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Outline

«Challenges for producing K-shell x-rays

*Results from K-shell experiments at Z
*Mass and radius variations
*Various materials

*Scaling to ZR
*Scaling theories
*Load design
*Predicted outputs
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There are four fundamental phases of a Z-pinch

Wire initiation
changes with

material; timescales

and current

penetration important
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Expansion of the wires determines how shell-
like an array becomes; precursor plasmas on
axis can form

RT growth is a major factor

Heating and opacity Sandia
impacted by velocities and National -
masses of the arrays Laboratories
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Achieving K-shell emission requires rapid

ionization through stages that are copious emitters
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A.L. Velikovich, et. al., Phys. Plasmas 8, 4509 (2001)
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K-shell line radiation
competes with:

* lower energy line emission

Competition, especially due
to lower energy line
emission, increases with Z

* limits plasma temperature

Opacity effects and
electron-ion coupling
complicate the pinch
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Electron Temperature (keV)

e production of high photon energy K-shell x-rays
requires high temperatures
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Atomic number
* As the radius increases, there is more jxB coupled energy
available for a given mass load Sandia
« designing loads that can take advantage of this energy @ National
and convert it to the K-shell is challenging Laboratories
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caling theories predict optimum regimes for K-
shell production and trends in radiated yield
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nstabilities and asymmetries impact the
radiated output by reducing heating rates and
lowering densities
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The early stages of a Cu wire array indicate
significant initial structure and 2D behavior

nested Cu wire arra
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Initial radius and initial wire Wires are ablating and mass

locations are visible is starting to move

Z1268 t~ -44ns Z1269 t~-34ns
Mass is moving, but still
extends to near the initial
radius

The array is imploding
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Advanced diagnostics are providing
information near stagnation

* Multi-layer mirror imaging camera

SS 277 eV K-sheII

-3 ns
-2 NS
-1 ns

0 ns
+1 ns

+2 ns

Z1520, Al

10 mm

+1.0 ns

* Instability
* K-shell x-rays more localized than
277 eV

* Observed structure varies with

atomic number Sandia
@ National
Laboratories
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Single and nested array configurations have
been fielded at Z for a variety of K-shell sources

—

*Single arrays
* Nested arrays
«2:1 mass, radius
ratio
*40mm to 80mm
outer diameter

55 mm dia., 70 mm outer dia.,
Single array nested array

Low wire number nested arrays appear to operate effectively
*70mm on 35mm, 64 on 32 wires (IWG = 3.44 mm)

Wire number effects impact output

» Optimal wire number (M. Mazarakis, private communication; C.A. Sandia
Coverdale et. al., Phys. Rev. Lett. 88, 065001 (2002) ) @ National

* Field asymmetries (J. Chittenden, private communication) Laboratories
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A

A variety of K-shell sources have been
studied at Z
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The radiated output varies with changing
load configurations
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Single arrays show less uniformity than

nested arrays

Stainless Steel K-shell
images near peak radiation
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*Intense regions present in
both configurations

- Softer x-ray images show ﬁgggﬁal
less structure, wider pinch Laharatorios
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xperiments have also studied variations of
the mass and nested configuration
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Intensity (AU/keV)

K-shell sources offer opportunities to study
plasma conditions through spectroscopy

Time integrated spectroscopy can be used in conjunction with pinch siz

and K-shell power to infer electron temperature and ion density
(J.P. Apruzese et. al., J. Quant. Spectrosc. Radiat. Transfer 57, 41 (1997))

P.D. LePell, 2P13
J.P. Apruzese, 3P23
N. Ouart, 3P22
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#me and space resolved spectroscopy can be

Z1709 -- SS

Cr He-a Fe He-a Ni He-a

-1 ns
+1 ns

+3 ns

Radial Data Shows Similar Spatial Extent
for Cr and Ni He-o Emissions

* Ni He-a shrinks faster than Cr He-a

used to further evaluate the stagnated plasma__

Intensity (AU)

Intensity (AU)
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How do Z experiments compare to scaling
law predictions?
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Need more detailed experiment-calculation comparisons

« Scaling concept generaﬁy
predicts trends

« Excellent for design of
reasonable experimental
configurations

BUT theory does not include:

1. L-shell losses

2. Dependence of KE
conversion efficiency in
efficient regime on n

3. Modification in inefficient
regime as a function of n

4. Realistic implosion dynamics
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Using the data from Z experiments, NRL

has modified their K-shell scaling theory
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J.W. Thornhill et. al., submitted to Trans. Plasma Sci.

 Original scaling theory was
benchmarked to Al at lower
current facilities

*Phenomenological
modifications have been
made and then benchmarked
to the Z data

* Scaling to higher currents is
then possible
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ZR will increase the current
delivered to an imploding load

20t

10t

Open Circuit |
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ZR will deliver :
«22 MJ stored energy R T THIN S G b=
3 MJ to a load time (ns)

* Approximately 25-26 MA with
100 ns implosion
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e original scaling theory would suggest that ZR
will be able to produce higher Z K-shell efficiently
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e new scaling theory can be used to estimate
anticipated outputs for various K-shell sources at ZR

o S Scaling theory predictions:
[ st Ar 3 - Argon, 8cm 1234 nozzle

] *Ti, 45mm single array
*Fe, 55mm single array
*Cu, 55mm single array
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Initial load conditions can be suggested
based on the new model

K—shell Yield (kJ)
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These predictions suggest significant

increases in radiated output

Generator > 1 keV 3 keV 5 keV 7 keV 8 keV 10-13 kJ
(kJ) (kJ) (kJ) (kJ) (kJ) (keV)

4 MA 40 25* 2 0 0 0
Double-
EAGLE

8 MA 75 35 10 2 2 0
Saturn

20 MA 450 300 100 50 20 10

Z
26 MA ZR 900 500 300 200 70 40
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Summary

temperatures and densities
» Copious K-shell output has been obtained at the Z facility for a variety
of sources
- Experiments have focused on variations in mass, comparisons of
single vs. nested, nested variations
* Primary materials studied have been Al, Ti, SS, and Cu
*Using the Z data, the original NRL scaling theories have been modified
* Phenomenological modifications to better match the data
« Compared with 1D simulations
* Applying the new scaling theories to ZR parameters indicates
significant enhancements in K-shell output
* Current available at ZR enables higher mass, but will require larger
diameters to achieve appropriate conditions
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Nested configurations would likely do.....

Do extrapolation from nested stuff on the scaling...
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Circuit model for ZR can be used to estimate
appropriate loads for K-shell sources

;’

* Plot showing imp vel as fcn of mass

* Plot showing current, KE
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