate the optimization. The exponent of λ, which is ( )
8760

1

⋅




 +

+⋅

b
st

Ah

V
xA

stT  stands, 

as mentioned earlier, for the lifetime of the investment in years. Replacing the exponent 
with Y and calculating for various expected return rates r, it can be noticed that the inverse 
exponential term presents a rational function behavior, which may also be derived by: 

Yaλλ...λλ ⋅≈++++ − 121YY  
where, a is a parameter related to the preferred return rate r. This equation holds as of 
the Taylor series expansion of the left side of the equation for λ≈1, which is true for most 
common return rates r (ranging between 1-20%). That said the degradation cost per Ah 
may, thus, be reformulated as: 

( ) ( )1stTa
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 +
⋅⋅=  (XII) 

An important point to be mentioned here is that we may not assume a specific lifetime Ah 
or cycles of the battery storage system (i.e. unknown credibility of value TAh), since as 
models of [48, 49] have shown, this approximation tends to overestimate (usually) or 
underestimate the battery storage lifetime (either this is expressed in time units or 
capacity in Ah) by an average of 10-15%, resulting to CdgrdB variance in the ±14% interval, 
as this can be inferred by (XII). To this end, extensive tests on many battery storage 
systems of typical Li-ion technologies were executed by the project partner Aquion. It has 
been found that TAh may not be considered as a constant, but as a function of the 
operating temperature and the discharging profile. Assuming that the operating 
temperature may be kept somehow constant by proper (realistic) measures, the function 
of TAh is a linear approximation of the discharged energy per cycle as in: 
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where, k and m are positive constants related to the battery technology. The averaging 
has been used, in order to weigh in the effect of the previous cycling behavior. As it can 
be noticed, there is an implicit assumption that only one full discharge occurs per day. 
Combining (XII, XIII) we get: 
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 (XIV) 
With (XIV) and after the first few cycles of the BSS, we may use a constant degradation 
cost over every few dozens of cycles instead of optimizing in absolute detail. 
Linearized Optimal Power Flow Equality Constraints for Resistive Aware Lines 
We elaborate on the power flow constraints, since they represent significant contribution 
to the field. The original power flow ( ) ***

ijjiiijij yvvvqip ⋅−⋅=⋅+  equality constraint 
represents an equation that will render the optimization problem non-linear and non-
convex, thus complicating its solution. For this purpose, we propose the following steps 
of linearization that take also into account the resistive nature of distribution feeders that 
are the ones serving the residentials customers at the core of our R&D.  
- The power flow equality constraint can be rewritten in polar coordinates as  

[ ]
[ ]
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  (XV) 

- All voltage magnitudes are close to 1 p.u., i.e. they may be set as |vi| = 1, 

- Voltage angle differences of neighboring buses in the system are small enough, so 
that (i) the resulting cosine is almost unitary and (ii) the difference practically occupies 
the nearly linear region of the sine function, i.e. 1)cos( ≅− ji θθ  and jiji θθθθ −≅− )sin(
, respectively, and 

- Conductances (resistances) are non-negligible compared to susceptances 
(reactances). 

As from the above, (XI) is elaborated as: 

⇒






−⋅⋅−=

−⋅−=
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jiijij
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subtracting the bottom equation from the top one 

( ) )( jiijijijij bgqp θθ −⋅−=−  (XVI.a) 

Since, by definition 
ijij

ijij xjr
bjg

⋅+
=⋅+

1  and rij,xij≥0, it follows that bij≤0 and gij≥0. This 

in turn means that the effect of line resistance to the calculation of the bus angles for any 
given dispatching is severe and at least as important as that of the reactance (or greater). 
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To offer a depiction of this observation let us recall that the power flow equality constraint 
of the classic DC OPF [37] is given by )( jiijij bp θθ −⋅−=  

 

 
Fig. 2. Comparison of the effect of line resistance to the calculation of the angle difference in the 

linearized OPF formulation. 

 

Following, see Fig. 2, where the vertical axis corresponds to the difference of the 
angles as a simple variable Δθij (in rads) and the vertical axis represents power flows in 
per unit values. It is assumed that pij and qij are positive when flowing from bus i to bus j. 
Notice that for |gij|≥|bij| the magnitude of the slope of the line corresponding to the 
approximated power flow equality constraint according to (XVI.a) will be at least double 
of that of the classic DC OPF constraint. This, in turn, means that the angle difference for 
the same flow pij is, at most, half from that calculated based on the classic DC OPF. In 
fact, according to the above assumptions on the pij and qij, for generally inductively loaded 
distribution networks, the angle difference, as of (XVI.a) would be even smaller. To move 
further with the power flow equality constraint, the previously given assumptions on the 
angle differences and the lines conductance-susceptance relation are complemented by 
an additional assumption: 
- All voltage magnitudes are close to 1 p.u., but only one multiplicative factor of |vi| may 

be set as |vi| = 1, 
This leads to (XV) being elaborated as: 

⇒
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(XVI.b) 

Due to the coupling of active and reactive power flows in the angle and voltage magnitude 
approximations of this set-up, we shall define these power flow formulation as Coupled 
Optimal Power Flow (COPF). 

To assess the performance of the above formulation before proceeding to its 
distributed realization in the C+I framework, extensive tests were carried out. Indicatively, 
the comparative results for the OPF dispatching in a 10-bus radial system, including five 
DG units and nine load points is presented. The nominal capacity of the DG units in kW 
is given as vector in Pb = [0, 100, 50, 0, 150, 0, 0, 120, 100, 0] 
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The corresponding costs (as also of the in-fed energy through the slack bus) is considered 
linear and given as c = [0.276, 0.6797, 0.6551,0, 0.119,0,0, 0.3404, 0.5853, 0] 
The active power demand required to be covered in kW is given per bus as 
Pl = [ 0, -500, -200, -500, -300, -100, -200, -300, -500, -200] 
assuming a power factor of 0.8 lagging. The dispatching results of the proposed 
decoupled OPF for distribution systems were identical to those of the classic decoupled 
OPF and read that the slack bus would cover 2650kW and the generator installed on the 
fifth bus would inject 150kW. Noticeable differences were observed between the voltage 
and angle outputs between the classic decoupled and the here proposed COPF, while 
the accurate solution as from the SDP relaxed OPF sets the benchmark. 

Decoupled/DC OPF COPF SDP-relaxed OPF 
   V in p.u. Angle (rad) 
    1.0000         0 
    0.9959   -0.0056 
    0.9792   -0.0281 
    0.9762   -0.0322 
    0.9750   -0.0338 
    0.9731   -0.0365 
    0.9723   -0.0377 
    0.9708   -0.0398 
    0.9703   -0.0406 
    0.9700   -0.0410 

   V in p.u. Angle (rad) 
    1.0000         0 
    0.9949   -0.0034 
    0.9744   -0.0171 
    0.9707   -0.0196 
    0.9693   -0.0205 
    0.9669   -0.0222 
    0.9658   -0.0230 
    0.9640   -0.0242 
    0.9633   -0.0247 
    0.9629   -0.0249  

  V in p.u. Angle (rad) 
    1.0000   -0.0000 
    0.9950   -0.0024 
    0.9743   -0.0125 
    0.9705   -0.0144 
    0.9691   -0.0151 
    0.9667   -0.0164 
    0.9655   -0.0170 
    0.9637   -0.0180 
    0.9631   -0.0184 
    0.9626   -0.0185 

Iteration gains for improved C+I convergence speed 
To optimize the rate of convergence of the control algorithm for the scheduling 

problem in the C+I framework, the spectral radius of the iteration matrix of the updates of 
the algorithm had to be minimized. However, as it was noted earlier the reactive power of 
all buses and all inequality constraints are updated according to iterative functions with 
persistently unitary values across the diagonal of the iteration matrix. To this end, to 
optimize the rate of convergence of the algorithm of the scheduling problem in the C+I 
framework was updated as follows: 
- Step 1: All iteration functions with persistently unitary values across the diagonal of 

the iteration matrix are dropped. As of this, the iteration matrix is reduced to: 

Gitop = 
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I.e. it consists only of the update terms of the COPF equality constraints of active and 
mixed active-reactive power multipliers (λ and μ, respectively), voltage magnitude, 
voltage angle and active power of active resources in the system. 

- Step 2: As of the diagonal elements of Gitop, determine the minimum and maximum 
values for all “αx” and “βx” acceleration parameters (where x implies the corresponding 
update term) that limit the value of the diagonal elements between zero and one. 

- Step 3: Exhaustively explore the available space of “αx” and “βx” acceleration 
parameters that minimizes the spectral radius of Gitop without allowing a zero 
eigenvalue. 

- Step 4: Set all acceleration parameters of the iterative functions of the reactive power 
and the inequality constraints not included in Steps 2 and 3 above, equal to the 
minimum of all “αx” and “βx” acceleration parameters determined in Step 3. 

Steps 1-3 follow the approach in [41], while Step 4 relies on the fact that these iterative 
functions will converge to the optimal solution, following the convergence rate of the rest 
of the updates. 
 
Task 2:  Software Implementation of Algorithms  
• High-level description of research and outcomes: Extensive load flow results on actual, 
distribution feeders showed that the network design is the major factor affecting power 
quality in terms of voltage deviations. The unit controller has been enabled with the 
control algorithm and tested in silico. Reliable controller-to-controller, controller-to-
equipment, and controller-to-server communication have been developed and validated. 

Before deploying any control software in an actual system, concise in silico validation 
is required to foresee any unexpected outcomes or to fine tune the control software itself. 
The challenge of applying control algorithms at distribution systems is also relevant to the 
operating profile of the latter. Commonly, distribution feeders are designed to withstand 
loads that are projected in timelines of at least 10 years from the design phase, which 
implies that power quality concerns might not arise in the average case and any controls 
are solely improving energy profiles. This has been noted also by the OMF modeling of 
two cooperative distribution feeders from the US and three distribution feeders from 
islanded systems from Greece on the MATLAB platform. 

Previous work conducted by NRECA on the GOSED project resulted in the creation 
of a Feeder Model, representing a portion of the CoServ Electric energy distribution 
system in Abilene Texas.  This model represented two Feeders attached to the Aubrey 
Substation. These feeders are labeled “Aubrey 21” and “Aubrey 22”. Using the climate 
information for Abilene Texas, and the SCADA data from the real feeder system for that 
time, the OMF calibration tool was used to modify the load objects in the Models to scale 
their output to match that of the real system. Indicative results from the voltage profiles of 
these two feeders are shown in the following figures.  
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Fig. 3. OMF simulation and actual data of voltage from 2 cooperative feeders. 

Fine tuning these feeder models to their actual metered data was successful, with 
deviations between actual and modeled feeder voltage profiles around 5% RMS. 
Following the adaptation of the actual feeder in its OMF representation, no results 
indicated any actual requirements for control with regards to power quality matters. In 
these feeders no RES or other DG assumptions/scenarios were tested. In the MATLAB 
platform, 3 feeders from Greece were modeled, 2 of the island of Rhodes (approximately 
100 load buses each and installed load of 6 MW and 8 MW, respectively [45]) and one of 
the island of Ikaria (60 load buses, approximately 3.5 MW installed loads [50]). On these 
feeders, multiple PV penetration scenarios were tested. The two feeders of the island of 
Rhodes suffer from drop of voltage below 0.9 p.u. for loading above about 60% of the 
installed (or for photovoltaics penetration less than 40% at peak times) at any number of 
load buses among the first few from the in-feeding node. On the contrary, the distribution 
feeder of the island of Ikaria showed no drop or rise of voltage beyond limits regardless 
of the loading or the photovoltaics penetration at peak load times. The aforementioned 
data clearly depict that the network design is the major factor affecting power quality in 
terms of voltage deviations. In other words, if an aggregator or operator control the 
deployment of PV+BSS units, the voltage profiles will be maintained within limits, if not 
improved. However, such a policy cannot be considered as given, hence, optimal control 
of PV+BSS units is what may guarantee proper voltage profiles throughout all operating 
conditions and system constraints. Additionally, the test-bed of choice comprising units 
deployed on the CMU campus, is modeled in terms of energy interactions in the MATLAB 
platform, including also the actuation of the assets on the C+I framework. LCOE analysis 
performed in this last set-up largely confirmed the findings and analyses of Task 1. 

In the same task, the control algorithm is incorporated on the controlling hardware that 
was initially a BeagleBoard and then a Raspberry Pi unit. In both cases a Linux-based 
operating system offered much flexibility for high level interaction (i.e. avoiding low-level 
automation) and set-up of the optimal control. Python is used to implement the C+I 
optimization algorithm, while ModBus is used to execute all electric energy control actions 
and collect measurements from the components. All data of operation and control of the 
PV+BSS systems are transmitted to a data repository and presented on a webpage for 
assessment of the overall test-bed. Some of the most important data that are being 
collected and formatted through the aforementioned host program are: 
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(i) load consumption per household, so as to assess the energy savings due to the 
control algorithm deployed, 

(ii) battery storage used, so as to monitor lifetime capacity and assess timeline of 
replacement once depleted, 

(iii) load and thermostat control activations, so as to assess the criticality of interruptible 
loads in the context of energy savings, 

(iv) operating set-points of all control devices, so as to ensure the applicability of the 
control algorithm deployed. 

Milestone M.2 (DELIVERED, SUCCESSFUL) 
Simulated Data Accurate with Regards to Actual Measurements 

The OMF model data has been tuned to match the actual feeder meter data as 
mentioned earlier with deviation less than the ±10% interval of RMS of the voltage 
profiles. By that it may be assured that there is capacity to model actual system data in 
simulation environments for the validation of control algorithms.  
Milestone M.9 (SCOPE UPDATED, SUCCESSFUL) 
Optimal Control Validated in a Simulated Feeder, Optimal Control on Controller 

The CMU test-bed is modeled in the MATLAB platform, instead as a cooperative 
feeder in the OMF platform. The control algorithm is incorporated in that model. The 
LCOE analysis performed largely confirmed the theoretical findings and analyses of Task 
1. More in-depth analysis of the LCOE performance and the performance of the 
distributed optimization framework on the OMF platform are being developed to yield 
additional in silico results for consideration. 

Raspberry Pi units are used as the control device of the PV+BSS systems in the test-
bed. All C+I controls, monitoring, logging and transmitting of data were coded in Python 
for the said device. In the following figure, the exchange of data among the Raspberry Pi 
for the control of the PV+BSS devices in indicatively shown for one agent. 
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Fig. 4. Indicate output of control and operation of a RPi controller 
loaded with the C+I optimal control algorithm 

 
Task 3:  Cybersecurity Assurances 
• High-level description of research and outcomes: The focus is to identify and analyze 
potential attacks surfaces of the contextualized technology and provide security 
assurances based on implementing secure coding and communication standards and 
anomaly detection at the algorithmic and network levels. All security standards have 
been incorporated in the communication topology among the agents and the proof of 
convergence ensures guarantees that any behavior outside normal may be flagged as 
a malicious attack. 

Multiple coding paradigms for the software deployed on the test “unit” in the research 
facilities at CMU and the software to be developed and deployed on the test-bed, have 
been ascertained that meet standard (MultiSpeak™) interoperability and compliance 
standards. Secondly, we have investigated high-level resilience issues, specifically, the 
impact of adversarial data injections (inflicted by either malicious take-over of an agent or 
collection of agents and manipulating their update equations, or, compromising inter-
agent communications at the network level) on the performance of the distributed 
algorithms. The results of this work in the more general context of distributed C+I based 
decision-making have been reported in a recent publication, see [51].  

We also developed preliminary local online consistency check to detect a class of data 
injection attacks of the type described above. On the software implementation front, 
specifications are determined for static code inspection to identify possible code level 
vulnerabilities during on-site deployment. Further, for deployed software security 
assessment, we have made progress in setting up fault injection inputs and validation 
metrics for smart fuzz testing.  

According to Milestone M.10 Secure Software Testing, two types of security concerns 
needed to be accounted for: the inter-device and the on-device attacks.  
- Inter-device attacks are those that compromise the communication infrastructure 

between/among the controllers executing the control algorithm. In this context, and 
keeping in mind that the algorithm has been developed in the C+I framework, the 
information that needs to be shared between the controllers has been maliciously 
altered to not reflect the actual information transmitted originally by one/some 
controller(s). As from the formulation of the control problem, the controllers (seen as 
agents implementing the control algorithm) are not sharing physically any of the assets 
(battery, loads, PV of each end-customer), but only information on the Lagrangian 
multipliers of the equality constraints of the dual COPF formulation, voltage 
magnitudes and voltage angles. To this end, the control of the assets “under” any one 
controller cannot be directly affected by other controllers, but only the information of 
the exchanged variables.  

- On-device attacks are considered, those that compromise the measuring and control 
topologies connected to the system controllers or the system controller as a whole. 
By that, it is expected that either the measurements are maliciously elaborated to read 
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different values than the actual ones or the control actions are not realized as 
calculated by the control algorithm or a combination of the previous two attacks or the 
system controller is set (somehow) offline.  

 
Based on the aforementioned analysis we propose the following security protocol that 

alerts for threats and averts specific attacks in the C+I framework of optimal control. 

 
Milestone M.3 (DELIVERED, SUCCESSFUL) 
Designing Secure IT Framework for C+I Optimal control 

The specific Milestone needed to be revisited later in Period 3, although it was initially 
delivered in Period 1. The reason had to do with the change of test-bed and the different 
requirements set by each framework. This is by itself an important note that needs to be 
considered for actual cases. There is no one secure protocol for IT infrastructure and 
processes, and different vendors, users and aggregators will prefer different solutions. All 
the interactions among the agents in the control topology were conducted over internet 
protocols with no provision of security. In order to properly test the cyber security of the 

Cyber Security Protocol for ABC4PV C+I based Control Algorithm 
 

IF control does not converge (average rate plus overhead) => raise flag/warning => Steps 2 
& 3, ELSE keep checking convergence rate at error changes 

 
IF all data exchanges not-constant => Attack is of inter-device type => Step 4 & 5 

 
IF some data exchanges constant/missing => On-device attack or point malfunction => 
Step 4 & 6 

 
Charge battery storage to contracted level for each end-user. Revert to default inverter 
operation. Message reporting to server. 

 
Split control set (all feeder) in groups by binary search, until inter-device attacks isolated. 
Message reporting to server. => Step 7. 

 
Group control points excluding nodes of constant/missing information. => Message 
reporting to server. => Step 7. 

 
Determine new Cyber Security monitoring groups as per splits in Steps 5 or 6. 
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control topology the IT department at CMU advised to upgrade the communication 
protocols to REST/HTTP. Representational State Transfer (REST) is a software 
architecture describing framework for creating Web services. These Web services, 
RESTful Web services (RWS), provide interoperability between computer systems on the 
Internet. RWS facilitates textual representations of Web resources, which is in the case 
of this project the representation for measurement, information and control messages 
across the agents of the proposed platform. REST has from its conception also 
incorporated a few security design principles that serve for improved performance overall, 
such as reduced privileges of entities over functions, prefer-to-deny access as default 
setting, and validation of access requests to mention a few [52].  

 
Milestones M.10 & M.14 (DELIVERED, SUCCESSFUL) 
Secure Software Testing and Cybersecurity Assessment 

The C+I framework itself as shown earlier must converge to a solution and, thus, any 
malicious attack will not allow that. Hence, the control algorithm is inherently secure and 
will be able to easily identify cyber intrusions of inconsistent data. The protocol of 
flags/warning and corrective measures given in the protocol earlier, in light of the tests 
conducted is submitted as a deliverable. Additionally, the results of Milestone M.3 
complement the secure IT framework. Let some important remarks be mentioned here: 
- The radial structure of distribution feeders greatly accommodates the efficacy of the 

proposed protocol, since the exchange of updated data in the C+I algorithmic 
framework occurs only between electrically connected nodes.  

- Any split of the control group of nodes in the feeder will also be of radial structure, 
thus, the sub-groups security is also ensured. 

- The binary type of search in implementing the splits (see Fig. 5) ensures a fast method 
to isolate inter-device attacks.  
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Fig. 5. Employed splits at the occurrence of a security alert 

for an intra-device attach on the optimal control 
- The charging of the battery storage systems at the end customers’ installations needs 

to be executed in case there is a generalized attack that could lead to further severe 
system occurrences, hence the end-customers must be able to serve their emergency 
loads. 
 

Task 4:  Installation of Physical Components and Test-bed Setup 
• High-level description of research and outcomes: The project testbed built in the 
context of the project consists of 6 networked ABC4PV units deployed on CMU campus, 
Pittsburgh. Specifically, a set of 4 building roofs were identified that host 6 PV+BSS 
systems throughout the said facilities.  

The CMU campus in Pittsburgh, PA, comprises buildings of commercial type (libraries, 
classrooms, offices, etc.) with relatively constant daytime load curves and very low valleys 
in the weekday nights and weekends, as also of residential type (mainly dorms) with 
peaking loads around afternoon and early night times all days. The campus area spans 
6 million square feet, thus, representing topological scarcity among the buildings and 
geographical terrain variety, due to the rocky profile of Pittsburgh area. The microclimate 
is relatively interesting in the context of Photovoltaic generation with longer winters and 
fewer sunny days than other parts of the country.  

Given the requirement for diverse attributes in the types of loads of the test-bed, the 
CMU campus was an ideal option for the deployment of the equipment conceptualized 
and designed as a “unit” in the framework of the ABC4PV. By properly selecting the 
locations in the campus where the units are deployed, the challenge of ensuring 
uninterrupted communication among sufficiently distant control points and testing the set-
up against cyber-security threats were realistically assessed. This analysis also offered 
insight on how the research conducted in this project can behave in an actual setting 
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without any loss of generality. In the following 3 photos the locations of the PV+BSS 
installations may be noted. 

 

 
Fig. 6. Locations of the SHINES/ABC4PV test-bed of six PV-BSS units 

on CMU campus, Pittsburgh 
The final Bill of Materials for the “unit” that each PV+BSS system would describe is given 
in the following tables.  

PV Subsystem   
Item Description Manufacturer Part # 

1,1 PV Module Trina  TSM-280DD05A.05 
1,2 Racking Rooftech RT-[E] 
1,3 Optimizer Tigo Tigo TS4-R-O 
1,4 Tigo Gateway Tigo CloudConnect Advanced 
1,5 Tigo Comms Tigo Gateway included 

1,6 Arc Fault Detection DC Sunvolt 
ADU - Arc Fault Detection 
Module 

1,7 Array Disconnect contactor     
1,8 Box for arc fault     

    
Battery Subsystem   
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Item Description Manufacturer Part # 
2,1 Battery SimpliPhi SimpliPhi-PHI-3.4 
2,2 Battery Wall Racks     

 
Power Electronics Subsystem   
Item Description Manufacturer Part # 

3,1 Inverter Schneider Conext XW+ 5548-NA 
3,2 Power Distribution Panel Schneider Conext XW+ PDP 
3,3 Charge Controller Schneider XW-MPPT80-600 
3,4 Control Panel Schneider Conext 865-1050-01 
3,5 Comms Panel Schneider Conext 865-1058 ComBox 
3,6 Battery Monitor Schneider Conext 865-1080-01  
3,7 100A DC Breaker Schneider 865-1070 

The differences between an actual cooperative feeder and the CMU test bed are 
briefly discussed here, in light of their effect to the R&D results of our work. Firstly, 
photovoltaic and battery storage systems installed behind the meters of customers 
(broadly speaking) with energy consumptions of equal or greater kWh amounts may not 
affect the power quality of the respective feeders. Voltage rise (frequent occurrence in 
feeders which are highly penetrated by photovoltaic systems) may not be noticeable, 
since all photovoltaic energy is balanced by the (at least) equal load demand. Although 
the optimal control algorithm may cater for the regulation of voltage deviations beyond 
the power quality standards, the mind-set behind the design of the “units” falls in the 
above description. Secondly, a main promise by the optimal control algorithm is the 
energy savings procured by shifting the photovoltaic energy of all “units” in the feeder 
(through the battery storage systems) to times of the day that will help smooth out the 
peak of the feeder and, thus, reduce peak demand charges. However, in any practical 
feeder comprising, at least, a few hundreds of houses, deploying any number of “units” 
below a total of 30-40% penetration (at peak load) will have unobservable, if not zero, 
effect in the aforementioned scope. To this end, the reconfiguration of the test-bed from 
a cooperative feeder to 6 “units” on 4 different CMU campus locations did not affect the 
outcomes of the research. 
Milestones M.4 & M.5 (DELIVERED, SUCCESSFUL) 
Test-bed Selection and Physical Unit Design 

The reasons for selecting CMU as the test-bed of the project were just described. With 
regards to the unit design, beyond the bill of materials, the schema in Fig. 7 of the system 
design is offered as the overall single line diagram of the deployed equipment. 
Milestone M.6 (DELIVERED, SUCCESSFUL) 
Test-bed Simulation Analysis 

The CMU test-bed was simulated in the MATLAB platform and, beyond the long-term 
energy dispatching, the convergence performance was also assessed. The convergence 
fell into the thresholds of less than 2s implementation of the commands, thanks to the 
distributed set-up of the C+I algorithm; we indicatively show the cold start convergence 
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with arbitrary initial conditions in the following two figures for dispatching of PV energy 
and in-feeding energy from the slack-bus. As for the energy dispatching, the LCOE results 
are identical to those gathered in Task 1. Indicatively, we show the convergence for the 
test bed in one of the autumn months in 2019 in Fig. 8. 

 
Fig. 7. Single-line electric diagram of each PV-batter unit  

in the SHINES/ABC4PV test-bed on CMU campus, Pittsburgh. 

 
Fig. 8. Convergence in control set-points of demand response from  

interruptible loads and PV generation for the test-bed on an autumn day in 2019. 
As for the components themselves, the tests we conducted with the inverter and the 

BSS systems showed that the execution command from the controller to the converter 
occurred in less than 1s, while the BSS response between 40%-50% of DoD and 100%-
0% DoD were 1’ and less than 60’, respectively. These results confirm the timely response 
of the unit controller and components for flexible operation under various conditions. 
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Fig. 9. Deployment of the PV, BSS and control equipment in the test-bed 

at the CMU campus, Pittsburgh. 
Milestone M.11 (DELIVERED, SUCCESSFUL) 
Full Deployment and Validation 

The photos in Fig. 9 show the various stages of the PV+BSS systems deployment, 
installation and operation at the CMU test-bed. 
Further to the deployment of the PV+BSS units themselves, a concise SAM analysis was 
conducted. In that analysis however, there were considerable restrictions in the 
assumptions that could be inputted and the analysis that could be, thus, made. Five 
different US locations were assessed, while also a probabilistic analysis was attempted. 
From the bulk of results the following conclusions were drawn. Without any tax credits 
and assuming that each residential user is responsible for purchasing the equipment for 
his/her household, the threshold of 0.14 $/kWh of LCOE cannot be achieved under almost 
any circumstances. This observation further validates part of the policy proposal that the 
project consortium has previously described. The unit equipment ownership should be 
shared among the end users in a feeder, as that could be a cooperative in the paradigm 
studied throughout this work. Moreover, the matter of tax credits should be considered 
based on an alternative policy understanding. In the cooperative paradigm discussed in 
this project, there are certain demand charge pricing policies for peak loads. This is 
essentially an approach to mitigate high loads occurring in a small time frame in a day 
and rather be shifted to other times of the day, throughout the billing horizon which is, 
usually a month. By properly charging storage devices from PVs, loads can be served in 
a way that peaks are filling the daily valleys, thus reducing the effect of demand charging. 
In the described set-up, the unit equipment is not purposed for investment aims, but rather 
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as a facilitator of the energy shifting between the hours of the day. By further using the 
cooperative organization of end-users, the proposed approach can be more easily 
justified.  

As for the convergence of LCOE results across platforms, compared to the SAM 
output of 17.29 $c/kWh, the 14 $c/kWh that seeks to minimize the demand charging 
pricing effect the deviation is within the errors of accounting for network costs that the 
MATLAB analysis has not included to the extent that SAM analysis does. Although the 
requirements of the respective Milestone sought for 5% error between the methods, this 
20% error without network and billing costs, may be considered adequately acceptable. 
 
Task 5:  Performance Testing in Test-bed 
• High-level description of research and outcomes: All challenges that might lead to out-
of-ordinary behavior of the unit have been identified and an operating protocol for the 
default operation is being prepared. 

Two types of operation are identified and are planned to be handled accordingly. 
Normal operation and operation under IT failures. To properly design the default operation 
of all units in the proposed control framework multiple questions need to be answered 
concerning the possible operating scenarios. They are listed as follows: 
1. How fast does algorithm run?   
2. What data needs to be collected?   
3. How many data periods should be collected locally? 
4. How long should this be stored? 
5. How often should data be uploaded to the server?  
6. What happens if a period is missed? 
7. What format is used to send data?   
8. Does the controller have a reset?  (i.e., if a loop does not report over a certain period, 

there is a software and/or hardware reset of the controller?)  
9. Is data pushed from the controller to the cloud, or fetched by the cloud?  If the former, 

how to prevent collisions?  If the latter, how does the controller respond to a fetch 
request – is there some sort of interrupt or is it built into the main algorithm? 

10. How is data stored in cloud?  Structured database?   
11. Are external datasets such as temperature, co-op load, NEISO load, Co-op goals, 

etc.) required? 
12. How is data accessed?   
13. Who has access to cloud data?  Read/write permissions? 
14. Is there a program in the cloud that does calculations and formats data into reports?  

Format of report? 
15. How are error messages reported? 
16. Is there a web interface for the co-op to review data and set goals? 
17. What is being done with the data after it is collected? 
18. Can the controller firmware be updated remotely? 
19. How to verify that firmware was installed correctly.  What happens if an update fails? 
20. If a piece of equipment needs to be reset (controller, Schneider controls, inverter, 

MPPT controller, circuit breaker, etc.) what is the procedure? 
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21. Does the customer have any access to the data generated by the unit controller? 
22. Does the customer have access to any data available through the unit equipment? 
According to these concerns the protocol of normal operation and alerts is put together. 

Normal Operation Protocol and Alerts 

 
For the case of operating under communication failures, multiple tests needed to be 

conducted and assess the behavior of the control platform. The following scenarios were 
accounted for.  
1) Communication failure at the methodology-level. For this type of failure three sub-

scenarios were considered: 
a) The communication failure is a loss of signal.  
b) The communication failure is a network breakdown. 
c) A combination of (a) and (b) failures.  

2) Communication failure at the controlled assets level. Two sub-scenarios were 
considered here: 
a) Failures on sensors.  
b) Failures on actuators.  

3) Lastly, combinations of all above communication failures were considered. 

Default Operation Protocol for ABC4PV Control Strategy (per M.5 numbering) 
 
1. Any execution time beyond the 2 s threshold should raise a warning flag. Further info in 

Cyber Security Protocol of operation Textbox Ph.2-3. 
2. All energy data. 
3. 15-minute intervals data will be collected from energy meters. 
4. Flush/message/email server in 15-minute intervals. Clear cache every one-day ahead 

scheduling interval. 
5. See (4). 
6. Missed flush/message/email update of data signals some type of control point failure. 

Further info in Cyber Security Protocol of operation Textbox Ph.2-3. 
7. Txt files formatting used for data transmission. 
8. Manual restart available. Automatic restart available. All functions resume execution. 
9. Receive/deliver receipts are available through the communication protocol of the 

controllers. 
10. (tbd by server set-up) 
11. No external data are required for the control framework. 
12. Data on server is accessed through secure connection. Data on controllers is accessed 

through remote desktop application. 
13. Username/password protected access to all data access end-points is ensured. 
14. Formatting is realized on the server receiving the controller data. 
15. Message reporting is emailed to control administrator. 
16. Server equipped with a web interface. 
17. Data is stored locally to server. 
18. Control firmware updated remotely as per (12). 
19. Manual checks on code updates on controllers. Automation at commercial level 

d  
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Based on all above mentioned scenarios exhaustive tests were conducted on the 
MATLAB platform, as also with the Raspberry Pis as the control hardware of the test-bed. 
It was noted that for none of the above failures would the test-bed not optimize a control 
strategy either locally or within a subset of controlled assets. In the simulation 
environment it was noted that only for great numbers of communication breakdowns or 
method failure (cyber attacks considered equivalently here), would the overall strategy 
delay in deciding a new control point, or, at least, raising a flag of erroneous operation. 
At this point let it be noted that the following webpage will offer visual output of the most 
recent operating and control data of the ABC4PV test-bed: https://cms-
staging.andrew.cmu.edu/energy-2/research-innovation/shines-testbed.html 
Milestones M.12 & M.15 (DELIVERED, SUCCESSFUL) 
Normal Operation Performance and Performance Under Communication Failures 

All hot-start control actions are reached after a small number of C+I method iterations 
that take less than 2s to converge, while the actuation is within the 1s threshold. Voltage 
concerns were not noticed and could not be tested in the test-bed set-up of CMU. When 
communication fails, various degrees of local optimality may be noted. The convergence 
and actuation times are not violated, nevertheless, the global optimum is evidently not 
achieved. 
 
Task 6:  Energy Storage Sub-System and Full System Assessment and Control 

Optimization 
• High-level description of research and outcomes: Our policy and PV+BSS proposal 
from Task 1 was repeated here for various practical reasons. The battery tests confirmed 
the approximations of battery life and its effects in the overall control methodology as 
perceived in Task 1.  

At this point, we will not repeat our proposal about policy and ownership that achieves 
LCOE below the $0.14/kWh threshold as analyzed in Task 1, since the results are the 
same. Given the fact that the test-bed of the CMU campus could not offer us full control 
of a feeder and detailed logging of its costs of operation as a whole, we cannot confirm 
with certainty the policy proposal. However, our publications are under review by policy 
experts and we expect updates on our estimates and alternatives ideas on our 
assumptions. Nevertheless, it is relatively valuable to show how, after the departure of 
BSS manufacturer partner Aquion from the project consortium and the unavoidable 
change of battery type, capacity and technology how the tests on the new battery 
compare with our assumed battery lifetime model in Task 1. As it may be seen in the Fig. 
10, the inverse proportional linear model of lifetime of a BSS as its cycle DoD increases 
is valid and may be considered as a good estimate for longer term resource scheduling 
assessments.  

https://cms-staging.andrew.cmu.edu/energy-2/research-innovation/shines-testbed.html
https://cms-staging.andrew.cmu.edu/energy-2/research-innovation/shines-testbed.html
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Fig. 10. Test results confirming an inverse linear model of battery lifetime 

on maximum available capacity per cycle. 

Milestone M.13 (SCOPE UPDATED, SUCCESSFUL) 
Test-bed LCOE and Voltage Profile Simulation Assessment  

Within the MATLAB platform we were able to model the CMU campus test-bed as an 
energy entity and assess its LCOE. The said LCOE was approximately equal to the LCOE 
calculations from the SAM platform. However, we were not able to validate voltage 
profiles since the electric topology of the CMU campus would be particularly complicated 
for modeling, while the effect of the deployed PV+BSS units would be negligible to make 
sense to compare and analyze. Voltage profile assessment with regards to simulations, 
although hardly expected to be affected, might be a concern in some very extreme cases 
of system deployments. 
Milestones M.17 (DELIVERED, SUCCESSFUL) 
Final Report and Optimal Control Software 

This document serves as the field report for the CMU test-bed, ranging from its design 
in terms of equipment, the controls, the policy proposal that could be implemented in an 
actual feeder, and the process of deploying and controlling the PV+BSS assets. The 
optimal control code was prepared and is executed in Python and is available at a CMU 
repository for other users to assess and use. It is compliant with ModBus protocol of 
actuation for converters and controllable switches. 
Milestones M.18 (SCOPE UPDATED, SUCCESSFUL) 
Test-Bed models in MATLAB, OMF and SAM 

The CMU test-bed model has been implemented in full in MATLAB and SAM and is 
at a CMU repository for other users to assess and use. All LCOE and other benchmark 
values have been achieved and some insights were considered in a policy framework 
that we proposed.  
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Significant Accomplishments and Conclusions 
This project led to three major accomplishments, of significant practical and theoretical 

value, in the field of behind-the-meter (BTM) PV penetration in distribution systems as 
well as their efficient control and coordination. These are stated below: 

1. With regards to “cost of PV energy”, the first major result is that the LCOE for 
PV+BSS systems may be kept under the $0.14/kWh LCOE threshold in setups 
where the overall cost function takes into account the savings procured when 
managing the effects of demand charge pricing. By attempting to reduce the daily 
variance of the load about its average for all loads along a feeder, the effect of 
demand charge pricing is minimized. The effect can be so significant that the cost 
for served load pre- and after- the installation of PV+BSS systems may be the 
same for certain penetrations and ownership shares of PV+BSS systems among 
the feeder/cooperative users. 
 

2. It has been vastly discussed that PV revenues usually benefit middle-to-high 
income brackets, because of the considerable capital expenses in buying the 
equipment. To this end, this project proposes a policy of shared ownership, that is 
structurally equivalent to the cooperative paradigm. In this paradigm, the 
residential customer at whose premises the PV+BSS system is installed, may incur 
some capacity contraction in the event of emergency situations; likewise, it benefits 
from the energy savings procured by these assets. 

 
3. With regards to optimal control synthesis and implementation, the 

consensus+innovations based distributed approach provides scalability and 
robustness. The algorithms developed are further hardware agnostic and requires 
modest computation and communication at the agents. The agent-based 
distributed paradigm developed in this project paves the way for large-scale 
distributed energy management and dispatch and largely avoids the pitfalls of 
classical cloud-based centralized decision-making architectures that are highly 
sensitive to communication and computation bottlenecks. 
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Inventions, Patents, Publications, and Other Results 
In the course of this project, we published the following papers: 
1. Y. Chen, S. Kar, and J.M.F. Moura. "Resilient Distributed Field Estimation." SIAM 

Journal on Control and Optimization 58, no. 3 (2020): 1429-1456. 
2. G. He, R. Ciez, P. Moutis, S. Kar, and J.F. Whitacre. "The economic end of life of 

electrochemical energy storage." Applied Energy 273 (2020): 115151. 
3. Y. Chen, S. Kar, and J. M. F. Moura, “Resilient distributed estimation: Sensor 

attacks”, IEEE Transactions on Automatic Control, vol. 64, no. 9, pp. 3772–3779, 
Nov. 2019. 

4. Y. Chen, S. Kar, and J. M. F. Moura, “Resilient distributed parameter estimation with 
heterogeneous data”, IEEE Transactions on Signal Processing, vol. 67, no. 19, pp. 
4918–4933, Oct. 2019. 

5. G. He, D. Zhang, X. Pi, Q. Chen, S. Kar, and J. Whitacre, “Spatiotemporal arbitrage 
of large-scale portable energystorage for grid congestion relief”, in 2019 IEEE Power 
& Energy Society General Meeting (PESGM), IEEE, 2019,pp. 1–5. 

6. P. Moutis , G. Hug, and S. Kar , “Resistive Aware Linear Approximations for Solving 
the Optimal Power Flow Problem for Distribution Networks”, in 2019 Sustainable 
Power & Energy Conference ( iSPEC )), Beijing, 2019. 

7. G. He, Q. Chen, P. Moutis, S. Kar, and J. F. Whitacre, “An intertemporal decision 
framework for electrochemical energy storage management”, Nature Energy, vol. 3, 
no. 5, pp. 404–412, Apr. 2018. 

8. S. Weerakkody, B. Sinopoli, S. Kar, and A. Datta. "Information flow for security in 
control systems." In 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 
5065-5072.  
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Path Forward 
Although the key SUNSHOT and SHINES objectives of $0.14/kWh and $0.11/kWh LCOE 
thresholds were achieved for BTM PV+BSS systems under the considered framework, 
we believe that BTM assets may have additional revenue streams of particularly high 
value. Namely, the contracts of availability we mentioned in our policy proposal, could be 
properly quantified and included in the LCOE. That could account for further cost 
improvement, which is a subject of ongoing and future research. 
Storing energy for emergency situations is equivalent to pricing the absence of energy in 
the event of a system disruption. In this sense, we need to quantify the value of 
emergency load serving according to classical approaches. One of them is to use the 
cost of typical fuels used most regularly for emergency generator sets. In a broader sense, 
we could also attempt to quantify the value of keeping the lights on at fire stations, police 
stations, hospitals and other critical infrastructure of that kind. These potential 
costs/savings, when properly accounted for in our dispatch objectives, could provide 
quantifiable savings as well as more realistic control solutions. 
Another important effort is to scale up the consensus+innovations based distributed 
control solutions to multi-agent test cases of at least 1000 control points. Based on our 
theoretical and test findings, the convergence time of the model-predictive decisions will 
be scale gracefully with the number of agents and almost independent of disruptions in 
the operating environment such as emergency events, network reconfigurations and plug-
and-play.  
The research team is already pursuing funding opportunities from SETO and elsewhere, 
in order to continue working on the aforementioned research directions.  
At the same time, the project team is exploring opportunities of shaping the battery 
industry, by interacting with think tanks that focus especially on the utilization of electric 
vehicle batteries. Specifically, the team is focusing on unlocking new value streams by 
combining vehicle-to-grid services by electric vehicles with effective PV integration and 
utilization achieved by robust optimal control frameworks of the type developed in this 
project. By leveraging our ongoing work, we can affect the BSS competition and market 
deployments in a meaningful way. 
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