

Growth and Lipid Measurements Towards Modeling of *Dunaliella salina*

Patricia E. Gharagozloo

Sandia National Laboratories, Thermal/Fluid Science & Engineering, Livermore, CA
peghara@sandia.gov

SAND2011-7490 P

Problem

Why biofuels?

- Current sources of energy are in decline, harmful to the environment, and often obtained from foreign suppliers.
- To reduce green house gasses, climate change and our dependence on foreign oil we need alternative clean and domestic energy sources.
- Algae-based biofuels are a promising component to a long-term renewable energy solution.

Why Algae?

- Algae can be engineered or stressed to produce large quantities of oil with favorable characteristics for biodiesel.
- Algae can be grown in waste/brackish/sea water, reducing the impact on fresh water supplies.
- Algae mitigate atmospheric CO₂.
- Algae can be grown on non-arable land, decreasing the impact on the food supply.
- Algae growth and harvesting still require much optimization to reduce the cost of oil production and improve efficiency.

• How can we easily optimize algae growth and lipid production for different environmental conditions?

• What bioreactor designs yield the best growth efficiencies? • What types of algae works best at different times of years or different locations?

Need a realistic model

- We need to be able to optimize algae growth and lipid production in large commercial scale systems.
- It is too time consuming and expensive to test various solutions on a commercial scale.
- A computational model facilitates faster and cheaper optimization.
- However, the necessary data are lacking to create the needed constitutive relations for algae growth and lipid production.

Approach

Multi-factorial Measurements

- Measure effect of light intensity, temperature and salinity on growth multiple key marine algal species
- Use in-situ measurement methods and parallel growth to reduce time needed

Constitutive Relations

- Determine relationships between environmental variables and growth
- Apply to algae growth model

Photobioreactor Models

- Develop model for closed photobioreactor systems
- Expand model for marine algal species with salinity dependence
- Add lipid production to model

Fluorescence calibration

Cell Count (ml⁻¹)

Chi-a Concentration (µg/l)

D. salina Nile red time calibration

Intensity

Wavelength (nm)

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650

180 160 140 120 100 80 60 40 20 0

550 600 650