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1 A New Modeling Paradigm

1.1 Motivation

The historical roots of the current paradigm for numerical simulation of tur-
bulent flows can be traced to early attempts at weather prediction. The mesh
that is used is typically far too coarse to resolve all relevant processes, so sub-
grid parameterizations are introduced to represent unresolved processes and
their coupling to the resolved flow.

This approach has been successful in many contexts, enabling useful pre-
dictions of the unresolved processes as well as the resolved flow. However, as
computing power increases and expectations of model performance increase
commensurately, it is not self-evident that this paradigm will continue to
be the optimal choice for all cases of interest. A particular challenge that is
emphasized here is turbulent flow coupled to multiple physical and chemical
processes at small scales.

Several recent developments in numerical flow simulation suggest the emer-
gence of an alternate paradigm, here termed ‘autonomous microstructure evo-
lution’ (AME). In Sect. 1.2, this paradigm is introduced by describing several
methods of this type. The focus of this chapter is the proposal of a new AME-
type method for simulation of turbulent flows that is based on a stochastic
model, ‘one-dimensional turbulence’ (ODT).

After introducing the AME paradigm, its desirable attributes from the
perspective of turbulence modeling are outlined in Sec. 2. The remainder of
the chapter describes the proposed simulation method.

1.2 Autonomous Microstructure Evolution

At the molecular level, viscous fluid flow is strictly a local process. Molecu-
lar collisions are the elementary mechanism of momentum and heat transfer,
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and they likewise control mass transfer, flow energetics, and chemical change
in reacting flows. This is recognized in derivations of the continuum equa-
tions of fluid flow (e.g., the Navier—Stokes equation) from kinetic theory using
elementary statistical hypotheses (e.g., the Boltzmann chaos assumption).

Accordingly, the continuum equations governing compressible fluid flow
are local in nature. However, in low-Mach-number flows (Ma < 1), the sound
speed becomes irrelevant to the dominant flow processes and it is physically
more appropriate, and computationally more efficient, to adopt an incom-
pressible formulation. This formulation treats the sound speed as effectively
infinite and thereby allows flow evolution to be represented as an elliptic prob-
lem, in which all fluid elements and constraints (e.g., boundary conditions)
are coupled instantaneously.

At this level of description, it is entirely appropriate, and generally quite
advantageous, to dispense with the local character of the physical processes
that govern low-Ma flow evolution. However, there is an alternative, local
formulation that is sometimes advantageous at low Ma, called the pseudo-
compressible formulation [1]. In this formulation, an artificially low sound
speed is introduced in order to reduce the time-scale disparity between acous-
tic and solenoidal flow processes, thus mitigating the severe time-step con-
straints for compressible-flow time advancement at low Ma.

To summarize, the continuum-level governing equations need not obey
locality in order to capture the governing physics at low Ma, although a local
formulation may be a viable option. These considerations provide a useful
context for defining and illustrating the AME paradigm.

The most direct way to simulate fluid flow is to remain as faithful as pos-
sible to its occurrence in nature, i.e., by simulating the underlying molecular
motions and interactions. The most common and successful method of this
type is ‘molecular dynamics’ (MD) [2, 3], whose virtue in this regard is that
it captures non-continuum effects when they are important, as well as flow
evolution describable by continuum methods.

MD in this context is a direct molecular simulation, subject to idealization
of molecular collision processes, e.g., through the adoption of a molecular pair
potential. However, the MD concept has been generalized through the de-
velopment of models in which computational molecules are pseudo-particles.
Their properties and interactions are defined so that macroscopic flows can
be simulated using much fewer than Avogadro’s number of particles. Exam-
ples of this approach are ‘smoothed particle hydrodynamics’ (SPH) [3] and
‘dissipative particle dynamics’ (DPD) [4]. Another method of this type is
‘lattice-gas hydrodynamics’ (LGH) [5], whose distinguishing feature is that it
is designed to yield controlled (i.e., arbitrarily accurate) approximations to
the continuum governing equations although the particles do not represent
physical molecules.

The common feature of the methods described thus far, and the method
proposed here, is that a representation, exact or idealized, of small scale pro-
cesses is adopted that yields, through process evolution, collective behaviors
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that correspond to continuum flow, with varying degrees of accuracy. This is
the defining feature of the AME paradigm in the context of flow simulation.

Another AME-type method, the ‘lattice Boltzmann model’ (LBM) [5], il-
lustrates that these methods are not exclusively particle-based. LBM evolves
probability density functions (PDF's) of particle properties rather than parti-
cles per se. It thus retains a link to particle properties though particles are not
explicit within the method. In this regard it may be viewed as intermediate
between particle and continuum methods. Another notable feature of LBM is
that turbulence modeling has been incorporated into the LBM framework [5].

The link between LBM evolution and the implied particle evolution can
be formalized by noting that evolution of a PDF represents the ensemble
evolution of a collection of particles governed by coupled stochastic differ-
ential equations (SDEs) . In this context, the latter is a more detailed level
of description from which the former can be deduced. However, in a class of
turbulent flow models, the relationship is reversed. An unclosed hierarchy of
evolution equations for the PDF of flow properties in turbulence can be closed
by modeling to obtain a single-point evolution equation for the joint PDF of
velocity and scalar fields [6]. Though elliptic in character in its usual low-Ma
formulation, it can be solved using a algorithm of AME type. Namely, parti-
cle SDEs are formulated whose details, apart from the conformance of their
ensemble properties to the PDF evolution equation, need not be physically
realistic. These SDEs are solely numerical devices for efficient solution of the
PDF evolution equation. In this sense, they are analogous to LGH, in which
particle evolution is strictly a device for solving continuum equations, albeit
the exact equations in that case.

The foregoing AME-type methods, whether used as complete (particle
through continuum regime) flow simulations (e.g., MD), as numerical devices
for solving exact or modeled continuum equations, or as models in their own
right, are all explicitly or implicitly particle based. The AME paradigm also
accommodates processes rather than particles as its primitive elements. A
notable example is vortex dynamics (VD) [7], which in its two-dimensional
(2D) implementation evolves discrete point vortices or vortex blobs. (In 3D,
the vortex filaments, arrows, and particles have been used [7]-]9].) The Biot—
Savart equation that couples the discrete elements is non-local, illustrating
that the AME paradigm is not limited to local interactions. Vortex dynamics
is generally applied to low-Ma flow, and captures the non-locality of that flow
regime in a natural way. In 2D flow, the large-scale organization of vorticity is
elegantly reproduced by discrete-vortex simulations. To represent unresolved
motions in VD simulations of turbulence, vortex blobs can execute random
walks and/or undergo evolution of their internal structure (vorticity profile).

The formulation proposed here is akin to VD in that its primitive elements
are processes rather than particles, and as in VD, a process represented in
this manner introduces some form of non-locality. As in VD, the primitive
elements are associated with vortical motion, but unlike the discrete vortices
of VD, they represent the outcome of vortical motion rather than vortices
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per se. Closely related to this distinction is the key attribute of the primitive
elements introduced here: they are processes implemented on a 1D spatial
domain.

2 Implications for Turbulent Flow Modeling

2.1 Large-Eddy Simulation: Capabilities and Limitations

The motivation for adopting the AME paradigm for turbulent flow modeling,
and implications concerning the structure of such a model, are now considered.
These questions are addressed by first examining the conventional paradigm
outlined in Sect. 1.1.

Specifically, consider ‘large-eddy simulation’ (LES) of constant-property
flow. The LES strategy is to resolve scales far enough below the flow-dependent
energy-containing scales so that the unresolved motions are within the inertial
sub-range, whose properties are presumed to be universal [10]. Moreover, the
main role of the unresolved motions is presumed to be cascading of mesh-
resolved kinetic energy to smaller, unresolved scales. This is represented within
LES by dissipation of mesh-resolved kinetic energy, at a rate commensurate
with the cascading mechanism. The dissipation is typically incorporated using
eddy viscosity, or a generalization thereof (tensor viscosity, spectral viscosity,
etc.) [10].

Though this strategy has proven to be quite successful thus far and holds
great promise for the future, it is subject to two types of limitations that
motivate consideration of an alternative approach. One type of limitation is
generic to all applications of this strategy, while the other type is flow specific.

The generic limitations are associated with the LES representation of cas-
cade physics. Intermittency of the turbulent cascade [11] has several conse-
quences whose representation within LES is not yet fully satisfactory. One is
backscatter of kinetic energy from unresolved to resolved scales. Modeling of
backscatter within LES is an active research topic, and there has been useful
progress in this regard [10]. Another is a spectrally non-local contribution to
downscale (forward cascade) energy transfer. Spectral viscosity methods can
account for this, but are not necessarily advantageous or practical from other
viewpoints. Intermittency effects depend on the turbulence Reynolds number
Re in a manner that has not yet been convincingly captured as LES is applied
to flows at successively higher Re [12].

Apart from these physics concerns, there is the practical concern of devis-
ing an LES closure that is numerically robust within the time advancement
of a non-smooth discretized velocity field as well as physically sound. There
is room for improvement in this regard as well.

These limitations arise in the context of applications that satisfy the basic
axiom of the LES strategy: mesh refinement sufficient to resolve flow-specific
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phenomena. There are (at least) two classes of applications that challenge this
axiom: wall-bounded flows and flows coupled to dissipation-scale processes.

In wall-bounded flows, the scale of near-wall flow-specific phenomena is
proportional to distance from the wall, hence decreases as the wall is ap-
proached, until the viscous sub-layer is reached. This requires refinement to
full flow resolution, in effect, direct numerical simulation (DNS), near walls
in order to maintain fidelity consistent with the LES strategy. Though costly,
this near-wall refinement may be feasible for some applications. In general,
however, the cost of this approach is prohibitive, so instead, near-wall pa-
rameterizations are introduced. The consequences of introducing parameter-
izations are considered shortly, after other examples of parameterization are
noted.

Those examples are parameterizations that represent the coupling of unre-
solved flow scales to dissipation-scale (or in general, subgrid-scale) processes,
such as thermodynamic fluctuations (in compressible flow), mixing of dynam-
ically active scalars (e.g., density in buoyant variable-density flow), chemical
reactions (including heat-release effects on density and hence on the flow field),
and multiphase couplings. Multiphase couplings include diverse phenomena
such as momentum, heat, and mass transfer between dispersed and continuum
phases, and surface tension at interfaces between immiscible liquids.

The limitations of parameterizations of these coupled, highly nonlinear,
multivariate, spatially distributed processes are well known and are not elab-
orated here. Certainly, they are at least as challenging as the parameterization
of near-wall constant-property flow, so the latter is examined to illustrate the
difficulties that can arise.

In near-wall flow, an obvious modeling concern is prediction of separa-
tion and reattachment. One mitigating factor in an LES formulation is that
adaptive meshing can resolve the vicinities of separation and reattachment
loci along a wall at much less cost than than resolving the entire near-wall
flow. An application that is less amenable to adaptive meshing is near-wall
flow subject to transient bulk forcing. An example is near-surface flow in the
atmospheric boundary layer (ABL) subject to shifts of wind speed and direc-
tion. The time-lagged response of the near-wall flow to this transient forcing
can, for example, result in non-monotonic wall-normal profiles of ensemble-
averaged velocity components, and related flow-specific features, that defy
representation by a parameterization. (Another canonical example of near-
wall non-monotonicity is buoyancy-driven flow near a heated vertical wall.)

This considerations point inexorably to the conclusion that parameteri-
zation of unresolved flow-specific phenomena, in contradiction of the axiom
underlying the LES modeling strategy, imposes inherent limitations on the
breadth and accuracy of predictive capability that this strategy can ultimately
achieve. Within the scope of these limitations, much can and will be accom-
plished. Nevertheless, it is apparent that there is a compelling fundamental
as well as practical imperative to pursue alternate strategies that might not
be subject to these limitations.
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2.2 An Alternative to Parameterization

It is useful to define what is meant by parameterization in order to delineate a
possible alternative. Here, a broad definition is adopted. Namely, a parameter-
ization is any mathematical construct associated with a mesh control volume
(or more generally, a localized stencil of control volumes) that exchanges in-
formation during the simulation only with values of mesh-resolved variables
in that control volume (or stencil). This definition includes some formulations
that are termed ‘dynamically active’ LES subgrid models [10]. Here, the dis-
tinguishing feature is taken to be the nature of the communication among
modules (i.e., the flow solver and the parameterization) rather than the inter-
nal content of the parameterization.

This definition is adopted because it addresses the strategy of devising
better parameterizations. One can in principle improve the parameterization
to the point of performing DNS within each control volume. Nevertheless, this
is not equivalent to DNS of the whole flow if the information exchange between
control volumes is based solely on mesh-resolved variables. This restricted
information exchange introduces an inherent information loss that does not
occur in whole-flow DNS.

In this regard, it is useful to compare constant-property LES of unbounded
flow to the more challenging cases discussed in Sect. 2.1. The downscale infor-
mation transfer in LES is straightforward in principle because it involves the
loss of information (about flow structure whose scale is compressed below the
resolution scale) that is no longer needed in the simulation (if only the forward
cascade is considered). The upscale information transfer is a more delicate is-
sue because it requires retention of subgrid-scale information (e.g, by using a
parameterization) that is sufficient to characterize backscatter through trans-
fer of this information to the resolved variables. On this basis, upscale transfer
is generally viewed as a more challenging modeling problem than downscale
transfer.

Compare this to the modeling requirements for more complicated flows
(variable property, chemically reacting, etc.), supposing in these cases that
an elaborate, accurate parameterization is available. For quantities such as
chemical species in a reacting flow, the upscale information transfer may con-
sist of a straightforward averaging or spatial filtering procedure. However,
the downscale information transfer may require, for example, adjustment of
small-scale species concentrations resolved by the parameterization, where the
adjustment is based on spatially filtered information at the mesh scale. This
adjustment can be problematic with regard to either realizability (e.g., caus-
ing mass fractions to be negative or exceed unity) or chemical consistency
(e.g., creating spurious non-equilibrium mixtures).

Thus, as subgrid parameterizations become more elaborate in order to ad-
dress increasingly complex problems, the fidelity of the overall formulation
may be constrained, to an increasing degree, by the sparse information con-
tent (relative to the subgrid formulation) at mesh-resolved scales. It can be
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anticipated that this problematic downscale information transfer will prove to
be the most enduring constraint on the ultimate utility of parameterization,
as broadly defined here.

Accordingly, the basic axiom that guides the present pursuit of a better
alternative is that parameterization requiring downscale information trans-
fer should play a minimal role, if any. AME, as defined and exemplified in
Sect. 1.2, is precisely the paradigm that adheres to this principle.

Adopting the AME paradigm on this basis, a formulation of this type is
desired that preserves the essential characteristics of AME as it is generalized
to multi-physics problems. As noted in Sect. 1.2, LBM and VD have been
applied to turbulence by appending treatments that are parameterizations
(as defined here) underneath the model. These extended formulations are thus
hybrids that are subject to the same limitations as other parameterizations.

This is a generic outcome of efforts to isolate the model representation
of individual sub-processes within limited scale ranges. As this inference sug-
gests, a robust remedy would be to implement all sub-processes at all scales.
Superficially this defines DNS, which is fully accurate but unaffordable for
most problems. However, there is an alternate, more affordable realization of
this strategy. Namely, implement all sub-processes at all scales in a lower-
dimensional space. 2D examples of dimension reduction include VD and 2D
Eulerian solution of the exact evolution equations. However, 2D turbulence
has qualitatively different characteristics from 3D turbulence, in addition to
the obvious limitation that general 3D initial and boundary conditions cannot
be represented in 2D.

Nevertheless, there is a form of dimensional reduction that can both pre-
serve the physics of 3D turbulence and accommodate general 3D flow con-
figurations, while providing an all-scale representation of all sub-processes.
Description and assessment of this formulation is the focus of the remainder
of this chapter.

2.3 Superparameterization and Its AME Reformulation

Simulation of global atmospheric circulation is a salient application that con-
fronts the challenges outlined in Sects.2.1 and 2.2. An emerging strategy for
addressing this problem exemplifies the all-scale AME paradigm. An impor-
tant caveat in this context is that geophysical-scale flows cannot be affordably
simulated with resolution to viscous scales, even in a formulation with reduced
dimensionality. However, the modeling concept can be recast so as to obtain
a fully resolved formulation applicable to engineering-scale flows.

The AME-type atmospheric simulation strategy is a variant of ‘superpa-
rameterization’ (SP) [13]. As noted in Sect. 2.2, the ultimate parameterization
is a DNS associated with each mesh control volume. A step back from this
would be a fully resolved 2D simulation associated with each mesh control
volume. The qualitative as well as quantitative limitations of 2D simulations
(Sect. 2.2) would counteract the benefits of this degree of detail for many
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applications. However, for typical convective flow regimes in the ABL, ‘cloud-
system resolving models’ (CSRMs) implemented on planar vertically oriented
domains have proven to be cost-effective alternatives to 3D simulation [14]-
[16]. In effect, 2D is found to be the dimensionality that optimizes the cost-
performance tradeoff for this class of flows. Accordingly, SP implements a
2D CSRM-type simulation associated with each control volume of a general
circulation model (GCM) of the Earth’s atmosphere.

SP as such is subject to the inherent limitations of parameterization, but
a variant of this formulation that adheres to the AME paradigm is under de-
velopment [17]. To visualize this variant, imagine that the CSRM simulations
tile the vertical faces of the GCM control volumes in a hypothetical Carte-
sian geometry involving one planar layer of rectangular GCM control volumes.
Thus, the control volume height is the vertical extent of the simulations. In-
stead of implementing an independent CSRM on each vertical control-volume
face, suppose that a CSRM is implemented on each 2D domain corresponding
to a vertical sidewall of each row or column (the two horizontal coordinates)
of the array of GCM control volumes. Then the height of each CSRM domain
is the vertical extent of the simulated atmosphere, and its horizontal extent
spans one of the two horizontal directions (e.g., the Earth’s circumference if
the given direction is the Cartesian analog of a great circle). With a suitable
coupling among these 2D domains, it is possible (and desirable, for the rea-
sons explained in Sect. 2.2), to dispense with the GCM itself and thus obtain
an AME-type formulation, which is denoted here as ‘super-AME’ (SAME).

2.4 A 1D AME Formulation

Having presented the rationale for the AME paradigm and the main elements
of its implementation for a particular application, adaptations for other pur-
poses are considered. As in the atmospheric flow application, a key consid-
eration is the spatial dimensionality that is most cost-effective for a given
application.

There are several applications for which a 1D formulation is advantageous
in principle. One is wall-bounded flow, in which evolution of the wall-normal
profile of flow properties embodies the dominant physics. Analogously, thin
free shear flows (e.g., jets, wakes, and mixing layers) are boundary-layer type
flows whose representation based on property profiles along a lateral coordi-
nate is common [18]. Another such application is horizontally homogeneous
vertically stratified buoyant flow. ‘Single-column models’ (SCMs) are verti-
cally oriented 1D formulations that are commonly applied to ABL flows of
this type [16]. Finally, ‘stationary laminar flamelet models’ (SLFM) used in
turbulent combustion simulations involve 1D (flame-normal) flow representa-
tions [19].

The 1D formulation described here has been applied to all these flow types.
Representative results are discussed in Sect.7. For now, the utility of a 1D for-
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mulation is assumed, deferring the question of how turbulence can be modeled
in 1D until Sect. 5.

Given such a 1D model, there are several ways that it can be used in the
construction of a 3D simulation. One way is to associate a 1D line segment, on
which the model is implemented, with each control volume of an LES, anal-
ogous to one of the ways of incorporating CSRMs into a GCM (Sect. 2.3).
This 1D analog of SP might be termed ‘semi-superparameterization’ (SSP)
because the subgrid model dimensionality is half that of SP. Extending the
analogy, assume a Cartesian mesh of cubic LES control volumes. Consider
the rectangular volume formed by a linear stack of LES control volumes in
any one of the three coordinate directions (analogous to a row or column of
GCM control volumes). Now take each side-edge of each of these rectangular
volumes to be a 1D domain for implementation of the 1D model of turbu-
lence. Each of these domains then spans the flow in a given direction, and
is presumed to resolve all relevant length scales. Thus it has the needed at-
tributes for an all-scale AME-type formulation, subject to the specification
of suitable rules for coupling the various domains. This is the 1D analog of
SAME (Sect. 2.3). For consistency with terminology used previously [20], this
1D methodology is denoted ODTLES, while SSP and related 1D formulations
are denoted LESODT. Despite the terminology, ODTLES is an AME formu-
lation that does not involve the advancement of LES-type equations, just as
SAME (Sect. 2.3) dispenses with the GCM machinery.

2.5 Hybrid Formulations

Section 2.2 alludes to two of the many possible hybrid formulations that com-
bine attributes of the approaches mentioned thus far. Description of all the
promising possibilities is beyond the scope of this chapter, but a particular hy-
brid formulation that is based on the modeling approach discussed in Sect. 4.2
is mentioned here.

The distinction between parameterization, in which information is trans-
ferred between different scale ranges, and AME, in which all information trans-
fer involves spatially resolved quantities, has been emphasized thus far. For
some applications, it is advantageous to evolve some variables using param-
eterization and evolve others with full resolution. A variant of the domain
geometry described in Sect. 2.4 with reference to SSP (nominally a param-
eterization) has in fact been implemented as a hybrid of this type [21, 22].
Namely, for combustion simulation, thermochemical information (species mass
fractions and enthalpy) resides solely on the 1D line segments, while momen-
tum and pressure reside on the coarse 3D mesh. The upscale information
transfer consists of density changes that drive the mesh-resolved advance-
ment of the continuity equation. The downscale transfer consists of velocities
normal to control-volume faces. These velocities prescribe volume transfers,
in a Lagrangian sense, between 1D segments associated with control volumes
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that share a common face. This Lagrangian transfer operation, termed ‘splic-
ing,” preserves chemical states, thereby mitigating the inherent artifact of
reacting-flow parameterization (Sect. 2.2). It also preserves small scale spatial
structure, subject to an important caveat. In a receiver segment, newly spliced
fluid from a donor segment contacts receiver fluid at one location, possibly cre-
ating an unphysical local configuration (e.g., cold fuel in contact with cold air
under physical conditions that would require flame at all fuel-air interfaces).
This is the first of several illustrations that dimensional reduction involves
compromises and trade-offs, as in any modeling approach. Nevertheless, splic-
ing is an advective transfer rather than a surrogate mixing operation, so it
preserves local chemical states. The only species mixing in this formulation is
by a physically accurate molecular mixing process, in contrast to models that
are strictly parameterizations.

Among the various proposed model formulations encompassed by the
rubric ‘superparameterization’ are some that would be termed hybrids in the
present classification [17]. It can be anticipated that the distinct but overlap-
ping interests of the geophysical and engineering fluid dynamics communities
(as well as the astrophysics community, whose interests are discussed elsewhere
in this volume) will stimulate a productive cross-fertilization of modeling con-
cepts as progress continues in these arenas.

3 Proposed Modeling Strategy

3.1 Overview

The goal of this chapter is to outline a turbulence simulation strategy in which
ODT is a central element, and in so doing, to motivate as well as explain
ODT. The strategy as outlined has not yet been implemented computation-
ally, although an effort to do so is underway and development of several key
components of the strategy has been completed.

Section 1 introduces the AME paradigm and explains its advantages for
turbulent flow simulation. The strategy outlined here is designed with this in
mind, subject to the inevitable compromises involved in modeling.

In Sect. 2.4, the 1D domain is defined geometrically as a line segment,
specifically, a line segment corresponding to an edge of a linear stack of cubic
control volumes (CVs). This is useful conceptually, but for numerical imple-
mentation, it is preferable to interpret 1D model evolution as occupying a
volume of space, enabling a finite-volume numerical representation. For this
purpose, the rectangular volume occupied by each stack of control volumes
within the 3D domain is taken to be a 1D model domain.

In particular, assume that the 3D flow domain is itself rectangular, with
coordinate bounds 0 < x < X, 0 <y <Y, and 0 < z < Z. This geometry
corresponds to a proof-of-principle application proposed in Sect. 7.1, but for
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now it is illustrative. Assume nominal CVs (whose role, in the absence of mesh-
scale advancement, is as yet unexplained) that are cubic with edge length M.
X, Y, and Z are all assumed to be integer multiples of M, so the flow domain
can be tiled with a cubic array of these CVs. For convenience, express length
in units of M, so X, Y, and Z are integers. Then the CVs in the array are
indexed (i,7,k), where 1 < i < X, 1 <j <Y,and 1 < k < Z, and the
respective CVs are denoted Cjjy.

CVs stacks, each of which is a 1D model domain as defined above, are
formally defined as |J,, Ciji, where n denotes either i, j, or k. For example,
Sz(4,k) = U, Cijk is the index-(j, k) stack oriented in the z direction, which
is then the coordinate direction of the 1D model implemented on S, (j, k).
Sy(i,k) and S.(7,7) are defined analogously, yielding three arrays of stacks
oriented in the respective coordinate directions. Each array fills the flow do-
main. Likewise, each CV Cjj;, is contained in three stacks.

In the proposed formulation, three distinct flow solutions are time-advanced
concurrently, each in one of the stack arrays. Each is a self-contained solution
in that it does not exchange fluid or fluid properties with the other solutions,
but the solutions are coupled in that each determines fluxes that are used to
close the other two solutions. Each solution is designated by the corresponding
subscript of S, i.e., z, y, or z.

Now consider the sub-structure of each stack, or 1D domain. (These terms
are used interchangeably.) An z-oriented stack, or z-domain, is considered for
illustration. (In general, statements about xz-domains are likewise applicable
to y-domains and z-domains.) By definition, each z-domain has sub-structure
consisting of linear array of X cubic CVs, each of edge unity in the chosen
scaled units. The first and last CVs each have one face interior to the z-
domain, four contained in its respective side-faces, and one coinciding with an
end-face of the xz-domain. The other CVs in the z-domain each have two faces
interior to the z-domain and four contained in its respective side-faces. The
union of non-interior CV faces coincides with the surface of the z-domain.

The CVs are central to the coupling of the three concurrent flow solutions.
Additional z-domain sub-structure needed to advance the individual solutions
is now introduced.

The z-domain is already partitioned into X CVs by the CV interior faces.
A refinement of this partitioning is introduced. Parallel to those interior faces,
additional faces are introduced so that the z-domain is partitioned into mX
cells of identical shape, denoted ‘wafers,” where m is an integer. The z-domain
is now a linear array of mX wafers of edge 1/m (in scaled units), such that
the union of each successive set of m wafers coincides with a CV. Each wafer
is a rectangle of dimensions (1/m) x 1 x 1, where in general m >> 1, hence the
terminology.

This z-domain refinement defines a mesh, resolving the length scale
Axz = 1/m, on which the 1D model is implemented. This is the length scale at
which the flow is resolved within the 1D treatment. 3D flow is captured explic-
itly at length scales above unity through the coupling of flow solutions. Below
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length scale unity, 3D flow is captured only to the extent that it is represented
implicitly within the 1D model. (See Sect. 3.2.) If the CVs formed the mesh
for an analogous explicitly 3D flow simulation, then the range of represented
scales would be 1 through X. In the present formulation, an additional factor
m of scale resolution is introduced through modeling. Because this additional
resolution is introduced in 1D rather than 3D, the number of computational
cells in the simulation is smaller, by a factor of order m?2, than the number
required for equivalent 3D resolution. The attendant computational cost re-
duction is the benefit of the present formulation. The trade-off for this cost
reduction is the use of a model, rather than the exact governing equations, to
evolve the flow at scales smaller than unity.

Commensurate with the disparate scales at which the flow is resolved in
1D and in 3D, the time step for advancement of the 1D model on an z-domain
is considerably shorter than the time step for coupling of the three flow solu-
tions. Therefore, 1D model advancement is sub-cycled within an overall time-
advancement cycle whose time increment corresponds to the solution-coupling
time step. (If fractional-step advancement is used, there may be several cou-
pling operations per time-advancement cycle. Numerical implementation is
not considered here at this level of detail.) The advancement cycle is explained
further in Sect. 3.3.

Several aspects of numerical implementation are noted. First, during 1D
sub-cycling, each z-domain evolves autonomously. This provides an efficient
domain decomposition for parallel implementation that should yield near-
perfect scalability owing to the predominant cost of 1D sub-cycling relative
other operations during the advancement cycle. Second, spatial uniformity of
the 1D refinement of the xz-domain has been introduced for clarity of exposi-
tion. Though this meshing is used in 1D model applications reported to date,
an adaptive-mesh formulation presently under development offers the possi-
bility of substantial cost savings that will extend the range of applicability
of this formulation. (See Sect. 6.1.) Third, the advancement cycle as outlined
excludes any advancement sub-processes on the 3D mesh (union of CVs). If
an incompressible formulation of the momentum equation were adopted, then
enforcement of continuity would require an elliptic solve of the pressure Pois-
son equation, contravening the AME paradigm. A formulation of this type
has in fact been implemented [20], as discussed in Sect. 6.3. For the purpose
of formulating a model within the AME paradigm and noting its attributes,
a compressible analog of that incompressible formulation is proposed here.

3.2 1D Advancement

The 1D sub-cycling on each z-domain is both the novel feature and the main
physical content of the proposed formulation, so it is explained in detail in
Sect. 5. Here, the 1D modeling concept is introduced briefly.

Within the proposed compressible-flow treatment, a natural context for 1D
modeling is 1D gas dynamics [23]. In general, 1D gas dynamics is a steady-
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state formulation useful for analysis of shocks and other high-Ma phenomena.
Here, compressibility is introduced in order to exploit its technical advantages
for turbulent flow simulation, as in [24], rather than for investigation of high-
Ma phenomena per se.

Starting from conventional 1D gas dynamics, possible extensions to repre-
sent turbulent flow effects are considered. Steady-state representation of com-
pressible as well as incompressible turbulent flow is provided by ‘Reynolds-
averaged Navier—Stokes’ (RANS) formulations. For compressible flow, the sim-
plest of these formulations introduce an eddy viscosity and an eddy diffusiv-
ity (for temperature). Similarly, one can introduce eddy transport coefficients
within (otherwise inviscid) 1D gas dynamics.

The utility of such a formulation as a self-contained model of compressible
turbulence is questionable. However, the purpose of a 1D compressible tur-
bulence formulation in the present context is not to obtain a self-contained
model, but rather, to obtain a sub-model suitable for the proposed 3D AME
framework.

Moreover, 1D gas dynamics with eddy transport does not in itself address
the present need. Operationally, eddy transport is a diffusive process that
smooths fluctuations rather than generating or sustaining them, contrary to
the present goal of explicitly simulating small scale turbulent fluctuations.

In this regard, recall the discussion in Sect. 1.2 of the relationship between
PDF evolution equations and SDEs. Turbulent transport, which is diffusive
in an average sense (and is represented diffusively in PDF as well as in RANS
turbulence models), can be represented a fine-grained sense by SDEs. However,
as noted in Sect. 1.2, if the SDEs are formulated in conformance to model-
based PDF evolution equations rather than the exact governing equations,
the resulting fine-grained representation may not be physical, and in fact,
generally isn’t. (It is noted in passing that this caveat applies also to LGH.
Although LGH solves equations that are exact at the continuum level, local
particle fluctuations correspond in this instance to a postulated sub-continuum
dynamics that is not intended to be an accurate representation of molecular
fluctuation effects.)

In fact, there is a generic difficulty with the introduction of fine-grained
structure using SDEs. SDEs are driven by noise fields that are difficult to con-
strain so that they obey global conservation laws, which require the constancy
of spatial integrals over specified functions of the noise, the dependent vari-
ables, or both. For applications involving separation of length scales, such as
the thermodynamic or hydrodynamic limit of statistical mechanics, this does
not necessarily cause a problem. For example, if molecule numbers in a set of
control volumes are allowed to fluctuate individually (e.g., Poisson shot noise
reflecting local density fluctuations), the constancy of total molecule number
in the whole system, which holds for a closed system with no chemical reac-
tions, is not enforced. However, in the thermodynamic limit, the stochastic
model describes a grand canonical ensemble that either converges to the be-
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havior of the physically correct canonical ensemble or can be used to infer
properties of the true physical system.

There is no separation of length scales in turbulent flow and hence no
freedom to deviate from global constraints, but there are ways to incorpo-
rate conservation constraints in particular cases. For example, an SDE for the
stream function can be used to introduce velocity fluctuations while preserv-
ing continuity in 2D. (The relationship between velocity and stream function
in 2D assures that the flow remains solenoidal [25].) However, there is no
obvious way to use SDEs to obtain a reasonable fine-grained 1D represen-
tation of turbulence that obeys applicable conservation laws. In this regard,
the stochastically forced Burgers equation [26], though in many ways an il-
luminating 1D analog of turbulence, is manifestly incapable of evolving fluid
density in conformance to a specified equation of state.

Thus, the utility of SDEs for modeling the small scales of turbulence is not
precluded, but an SDE formulation suitable for present purposes has not been
identified. On physical grounds, there is an inherently more robust approach.

The compressible flows of interest here involve both solenoidal and dilata-
tional motions. The dilatational motions represented during 1D sub-cycling
are governed by conventional 1D gas dynamics (Sect. 5.4). Dilatational mo-
tions not included within this representation are captured during solution
coupling (Sect. 3.3). To be captured in a 1D formulation, solenoidal motions
require special treatment, as follows.

Consider the advancement, for a time At, of the advective operator in
the equation of motion for any property field 6(x,t), assuming numerical
operator splitting so that other evolution processes (e.g., molecular transport)
are omitted. This advancement is equivalent to a mapping * — x’(x) of
each location  to a new location x’. The corresponding transformation of
0 is 0(x) — 0(x'(x)). This specifies the transformed 6 field as a function of
the coordinate @’ at the new time by setting 6 at new location &’ equal to
the # value at the old time at the location x that is mapped to =’ by the
advancement operation.

This rather elaborate representation of advection, whose conventional rep-
resentation is the v - V operator, is introduced because the two are not equiv-
alent, but rather, the former is a generalization of the latter. To see that
the former includes the latter, integrate the Lagrangian advective equation
dx/dt = v(x,t) from t to t + At to obtain the mapping @ — x’(x) that is
equivalent to v - V advancement for a given v(x,t) space-time history.

The advantage of the map representation of advection is that it can be used
to formulate models that decompose the advection process into a sequence of
discrete operations that advance property fields over any specified time in-
terval, e.g, finite rather than infinitesimal. This decomposition can replicate
physical advection exactly if the map is based on integration of the exact La-
grangian advective equation for given wv(x,t) over a finite time interval At.
However, if v(x,t) is not known a priori because fully resolved advancement
of the exact 3D governing equations is unaffordable, then a map represen-
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tation based on a postulated stochastic process can be used to model this
advancement.

Stochastic iterated maps are in fact familiar tools of statistical mechanics
modeling, including turbulence models [27, 28]. The noteworthy feature here
is the application of the maps to the independent variable x rather than to
the dependent variable 6. This approach allows incorporation of features of
advection that are needed for physically sound flow simulation.

In VD (Sect. 1.2), the continuum process of vortical advection is spatially
discretized but advanced in continuous time. The map representation of ad-
vection likewise enables discretization of a continuum process, in this case in
the time domain. The specific map ansatz that is introduced is analogous to
the individual vortex blob in VD in that it is applied to a finite spatial region
and is intended to represent an elementary fluid motion (‘eddy’) in turbulence.
However, a vortex blob can persist indefinitely (although some VD implemen-
tations allow blob merger) and execute any number of circulations, but each
map is a one-shot event representing a particlar displacement field (x’ — x as
a function of @), e.g., one circulatory motion.

Map-based advection modeling, applied in 3D, yields novel mathematical
insights as well as an efficient simulation method for a class of turbulent
multiphase processes [29]. For present purposes, the key point is that map-
based advection can be applied in 1D.

In 1D, the only solenoidal flow that can be generated by the v-V operator
is rigid translation. In map language, the solenoidal property can be stated
as follows: [, dx’ = [ dx for any subset o of z, where ¢’ is the image of
the subset o obtained by the transformation @ — z’. (Henceforth, boldface
is omitted in statements specialized to 1D, although in this and some other
cases the validity of the statement is not restricted to 1D.) This is a state-
ment of measure preservation by the map. It is more general than the usual
solenoidal condition V - v = 0 because it encompasses a more general class of
advection processes. The existence, within the map representation of advec-
tion, of non-trivial 1D motions that are measure preserving, and obey another
essential property, is the key motivation for introducing map-based advection
here (although it is likewise useful in 3D, as noted).

The other essential property is a particular form of continuity. It is different
from adherence to the continuity equation, which reduces, for incompressible
flow, to the solenoidal condition. Here, continuity refers to the relation

|z(2h) — x(25)| < Blay — a3, (1)

where subscripts denote particular values of z’, and B is a finite numerical
constant; for the map ansatz adopted here (Sect. 4.2), B = 3. Equation (1)
ensures that the map does not introduce spatial discontinuities into a contin-
uous function, i.e., h(z’) = g(z(z')) is continuous in z’ if g(x) is continuous
in .

It is important to enforce this form of continuity, not only because it is
obeyed by the exact equations of motion (except for inviscid compressible
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flow, which is not considered here), but also because violations of this con-
dition can introduce significant artifacts. Velocity discontinuities correspond
to infinite local strain and thus, unphysically large local turbulence produc-
tion. A possible anomaly resulting from species concentration discontinuities
is noted in Sect. 2.5.

These artifacts can be remedied to some extent, but there is a more fun-
damental reason for enforcing (1). The coefficient B in (1) bounds the multi-
plicative decrease in separation that a map can induce between a pair of fluid
elements (here meaning fluid states at particular points in space). Central to
turbulent cascade phenomenology is the notion of locality of the turbulent
cascade in scale space, i.e., individual fluid motions in turbulence (eddies)
induce at most order-unity reduction of fluid-element separation [11]. Inter-
mittency suggests deviations from this picture that can be interpreted within
the present framework as locally large values of B. The mapping ansatz has
been formulated in way that accommodates this [30], but implementations to
date conform to (1) with B = 3, and in one instance B = 5 [31].

Formally, a map represents a change of configuration corresponding to
some time increment At. It would therefore appear that a time update should
be associated with map implementation. However the formulation does not
accommodate this for several reasons. First, maps are applied to finite spa-
tial regions, representing the spatial extents of individual turbulent eddies
within the 1D representation. In turbulence, many eddy motions are occur-
ring at a given instant, implying multiple overlapping time increments, if a
corresponding literal time advancement is triggered by each map. This leads
to conceptual as well as computational difficulties. Second, the intent is to
model all physical processes subsumed in the governing equations, not solely
advection. There is no plausible way to time advance, e.g., diffusive transport,
as a sub-cycling process within a map representation of an eddy because a
map is inherently instantaneous. Hence, the finite time duration of an eddy
motion cannot be represented operationally within the model.

The physics associated with eddy time scales is nevertheless contained in
the model, albeit in an indirect way that does not fully capture turbulence
phenomenology. Operationally, 1D advancement consists of conventional ad-
vancement of sub-processes other than solenoidal advection, punctuated by
instantaneous maps (with no associated time incrementation) representing
the latter. This is equivalent to a sequence of initial-value problems, where
the system state after a map is the initial state, which is advanced until the
occurrence of the next map, which modifies the spatial structure of the depen-
dent variables in some sub-region, thereby establishing initial conditions for
further time advancement. The statistics of the time intervals between maps
in various size ranges are the model representation of the temporal character
of eddy motions.

Thus, within the 1D advancement there is an operator splitting, reflect-
ing the qualitatively different model representations of solenoidal advection,
consisting of maps, and other sub-processes. Between each map and the next,
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the other sub-processes are sub-cycled; this might involve additional operator
splitting based on numerical considerations. These other sub-processes corre-
spond to 1D gas dynamics in the conventional sense, including dilatational
flow aligned with the 1D domain (Sect. 5.4).

3.3 Advancement Cycle

A minimal description of the advancement cycle, omitting consideration of
chemistry, output gathering, and related issues, is presented. As noted in
Sect. 3.1, three distinct coupled flow solutions are advanced concurrently. For
a given dependent variable 6, e.g., density or a velocity component, its state
at a given time t is specified, for a given solution (e.g., the solution labeled
x), as {0k(z,t)}, where 0 < 2 < X, 1< j <Y,and 1 <k < Z. Here, z
is any real number in the specified range of the continuum 1D domain. For
the discrete finite-volume formulation based on wafers of width 1/m (in the
units of Sect. 3.1), in which = corresponds to wafer centers, = takes the values
(2n — 1)/(2m), where n is an integer in the range 1 < n < mX. The integer
indices j and k label the 6 profiles in the corresponding domains S, (j, k).

For the various dependent variables 6, this prescription fully specifies the
states of the three flow solutions at time ¢. Note that no variables associated
with the coarse CVs Cj;1, are needed to specify the solution states. This is the
hallmark of an AME-type formulation.

Initial and boundary conditions are specified with reference to individual
property profiles 6, (z, t). For illustration, Rayleigh convection, a suitable tar-
get case for initial model application (Sect. 7.1), is considered. This flow is
generated by holding each boundary of the rectangular flow domain at fixed
temperature so at to induce gravitational instability, e.g., taking the bottom
boundary (z = 0, where z is the vertical coordinate) to be at a given temper-
ature Ty, while the other boundaries are held at some common temperature
T1 < Tpy. No-slip conditions are applied at all these boundaries.

The simulation is run until a statistically steady state is reached, as mea-
sured, e.g., by velocity or temperature fluctuations at the center of the en-
closure. Flow statistics are then gathered during statistically steady advance-
ment. Therefore initial conditions are irrelevant. A simple choice of initial
conditions is uniform temperature 77 and motionless fluid throughout the
domain.

Application of the boundary conditions is closely tied to the advancement
cycle, which is now considered. Conceptually, though not necessarily in an
efficient numerical implementation, the advancement cycle consists of two
steps:

1. Sub-cycling, independently within all the domains S;(j, k), Sy (7, k), and
S.(i,7) of all three flow solutions, to advance the processes described in
Sect. 3.2 from time t to time t’ = t + At, where At is the advancement
time step.
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2. Property transfers across the boundaries of all the domains S.(j,k),
Sy (i, k), and S, (4, j) to enforce the equality of property fluxes across each
CV face in the three flow solutions during the time interval At.

The significance of step 2 is illustrated by considering common face of CVs
Cijr and C(;q1y;5- It is interior to S;(j, k) and on a lateral boundary of each
of the domains Sy (i, k), Sy (¢ + 1, k), S.(i,7), and S, (i + 1,5). All three flow
solutions require physically accurate property fluxes across this face during
At. Step 1 induces property fluxes across surfaces interior to each 1D domain,
but none across the lateral bounding surfaces of these domains, so these fluxes
must be prescribed and implemented in some other way.

As the example illustrates, each CV face on a lateral boundary of a 1D
domain is in the interior of a 1D domain of a different flow solution. Therefore
properties are fluxed across that face during the step-1 advancement of the
flow solution in which it is an interior face. These fluxes can be monitored
during step-1 advancement of that flow solution.

The modeling assumption that closes the 3D formulation is that each prop-
erty flux across a given CV face is the same in all three solutions. This implies,
by Gauss’ theorem, that all three solutions are the same at the mesh-filtered
level unless property sources and sinks associated with 1D sub-cycling (step
1) are different within a CV for different solutions. This is possible in the
present formulation, e.g., due to differing details of small scale mixing that af-
fect chemical reaction rates locally. Mesh-filtered conserved properties evolve
identically in the three solutions. (Here, filtering is a data-reduction technique
rather than a part of the advancement algorithm.)

Thus, each property flux across a given CV face that is determined by one
of the solutions during step 1 becomes a prescribed flux that, during step 2,
governs transfer of the property across that face in the other two solutions.
The step-2 transfers are between pairs of wafers in adjacent 1D domains, e.g.,
the 1D domain pair Sy (%, k) and S, (i + 1, k) in the example, and likewise, the
1D domain pair S,(i,5) and S,(i + 1, 7).

To specify the transfers in detail, consider the step-2 transfers of property
6 across the common face of CVs Cyjx, and Cj1 1) in solution y. Let F' be the
0 flux across this face that is prescribed by solution z during step 1. Then for
each integer n in the range [1,m], the wafer values 0;x(x,t) and 64, (, 1),
where x = i 4+ (2n — 1)/(2m), are incremented by =+ f(z)At, where — and +
apply to the respective 8 values and f(x) is an interpolated flux constrained
to obey >, f(z) = mF. (Interpolants constrained in this manner have
previously been used analogously [20, 32].)

The implementation of boundary conditions is essentially the same as the
treatment of property fluxes at CV faces in the interior of the flow domain.
Consider a CV face that is part of the flow boundary. The boundary condi-
tion at that face is applied during step-1 sub-cycling of the 1D domain that is
bounded by that face and oriented normal to it. The flux of a given property
# through that face during step 1 is monitored, or it may have a known value
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specified by the boundary condition. During step 2, this flux value F' is an
imposed flux across that face for the other two 1D domains that are bounded
by the face. The interpolant f is constructed and 6 values are modified ac-
cordingly, analogous to flux implementation across faces interior to the flow
domain.

3.4 Relationship to Conventional Methods

The advancement cycle outlined in Sect. 3.3 is applicable irrespective of the
details of the 1D advancement (Sect. 3.2). The fluxes during step 1 reflect con-
tributions by molecular and advective transport, where the solenoidal part of
the advective contribution is due to fluid displacements by maps. Alterna-
tively, the solenoidal part could be based on a postulated eddy diffusivity.
This representation of solenoidal flow on the 1D domain would smooth rather
than wrinkle property profiles, so 1D mesh refinement (m > 1) would become
spurious. Nevertheless, this alternative indicates the formal analogy, as well
as the key physical distinction, between the present framework and conven-
tional LES of compressible flow. The distinction is the resolution and explicit
evolution, rather than smoothing, of small scale processes in the present for-
mulation.

Not only is the present formulation formally analogous to LES; it can be
rendered equivalent to an LES through constraints on the implementation
of maps. As explained in Sect. 5, the map sampling process generates a dis-
tribution of map sizes that generally conform to the eddy size distribution
inferred from conventional turbulence phenomenology. For a given magnitude
of property gradient, the map-induced flux depends primarily on the size-vs.-
frequency distribution of maps.

To render the model formally equivalent to LES, one can deviate from this
physically based precription as follows. Characterize the overall magnitude of
map-induced transport by an eddy diffusivity x., which scales as ¢L?, where
¢ and L are a representative frequency and size of the large eddies (i.e., the
largest eddies implemented in 1D; see Sect. 6.2), which dominate transport.
Assume that ¢ is increased and L is reduced so as to maintain constant ke,
yielding many small eddies inducing the same transport as a smaller number
of larger eddies. In the limit of diverging eddy frequency and vanishing L, the
law of large numbers implies that fluctuations of property fluxes time averaged
over the advancement step At vanish, so the stochastic model becomes deter-
ministic. In this limit, the map sequence no longer induces physically relevant
fine structure and its role is reduced to transport characterized by the diffu-
sivity ke. Formally then, the model reduces to LES with an eddy-diffusivity
closure, where the specific form of the closure depends, as in conventional LES,
on how the dependence of k. on the flow state is specified. In this regard, the
ODT eddy-selection process (Sect. 5.1) is closely analogous to conventional
LES closure; see [33] for details.
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Apart from its reduction to the physical modeling content of conventional
LES, the present formulation requires an alternating-direction solution algo-
rithm that differs from conventional LES numerics. Revision of the idealized
advancement scheme of Sect. 3.3 can be anticipated as the algorithm is devel-
oped and tested.

This reduction to LES highlights the physical contribution of the map
process when it has a realistic size-vs.-frequency distribution. As the scale
L is dialed up from zero, fluctuations and associated fine-scale structure are
introduced, but these properties do not necessarily enhance the realism of
the model if the map distribution is not physically accurate. To benefit from
this departure from an LES formulation, the induced fluctuations must be
sufficiently accurate to provide a gain in model fidelity that justifies the com-
putational cost of the method. This is best judged from the performance of
the model. The particular formulation outlined here has not yet been imple-
mented, but it is closely analogous to existing formulations. These are now
considered in further detail in order to highlight the modeling concept and to
assess how it might perform within the formulation proposed here.

4 Map-Based Advection Models

4.1 1D models of turbulent premixed combustion

Efforts by the author and co-workers to develop map-based methods for tur-
bulent flow simulation in one or more spatial dimensions are summarized. The
intent is to indicate the variety of possible formulations and the physics that
is captured and omitted in particular instances.

The starting point was an effort to develop a minimal model of turbulent
premixed combustion. The initial outcome was a formulation in which the
instantaneous state of a turbulent flame is idealized as a bit vector (row of
integers 0 or 1) in which each pair of adjacent bits interacts in two ways.

First, each 0 is converted into a 1 at a mean rate B times the number (0, 1,
or 2) of adjacent bits in state 1. This process represents laminar burning with
laminar flame speed BL, where L is the nominal spatial separation of adjacent
bits. Note that there is some subtlety even at this level of description. The
middle bit in a 101 configuration is deemed to burn twice as fast as in a 100
or 001 configuration because flames consume it from both sides, which is a
reasonable but not uniquely plausible idealization of flame propagation. Also,
this is a random process but could be plausibly formulated as a deterministic
process.

Second, each pair of adjacent bits is exchanged (e.g. 01 to 10, 10 to 01,
00 and 11 unaffected) at a mean rate R, thus idealizing turbulent advection
with eddy diffusivity RL?. (Note that bits execute simple random walks with
event rate 2R.) Like laminar burning, this process is random in time, namely a
Poisson process with mean event rate R for each bit pair. Model dynamics are
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governed by one non-dimensional parameter, v = R/B, which can be viewed
as an idealization of the quantity u'/S that governs 3D turbulent combustion,
where u’ is the root-mean-square turbulent velocity fluctuation and S is the
laminar flame speed. 1/B times the mean rate of 0-to-1 conversions is then
the model analog of ur /S, where ur is the turbulent burning velocity.

For a step-function initial bit profile, this process relaxes to statistically
steady propagation that captures some qualitative features of turbulent pre-
mixed combustion [34]. It has been shown that model analog of ur is governed
by the KPP velocity-selection principle in the large-y limit [35]. To improve
the physical realism of this formulation, it was extended by allowing exchanges
of the positions of non-adjacent bit pairs, idealizing the effects of turbulent
eddies of various sizes [36].

4.2 Linear-Eddy Model

Though bit-pair exchange over a range of bit separations reflects the range of
eddy motions in turbulence, it does not reflect the coherence of eddy motions,
meaning that a large eddy displaces a larger volume of fluid in a given direc-
tion than does a small eddy. Accordingly, an exchange process denoted block
inversion was introduced, involving the reversal of the order of bits j through
Jj+1—1 to represent a size-l eddy [37]. This change was necessitated by the
application of the 1D approach to diffusive scalar mixing rather than flame
propagation; bit-pair exchange gives far too rapid length-scale reduction in
this context. This artifact occurs also for flame propagation, but is less severe
in that context because ur is more sensitive to the distance and frequency of
the largest bit displacements than to the amount of fluid transported.

Block inversion introduces scalar discontinuities at eddy endpoints. From
a spectral viewpoint, this corresponds to transfer of scalar fluctuations from
finite wave-number k to k = oo, violating the spectral locality of length-scale
reduction that is a hallmark of the inertial-range turbulent cascade [11].

To remedy this artifact, the scalar-mixing formulation, denoted the ‘linear-
eddy model’ (LEM), was improved by introducing a new exchange process,
termed the triplet map [38]. This is not a pair exchange, but rather, a per-
mutation of cell indices j through j + [ — 1. Taking the map range [ to be a
multiple of 3, the triplet map, illustrated in Fig. 1, permutes the cell indices
into the new order j, 743, j+6, ..., j+1—-3, j+1—2, 54+1—-5, j+1—
8 ..., g+4, j+1, j+2, j+5, 7+8, ..., j+1—4, j+1—1. This operation
reduces the separation of any pair of cells by no more than a factor of three,
thus satisfying the scale locality of length-scale reduction. It is the simplest
of a family of permutations that preserve scale locality, and is optimal in that
no other member of the family enforces a smaller bound B (Sect. 3.2) on the
maximum scale-reduction factor. Because it is a permutation of equal-sized
cells, the triplet map is measure preserving in the sense defined in Sect. 3.2.

LEM is parameterized by a Péclet number Pe, which is the eddy diffu-
sivity associated with transport by the triplet-map sequence divided by the
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1000000000000000 16 16
0100000000000000 15 15
0010000000000000 14 14
0001000000000000 13 13
0000001000000000O 12 10
0000000001000000 11 7
0000000000100000O0 10 6
00000001000000O00O 9 = 9
0000100000000000 8 12
0000010000000000O 7 11
00000000100000O00O0 6 8
0000000000O00O10000O0 5 5
0000000000001000 4 4
0000000000O0O0OO100 3 3
00000000000O0O00O0O01T0 2 2
00000000000OOOO0O1 1 1

Fig. 1. Application of a triplet map, with [ = 9, to a 16-element column vector with
vertically increasing cell indices. For clarity, unity matrix elements are boldface
and cells are shifted horizontally in proportion to their index values. The shifts are
intended to suggest the 1D profile of the mapped variable.

molecular diffusivity. On this basis, LEM has been used to study the depen-
dencies of turbulent mixing and reaction processes on Pe and on the initial
and boundary conditions imposed on one or more scalar profiles that evolve
on the 1D domain [31],[39]-[44].

4.3 One-Dimensional Turbulence

LEM simulates mixing induced by parametrically specified turbulent advec-
tion. To obtain a model that, instead, predicts turbulent flow evolution, pro-
files of one or more velocity components were introduced on the 1D domain,
and the random selection of individual eddies (here parameterized by j, I,
and time of eddy occurrence) was generalized [30]. In LEM, the eddy rate
is a prescribed function of [, reflecting the known inertial-range frequency-
vs.-wavenumber scaling [11], and also depends on j if the flow is spatially
inhomogeneous. In the predictive flow model, denoted ‘one-dimensional tur-
bulence’ (ODT), the sampling rate for each eddy (parameterized by j and )
is a function of the instantaneous flow state, based on turbulence production
and dissipation mechanisms that are conventionally used to estimate eddy
time scales [45]. A key distinction here is that conventional estimation based
on mixing-length phenomenology is typically applied to quantities subject to
some form of averaging or filtering, but in ODT, mixing-length phenomenology
is applied to instantaneous property profiles that are not subject to averaging
or filtering.

In ODT, the key molecular process that evolves concurrently with eddy
events (i.e., the analog of laminar flame propagation in premixed combustion
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and molecular diffusivity in LEM) is molecular viscosity, as prescribed by
the viscous-transport term of the momentum equation. The corresponding
non-dimensional parameter that governs constant-property flow evolution in
ODT is a Reynolds number. In ODT, as in 3D flow simulation, the nominal
Reynolds number is defined in terms of domain geometry and flow initial and
boundary conditions, but the turbulent Reynolds number, defined in terms
of u/, the mean energy dissipation rate, and the kinematic viscosity, is an
outcome of simulated flow evolution rather than an input.

Velocity profiles in incompressible ODT do not advect fluid (see Sect. 5.4
for discussion of compressible ODT), but they influence triplet-map advection
through their role in determining eddy-sampling rates. In this sense they are
auxiliary variables, but in addition, they are the flow observables. The tight
two-way coupling between velocity-profile evolution and eddies (triplet maps
advect velocity profiles) maintains overall consistency of velocity statistics and
map-induced transport.

Buoyancy effects have been incorporated into ODT, and buoyant strati-
fied flows have been studied extensively [30],[45]-[50]. In fact, buoyancy alone
(velocity profiles omitted) is a sufficient input to eddy rate determination to
provide a reasonable representation of some flows of interest (including the
flow considered in Sect. 7.1), motivating a simplification of ODT that is termed
‘density-profile evolution’ (DPE) [30, 46]. ODT has also been used to study
free shear flow [51]-[53], confined flow (Sect. 7.2), and combustion [54]-[56].

4.4 Higher-Dimensional Map-Based Methods

The triplet map generalizes straightforwardly to higher spatial dimensions.
This generalization is found to be useful both theoretically and computa-
tionally [29]. The relaxation of advective time-stepping constraints, and the
option of a mesh-free Lagrangian algorithm (based on the spatial continuum
definition of the triplet map, see Sect. 5), offer substantial computational ad-
vantages even in 3D.

In higher dimensions, it is possible to define a deterministic map-based ad-
vection protocol that is a useful representation of turbulence in some contexts.
One such formulation, ‘deterministic turbulent mixing’ (DTM), has been used
to study flame-front geometry in turbulent premixed combustion [57].

5 ODT Formulation of Substructure Advancement

5.1 Boussinesq Formulation

To date, compressible gas dynamics has not been incorporated into ODT.
The existing formulation that has the features closest to those needed in a
compressible formulation is one that is based on the general variable-density
conservation equations (i.e., not specialized to small density fluctuations) [53].
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This formulation involves mathematical intricacy that obscures the underlying
modeling concepts, and a compressible formulation will be even more obscure
in this regard. Therefore the formulation outlined here is based on the Boussi-
nesq approximation, in which density variations are deemed negligible except
in the gravitational forcing term. Gravity is included here both to illustrate
the treatment of a dynamically active scalar property (here, density) and be-
cause the initial target application of the proposed ODTLES formulation is
a buoyancy-driven flow. This formulation is roughly analogous to the ODT
formulation in [45].

A mathematical statement of this illustrative formulation is presented. In
Sect. 4.2, a spatially discrete definition of the triplet map was given. Hence-
forth, space and time variables are continuous unless stated otherwise, and
the triplet map is defined on the spatial continuum.

The ODT formulation utilized here simulates the time evolution of velocity
components u, v, and w and density p defined on a 1D domain representing the
vertical (z) coordinate. This evolution involves two processes: (1) a sequence of
eddy events, which are instantaneous transformations that represent turbulent
stirring, and (2) intervening time advancement of conventional form. Each
eddy event may be interpreted as the model analog of an individual turbulent
eddy. The location, length scale, and frequency of eddy events are governed
by a stochastic process.

During the time interval between each eddy event and its successor, the
time evolution of property profiles is governed by the equations

(0 —vdZ) u(z,t) =0 (2)

(0 —v02) v(z,t) =0 (3)
(0 —v02) w(z,t) =0 (4)
(8 = 62) plz1) = 0 (5)

Here v is viscosity and +y is diffusivity of the scalar, temperature, that controls
the density. For simulation of Rayleigh convection, discussed in Sect. 7.1, these
equations are solved on a vertical domain [0, H], where H is the height of the
convection cell. Boundary conditions applied to the velocity at z = 0 and
H are u = v = w = 0. Density boundary conditions are p(0,t) = p; and
p(H,t) = pa, where pa > p1 to enforce unstable stratification, which drives
the flow.

Each eddy event consists of two mathematical operations. One is a triplet
map representing the fluid displacements associated with a notional turbulent
eddy. The other is a modification of the velocity profiles in order to imple-
ment pressure-induced energy redistribution among velocity components and
net kinetic-energy gain or loss due to equal-and-opposite changes of the grav-
itational potential energy. These operations are represented symbolically as
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pz) = p(M(2))

u(z) = uw(M(z))+ e, K(z ()
v(z) = v(M(z))+c,K(z

w(z) =  w(M(z)) + cwK(2).

According to this prescription, fluid at location M (z) is moved to location z by
the mapping operation, thus defining the map in terms of its inverse M (z).
This mapping is applied to all fluid properties. The additive term ¢, K (z),
where s = u, v, or w, affects only the velocity components. It implements the
aforementioned kinetic-energy changes. Potential-energy change is inherent in
the mapping-induced vertical redistribution of the p profile; see (10).

In the spatial continuum, the triplet map is defined as

3(z—z2)  ifz <2< 2+ 3,
B 20 — 3(2 — z0) if 2 + 11 < 2 < 29 + 21,
zZ— 20 otherwise.

This mapping takes a line segment [zq, 20+1], shrinks it to a third of its original
length, and then places three copies on the original domain. The middle copy
is reversed, which maintains the continuity of advected fields and introduces
the rotational folding effect of turbulent eddy motion. Property fields outside
the size-l segment are unaffected.

The parameters zo and [ are the continuum analogs of the integer quantities
j and [ in the discrete definition of the triplet map in Sect. 4.2. Here, zg
specifies the location, and [ the size, of the eddy event.

In (6), K is a kernel function that is defined as K(z) = z — M (z), i.e., its
value is equal to the distance the local fluid element is displaced. It is non-zero
only within the eddy interval, and it integrates to zero so that the process
does not change the total (z-integrated) momentum of individual velocity
components. It provides a mechanism for energy redistribution among velocity
components, enabling the model to simulate the tendency of turbulent eddies
to drive the flow toward isotropy, constrained by the requirement of total
(kinetic plus potential) energy conservation during the eddy event (which is
non-dissipative).

To quantify these features of eddy energetics, and thereby specify the
coefficients ¢s in (6), it is convenient to introduce the quantities

Sk = 112 s(M(2))K(z) dz, (8)

where s = u, v, w, or p. Substitution of the definition of K (z) into (8) yields

1 1
Because M (z) is a measure-preserving map of the z domain onto itself, the
domain integral of any function of M (z) is equal to the domain integral of the
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same function with argument z. This allows the substitutions of z for M(z)
that yield the final result in (9). For s = p, this expression is proportional to
the potential-energy change induced by the triplet map. The energy change
A caused by an eddy event can then be expressed as

2
A = pol?(cuur + covr + cowr) + ﬁpols(ci +ci+c)+ 9Pk, (10)

where a reference density po (defined here as mass per unit height, based on
a nominal column cross-section) is introduced (i.e., the standard Boussinesq
prescription), as well as the gravitational acceleration g.

The representation of both the potential and kinetic energy contributions
in (10) using (8) is a consequence of the definition chosen for K. Based on
this definition, another equivalent form of (8),

zo+1
SK 4 / s(z)[l — 2(z — 20)] dz, (11)

RCENS

which is useful for numerical implementation, is readily obtained.

Overall energy conservation requires A = 0. Two additional conditions
are required to specify the coefficients cs. These are based on a representation
of the tendency for eddies to induce isotropy. For this purpose, it is noted
that there is a maximum amount Qs = 28—7 pols? of kinetic energy that can be
extracted from a given velocity component s during an eddy event [52]. (The
amount of energy actually extracted or deposited depends on c¢.) Qs is thus
the ‘available energy’ in component s prior to event implementation. The
tendency toward isotropy is introduced by requiring the available energies
of the three velocity components to be equal upon completion of the eddy
event. This provides the additional needed conditions and yields the following
expression determining c;:

1 8gl px

The physical criterion that resolves the sign ambiguity is explained in [52].
Note that the last term in (12) is the square root of a quantity proportional
to the net available energy @, + Q, + @, — P, where the quantities Q,
are the component available energies prior to event implementation and P is
the gravitational potential energy change caused by triplet-mapping of the p
profile, requiring equal-and-opposite change of available energy during eddy
implementation, as enforced by the condition A = 0. If P is positive (stable
stratification) and larger than the available energy, then the eddy is ener-
getically prohibited. In this case, the argument of the square root in (12) is
negative and the eddy event is not implemented (see below).

Although the formulation of an individual eddy event incorporates several
important features of turbulent eddies, the key to the overall performance of

27
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the model is the procedure for determining the sequence of eddy events during
a simulated flow realization. The expected number of eddies occurring during
a time interval dt, whose parameter values are within dz of zy and within dl
of [, is denoted the ‘eddy rate distribution’ A(zo, [;t) dzo dl dt, which has units
of (length?xtime)~!. Eddies are randomly sampled from this distribution.
Mathematically, this generates a marked Poisson process [58] whose mean rate
as a function of the ‘mark’ (parameter) values zo and ! varies with time. The
physical content of the eddy selection process is embodied in the expression
for A that is adopted,

Cv wgl 2 vl 2 wgl 2 8913 px
= 22 il Wrl) S0 PKE gz (1
A 14 \/( V) +<I/ + v 2712 po (13)

This expression involves two free parameters, C' and Z, whose roles are ex-
plained in Sect. 6.2. A is set equal to zero if the argument of the square root
is negative, indicating an energetically prohibited event; see the discussion of
(12).

For Z = 0, the argument of the square root is a scaled form of the net
available energy. Thus, for given zg and I, (13) with Z = 0 is simply the dimen-
sionally consistent relation between the net available energy and the length
and time scales of eddy motion, where the associated time scale is the inverse
of the (appropriately normalized) eddy rate A\. Thus, (13) may be viewed as a
representation of mixing-length phenomenology within the ODT framework.
This phenomenology is the basis of many turbulence modeling approaches.
In particular, it is central to LES closures based on eddy viscosity, hence the
analogy between conventional LES and the proposed ODTLES methodology
(Sect. 3.4). However, the present approach, which does not involve averag-
ing, differs from the typical use of mixing-length concepts to close averaged
equations in several respects:

1. Rather than assigning a unique [ value at each spatial location, ODT
allows eddies of all sizes throughout the spatial domain, with their relative
frequencies of occurrence at different locations specified by (13).

2. Quantities on the right-hand side of (13) depend on the instantaneous
flow state rather than an average state, so eddy occurrences are responsive
to unsteadiness resulting from transient forcing or statistical fluctuations
inherent in the eddy-sampling process.

3. Eddy occurrences thus depend on the effects of prior eddies and affect
future eddy occurrences. These dependencies induce spatio-temporal cor-
relations among eddy events, leading to a physically based representation
of turbulence intermittency.

These attributes of ODT are the basis of its detailed representation of tur-
bulent cascade dynamics coupled to boundary conditions, shear and buoyant
forcing, etc. In particular, the stochastic variability of simulated ODT realiza-
tions arises from a physically based representation of turbulent eddy statis-
tics, and thus enables a conceptually sound and mathematically consistent
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assessment of the effects of stochastic variability on the variability of, and
correlations among, output statistics.

If two of the three velocity components are removed from the model, (13)
reduces to the eddy rate distribution used in [48]. If the buoyancy term is
omitted, (13) resembles the expression for A that appears in [52], except that
here, \ is based on the total available energy (including contributions from all
three velocity components) rather than the available energy associated with
vertical motion. Use of the total available energy is advantageous here because
it gives the correct critical Richardson number, Ri. = % [59], for the onset
of instability (in the present context, eddy events). Another distinction from
[52] is that the procedure that was used previously to suppress occasional
unphysically large eddy events is omitted here. For ODTLES implementa-
tion, a bound on eddy sizes follows from consideration, in Sect. 6.2, of the
complementary roles of steps 1 and 2 of the advancement cycle.

5.2 Numerical Implementation of Eddy Sampling

The unsteadiness of the rate distribution A suggests the need to reconstruct
this distribution continuously as the flow state evolves. This prohibitively
costly procedure is avoided by an application of the rejection method [60],
involving eddy sampling based on an arbitrary sampling distribution that is
designed to over-sample all eddies. True rates are computed only for sampled
eddies, and are used to determine eddy acceptance probabilities. The resulting
procedure adequately approximates the desired sampling from A [30], and
is exact in the limit of infinite over-sampling. The choice of the arbitrary
sampling distribution affects the efficiency of the sampling procedure, but not
the statistics of the eddies that are selected for implementation.

This implies modification of the split-operator cycling during 1D advance-
ment that is outlined at the end of Sect. 3.2. Denoting the arbitrary joint
PDF used to sample zo and [ values as h(zo,!), and choosing a sufficiently
small eddy-sampling time-step At,, the advancement cycle during step 1 of
the overall advancement (Sect. 3.3) is

1. Advance the concurrent processes such as viscous transport (Sect. 3.3) for
a time interval At,.

2. Sample zg and [ values from h(zo, ).

For these values, compute A(zp,!) based on the current flow state.

4. Compute the ratio P of the rate A(zo, [) of occurrence of an eddy with these
zo and [ values as given by the model to the rate h(zg,!)/Ats resulting
from the sampling procedure.

5. Implement the selected eddy with probability P based on a Bernoulli trial,
i.e., implement the eddy if P = A(zq, 1) Ats/h(20,1) is larger than a random
variable sampled from the uniform distribution over [0, 1]).

@

At must be assigned a value small enough so that P never exceeds unity. For
numerical accuracy, P < 1 should be obeyed with at most rare exceptions.
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For an evolving flow, it is efficient to adjust Ats during advancement in order
to direct the P values toward a target range, typically of order 0.01.

5.3 Planar Free Shear Flows

The ODT representation of a time-developing Kelvin—Helmholtz instability,
illustrated in Fig. 2, indicates some of the flow features captured by the model.
This illustration is based on the ODT formulation of [52], which includes
the large-eddy suppression procedure that is needed for stand-alone ODT
simulation of unbounded flows (Sect. 5.1).

The rendering shows that the width of the active mixing zone grows pri-
marily by the relatively infrequent occurrence of a large event extending be-
yond the current range of the mixing zone, with some additional contribution
by the more numerous small events. This process is consistent with the domi-
nant role of large engulfing motions and the secondary role of small-scale nib-
bling in turbulent entraining flows under neutral buoyancy conditions. (The
effect of density stratification on the ODT representation of turbulent entrain-
ment has been investigated [30, 53].)
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Fig. 2. Graphical representation of the sequence of eddy events during a simulated
ODT realization of a time-developing Kelvin—-Helmholtz instability (left panel) and
a time-developing planar wake (right panel) [52]. The Kelvin—Helmholtz and wake
simulations are initialized using step-function and top-hat initial velocity profiles,
respectively. The space and time units in this illustration are arbitrary. In the plots,
each eddy is represented by an error bar whose vertical span corresponds to the
eddy range [z0,20 + [], and whose horizontal location corresponds to the time of
eddy occurrence.

Bunching of events, especially after the occurrence of a large event, reflects
the interactions between the eddy events and the evolving velocity profile that
induce the model analog of the turbulent cascade. Each eddy event compresses
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and folds the velocity profile within the range of the event. This increases the
local shear that contributes to mechanical turbulence production in the rela-
tion (13) governing the frequency of subsequent events within that range. (In
stratified flows, the buoyant production is also affected.) A feedback process
is thus induced that promotes the occurrence of successively smaller events.
Eventually, velocity fluctuation length scales are reduced sufficiently so that
damping of the fluctuations by concurrent viscous transport dominates the
production of fluctuations by eddy events. Viscous damping thus terminates
the local burst of eddy activity.

A planar wake simulation is also shown in Fig. 2. In the Kelvin—Helmholtz
simulation, vigorous turbulence, indicated by the number and size range of
eddies as the flow evolves, is sustained by the shear imposed on the flow
by the free-stream conditions (far-field velocity difference). The wake, how-
ever, evolves in a uniform background. As the initial velocity perturbation is
dispersed by eddies and dissipated by concurrent viscous evolution, the tur-
bulence intensity decreases, affecting the eddy frequency and size range and
slowing the growth of the turbulent zone. These qualitative impressions are
supported by the quantitative consistency of ODT simulation statistics with
the known similarity scalings for these flows [52].

5.4 Proposed Compressible Formulation

The main modifications of the Boussinesq ODT formulation that are required
in order to incorporate compressible gas dynamics are:

1. During 1D advancement, the w velocity now advects all properties, so
introduce a wdiz term on the left-hand side of (2)—(4) and in the additional
evolution equations mentioned below (item 4).

2. Adopt the general variable-density formulation of [53], which generalizes
the momentum equations (2)—(4) and the energy-redistribution step dur-
ing eddy implementation.

3. In the w equation, introduce a pressure-gradient (dp/dz) term.

4. Introduce 1D continuity and energy equations, and an equation of state
(e.g., ideal gas) that determines the pressure locally (in each wafer) from
density, temperature, and composition (for multi-species mixtures).

5. Generalize the potential-energy contribution in (13) to reflect the equiva-
lence of the gravitational body force and dw/dt acceleration.

6. Generalize the viscous stress terms in (2)—(4) to compressible form, intro-
ducing (manageable) complications that are not elaborated here.

This scheme introduces acoustic time scales, which are very short relative
to other time scales at low Ma. As in other low-Ma compressible simulations,
a pseudo-compressible scheme based on an artificially low sound speed [1] can
improve the efficiency of this formulation at low Ma.

A poorly understood feature of compressible turbulence is the coupling of
acoustic and vortical motions. Because w is an advecting velocity rather than
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an auxiliary variable in the proposed compressible formulation, the triplet
map introduces such a coupling. For example, if the property profile in Fig. 1
is taken to be the w profile, then in this instance the map, representing vortical
motion, converts a pure expansion into an alternating expansion-compression-
expansion, i.e., an acoustic source. Given the limited state of understanding of
vortical-acoustic coupling in compressible turbulence, it is difficult to ascertain
whether this is a good representation of this coupling.

This question is best addressed by implementing the proposed formula-
tion and evaluating its predictive capabilities. Unlike incompressible ODT
(Sect. 5.1), this compressible formulation is not intended for use as a stand-
alone model. Its incorporation into 3D ODTLES is now considered.

6 ODTLES

6.1 Features

For implementation within ODTLES, an important feature of the formulation
of Sect. 5.4 is the distinguished role of w in the z solution (and likewise of u
and v in the 2 and y solutions, respctively). Here it is convenient to introduce
the alternate notation v; ; denoting velocity component j in solution k. The
component v; ; now advects properties in solution ¢, but for j # ¢, components
v;,; are auxiliary variables in solution %, as in Sect. 5.1. In addition to their
usual role in determining the eddy sampling rate, these components, like all
other flow properties, are fluxed through CV faces, thus prescribing inter-
domain transfers of these velocity components in the j # i flow solutions
(step 2 of the advancement cycle; see Sect. 3.3). In this manner they influence
the evolution of the advecting components v; ; in the j # ¢ solutions.

This highlights the multi-faceted relationships among the three velocity
components, the three flow solutions and the two steps of the advancement
cycle. A related consideration is the manner in which the simulated evolution
communicates pressure effects in 3D. If the pressure is locally high in one of
the solutions, it is likely to be high is the same vicinity in the other solutions
because they are all subject to the same fluxes at CV face locations (enforced
by advancement step 2). Then step-1 (1D compressible) advancement in each
solution will generate flow directed away from this vicinity in one coordinate
direction. Step 2 will then communicate these outward-directed flows among
the solutions so as to yield an approximate representation of radial outflow
from the high-pressure region in all the solutions.

Step 2 transfers properties over a distance unity, rather than the 1D res-
olution scale 1/m, using first differences. This is a diffusive representation of
fluxes that are primarily advective, and therefore induces numerical dissipa-
tion of kinetic energy. Conservation of total energy, which is obeyed exactly,
implies conversion of the lost kinetic energy into heat. For conventional eddy-
diffusivity closure, incorporation of a subgrid energy evolution equation can
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recast this dissipation as conversion of mesh-resolved kinetic energy into sub-
grid kinetic energy, with subsequent conversion to heat by viscous dissipation.
The analogous mechanism in ODT is the use of the kernel operation to deposit
the numerically dissipated energy into the velocity fields. Using the method
of [53], this can be done in conformance with momentum conservation for
variable-density flows. To distinguish numerically dissipated energy from true
viscous dissipation, separate accounting of advective and viscous fluxes across
CV faces is needed. This can be done by straightforward generalization of the
procedure used in [52] to variable-density flow.

Because step 2 involves diffusive representation of advective transport,
it is subject to some of the same limitations as parameterizations in which
this the representation of advective transport below 3D mesh-resolved scales
is solely diffusive. Nevertheless, owing to the 1D sub-cycling during step 1,
salient characteristics of the small scale flow structure are preserved, as has
been demonstrated using the formulation described in Sect. 6.3 [20]. Splicing
is a different method for implementing step-2 property transfers that is not
diffusive in character, but is subject to other limitations, as noted in Sect. 2.5.

Because step 2 of the advancement cycle applies fluxes to a given flow
solution that are interpolants of fluxes in a different flow solution, it is math-
ematically possible to violate realizability. Namely, it is possible to flux more
of a non-negative quantity such as mass out of a wafer than it contains. This
establishes a CFL-type constraint on the time step At. The allowed magni-
tude of At is of the same order for ODT closure as for eddy-diffusivity closure
in which there is no spatial refinement below the CV scale, though for ODT
the constraint is slightly more restrictive due to stochastic variability. Use of a
small value of At incurs no significant cost penalty because the 1D sub-cycling
using smaller time steps is the most costly part of the computation.

As noted in Sect. 3.3, Gauss’ theorem constrains the evolution of the three
distinct solutions. For each flow solution, it implies that the change of the CV
integral of a conserved property during one advancement cycle is equal to the
sum of the transfers of those properties through CV faces. The flux across
each face is operationally defined as the corresponding face transfer divided
by the time step At. (Recall that the face area is unity in scaled units.) This
identity motivates a definition of mesh-scale output statistics that conserves
the property exactly. Consider total CV mass, denoted p because the scaled
volume is unity. Gauss’s theorem implies that the quantities p and the face
fluxes of mass, i.e. momenta (pv)ace (Where v is the face-normal velocity),
form a conservative set of output variables. An additional assumption or def-
inition is needed to define the mesh-scale face velocity V. A natural choice is
(pV)tace = (p)V, where (p) is an interpolant of the p array evaluated at the
face center at the midpoint At/2 of the advancement cycle (corresponding to
the midpoint of the time integration that determines mass transfers across
faces).

An output protocol of this sort is needed because the 3D conservation
laws are applicable only to CVs and only with reference to state changes from
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the beginning to the end of the advancement cycle. Analogous considerations
arise in conventional advancement schemes.

Discrete and continuum definitions of the triplet map are provided in
Sects. 4.2 and 5.1 respectively, where the former is applicable in the Eulerian
uniform-mesh (Sect. 3.1) implementation described thus far. In ongoing work,
an alternative Lagrangian-mesh ODT implementation has been developed in
which wafer faces are advected by the w velocity (if the flow is compressible)
and by triplet maps. Here, the continuum map definition is used, resulting
in tripling of the number of wafer faces within the mapped interval. A mesh-
management scheme is used to suppress the excessive proliferation of wafers.
This formulation will be particularly advantageous for wall-bounded flows in
which high spatial resolution is needed only in near-wall regions, as in the
applications discussed in Sect. 7.

6.2 Parameter Assignment

The model parameters C' and Z are introduced in the formulation of eddy
sampling in Sect. 5.1. C scales the eddy event rate, and hence the simulated
turbulence intensity, for a given flow configuration. The role of Z is to impose
a threshold eddy Reynolds number that must be exceeded to allow eddy oc-
currence [45]. In near-wall flow, the transition from the viscous layer to the
buffer layer is sensitive to this threshold and hence to Z [61]. For Z > 0,
eddies are suppressed entirely when local values of the eddy Reynolds number
are sufficiently small. The circumstances under which this occurs in ODTLES
are considered. This question is closely tied to the upper bound on the range
of allowed eddy sizes [.

As noted in Sect. 6.1, the 3D character of the flow is captured above the CV
scale by step 2 of the advancement cycle. Therefore it would be redundant to
allow [ values greatly exceeding unity. Likewise, the bound on [ should not be
much less than unity, because this would omit representation of eddies larger
than the bound but smaller than unity. The signature of either of these arti-
facts would be apparent in the 1D energy spectrum, which can be extracted
from ODT simulations [20, 30, 33]. Examination of energy spectra from sim-
ulations of representative flows therefore allows empirical determination of a
bound on [.

As noted, the bound will be of order unity. Therefore the largest Reynolds
number of a 1D eddy event that will occur is of the order of the Reynolds
number of the largest eddy that is not resolved at the CV scale. If the mesh
is increasingly refined (decreasing CV size in physical units) for a given flow
configuration, then the Reynolds number of the largest unresolved eddy de-
creases until it is below the threshold value corresponding to the assigned
value of Z. At this mesh refinement, eddies are entirely suppressed during 1D
sub-cycling, so no fine structure is generated and additional 1D refinement
below the CV scale (i.e., m > 1) becomes superfluous. At this point, the
role of physical modeling is eliminated and the ODTLES simulation reduces
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to DNS. This and the considerations of Sect. 3.4 highlight the nature of the
assumptions and approximations on which ODTLES is based.

6.3 Comparison Case: Incompressible Formulation

An incompressible analog of the formulation of Sect. 6.1 has been developed
and applied to homogeneous decaying turbulence [20]. The main differences
between the two formulations are summarized.

Because the incompressible formulation precludes dilatational flow, con-
tinuity must be enforced on a time-accurate basis. Therefore a two-step ad-
vancement cycle similar to that described in Sect. 3.3 is implemented at sub-
cycling (order Atg) time intervals rather than the much larger time interval
At of the complete advancement cycle. Each 1D domain evolves the two ve-
locity components v; ;, for j # k. The j = k component that advects fluid in
the compressible formulation is omitted. Instead, fluid is advected along the
1D domain by a separately defined ‘advecting velocity’ that is determined by
continuity (here, the solenoidal condition), based on ‘fluxing velocities’ that
govern inter-domain transfers (the analog of step 2 in Sect. 3.3). The fluxing
velocities are moving averages, in time, of the velocity components evolved on
the 1D domain. (This is an incomplete description because it omits consider-
ation of the staggered mesh on which the simulation is implemented, and its
algorithmic implications.)

Once per overall advancement cycle (which in fact is a sub-cycle within a
fractional-step scheme), a pressure projection is performed to enforce continu-
ity of the mesh-scale filtered velocity field. The resulting velocity corrections
are passed down to the 1D level using an adjustment scheme involving a
momentum-conserving interpolant of the mesh-scale corrections. The inter-
polant is slightly dissipative, but this can be corrected where it degrades the
flow solution using the kernel operation, as in Sect. 6.1.

It seems likely that this and the compressible formulation will exhibit com-
parable performance for flow regimes to which both can be applied, but this
remains to be demonstrated. Computational costs are also likely to be com-
parable. Other perspectives on ODT-based 3D simulation of incompressible
turbulent flow are provided in [32] and [62].

7 Illustrative ODT Applications

7.1 Rayleigh Convection

Rayleigh convection is a suitable initial application for compressible ODTLES.
Here, previously reported results for this flow [50] obtained using the Boussi-
nesq ODT formulation of Sect. 5.1 are summarized in order to illustrate the
performance of ODT and the additional predictive capability that might be
provided by compressible ODTLES.
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The ODT formulation used to simulate Rayleigh convection was simpler
than that of Sect. 5.1 in that one instead of three velocity components was
evolved. An even simpler ODT-type formulation was previously used to sim-
ulate this flow [30]. Termed ‘density profile evolution’ (DPE), it evolves only
density or a density surrogate (temperature), but no velocity components.
Equation (13) indicates that in a gravitationally unstable state, gravitational
potential energy, in the absence of fluid motion, is sufficient to generate eddy
motion, consistent with the physical occurrence of spontaneous onset of mo-
tion under such conditions (e.g., the Rayleigh-Taylor instability, which has
also been simulated using DPE [30]). Other buoyant-stratified-flow applica-
tions of both DPE [46] and one-component ODT [47, 48, 49] have been re-
ported.

The ODT representation of Rayleigh convection corresponds to the ideal
configuration of horizontally homogeneous flow between horizontal plates of
infinite extent, but computed results are compared to measurements in con-
vection cells that are necessarily laterally bounded. The dimensional param-
eters governing this flow, which are plate separation, buoyant forcing, vis-
cosity v, and thermal conductivity k, are grouped into two non-dimensional
parameters, the Rayleigh number Ra, which quantifies the strength of the
gravitational instability, and the Prandtl number Pr = v/k, a fluid property
that controls the relative thicknesses of the near-wall viscous and thermal lay-
ers. At high Ra, the thin near-wall layers strongly influence flow dynamics,
as demonstrated by the significant observed Pr dependence of flow structure
[63]. ODT is an efficient method for resolving these thin layers.

[p(2)-p(0)1/ [p(H)-p(0)]

Fig. 3. Instantaneous (thin line) and time averaged (thick line) vertical profiles
of normalized density from an ODT simulation of Rayleigh convection for Ra =
1.4 x 10° and Pr = 0.7.
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In Fig. 2, an instantaneous density profile from an ODT simulation of
Rayleigh convection highlights the analogies between the model and physical
processes in the flow. Large localized deviations from the time averaged profile
are the signatures of map-induced displacements of near-wall fluid into the
bulk flow region. Though these displacements do not capture the persistence
in time of buoyant plumes, they emulate the mechanism of entrainment of
near-wall fluid into the bulk flow. Smaller eddy events sub-divide and compress
entrained parcels (upper region of the profile). In conjunction with molecular
transport, this leads to smoothing of the fluctuations (e.g., smooth regions
in the central and lower regions of the profile that deviate from the time
average). Over time, these processes communicate wall forcings to the center
plane, as indicated by the nonzero density gradient at the center of the profile.
Using ODT, these flow mechanisms have been quantitatively characterized
[50], which in turn has motivated another innovative modeling approach [64].

The behavior of greatest interest is the dependence of the turbulent en-
hancement of mean heat flux, denoted Nu (Nusselt number), on Ra and Pr.
Adjustment of the model parameters, C' and Z, yields good agreement with
measured Nu values over a wide range of Ra and Pr values. Without further
adjustment, ODT yields accurate predictions of center-plane fluctuations, in-
cluding PDF's of velocity and temperature [50].

Comparison of near-wall simulated PDFs with measurements [65] indicates
large discrepancies that may reflect the inability of ODT to capture the ‘wind,’
a symmetry-breaking large scale circulation [66]. Given the good performance
of the model in other respects, an ODTLES formulation that incorporates 3D
boundary conditions and emulates 3D large scale motions might reproduce the
wind and its influence on fluctuation statistics. This will be a useful initial test
of the compressible formulation, both because conventional methods cannot
affordably capture the relevant small scale near-wall phenomena and because
copious experimental data, exhibiting non-trivial parameter dependencies, are
available.

The confinement of influential small scale phenomena to the near-wall
region implies a strong preference for the Lagrangian numerical scheme, which
by construction provides high resolution only where needed. It can therefore be
anticipated that this application will be no more costly computationally than a
previously demonstrated near-wall ODT closure for confined flows (Sect. 7.2),
which was used to simulate high-Re channel flow on a single processor [61].

7.2 Channel Flow

Channel flow corresponds to the the same geometry as idealized Rayleigh
convection , i.e., flow between parallel plates with no-slip boundary conditions,
but the flow is forced by a pressure gradient parallel to the plates rather
than gravitation normal to the plates. Like Rayleigh convection, channel flow
relaxes to a statistically steady state. It is a canonical test case for conventional
LES [67, 68].
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To address the near-wall closure difficulties described in Sect. 2.1, an ODT-
based near-wall subgrid closure for LES was implemented and applied to chan-
nel flow [61]. The closure is similar in structure to, and in fact was the precur-
sor of, the formulation described in Sect. 6.3. In this regard, it might appear
that the full-flow closure is superfluous away from the near-wall region. (As in
Rayleigh convection, small scale motion and transport are disproportionately
influential only in the near-wall region.) For channel flow specifically, this may
be correct, but the compressible formulation with Lagrangian 1D implemen-
tation may be comparable in cost, as is expected for Rayleigh convection.
Moreover, the near-wall closure involves potentially problematic parameteri-
zation in the region of transition between the ODT near-wall treatment and
conventional closure in the bulk flow.

As in the application to Rayleigh convection, ODT parameters were ad-
justed to match a mean flow property, in this case, the mean velocity profile.
Here, Z controls the height of the transition from the viscous to the buffer
region. The LES with ODT subgrid closure reproduced the friction law and
wall-normal profiles of velocity fluctuations with good accuracy. Stand-alone
ODT yielded less accurate near-wall fluctuation statistics, indicating the need
for a 3D bulk-flow representation in order to represent accurately the bulk
forcing that drives near-wall fluctuations. It is anticipated (Sect. 7.1) that
ODTLES may likewise capture the wind effect in Rayleigh convection, yield-
ing comparable performance improvements relative to stand-alone ODT.

8 Discussion

High-fidelity simulation of turbulent flows and their interaction with other
processes ultimately requires local (in space and time) resolution of all rele-
vant processes. Because this is unaffordable in 3D DNS, a modeling strategy
involving resolution of small scales in 1D is proposed. The drawbacks of two-
way information transfer between resolved and coarse-grained treatments sug-
gests that an all-scale 1D formulation should be adopted, with large scale 3D
motion captured through suitable couplings within and among arrays of 1D
domains rather than through a separate coarse-grained treatment. A proposed
formulation within this ‘autonomous microstructure evolution’ paradigm has
been outlined. The underlying 1D methodology, ‘one-dimensional turbulence,’
has been described, with emphasis on the gain in fidelity when a resolved 1D
representation of relevant flow phenomenology is introduced.

The concept that enables the representation of turbulent fluid motion in
1D is generalization of the usual mathematical representation of advection by
introducing a map-based representation. It is noted that this concept is not
specific to 1D, and has potentially useful 3D applications.

Although the specific 3D turbulence simulation method outlined here has
not yet been implemented or demonstrated, steps in its development that
are indicative of its ultimate form and performance have been described. An
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analog of this engineering-focused approach that is under development by
the atmospheric science community has been noted. The potential for fruitful
cross-fertilization of ideas across disciplines is plainly evident.
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